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Abstract  
 
 
Resistance welding is used very extensively in industry for a wide range of applications. 
Knowledge and measurement of the dynamic characteristics of resistance welding equipment 
is important in the design of the equipment and in optimization of welding procedures using 
finite element software. This is especially true for projection welding where accurate 
measurements of effective lumped mass and damping of the welding head as well as its 
maximal acceleration and velocity are required for accurate modelling. 
This thesis describes a new concept where a mechanical model of the welding head is used 
together with the imposition of a mechanical load step function with simultaneous 
measurement of resulting head motion to calculate effective lumped mass and damping factor. 
Two test systems were devised to implement the step function. In the “free fracture test”, a 
metal or ceramic bar is loaded to its breaking point and resulting welding head velocity is 
measured. This data allows accurate calculation of machine parameters. The second test uses 
the explosion of a small metallic element to impose a step function, when the welding current 
causes the metallic element to explode. The final version of this test “the exploding button 
test” uses a small cylindrical element fabricated from welding filler wire, with the advantage 
that both button geometry and material can be controlled. The exploding button test has 
proved to be very effective, can easily be used for in-situ measurements and avoids the 
vibrations associated with the free fracture test. These test were applied to evaluate a range of 
resistance welding machines. 
Finally, an innovative projection geometry was developed to significantly increase projection 
weld quality and this design has now been used extensively in industry. 
The techniques developed in this thesis have been shown to be practical and effective and 
have enabled much better understanding of machine kinematics. The measurements provide 
essential data for modelling of projection welding and in guiding the development of 
resistance welding machines and procedures. 
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Nomenclature 
 
 
a Acceleration mm/s² 
a1 Acceleration while current is flowing mm/s² 
a2 Acceleration while current is interrupted mm/s² 
b Damping factor kg/s 
c Stiffness factor N/m 
D Diameter mm 
Di Internal diameter mm 
Du External diameter mm 
e Throath gap mm 
Ea Impact energy J 
F Force N 
Ffracture Force at fracture or explosion N 
Fmax Electrode force N 
Fr Reaction force N 
G Earth acceleration 9,81m/s²
H Height mm 
h Recess height mm 
I Current kA 
I20 Short circuit secondary current kA 
I2cc Max. Secondary current in short circuit kA 
Iw Welding Current kA 
k Spring constant N/m 
l Throath depth mm 
m Mass kg 
P1 Admission pressure bar 
Q Generated heat J 
R Ohmic resistance µohm 
S50 Nominal power at 50% duty cycle kVA 
Smax Maximum welding Power kVA 
Sn Nominal power kVA 
t Time s 
U1N Supply voltage V 
U20 Secondary no load alternate voltage V 
Ua Auxiliary voltage V 
v Velocity m/s 
x Distance m 
ζ Damping ratio  
µ Magnetic permeability H/m 
σ Material fracture stress N/mm2 
 Density kg/m³ 
ω Natural frequency Hz 
ω0 Undamped natural frequency Hz 
ωd Damped natural frequency Hz 
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Abbreviations 
 

AWL 
AWS 

 
Aarding Weerstand Lastechniek (machine constructor) 
American Welding Society 

COTS Commercial Off The Shelf 
DSP Digital Signal Processor 
DVS Deutsches Verband für die Schweisstechnik 
EDM Electrical Discharge Machining 
EWS Electro Slag Welding 
FEA Finite element analysis 
FEM Finite Element Modelling 
H&R Harris and Riley 
HID High Intensity Discharge 
HIP Hot Isostatic Pressing 
HSLA High Strength Low Alloy 
IIW International Institute of Welding 
IPC Industrial Portable Computer 
LB Laser Beam 
LTS Laser Twin displacement Sensor 
LVDT Linear Variable Differential Transducer 
MAG Metal Active Gas 
MBR Motor Body Repair 
MFDC Medium Frequency Direct Current 
MIG Metal Inert Gas 
MMA Manual Metal Arc 
PSD Position Sensitive Detector 
RMS Root Mean Square 
RSW Resistance Spot Weld 
RWMA Resistance Welding Manufacturers Association 
SAW Submerged Arc Welding 
SORPAS Simulation of Resistance Projection And Spot Welding 
TIG Tungsten Inert Gas 
TWI The Welding Institute 
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In Resistance Spot Welding, passage of a relatively high welding current I [kA] throughout a 
locally compressed workpiece area (by means of an electrode force F [daN]) during a 
properly defined period of time t [cyc, ms] heats this area due to resistive heating following 
Joule’s law (Figure 1-2),  

ሻ࢚ሺࡽ  ൌ ׬	 .ሻ࢚ሺࡾ ሻ࢚૛ሺ࢏
ࢀ
૙ .     ࢚ࢊ

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-2 Principle of resistance spot welding 
 
As the momentary value of both welding current and resistance changes continuously 
throughout the duration of the welding time, the integral over the welding time needs to be 
calculated to get a correct value of the heat generated in the welding area. 
Only a fraction of the generated heat serves to create a molten weld nugget in between the 
workpieces that solidifies during cooling down under maintained pressure by the electrodes 
on the workpieces. The rest of the heat generated disappears into the electrodes and their 
cooling system, the workpieces and the surrounding atmosphere. 
The three most commonly known processes, also covering the majority of applications, are 
spot-, seam- and projection-welding. These three processes and their variants are extremely 
suited and popular to serve as a means of jointing in assembly of overlapping, mainly plate-
like structures.  
Since energy necessary for making a good weld (Energy ~ R.I².t) theoretically can be 
generated within an infinite range of combinations of  welding current and welding time 
(Energy~ R.I².t = R.(I/2)².4t = R.(I/3)².9t, …) at a chosen specific force level, setting up 
welding parameters seems difficult and is mainly based on practical experience. Of course the 
reasoning above is incorrect, since energy losses will lead to a lower current level where no 
melting will occur and overheating will lead to an upper current level leading to splash welds.  
 
Values for Welding Force [daN], Welding Current [kA] and Welding Time [cyc, ms] are 
available in database format, and these values are commonly used to make a base setting to 
start from. Fine tuning within the parameter range (weldability lobe) can be done in order to 
optimise towards a specific application according to EN ISO 14327-2004 (Resistance welding 
– Procedures for determining the weldability lobe for resistance spot, projection and seam 
welding). Such a weldability lobe covers a range of combinations of welding current and 
welding time at a specific welding force level that lead to welds with sufficient dimensions, 
with a lower boundary indicating “stick” welds, and then an area of increasingly growing 
weld size towards the maximal possible weld size, followed by the upper boundary leading to 
splash welds. A so called stick weld is a weld that didn’t receive enough energy during its 
resistance welding cycle, resulting in the workpieces ‘sticking’ together without a molten 
weld nugget being formed. As a result, the workpieces can be separated again with the 
application of minimal force on the joint. A splash weld receives excessive energy during its 
weld pulse, leading to overheating of the molten weld nugget causing the molten metal to 

with: 
 Q = the heat generated [J]; 
 R = the ohmic resistance [µohm]; 
  i = the welding current [A]; 
  t = time [s]; 
 T = total weld time [s]; 
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partly vaporise leading to molten metal from the weld nugget to ‘splash’ away with an 
explosive character. The selection of all auxiliary settings that need to be made are also 
advised in standards [1], [2] and in publications by user groups (eg. RWMA Resistance 
Welding Manufacturers Association, Deutsches Verband für die Schweisstechnik, etc.). 
Resistance welding is popular due to its interesting advantages: 

 High energy efficiency (heat generated at the exact location of the joint); 
 High productivity; 
 Short cycle times; 
 Forgiving (Flexible) accommodating poor mechanical fit up of workpieces to join 

(compressing force); 
 Possibility of imposing a thermal cycle on the workpieces in one single clamping 

operation (heat treatment and welding in one combined cycle);  
Nevertheless, in general, even amongst engineering staff in a production environment using 
the process on a daily basis for assembly, resistance welding has the image of being rather old 
fashioned and there has been a trend to replace resistance welding by alternative welding 
processes that currently boom in popularity (eg. Laser Welding, Arc Welding, Hybrid 
processes, etc.). 
Laser based processes have been introduced in the automotive assembly industry where in 
several production plants of different constructors, spot welding was massively replaced with 
laser welding, laser brazing and laser hybrid welding applications [3].  
However, after about a decade of practical production experience in automotive body in white 
assembly, many constructors have (partially) returned to the resistance welding processes 
because of their specific benefits as stated above, and because of their relatively trouble-free 
operation and low operational costs in an aggressive production environment. 
Another major advantage of the resistance welding processes over any other welding process 
is the feature that heat necessary for weld formation is generated at the exact location where 
the joint needs to appear (i.e. in between the workpieces to be joined). This offers the 
possibility to highly reduce the time to complete a weld resulting in cycle times being 
competitive over other welding processes. Depending on the sheet thickness, welding times 
are in the order of a few to a few hundred milliseconds, including clamping and releasing of 
the workpiece. 
Another advantage is the absence of a molten weld pool penetrating from one side through a 
workpiece, resulting in less aesthetical damage to the workpiece surfaces. 
The necessity for a pressurizing or a clamping device in Resistance Pressure welding is 
obvious and integrated in the physical machine setup of all resistance pressure welding 
processes. 
In addition, modern high strength steels are very sensitive in respect to the thermal cycle they 
experience during welding. Alternative welding processes, certainly the high energy processes 
like laser welding, due to their very localised heating, induce a high cooling rate in the weld 
area. The latter increases the risk of unacceptable mechanical properties of the as-welded 
assembly [4]. Of all welding processes, it is only resistance welding that offers the possibility 
to easily influence the thermal cycle forced on to the weld area [5].  Moreover, it is the only 
process where pre- and post-weld heat treatment can be made in a continuous process cycle 
and in one single clamping operation, without releasing the workpieces and with the very 
equipment (electrodes, power source and control system) that is also used to produce the 
weld.  
It is obvious that clamping under a controllable force is a major feature of all resistance 
pressure welding processes and mechanical behaviour of these force-delivering devices for 
compressing the workpieces with the welding electrodes is important as they primarily need 
to fulfil the following demands:  
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 radiator fins, connecting nipples and attachments 
 thin-walled (hydroformed) tubes (increasingly important in automotive assembly) 
 tubes and/or wires in a cross welding setup 
 foils with extreme low thicknesses that need to be welded to massive workpieces, etc., 

 
only low forces can be applied on the workpieces, and each of these is easy deformable, even 
at low pressurizing force levels. 
 
The different force actuating systems available for resistance welding machines on the market 
each have their specific advantages and disadvantages. They all behave slightly differently 
during the closing and follow-up stage of the welding head. Depending on the physical design 
of a machines’ welding head, a portion of the actuating force is sacrificed for the welding 
heads’ follow-up movement to try and maintain contact during the deformation of the 
workpiece. In practice this will result in a lower effective welding force. 
It is apparent that obtaining knowledge of the mechanical behaviour of the welding head of a 
specific welding machine is of utmost importance to assess the potential welding situation or 
to define an optimized workpiece geometry for a specific application.  
On the other hand, as a valuable alternative for the “experience and knowledge base” way of 
dealing with a welding problem, Finite Element Analysis (FEA) modelling can offer great 
opportunities to understand and solve difficult resistance welding problems, especially in the 
development of complex projection welding assemblies. However, in order to make correct 
numerical simulations that mimic reality as closely as possible, accurate data on machine and 
material behaviour is essential. The more realistic the input data, the more potential the FEA 
model gains to generate a correct output. The most critical input data is as follows:  

 Workpiece and electrode geometry can be defined into the model, together with all 
relevant electrical and material mechanical properties as a function of temperature.  

 Electrical machine specific settings also need to be entered into the program and thus 
need to be measured and defined.  

 Machine specific mechanical parameters: 
o  the total lumped mass of machine components 

 moving electrode assembly 
 moving electrode mounting plate 
 the machines’ moving mass in its linear bearing 
 the moving mass in the force actuator 
 a portion of the mass of the moving fixed current leads attached to the 

electrode mounting plate; 
o maximum acceleration attainable by the moving electrode at a specific actuator 

mechanical force level 
o maximum velocity reached by the moving electrode after a specific displaced 

distance at a preset actuator mechanical force level.  
Generating this essential data, in order to enable to correctly input it in an FEA model 
demands the development and construction of accurate test equipment and procedures that 
can be used in-situ in a running production environment. The use of such test equipment and 
procedures will provide a major advance in optimising resistance welding setups in a wide 
range of difficult applications and it could enlarge the applicable working range of resistance 
welding as a jointing technology towards more difficult, complex and new applications. This 
test equipment and procedures would have to be capable to generate and reproduce 
unambiguous data as accurate as possible and should be applicable in an easy and non 
disturbing way in every working production environment on whatever resistance welding 
process in use. 
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The latter issue is important, since it necessitates bringing measuring and assessment 
equipment out of the laboratory scale into a working industrial production environment.    
 
In summary, knowledge of machine kinematics is essential to accurate modelling of 
projection welds involving low actuator forces. The machine kinematics can then be used as a 
direct input to Finite Element Modelling programmes and to influence machine design. 
 
This project has a series of major objectives, all associated with collecting accurate machine 
specific data for resistance welding machines. This includes: 

 Development of measuring techniques capable of being used in situ in a production 
environment; 

 Development of a universal, solid state electrical loading system and a test procedure 
for resistance welding machine electrical measurements, capable of being used in situ; 

 Development of a mechanical test and a test procedure for resistance welding machine 
mechanical measurements, capable of being used in situ; 

 Investigation of the effects that specific machine components have on the machines’ 
mechanical behaviour; 

 Investigation of the effects of programmed welding force on the resulting mechanical 
behaviour on different actuator systems; 

 Investigation of the effect of welding current on the machines’ mechanical behaviour; 
As a higher general goal, increasing awareness with development and production engineers 
regarding the capabilities resistance welding can offer, namely a fast and reliable technique 
for joining complex assemblies in state-of-the-art materials, is a major objective to reach with 
the aid of increased understanding of a specific practical machine configuration and its 
resulting mechanical behaviour. 
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allowed Professor Thomson to give undivided attention to research and technical 
development thus demonstrating the value of industrial research. 
Some of his inventions are well known also in arc welding, like constant current transformers 
including a magnetic leakage shunt (1889) and a movable secondary (1894). His most 
important invention in relation to  this thesis is his ‘process of electric welding’ (1886) (US 
347140) whereby the welded surfaces were fused and united by the heat developed on 
account of the resistance in the contact between them. Professor Thomson describes the 
genesis of this invention as follows: 
"While preparing a lecture on Electricity (one of a course of five) at the Franklin Institute at 
Philadelphia, early in 1877, I had the temerity to pass the discharge of a Leyden battery 
through the fine wire secondary of a Ruhmkorff induction coil, while the primary coil of quite 
coarse wire had its terminals resting together in contact. As the Ruhmkorff was my own, one I 
had made, I could take the risk of breaking down the insulation. On the passage of the 
condenser spark of about 35 mm. length, a bright flash appeared at the ends of the heavy 
primary in contact, and I afterward found them firmly welded together. This suggested to me 
the possibility of electric welding, and later, about 1885, as soon as opportunity afforded, I 
built the first electric welder, using a transformer to step down to a very short and heavy 
secondary between the terminals of which, by suitable clamps, the pieces to be welded were 
held in juxtaposition or contact. The first trials of this apparatus were highly successful, and 
welds were made not only between pieces (bars) of the same metal, but many different metals 
were so united." 
Figure 1-5 Drawings of US 347140 by Elihu Thomson gives an impression of one of the 
earliest patents (US 347140) relating to resistance welding belonging to Professor Thomson. 
The drawings, description and claims of this patent shows us a very basic form of upset 
welding of bar, plate and/or tube, equipped with features as force, current, voltage and time 
setting. 
Deeper reading of dozens of welding related of his patents show the evolution in application 
oriented thinking by Professor Thomson, describing features to enable production of endless 
band saw blades, valve stems, chain links, etc… 
Clearly, resistance welding processes such as spotwelding, projection welding, seam welding, 
butt or upset welding, flash butt welding and high frequency welding originate out of the 
inventions of Professor Thomson. 
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1.3.2.3 Electrical actuators 
 
Before discussing the electrical actuators, it is perhaps useful to give realistic data for the year 
2009 on the worldwide sales from the ARO welding technologies group. 
 

 
 
 
Table 1-1 ARO welding technologies production data 2009 
 

(ARO group Key Figures February 2010) 
 
There is of course the influence of the industry. ARO supplies to mainly automotive 
assembly, explaining the high amount of robotic welding applications in comparison with 
manual. There is a trend to change from pneumatic actuated machines to servo-electric 
actuated ones, but this is highly dependent on the company philosophy at each constructor 
(see Figure 1-31 and Figure 1-32). 
These ratios will be slightly different for machines installed by other constructors. However, 
ARO being one of the major players on the market in this field, the ratios are likely to be of 
the same order. 
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2 Literature review  
 
Research oriented towards resistance welding applications has been documented since the 
1940’s, with most of the publications before 1980 mainly dealing with geometrical issues 
related with spot and projection welding or describing possible applications [8], [9], [10], 
[11], [12], [13], [14], [15].  
Steve Westgate gives a good overview on the evolution in resistance welding and related 
technology [16], [17]. 
Since all resistance welding processes are based on Joule heating, two major subsystems can 
be found in every machine built to apply these processes in practice, electrical and 
mechanical. The electrical part of resistance welding machines mainly serves to transfer 
electrical energy to the very spot where heat is required to realise a weld and is not focussed 
on in the frame of this work. 
However, the physical coupling of these power sources secondary output with the welding 
electrodes in contact with the workpieces to be welded is a very prominent part of the 
mechanical system of a resistance welding machine. It adds mass to the moving welding head 
and thus additionally influences its mechanical behaviour. The mechanical subsystem of a 
machine, combined out of a multitude of possible components of different type and make, 
will lead to very specific behaviour and will have significant influence on the machine 
performance, its possible field of application, the set of optimal parameters to be used on it, 
and also electrode wear and quality level of the welds resulting from it. This thesis 
specifically deals with assessment of mechanical behaviour of all types of resistance welding 
machines, spot- and projection- but also seam- and butt welding machines.  
 

2.1 Mechanical behaviour 
 
In the past decades, several researchers have made significant efforts to understand the effects 
of all factors in the different physical combinations that exist in different machine 
constructions on the mechanical behaviour of the welding machine in operation. 
This work can be categorised into static and dynamic properties, both specified in the ISO 669 
standard ‘Resistance welding – Resistance welding equipment – Mechanical and electrical 
requirements’ [1], but dealt with to a largely different degree of detail. 
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 Coefficients of force (KF, KFS and KFf) 

ிܭ ൌ 	
ଵܨ ൅ ଶܨ ൅ ଷܨ

ܨ3
 

* With KF and forces F1, F2 and F3 written with index s to indicate contact and index f 
to indicate follow-up. 
* Forces F1, F2 and F3 are the first three complete oscillations upon electrode contact 
or follow-up. 

 Force rise time (ta) = the time span from initial contact of the electrodes up to the 
point when nominal static electrode force has been reached (see Figure 2-6) 
 

 Decay time (tsd, tfd) = the force oscillations resulting from the electrode contact or 
follow-up process. 

 
 Follow-up behavior is determined by means of a simulation test, where a circular 

projection in accordance with BS EN 28167 : 1992, [18], stamped into a steel sheet is 
rapidly melted away by using a sufficiently high current impulse (T = 1cycle) above 
the splash limit. The follow-up of the electrode is determined by measuring the height 
of the projection weld after application of the electrode force. Evaluation of the force 
amplitudes is carried out in accordance to the above. 

 
Consideration:  
 

The ISO 669, in its last revision dating 2001, up to date with the status of still being 
current, describes very interesting straightforward measurements to be made on 
whatever resistance welding machine, establishing important geometrical data on 
machine stability. And the latter is important, since it will be an indication for 
undesired movement between the electrodes, leading to increased electrode wear and 
possible loss of technical and esthetic quality of the resulting welds. 
Concerning the dynamic mechanical characteristics of a resistance welding machine 
however, it offers a mutual base platform of approach and understanding to serve as 
start for further scientific research. 
 
Publications dealing with the sequential evolution in the state of the art in dynamic 
mechanical behavior of resistance welding machines can be categorized in four major 
categories, depending on how the issue of dynamic behaviour is approached, namely: 
 Theoretical modelling 
 Simulation of conditions on laboratory machines 
 Effect analysis based on ‘real’ welding test 
 FEA based on ‘In-Situ’ characterisation tests 

 

2.1.2 Theoretical modelling 
 
Römer, Press and Krause [19], [20], were the first to mathematically model the different 
main influencing machine parameters on a resistance welding machine before, during and 
after welding takes place. 
They used a single-mass vibratory unit as substitute of a resistance spot welding machine with 
a C-frame while assuming a rigid frame of the machine. (see Figure 2-7) 
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They developed a procedure which could be used to characterise the follow-up capabilities of 
the welding machine used. To simulate splash welding, a 1.6mm steel ball bearing was placed 
between two sheets of Nimonic alloy between the electrode tips. Force, current and welding 
time were set, so that the ball bearing exploded within a single cycle. Each time, head 
displacement and current were recorded and to gain an indication of the machine 
characteristics, the time taken for the head to travel a predetermined distance (in their 
examinations 0.4mm) from the onset of current was measured. 
 
Williams [25] describes in his report EUR 15712EN: “Factors influencing weldability and 
electrode life when welding coated steels in multi-welders and robotic cells“, how 
measurement of head follow-up characteristics were made using the same exploding ball test 
as mentioned by Gould and Rivett. Williams clearly refers to the technique as previously 
adopted at TWI: 
 
“A 1.6mm diameter ball bearing was placed between two sheets of 1.7mm stainless steel and 
the electrode force was applied. A current was passed through the ball causing it to explode 
and be expelled from between the stainless steel sheets. The time taken for the moving head to 
respond to the resulting loss of force and to follow up a given distance was recorded.” 
 
On questioning Steve Westgate on the origin and the use of the exploding ball test, it appears 
that the test was only used for measuring maximum velocities reached by the moving welding 
head at different distances travelled. These data obtained from different machines 
subsequently could be used to compare machine capabilities. 
Equally it appears that Williams used the same test to compare reaction times of a moving 
welding head to a complete loss in support for the moving welding head. 
   
 

2.1.3 Simulation on laboratory machines 
 
Krause and Lehmkuhl [26, 27] stated that dynamic machine properties are due to specific 
machine construction and summarised influencing machine specific parameters (Table 2-2). 
  

Pressurising Piston Presssure delivery system Stiffness 
Friction in bearings Air or hydraulic oil Machine frame upper and lower
Friction in seals Magnetic valve switching Force delivery system 
Friction in piston seals Valve Cross section  
Friction in current leads Flow rate pressure regulator  
Elasticity of piston seals Positioning of elements  
Properties of cylinder Choke effect in lines  
Follow up systems Accumulators  
Piston movement   

 
Table 2-2 Influences on dynamic mechanical machine properties [26] 
 
The basic purpose of this work was to internationally define and standardise mechanical 
machine properties to lead to optimised mechanical machine behaviour. They stated that a 
resistance welding machine is a vibrating system with masses, spring constants and damping 
effects. Forces that apply during electrode contacting and electrode follow up lead to 
deformations of several machine components. Their proposed approach basically refers to 
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Lehmkuhl et al [29] also described methods to obtain and handle process parameter data 
during resistance spot welding. Improvements in computer capabilities are emphasised. 
Monitoring of current, voltage, dynamic resistance, electrode force, pressure, electrode 
acceleration and electrode travel and uses of the data for process analysis and real time control 
are described. Types of sensor systems are listed and factors affecting choice of a sensor are 
presented. They also described the measuring equipment and techniques to enable evaluation.  
 
Hahn et al [30] developed an experimental spot welding gun to use on a robot with the 
following features: 

 Altering moving mass of the electrode arms by adding extra mass; 
 Altering stiffness by adding an additional spring unit; 
 Altering friction by replacing welding cylinders; 
 Choice between pneumatic and hydraulic actuators; 

Deep-draw quality steel sheet was used for practical tests where weld quality was evaluated 
by examining the weld nugget dimensions in metallographic sections and by measuring weld 
tensile shear strength. 
Main conclusions were the following: 

 Static mechanical properties as well as dynamic touching behaviour are sensitive to 
moving mass and stiffness of the electrode arms; 

 Hydraulic actuator, due to their lower mass and higher damping show a low peak  
force and fast decay both in touching and follow-up behaviour; 

 Follow-up of a robotic spot welding gun is mainly governed by bending of the 
electrode arms. As a result, stiffness and moving mass have low influence on quality 
of the welded joints just below the splash limit, but they do affect the scatter in 
strength value. A reduction in scatter of the latter is found with lower moving mass 
and less stiffness. 

 
Dorn and Xu [31] developed and built a simulation device (see Figure 2-10) to study the 
influence of properties like moving mass, stiffness and friction of the moving welding head 
that could easily be changed on the simulating device. They built simulating facilities on a 
resistance welding machine that enabled them to define the influences of different properties 
on dynamical machine behaviour, especially during approach and electrode contact and 
during follow-up when welding. 
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Figure 2-10 Sketch of Simulating device [31] 
 
They concluded the following: 

- Machine parameters could be changed independent for systematic testing; 
- Conditions could be accurately set; 
- Reduced stiffness of the machines frame improves contacting and follow-up behaviour 

of the electrodes but it also increases bouncing effects; 
- Low friction improves follow-up, but makes contacting worse; 
- Moving mass could not show a clear influence on follow-up in the tested area, in 

contacting a low mass is better to avoid bouncing. 
 
In their further work [32] they refined their simulation tests with different friction material 
used in the pneumatic cylinder seals and piston seals to reveal the very complex interactions 
of mechanical influencing variables on the dynamic behaviour of a resistance welding 
machine.  
Touching behaviour cannot be improved simultaneously with follow-up behaviour by one 
single combination of mass, friction and stiffness.  
Dorn also point outs the benefit of an additional spring follow-up system between electrode 
and force actuator. 
 

2.1.4 Effect analysis based on ‘real’ welding tests 
 
Dorn et al. [33] simulated spot welding equipment to assess the effects on electrical 
resistance of variations in lower arm stiffness, friction, mass moved during the electrode 
movement and electrode travel. Static behaviour (contact resistance) was assessed according 
to DIN ISO 669 by measurement of the contact error as a result of bending and eccentricity at 

Key 
1. Frame 
2. Pneumatic cylinder (force) 
3. Pneumatic cylinder (friction) 
4. Leverage 
5. Friction shoes 
6. Follow-up system 
7. Additional mass 
8. Electrode bearing 
9. Upper electrode holder 
10. Lower electrode holder 
11. Upper platen 
12. Lower platen 
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2.1.5 Modelling techniques for resistance welding processes 
 
The most important issue for an end user of resistance welding equipment is basically the 
availability of a spot weld qualification procedure to ensure, that for a given material 
combination, a weld nugget of adequate size without defects can be achieved. The traditional 
operation mode has been to estimate nugget sizes from various destructive tests like peel or 
chisel testing. More recently, ultrasonic testing or dynamic resistivity profiles have been used 
for the same purpose.  
Simulation of resistance spot welding through analytical modeling has drawn the attention of 
many researchers in the past decades. The early mathematical models were however unable to 
deliver realistic analysis of the process due to their complexity. Involving interaction between 
mechanical, electrical, thermal, surface and metallurgical phenomena. Most of the attempts 
made to simulate the process by theoretical models were limited to heat transfer problems and 
surface phenomena and all neglected the thermo mechanical interactions.  
 
 
According to Nied [41], early models (pre-1980) were only devoted to determining 
temperature distributions during the weld cycle. In all publications before Nieds, the 
thermomechancial coupling was completely neglected. One assumed the contact area between 
the electrode and the workpiece as equal to the diameter of the flat on the end of the electrode.  
Bearing in mind that the contact area is established during the squeeze cycle and dependent 
on the electrode load used, an initial assumption of the contact diameter can be a source of 
large error, especially if spherical end electrodes are used in the process. Nied reports use of 
nonlinear thermomechanical coupling and contact behaviour using a commercial  ANSYS 
code was used to provide more realistic simulation of the welding process but points to the 
necessity of correct temperature dependent material properties. 
 
A one-dimensional heat transfer model describing the spot welding process was studied by 
Gould [42] in 1987 in comparison with weld nugget development as a function of three 
variables: welding current, welding time and sheet thickness. Nugget development was 
studied using optical microscopy techniques. The thermal model was formulated to include 
effects of: melting, temperature dependent thermal and electrical properties of the steel used 
in the tests, heat transfer in the liquid and contact resistances. Gould compared the model 
results with the microstructural observations and used the latter to understand the influence of 
various factors on nugget development. This initial and rather simple thermal model is 
actually an energy balance for each element in the stack of plate like elements in the 
configuration (see Figure 2-16 A and B). 
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Li [47] from Battelle Memorial Institute in 1997 pointed out one of the major weak spots in 
every numerical simulation solution available on the market, namely the complete absence of 
realistic physical material data characterizing contact properties between metals stacked up in 
a resistance welding application ready to be welded. Moreover, these data need to be readily 
available in the complete temperature field crossed during a resistance welding cycle. Li 
states that measured static contact resistance values are mostly attributed to the film effects 
and thus are dependent on the surface condition, the current level used in the measurements, 
temperature and applied force.  
Film resistance  breaks down very early in the welding process, typically in a fraction of the 
first quarter cycle. So the measured static resistance prior to film breakdown does not 
represent the contact resistance in the rest of the welding process. It is believed that measuring 
dynamic resistance offers values more representative to the resistive heating during an actual 
welding process. However, there are so many factors that would affect the dynamic resistance 
values, including electrode geometry, welding current, sheet thickness, electrode force, etc. 
and their effects are extremely difficult to be quantified starting from a purely theoretical 
approach. 
Li proposed a contact resistance model  derived from the characteristics of voltage and 
resistance of electric contacts and validated his theoretical model with experimental 
measurements on spot welding of 0.8mm bare steel. Li used ANSYS commercial finite 
element code with however a lot of simplifications to cope with data being unavailable such 
as the assumption of electrode force remaining constant during squeeze, weld and hold cycles 
or the use of thermal, electrical and mechanical properties of both copper electrode material 
and carbon steel from materials handbooks. Although all these parameters are treated as 
nonlinear, temperature dependent properties, they remain static measured values. Li’s results 
however are a major step forward in understanding the effects of welding parameters on 
nugget formation. 
 
Wenqi Zhang and Niels Bay [48], [49], [50], [51], [52] from the Department of Mechanical 
Engineering at DTU in Copenhagen, continuously developed SORPAS (Simulation of 
Resistance Projection And Spot welding) software during the past decade. One of the major 
reasons why this software, specifically dedicated only to resistance welding is gradually 
improving and gaining more and more users worldwide, is the very close interaction of the 
DTU research department, SWANTEC, a spin-off company from DTU commercializing the 
software and the numerous companies with their specific applications in the field. When an 
application causes difficulties to be simulated, all efforts are made to find the cause and to 
supply a solution, the latter in turn often resulting in another optimization of the software. 
There is also a large user group, exchanging experiences at the bi-annual seminars on the 
advances in resistance welding or over the innoweld.net network. Several publications based 
on user experiences result from the latter. [53], [54], [55], [56], [57], [58] 
 
Dupuy et al. [59] used commercial finite element code SYSWELD+ to perform electrical-
thermal simulations. Their approach lead them to define three types of input parameters, the 
appropriate mesh geometry, contact boundary conditions and material properties. Using a two 
dimensional axis-symmetric mesh, only flat tip electrodes were used since the model did not 
include a mechanical simulation necessary to reproduce the evolution of contact size during 
welding associated with rounded tips. 
Current waveforms used are derived from real measured signals, but also purely imagined 
current waveforms were used. Radiative and convective heat transfer coefficients at the 
boundaries were chosen from literature, as well as the materials electrical and thermal 



 

48 
 

properti
properti
Since D
by intro
at each 
Practica
experim
disappo
the nec
contact 
 
Accordi
among 
difficult
resistan
resistan
changes
result in
the tem
element
electrica
they pr
tempera
the con
element
Contact
film) re
contact,
apparen
material

Figure 2-
 
When a
through
by the c
interfac
The film
oil, wat
by Feng
bulk res

ies, which a
ies were ass

Dupuy aimed
oducing add
interface w

al problems
ments where
ointing in re
essity of a 
properties a

ing to Feng
the electric
ties in nume

nce spot w
nce that stron
s in the temp
n changes in

mperature fi
t code that 
al contact r
roposed a 
ature, pressu
ntact pressu
t model. 
t resistance 
esistance. W
, the real co
nt contact a
l. (see Figur

-17 Contactin

a current run
h the separat
contact spot
e and leads 

m resistance
er vapor an
g [60].  Con
sistivity for 

are conside
signed to ex
d to apply t

ditional elem
ere used. 
s occurring
e the model
spect of qua
mechanica

as a functio

g and his c
cal, thermal
erically mod

welded show
ngly depend
perature fie
n the Joule 
eld.  Feng 
they enhan

resistance h
model to 
ure and ma

ure and tem

consists o
When two m
ontact area 

area as long
re 2-17) 

ng surfaces w

ns through t
ted conduct
ts reduces t
to the rise o

e on the oth
nd other surf
ntact resista
a given con

red as func
xtremely thin
the model f
ments with i

g in his ap
 can only d
antitative re
ally coupled
n of temper

co-workers 
l and mech
deling the r
w electrical
d on temper

eld in the wo
heat genera
et al [60]

nced with a
as a very d
describe th

aterial yield
mperature i

f the const
metal surfa
of the mut

g as the nor

with microasp

the interface
ting spots of
he volume 
of the resist
her hand is 
face contam
ance becom
ntact interfa

ctions of tem
n layers of 

for welding 
intrinsic pro

pproach ar
deal with fla
esulting valu
d model an
rature and p

[60], [61],
hanical asp
resistance sp
al propertie
rature and c
orkpieces an
ation rate th
used Abaq

a number o
dominant eff
he variation
d strength. T
is incorpora

triction resi
aces, each 
tually defor
rmal pressu

 
perities and su

e, then the c
f real conta
of metal us
tance value
due to less

minants. Thi
mes an expli
ace.  

mperature. 
contact elem
on coated 

operties of 

re the use 
at tip electr
ues, but the

nd of correc
pressure. 

, there are 
ects of the
pot welding
s as their 
contact pres
nd the elect
hat in turn w
qus, a comm
of user sub
ffect on the 
n of conta
This depend
ated in the

istance and 
with certai
rmed asper

ure is below

urface wavin

current flow
ct. This con
sed for elect

. 
-conductive
is film resis
icit function

 

Electrical a
ments at eac
steels, adap
the coating

of domed
rodes. The m
y were usef
ct data inpu

strong inte
process th

g process. M
bulk resis

ssure. Feng 
trodes due to
will influen
mercial gen

broutines an
formation o
ct resistanc
dence of co
 increment

the surfac
n roughnes
ities is muc

w the yield 

 

ess [60] 

w lines bund
nstriction of
trical condu

e surface fil
stance is not
n of temper

and thermal
ch interface
ptation of th
g as well as 

d electrodes
modeled re
ful in under
ut of mater

eractions (c
hat pose sig

Materials rea
stance and 
et al. also s

to Joule hea
nce the evol
neral-purpo
nd modules
of the weld
ce as func
ontact resist
tally couple

ce contamin
ss are brou
ch smaller 
stress of th

dle together
f the electric
uction local

lms such as
t taken into
rature, pres

 

l contact 
e. 
he model  

changes 

s in his  
sults are 

rstanding 
rials and 

oupling) 
gnificant 
ady to be 

contact 
state that 
ating will 
lution of 
se finite 

s.  Since 
d nugget, 
ctions of 
tance on 
ed finite 

nants (or 
ught into 
than the 

he softer 

r passing 
c current 
lly at the 

s oxides, 
 account 
sure and 



 

 

Feng et
pressure
 

Figure 2-
 
They ca
DQSK s
Figure 2
 

Figure 2-
 
Their a
necessit
accurate
resistan
 
Sudnik
SPOTSI
resistan
into acc
model i
plastic 
dynamic
calculat
 

t al. measur
e conditions

-18 Compari

alculated an
steel with 6
2-19) 

-19 Contact r

analysis rev
tating the us
ely capture

nce spot wel

k et al. [62] 
IM FEM so

nces of the w
count. Spots
is based on 
deformatio
cs are not a
ted molten w

red the ele
s and at amb

son of contac

n estimation
6.33mm elec

resistance-tem

vealed sign
se of three-w
e heat gen
ld.  

in 1999 foc
oftware to e
welding circ
sim was dev
the equatio

on of the m
accounted f
welding nug

ctrode to w
bient tempe

ct resistance v

of the cont
ctrode face d

mperature-pr

nificant pres
way couple

neration, th

cussed on im
enable more
cuit as well 
veloped for
ons of elect
metal and 
for. Quite a
gget and the

workpiece a
erature. (see

 
variation as a

tact resistan
diameter us

 
ressure diagr

ssure and 
ed electrical
hermal hist

mplementat
e accurate in

as conduct
r Resistance
tric potentia

takes into
a large error
e values me

and that at 
e Figure 2-1

a function of 

nce variation
sed in one o

ram accordin

contact are
l-thermal-m
tory and d

tion of elect
nput of mac
ion angle o
e spot weld
al and therm
o account e
r margin re
asured in m

the faying 
8) 

 

pressure at r

ns at the fay
of their simu

 

g to [60] 

ea variation
mechanical m
deformation

trical param
chine electri
f the weldin

ding as the n
mal product
electrode g
mains betw

metallograph

surface un

room tempera

ying interfac
ulations. (se

ns during w
modeling in 
n history d

meter setting
ical settings
ng current a
name sugge
tivity. It rep
geometry. M
ween the siz
hic examina

49 

nder iso-

ature [60] 

ce of the 
ee  

welding, 
order to 

during a 

g into the 
s. Active 
are taken 
ests. The 
produces 
Machine 
ze of the 
ation. 



 
 

50 
 

In  2000 and 2001, Sun [63], [64], [65] published the results of several studies using Abaqus 
commercial code where she also dealt with simulation of resistance projection welds. The 
latter revealing a new problem not accounted for in any of the former investigations, namely 
changes in pressure distribution due to changes in the collapsing stage of the welds. 
 
In their publication in 2002, Vichniakov, Herold and Greitmann [66] disseminated the 
results of their study on projection welding showing large displacements during the follow-up 
stage in the welding cycle using Ansys commercial code.  They concluded that FEM can also 
in this range of workpieces be used for determination of welding range diagrams. 
 
Later, in 2002, Robin et al.  [67], in a joint venture coordinated by PSA Peugeot-Citroen and 
with Usinor research centre involved for material characterization also focused on the contact 
interactions during spot welding leading to better prediction of reality in the case of using 
rounded electrode tips in spot welding simulations. They also used Sysweld software with a 
model with coupling between electrical, thermal, metallurgical and mechanical fields and 
concluded that contact element formulation is important to generate more realistic results. 
There however still remains the difficulty to obtain practical data ready to be introduced as 
material related properties into the models input. 
 
In their publication in 2003, Chang and Zhou  [68] studied electrode force as important 
process parameter when using DC current on a small scale resistance spot welding 
application. Variations of contact radii, current density distribution and temperature profile at 
the sheet-sheet and electrode-sheet interfaces, the threshold weld times and the maximum 
diameters of the weld nuggets under different electrode forces were investigated, resulting in 
the following conclusions:  

 contact radius at both interfaces decreases during the welding process.  
 Increasing electrode force increases the contact radius at both interfaces.  
 The minimal contact radius at the electrode-sheet interface is larger than that at the 

sheet-sheet interface.  
 Welding current density distributes evenly initially, to later increase with decreasing 

of the contact area at both interfaces and finally concentrates at the molten nugget 
region. 

 Increasing force decreases the current density because of the increased contact area. 
Temperature at the central part of the workpieces is the highest at both interfaces.  

 Molten nugget initiates at the sheet-sheet interface center.  
 Temperature increases more quickly under a lower electrode force because of the 

decreased contact area and increased current density.  
 Shorter threshold weld time or lower threshold welding current is needed for nugget 

initiation when the electrode force is decreased. However, decreasing electrode force 
also increases the cooling rate at the nugget center. 

 
Thomas Dupuy [69] published a comprehensive review on the state of the art in numerical 
simulation of resistance welding processes in 2004. He sums up the potential benefits but also 
points at the Achilles heel, potentially present in all publications above, namely the absence of 
effective procedures to generate correct physical data on the materials used and their contact 
properties under loading and at different temperature levels. 
 
Song, Zhang and  and Bay [70] were the first in 2005 to publish procedures to generate 
‘real’ physical material data using a Gleeble machine. (see Figure 2-20) 
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Chen needs to dismantle the machines head with its appendages and weighs all components to 
get a notion of the representing lumped mass of the moving welding head. Apart from this, his 
approach also necessitates for a force measurement integrated in the lower electrode 
assembly. This approach is very interesting, and copes with reality as validated by his 
experiments with test welds without expulsions, and with small and with large expulsions. 
However, in the current setup, it cannot be used out of the laboratory application because of 
the invasive character of the test setup.   
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2.2 Projection geometries 
 
Over the years working on this thesis, the importance of workpiece geometry, especially in 
projection welding has proven to be of outmost importance. Although not the core of my 
thesis, I did examine the influences of different projection geometries on their weldability and 
on behaviour in specific applications.  
In general, projections can be divided into artificial and natural types. Artificial when any 
machining needs to be performed in order to change workpiece geometry to obtain a 
projection. This can be embossing in plate like structures, cutting, bending or even additive 
casting for more massive workpieces. Some of the artificial projections are standardised, the 
majority of them are not. 
On the other hand there are natural projections, created by simply bringing two workpieces to 
be joined into contact. These applications include concrete steel reinforcement nets, cross 
wire grid in shopping baskets and trolleys, or  cross welding of steel tubing. There are 
interesting applications where artificial changes on natural projections can dramatically 
change weldability as well as joint properties.  

2.2.1 Artificial standardised projections 
 
Standard embossed projections, mainly for thin steel plate are proposed in BS EN 28167:1992 
[18].  
It is important to mention that only round projections are dealt with in this standard. 
Longitudinal and annular ring projections are described in DIN 8519:1996  based upon DIN 
8519:1978 [77]. 
These cover the majority of applications in thin steel plate welds,  that need to be able to 
withstand torsional loads and or provide leak tightness. 

2.2.2 Artificial other projections 
 
In projection welding, there is a tremendous design freedom for creating projection shapes 
and geometries.  
Nevertheless, different organisations, like IIW, AWS, RWMA tend to propose geometries 
towards their members. However, it is clear that there is some ambiguity concerning the 
optimum designs.  
 
Hess and Childs [8], [9] published a pioneering paper on projection welding in 1949. Hess 
and Childs limited their investigations to coined embossed projections with a spherical shape. 
The latter because those researchers assumed that this type of geometry offered the best 
possibilities for symmetrical current distribution and uniform projection collapse. Using a 
strain gage based device attached to the electrodes and coupled to an oscillograph, they 
measured and recorded electrode displacement during projection collapse. 
Their conclusion were mainly the following: 

 that projection height/diameter ratio highly influenced weld strength levels over a 
greater range of welding conditions,  

 that the projection diameter was not very critical within a wide range of values,  
 that multiple projection welds did not result in shear or normal tension strengths 

proportional to single welds, 
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Conclusion of literature review: 
 
Mechanical properties of resistance welding applications are specified in the ISO 669 
standard ‘Resistance welding – Resistance welding equipment – Mechanical and electrical 
requirements’ [1]. The latter standard dealing in detail with the static machine properties and 
supplying test procedures to enable their measurement.  
Static machine properties are important in both spot- and projection welding, since they are 
responsible for contact errors in electrodes due to eccentricity and deflection of electrode arms 
and electrodes. 
In respect of dynamic machine properties, the standard emphasises pre-weld machine 
behaviour during the approach and contacting stage of the weld cycle and it mentions the  
importance of follow-up behaviour during workpiece collapse, the latter specifically 
in projection welding, where it is possible that acceleration of the electrode during projection 
collapse absorbs a (too large) part of the electrode force, thus leading to oscillations in the 
welding force or worse, even complete loss of contact between the electrodes and the 
workpiece, immediately leading to expulsion of molten metal, the latter resulting in poor weld 
quality. 
These working conditions are only possible when actuator force levels have to be set low by 
necessity, for instance when workpieces cannot support high mechanical loads as in welding 
thin sheet metal, aluminium alloys, projection welding high melting to low melting materials 
or welding of thin-walled tubular components. 
One can conclude that in order to ensure proper weld quality, fast follow-up behaviour of the 
electrode is an essential feature to maintain contact between electrodes and workpieces. The 
latter being a very important feature in respect of the dynamic mechanical characteristics of 
resistance (projection) welding machines.  
 
Lumped moving mass, friction and stiffness of the moving welding head, including the force 
actuator are characterizing factors that will define mechanical machine characteristics. 
Researchers have built simulation devices or specially re-designed production machines to 
enable experimental evaluation of these characterizing factors by varying them. Contradictory 
demands result, depending on properties one wishes to improve or depending on specific 
machine design. Where moving mass has no significant influence on weld quality as such, it 
has a large influence in follow-up in projection welding. 
 
Römer et al. [19], [20], supply us with the mathematical models that through qualitative 
analysis lead to a guideline for improved machine design. 
Feng et al. [22], modelled the touching behaviour in air-operated machines, where  
Gould et al. [23] provide the mathematical models both for the touching as for the follow-up 
behaviour, offering a true milestone in approach.  
 
Many researchers have supplied us with improved understanding of the influence of machine 
mechanical properties on weld quality and with recommendations to enable improvement of 
these machine properties. However, most of these investigations do not lead to modeling 
procedures that can be used in practice, they all stay limited to more qualitative analysis based 
on rather invasive measurements. 
In respect of the Finite Element Analysis software dedicated towards resistance welding, 
research can be divided in two categories, the general purpose commercial software codes on 
the market on the one hand, used by many researchers to input resistance welding 
applications, and mainly limited to spot welding, apart from a few. 
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On the other hand, in spite of so much effort, to enable realistic simulation, especially towards 
projection welding applications, availability of correct material and process data are a 
necessity. Generation of these data was surely lifted to a higher and realistic level by the 
Department of Mechanical Engineering at DTU in Copenhagen, resulting in SORPAS FEM 
software, dedicated ONLY to resistance welding applications. However, there remain two 
Achilles heals, namely the effective contact properties of materials available on the market or 
even of different batches of the same material  and mechanical machine properties, 
influencing machine dynamics. 
 
Furthermore, three references, Williams [25], Fujimoto et al. [36] and Wu et al. [37] deal with 
electromagnetic forces induced by the welding current and acting on the welding arms, while 
one reference, Dupuy [38] emphasizes on friction and stick-slip effects during welding head 
movement. 
 
Finally, since projection welding is especially vulnerable for poor fitness for purpose in 
respect of a machines’ mechanical properties, this less optimal design can be overcome by 
using smarter projection design.  
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3 Aims and Objectives  
 

Widening the application field of resistance welding is a challenge in this era where many 
other high energetic welding processes experience a massively increasing popularity. 
Resistance welding however has systematically evolved during its ages of existence and 
application. It’s a state of the art joining technology ready to conquer new application fields, 
mainly for automated and/or mass production. Finite element analysis (FEA) techniques 
incorporating very complete databases covering accurate data of workpiece and electrode 
geometries, materials used and parameter sets programmed into the welding machine are 
available and they surely increase common general knowledge and in depth specialized know 
how amongst welding engineers and assist them in their choice and their practical design of 
joining solutions in existing and future applications. Nevertheless, it needs to be mentioned 
that sufficient correct data is available in the databases of FEA software for most of the spot 
and seam welding applications, thus generating correct output and leading to satisfying results 
in numerous applications. However, especially in projection welding of complex geometries 
or in those application that incorporate exotic material combinations and/or thin walled 
tubular geometries and in all applications where larger displacements are due to be made by 
the welding head during workpiece collapse in the deformation stage of the welding cycle, 
there is an absence of available data on the mechanical characteristics of the welding machine 
to be used. It is a fact that there are thousands of combinations of specific resistance welding 
machine assemblies of so many different constructors on the market. Indeed, it needs to be 
mentioned that many machines are custom built around a specific application with 
components from different constructors.  
At the start of this work, only limited data characterising resistance welding machine 
behaviour was available that merited to be inputted as mechanical data into FEA software or 
that could be used to assess a welding situation in practice. 
The objectives of this work therefore can be summarised as follows: 
 
a. Development of mobile measuring techniques capable of collecting all necessary 

mechanical and electrical data from a resistance welding machine In Situ in a working 
production environment without interfering in the production process. 

b. Development and evaluation of In Situ mechanical tests and test procedures capable of 
imposing a sudden step in the pressurizing force between the welding electrodes, 
inducing the welding head to make a displacement at its maximum dynamic 
possibilities.  

c. Development of a measuring and processing procedure to record this sudden 
displacement in time and delivering machine specific mechanical data ready to be used 
in assessment of specific machine potential and/or in Finite Element Analysis as a 
restricting boundary condition. 

d. Development of a machine mechanical model and corresponding analysis method for 
generating machine specific parameters.  

e. Study of the mechanical test procedure results on machines with different actuator 
systems. 

f. Study of the influencing variables on machine model results. 
g. Development of a correct machine evaluation procedure. 
h. Evaluation of influence of welding current on machine mechanical behaviour. 
i. Study on the interaction between projection design and machine behaviour and resulting 

weld quality. 
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Figure 3-1 shows the thesis objectives flowchart graph 
 

Review of previous work associated with resistance welding machine mechanical behaviour

Review targets for resistance welding machine mechanical modelling

General conclusion

Development and evaluation of In Situ tests and processing procedure

Fracture test

Evaluation of test procedures on different welding machine actuator systems

Development of measuring techniques for In Situ use

Explosion test

Pneumatic cilinder Roll membrane cilinder Servo electric actuator

Investigation of influencing variables on mechanical model results

Friction Stick-Slip Welding current

Other ...

Definition of correct machine evaluation

 
 
Figure 3-1 Thesis objectives flowchart graph 
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4.1.5 Mc Gregor µ-resistance welding head  
 

Location: Philips Turnhout, welding laboratory, company mechanization group 

Type description: Mc Gregor standard opposed welding head module (pneumatic) 
Control unit: None, intended for integration in mechanization
Welding power source: Unitek Myiachi Dual Pulse 250 Capacitor discharge 

 

                

Electrical Properties 

Input Power  
  Input voltage 230V 50/60Hz  
  Max input current 5A  
 

Output Power   
Output voltage  6.7V   
Max output current 6700A   

 

Mechanical Properties 

Force Range:  2 – 70 N
Stroke: Not Applicable  
Dimensions: 25 x 50 x 179 mm  
Compression:      10 mm 
Mass of moving welding head components 0,136 kg Electrodes included 
 Flexible lead included 
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An LVDT is built out of a tube wound with 3 coils. (see Figure 4-4) Towards the mid primary 
coil, a sinusoidal voltage between 0,5V to 5V with a frequency of 1 to 30 kHz is fed. The 
other two secondary coils are wound so that the voltage generated in both coils is equal when 
the ferrite core is in the central position. The secondary coils are also coupled in opposite 
direction (phase shift of 180 degrees) which leads to the resulting voltage in the central 
position to become zero. The latter is illustrated in Figure 4-5 below. 
 

 
Figure 4-5 Coil coupling in LVDT 
 
The ferrite core is connected to the environment by means of a rod. When this rod is moved 
out of its central position, the core is positioned more in the one secondary coil in comparison 
with the other. The difference in voltage leads to an output voltage different from zero. The 
amplitude of the output voltage covers information on the translation the rod made, as where 
the phase shift (0 or 180) compared to the input signal gives an indication on the direction 
in which the rod moved. Figure 4-6 below shows how the ferrite core is positioned more in 
the first secondary coil and less in the second one. In that first secondary coil there will be 
more voltage generated than in the second one. Through the winding direction of the coils, the 
resulting voltage has the same phase as the primary voltage telling us in what direction the rod 
moved. The amplitude of the voltage indicates over which distance the rod moved in that 
specific direction. 
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Figure 4-6 Left Positioning of ferrite core in LVDT 
 
If the core translates more in the second secondary coil (see Figure 4-7), that will result in 
more voltage generated there in comparison with the first secondary coil. The phase of the 
resulting output voltage will then be opposite to the primary voltage. 
 

 
Figure 4-7 Right positioning of ferrite core in LVDT 
 

4.2.2.2 Specifications 
Transducer type Bs110 
Mesuring range 28 mm 
Sensitivity 28,05 mV/V/mm 
Non linearity 0.07% 
 
Table 4-2 Specifications LVDT 
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houses a number of optical lenses to enable focusing the laser beam manually, independent of 
the distance between the sensor head and the object to monitor. 
The input module amplifies the signal returned by the sensor head. The intensity of the 
received laser beam is displayed in an led bar on both the input module and the sensor head. 
The more leds that highlight, the better the signal reception. 
The decoder module transfers the modulated laser beam into an analog velocity signal. The 
input of the decoder is digitized first, followed by processing the signal in a DSP to a digital 
velocity signal that is converted by a D/A converter in an analog signal again. On this module, 
the velocity range can be set in several stages by means of a switch. 
The output module generates a voltage signal proportional to the velocity of the moving 
object. This signal is immediately available for data acquisition. The signal is also amplified 
and filtered a last time. This filter can be set by means of a switch to a number of settings. The 
high pass filter is especially interesting in an industrial environment where disturbing low 
frequent noise is present. The low pass filter can be used to limit the bandwidth of the velocity 
signal.  
 
CLV-700 Sensor Head 
Laser type HeNe, <1mW 
Laser security class II 
Protection rating IP64 
Operating temperature +0C…+45C  
Working distance 0,11m tot >10m 
Weight 0,5kg 
Dimensions 202mm  48mm  38.8mm 
 
CLV-1000 General specifications  
Supply 100…240VAC 
Consumption Max.80VA 
Operating temperature +5C…+40C  
Weight Ca. 6kg depending on installed modules 
Dimensions 450mm  355mm  134mm 
Calibration interval Every 2 year 
 
Built in modules 
Input module CLV-M200 Maximum velocity 1250mm/s 
Decoder module CLV-M030 Velocity ranges available in 3 levels 

5 mm/s/V, 25mm/s/V, 125mm/s/V 
Resolution 2m/s 

Output module CLV-M002 Low pass filters : 
5/20/100kHz/off 
High pass filters : 
100Hz/off 

 
Table 4-3 Specifications Polytec CLV 1000 laser vibrometer  
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4.2.4.3 Practical experience 
 

4.2.4.3.1 Advantages 
- The coils are very simple in use and can be positioned in a fast and easy way around any 

conductor. For resistance welding machines there is no problem what so ever since the 
secondary conductors are well accessible. 

 
- The wide current range enables to measure both on micro resistance welding machines as 

well as on 60 kA machines. 
 

4.2.4.3.2 Disadvantages 
 
- A welding machine delivering a constant DC-current for a long time (eg. a DC seam 

welder) can not be measured straight forward. 
 
- Changing the measuring range or switching the unit off and on results in a sudden change 

in the integrator. A slowly disappearing transient results. It takes several seconds for the 
output signal to stabilize.  
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When the surface to which the strain gages are connected deform due to compression or 
traction resulting from the load to be measured, their resistance changes proportional to the 
load supplied. If several strain gages are used in a load cell, then they are connected in a 
Wheatstone bridge. 
 
When a voltage is supplied to this bridge, the output voltage will change proportional to the 
applied force on the cell. This output voltage can be measured after amplification.  
 

4.2.5.2 Specifications 
 
Range 20-950kg 
Accuracy -3% full scale 
Speed 4 times/s 
Max. impulse force allowed 150% full scale 
Display functions Decimal point and unit: automatic 
 Overload: “OVER” on display + alarm 
 Charge request : flashing “BATTERY” signal  
Auto Power-off Automatic after 7 min, without new input 
Holding input Stores the last measured value on screen when an 

external signal triggers this input 
Analoge input 6,7mV/kg (after calibration) 
Power Ni-Cd batterij 1,2Vx4 (4,8V), use for 5 hr 

Lader MA 510 included 
Dimensions 170mm  75mm  30mm 
Weight 480 g batteries included 
 
Table 4-5 Specifications Miyachi MM601A load cell 

4.2.5.3 Practical experience 

4.2.5.3.1 Advantages 
- Compact and easy to use. 
 
- Measuring range sufficient for most resistance welding machines. 
 
- Due to the analog output it is possible to monitor the force in real time during a fracture 

test or an explosion test. 
 

4.2.5.3.2 Disadvantages 
- Only limited for the applications operating with lower forces (<1000 daN). 
 
- One needs to ensure that NO welding current can pass through the sensor head. It would

damage the sensor permanently. So it can not be used to measure force during welding. 
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5 Experimental Procedure  
 
From my literature survey, it is obvious that there are 2 major models describing mechanical 
behaviour of resistance welding machines developed in the past. The first by Römer, Press 
and Krause [19], [20], the second model by Gould [23]. The first model uses machine 
response to an impulse function, the latter is generated by having the electrodes (welding 
heads) of the machine collide. The Gould model theoretically describes machine response to a 
step function,  imposed on the machine welding heads by means of support between them 
disappearing by evaporating it. This is referred to as the ‘Ball Model’. This model is only 
available as an internal research report by Gould through EWI. No practical information  is 
given on the development of the model or on the practical design and/or execution of the step 
function imposing test. Other UK based researchers, Steve Westgate at TWI [24] or N.T. 
Williams [25] from British Steel mention the exploding ball test as a means to compare 
welding head velocities following support between welding heads breaking away at a 
predefined actuator force with the aim of comparing different actuator systems on different 
resistance welding machines. As already mentioned in the aims and objectives of this thesis, 
choice of a model describing mechanical behaviour of a resistance welding machines’ 
welding head, specifically during its follow-up after workpiece collapse,  is primary. 
Furthermore, it is important to transfer this model into a realistic test procedure and practical 
test set-up, enabling to test not only in laboratory conditions, but most of all in-situ in a 
working production environment.  
The experimental procedure is first of all focussed on the evaluation of a practical test 
procedure and on the evaluation of two practical test set-ups, namely the Free Fracture Test, 
where support between the welding heads of the machine under study is suddenly taken away 
by breaking a brittle supporting pin on the one hand and the Explosion Test, where support 
between the welding heads of the machine under study is suddenly taken away by evaporating 
the supporting conductive element. 
Furthermore, the experimental procedure must reveal the influence of the basic difference 
between both test set-ups, the Free Fracture Test being executed without any current flowing 
in the machines’ secondary circuit whereas the Explosion Test will have large currents 
flowing through the machines’ secondary circuit. 
The literature survey also revealed the influence of welding current on the mechanical 
behaviour of a welding machine, noticed by Williams [25], Fujimoto [36] and Wu [37]. 
Study of this influence on machine behaviour and thus on the results delivered by the two 
practical test set-ups is accounted for in the experimental procedure.  
To determine the cause of the influence of current flowing through the machine on its 
mechanical behaviour is also examined in the experimental procedure by exerting a lateral 
force on the moving welding head of a machine under study. 
Finally, the literature review revealed the opinion of researchers like Thomas Dupuy [38] at 
Arcelor-Mittal that welding head friction and ‘stick-slip’ effects in the moving welding heads’ 
force actuator and its slide would dramatically influence a machine’s moving welding head 
follow up behaviour. The latter is also studied in the experimental procedure.   
 
 
In general, the evaluation of the mechanical behaviour of a resistance welding machine is 
organised as described schematically in the flowchart in Figure 5-1 below. 
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Figure 5-1 Flowchart experimental procedure 
 
All the steps in the flowchart must be made in order to obtain useable results.  Regardless of 
the objective, such as:  

 a pure determination of machine specific parameters of a machine one intends to use 
on an application to enable correct input in for instance Finite Element Analysis 
software,  

 very practical evaluation of a working machine on a welding application  
 the evaluation of all influencing boundary conditions as discussed above,  
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5.1.3 Difference between Step or Impulse response 
 
Prior to discussing the fracture test further in detail, it is interesting to consider the difference 
between the welding machines’ physical response following an imposed impulse in force 
(comparable to an impact) or following an imposed step in force (a sudden change in the force 
level). 
  
 Impulse response (Dirac  function) 
 
In practice, the situation of a collision between the moving electrode (moving welding head) 
and the stationary electrode (fixed welding head) can be interpreted as an impulse imposed on 
the stationary electrode (fixed welding head) by means of the moving electrode (moving 
welding head). The impulse response of the mechanical system subsequently can be recorded 
with a force measurement in time. Starting from the measured response combined with the 
theoretical response, the typical machine parameters involved can be calculated.  
 
This specific method uses the recorded force signal as a function of time of the according 
mass – damper – spring - system. 
 
Although discussed in detail by several researchers [19], [20], the usefulness of this approach 
is limited  because of the difficulty in reproducing a correct impulse in practice and because 
of the difficulty to make force measurements on a machine in a working production 
environment. These considerations resulted in the  focus on tests and procedures useable in-
situ in a working production environment for this thesis. 
 
Step response 
 
With a step response,  the Free Fracture or Explosion test is used to impose the best possible 
approximation of a step function on both electrodes (welding heads).  
 
The moving electrode is described as a mass – damper – system. Elastic spring action isn’t 
taken into account since this influence in neglectable [19], [20]  (as  is  also showing from the 
practical tests). The stationary electrode is described as a mass – damper – spring - system. 
 
The step response uses the velocity of the moving welding head as a function of time. The 
latter can accurately be measured in practice in a working production environment.  
 
From the welding machines’ response to this sudden change in mechanical load (step 
function) the machine specific parameters subsequently will be calculated. 
 
Further theoretical development can be found in Appendix B. 
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Because 0t  is added with the time t, displacement will differ from zero (normally speaking, 

displacement = 0 at time 0t  without 0t ). If we subsequently want to compare the measured 

signal, starting from a rest position with the calculated values, then it is necessary to introduce 
a shifted displacement. In this case, theoretical start value of displacement ( 00 ttt  ; 0t ) 

is substracted from the theoretical displacements.  
 

 

Imaginary time  
 
As mentioned above, velocity prior to fracture must be taken into account when processing 
measured data. Time 0t  can be found in the formula for displacement:   
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5.2.2 Starting from welding head velocity measurements 
 
Velocity can be calculated from the displacement formula: 
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And if we want to compare the true welding head velocity signal with the theoretical values, 
the initial welding head velocity must be taken into account: 
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This is the theoretical formula describing the welding head velocity as a function of time at a 
specific actuator force (Ffracture in the case of a fracture test), with welding head mass and 
welding head damping factor as variables. It can be inputted in a spreadsheet program to 
calculate a curve that fits the measured true welding head velocity signal as closely as 
possible, using the least squares method. 
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Figure 5--9 High speedd camera imaages from fraacture test (seequential imaages A to F) 
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Theoretical model

Measuring techniques and procedures to measure machine response

Explosion test

Data processing procedure

Results

Evaluation of mechanical machine behaviour

 
 
Figure 5-14 Mechanical test procedure 
 

5.3.2.1 Ball Bearing 
 
The explosion test conducted with a ball bearing element follows brief descriptions in 
literature [23], [24], [25].  
In the explosion test, the supporting element transferring the mechanical load from the 
moving welding head to the fixed welding head is assured by a bearing ball according to BS 
ISO 3290:2001 Roller bearings – Balls – Dimensions and tolerances and BS ISO 3290-1:2008 
Roller Bearings – Balls – part 1, Steel Balls. 
The steel ball is placed directly in between the welding electrodes of a machine under study or 
is placed in between the electrodes by means of two intermediate conductive layers. The latter 
intermediate layers are preferably plates in a high resistive alloy and with a thickness in the 
order of the ball diameter and length and width that allow for ease of application. It is 
convenient to  position the sandwich layer – ball – layer between the electrodes as they close 
under the welding force by safely holding the sandwich between the thumb and index finger 
of one hand. In the tests conducted within the scope of this thesis, the test piece dimensions 
were as follows: 
Bearing Ball dimension: 1,5mm diameter 
Intermediate layer:  AISI 304; 1,5mm thickness; 10mm x 25mm 
In Figure 5-15 below is a photograph of a bearing ball positioned on an intermediate layer. 
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5.5.2 Test procedure stick-slip measurements 
 
A predefined input pressure is set on the machines welding cylinder, the latter forcing the 
moving electrode downwards to apply a force on the supporting bellows. The Miyachi load 
cell is placed between electrode and bellows. Subsequently, the pressure in the bellows is 
increased to the point where the bellows delivers sufficient force to move the electrode 
upwards again. When this occurs, pressure is no longer increased. As a next step, pressure in 
the bellow is lowered smoothly until the cylinder-electrode combination comes into balance. 
 

 
 

Figure 5-23 Test procedure for stick-slip measurements 
 
Subsequently, the machine welding head and cylinder are manually pushed upwards and 
smoothly lowered again, followed by recording the supporting force. 
In a next step, we push the welding head and cylinder downwards and release it, followed by 
recording the supporting force again (see Figure 5-23). This procedure is repeated for 
different pressure levels in the welding head cylinder between 1 and 6 bar. 
 

5.5.3 Processing of results 
The difference between the measured forces (piston pushed up and down) is divided by two 
because we measure around an equilibrium point and we have interest in the difference in 
respect of this equilibrium situation. The values obtained in this way give us the static friction 
force: 

ሺ௦௧௔௧௜௖ሻ	௪ܨ 	ൌ
ሺ|ܨଵ െ ଶ|ሻܨ

2
	

 

5.6 Stick-slip test with application of lateral force 

5.6.1 Test setup  
 
The same test setup as used in paragraph 5.5.1 is used, extended with a facility to enable the 
application of a lateral force on the moving welding heads electrode. The practical setup of 
the latter can be seen in Figure 5-24 below. 
 

F1

F2
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imposing tests and subsequent data processing procedure to reveal the different mechanical 
behaviour due to the spring coupling present.  
Or in other words: “Will the step function imposing test with its according data processing 
procedure result in different lumped masses calculated?” 
 
 
Table 5-1 below gives the setup for the step function imposing free fracture test following the 
test procedure described in section 5.3.1 and appendix C.  
 

Fracture pin 
breaking force [kN] 

Fracture pin 
diameter [mm] 

Fracture pin 
length [mm] 

Support 
distance [mm] 

Range A ~0,75kN 2,5 40 27 
Range B ~1,4kN 3 50 32,5 
Range C ~3kN 4 40 32,5 
Range D ~5kN 4 60 25 

 
Table 5-1 Test setup for free fracture tests on AWL machine 
 
Values for fracture pin breaking force are chosen in the four ranges mentioned above, with 
Range A on the lower boundary of the working range of the spring coupling, Range B in the 
middle of the working range of the spring coupling, Range C on the upper boundary of the 
working range of the spring coupling and finally range D completely outside of the working 
range of the spring coupling. 
 
This tests are performed on the welding head twice, with the coupling spring present in the 
welding head assembly, and with the coupling spring removed from the welding head 
assembly. 
 

5.7.1.2 Explosion tests 
To evaluate the accuracy and effectiveness of the exploding button and exploding ball test as 
step function imposing test, two series of exploding button and exploding ball tests will be 
performed. 
 
In the first series of tests, to enable evaluation of the useful application range of the explosion 
tests in machine heat setting, both exploding button and exploding ball tests will be executed 
at five different ranges of machine “heat setting (HS)”. The latter is the setting on the 
machines’ control box, representing the energy level to be added to the welding application in 
between the welding electrodes. HS is expressed as a percentage of the maximum setting that 
can be made on the machine. 
Heat setting levels to be evaluated are 40%, 45%, 50%, 75%, 99% (= maximum setting). 
The actuator force setting is set identical for all these tests at 1,65kN inside the working range 
of the spring coupling present in the moving welding head assembly. 
 
In the second series of tests, explosion tests at 99% HS are performed at six different actuator 
force levels between 0,4kN and 1,8kN, both with and without the spring coupling present in 
the moving welding head assembly.  
 
Table 5-2 below gives the setup for the step function imposing exploding test following the 
test procedure described in section 5.3.2. 
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   Actuator force setting [kN] Heat setting [%] 
Series 1 Spring Button 1,65 40 45 50 75 99 

Ball 1,65 40 45 50 75 99 
Series 2 Spring Button 0,4 0,7 1 1,2 1,6 1,8 99 

No spring Button 0,4 0,7 1 1,2 1,6 1,8 99 
Bearing ball: 1,5mm diameter Button of 1,2mm x 1.2mm diameter (17% Cr) 

 
Table 5-2 Test setup for explosion tests on AWL machine 
 
 

5.7.1.3 Fracture tests with application of current 
Two series of twenty fracture tests are conducted on the AWL machine at an actuator force 
setting of 0,9kN with and without the application of a welding current of 10kA, with the test 
procedure described in section 5.3.1.2. 
 
Table 5-3 below gives the setup for the tests to evaluate the influence of current on fracture 
tests. 
 
 Actuator force setting [kN] Current flowing 
Series 1 0,9 No current 
Series 2 0,9 10kA 
 Fracture pin breaking force ~0,9kN  

Fracture pin diameter [mm] 2,5 
Fracture pin length [mm] 50 
Support distance [mm] 32,5 

 
Table 5-3 Test setup for fracture tests with application of current 
 

5.7.1.4 Fracture tests with application of lateral force 
To enable the influence of a lateral force acting on the moving welding head on its 
mechanical behavior, three series of tests will be performed. 
First, with the spring coupling present in the moving welding head assembly, a fracture test at 
2,5kN actuator force with application of 50N of lateral force on the welding head, as 
described in section 5.3.1.3, and a fracture test at an identical actuator force without 
application of any lateral force on the welding head. 
Second, with the spring coupling present in the moving welding head assembly, a fracture test 
at 3,3kN actuator force with application of 100N of lateral force on the welding head and a 
fracture test at identical actuator force without application of any lateral force on the welding 
head. 
Third, a fracture test at 5kN actuator force without application of any lateral force on the 
welding head with and without the coupling spring present in the moving welding head 
assembly. 
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Table 5-4 below gives the setup for the tests to evaluate the influence of a lateral force acting 
on the moving welding head on the fracture tests. 
 

  Actuator force [kN] Lateral force [N] 

Series 1 
Spring 

2,5 
50 

Spring 0 

Series 2 
Spring 

3,3 
100 

Spring 0 

Series 3 
Spring 

5 
0 

NO spring 0 
Fracture pin breaking 
force [kN] 

Fracture pin 
diameter [mm] 

Fracture pin 
length [mm] 

Support distance 
[mm] 

~2,5kN 3 40 20 
~3,3kN 4 40 27 
~5kN 4 60 25 

 
Table 5-4 Test setup for fracture tests with application of lateral force 

5.7.1.5 Stick – slip test 
To enable the influence of the stick-slip effect on mechanical behaviour of AWL machines’ 
moving welding head, a series of friction measurements are set up, incorporating the effect of 
a lateral force acting on the welding head. Table 5-5 below lists the test setup following the 
procedures described in sections 5.5 and 5.6. 
 

Actuator pressure [bar] Actuator force [kN] Lateral force on welding head [N] 
0 0 

0 25 50 75 

1 0,73 
2 1,47 
3 2,22 
4 2,96 
5 3,70 
6 4,44 
7 5,19 

 
Table 5-5 Test setup for friction measurements on AWL machine 
 

5.7.1.6 High speed camera evaluation 
In several of the tests described above, high speed camera recording is used, together with 
data-acquisition of electrical and mechanical parameters, in order to allow for evaluation of  
fracture, exploding ball and button tests and influence of current flowing on the machines’ 
mechanical behaviour.  
 

5.7.2 PECO roll membrane machine 
To define the representative machine parameters (mass m and damping factor b) of this 
machine equipped with this specific type of actuator in the moving welding head, a series of 
fracture tests will be performed on it. 



 
 

118 
 

Table 5-6 below gives the setup for the step function imposing free fracture test following the 
test procedure described in section 5.3.1 and appendix C. 
 

Fracture pin estimated 
breaking force [kN] 

Fracture pin 
diameter [mm] 

Fracture pin 
length [mm] 

Support distance 
[mm] 

~1,06 2,5 40 20 
~1,11 2,5 45 25 
~1,14 2,5 50 25 
~1,40 3 50 32,5 
~1,64 3 40 32,5 
~1,82 3 50 25 
~2,66 3 40 20 
~2,87 4 40 32,5 
~3,45 4 40 27 
~3,73 4 40 25 
~3,76 4 60 32,5 

 
Table 5-6 Test setup for free fracture tests on PECO roll membrane machine 
 

5.7.3 ARO multi-purpose spot/projection welder (pneumatic) 

5.7.3.1 Fracture tests 
To define the representative machine parameters (mass m and damping factor b) of this 
machine equipped with this specific type of actuator in the moving welding head at different 
actuator load levels, a series of fracture tests will be performed on it. 
 
Table 5-7 below gives the setup for the step function imposing free fracture test following the 
test procedure described in section 5.3.1 and appendix C and for the step function imposing 
explosion tests following the test procedure described in section 5.3.2. 
 

Fracture 
tests 

Fracture pin estimated 
breaking force [kN] 

Fracture pin 
diameter [mm] 

Fracture pin 
length [mm] 

Support distance 
[mm] 

~2,13 3 40 25 
~3,45 4 40 27 

Explosion 
tests 

Actuator force setting [kN] Heat setting [%] 
1,6 99 
1,6 99 
1,6 99 
1,6 99 
1,6 99 
2 99 
2 99 
2 99 
2 99 
3 99 
3 99 
3 99 

 
Table 5-7 Test setup for free fracture and explosion tests on ARO pneumatic 
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5.7.3.2 High speed camera evaluation 
High speed camera recording is used, together with data-acquisition of electrical and 
mechanical parameters, in order to allow for evaluation of  fracture, exploding wire and 
button tests. 
 

5.7.4 Mc Gregor µ-resistance welding head 

5.7.4.1 Explosion tests  
To evaluate the accuracy and effectiveness of the exploding button test as a step function 
imposing test and to check its use on a µ-resistance welding head working at extremely low 
actuator force settings, a series of eight exploding button tests, using Fronius Deltaspot 
process tape (single sided copper plated stainless steel) as intermediate layers. 
The power source used to vaporise the button is a Myiachi dual pulse capacitor discharge 
source, capable of delivering a maximal energy pulse of 250J at its full heat setting of 100%. 
Table 5-8 below gives an overview of the setup for the explosion tests to perform on the µ-
resistance welding head.  
 

Actuator force setting [N] Heat setting [%] 
50 100 

Button of 0.8mm x 1.2mm diameter (17% Cr) 
 
Table 5-8 Test setup for exploding button tests on Mc Gregor µ-resistance welding head 
 

5.7.4.2 High speed camera evaluation 
High speed camera recording with integrated and coupled data-acquisition is used to allow for 
evaluation of the step function imposing test using buttons as elements to explode in 
combination with intermediate layers. Especially the accuracy of the test setup and procedures 
described in this work when applying it to a µ-welding head at the extreme low actuator force 
levels used here will be studied.  
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This includes two sets of analyses. One includes the effect of the spring which is normally 
present in the machines’ welding head, while the second doesn’t. 
 
  

No spring mounted 

Measured values Calculated values 
Breaking force  Mass  Damping coefficient 

F [N] m [kg] b [kg/s] 

Group A 
~ 0,75kN force 

1 720 12.5 845 
2 730 11.9 822 
3 741 12.2 827 
4 752 11.8 929 
5 775 11.7 914 

Group B 
~ 1,4kN force 

1 1393 12.2 898 
2 1448 12.4 1059 
3 1473 11.9 969 
4 1353 12.1 930 
5 1354 11.8 900 

Group C 
~ 3kN force 

1 3165 12.1 1306 
2 2714 12.3 1086 
3 2943 13.5 968 
4 3333 12.6 1238 
5 3115 12.0 1314 

Group D 
~ 5kN force 

1 3941 12.0 1329 
2 5574 11.3 2187 
3 5167 12.6 1651 
4 5225 12.0 1798 
5 5257 12.0 1996 

Spring mounted Mean Mass 12.1 

Group A 
~ 0,75kN force 

1 772 10.8 943 
2 722 11.2 865 
3 782 11.7 833 
4 758 11.8 835 
5 748 11.5 834 

Group B 
~ 1,4kN force 

1 1521 9.5 673 
2 1364 10.0 465 
3 1468 9.7 765 
4 1406 9.6 594 
5 1483 10.0 640 

Group C 
~ 3kN force 

1 2836 11.0 978 
2 3458 12.3 1144 
3 3456 12.6 1186 
4 3576 12.5 1239 
5 3086 11.1 1254 

Group D 
~ 5kN force 

1 5164 11.6 1668 
2 5300 12.6 1257 
3 5167 12.4 1219 
4 5222 11.9 1539 
5 5022 11.6 1616 

Mean Mass out of working range spring 12.1 
 
Table 6-1 Results fracture tests on AWL multi-purpose spot/projection welder 
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Figure 5-25 shows the coupling spring mounted on the actuator piston rod assembly and 
limited in its compression by a cylindrical stop around it. 
 
Its spring constant was tested on an Instron compressive test bench and was measured as 
k = 165N/mm. Both the upper actuator piston rod and the lower hollow shaft of the slide are 
connected by means of the nut (and its securing locking screws) on the left of Figure 5-25. 
This nut also serves to set the pre-stress level of the coupling spring, in this case, with a spring 
compression of 4mm, there is a pre-stressing force of 660N on the spring. The remaining 
available travel that can be further compressed  is 14mm, yielding the maximal force at which 
the limiter contacts the lower slide of 2970N. 
 
Between 660N and 2970N, the force exerted by the piston rod on the lower slide is transferred 
through the spring, loading the lower slide with the actuator force, without adding its mass to 
it. In this range, piston rod assembly and lower slide and electrode assembly move as if they 
were separated. Below 660N and above 2970N, all moving parts (piston rod assembly + lower 
slide and electrode assembly) move as one single mass actuated by the actuator force. 
 
This spring coupling was installed as a standard feature in these multi-purpose spot/projection 
welding machines to slightly improve follow-up characteristics of the welding head towards 
projection welding applications in the lower actuator force range of the machine. It however is 
surely subject for improvement since the reduced mass is still the highest in the assembly 
instead of the other way around. 
By increasing the compressing distance of the spring, the operating range where the spring is 
active will evenly increase. But most of all, weight reduction of the lower assembly will lead 
to improved behavior in addition to the reduced friction. 
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6.2.2 Explosion Test 
 
Figure 6-12 and Figure 6-13 below both show an overview in Flexpro of twenty exploding 
button and twenty exploding ball tests conducted at a single welding force setting varying 
between 1638N and 1694N for evaluation of both tests. The lines are each time the average of 
four tests conducted at identical heat settings. Tests were performed with five current settings 
between 40% and 99% HS (heat setting) on the machines control panel. In the same graph is 
the velocity response of a single fracture test conducted at 1523N for visual comparison. The 
welding head of the AWL machine was equipped with the spring coupling between actuator 
rod and lower slide. 
 

 
Figure 6-12 AWL welding head velocity signals as response to exploding button tests 

 

 
Figure 6-13 AWL welding head velocity signals as response to exploding ball tests 
 
Notice the same slope in all the curves from the exploding button tests (Figure 6-12), 
indicating that power supplied to the metallic buttons to melt and vaporise them is sufficient 
to remove support faster than the welding head is capable of following. 
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In Figure 6-13 however, at the lowest heat settings of 40%  slope of the velocity curve (the 
upper red curve in the figure) nearly matches that of the black coloured (dotted) fracture test 
that resulted from a welding head actuator force of nearly 100N less than the explosion tests. 
Also interesting is the time shift in the moment of velocity starting to increase following 
current flow throughout the button or ball. In Table 6-2 below, calculated lumped mass and 
damping coefficients are calculated for a series of exploding ball and exploding button tests 
within a limited range of actuator forces, the latter measured by means of a Keller piezo-
resistive pressure sensor inside the actuator piston pressure supply line and calibrated by 
means of a Myiachi load cell between the electrodes. Actuator force is calculated from the 
measured pressure in the actuators supply line as follows:   F = P [bar]*742.23-10.238 [N] , 
following load tests at different actuator pressures. 
 

Explosion tests AWL 
Measured values Calculated values 

Actuator force Mass Damping coefficient 
 Heat Setting [%] F [N] m [kg] b [kg/s] 

Spring 99 Button 1677 9.9 1092 
 1710 9.4 1165 
 1758 10.5 909 
 1690 10.4 682 
 1412 9.9 969 
 1902 10,0 615 
 1726 9.4 1238 

75  1681 10.2 826 
  1744 9.3 1200 
  1658 10.2 924 
  1737 9.6 1540 

50  1675 9.4 1008 
  1677 10.6 807 
  1671 10.2 584 
  1672 10.8 230 
  1710 10.4 662 

 
99 Ball 1667 9.1 1384 

  1671 10.5 324 
  1684 9.7 1191 
  1694 10.3 793 

75  1678 9.7 936 
  1674 10.5 303 
  1667 10.1 781 
  1663 9.9 1059 
  1733 9.1 1589 

50  1663 9.9 706 
  1682 10.2 703 
  1681 10.0 833 
  1681 10.1 693 
  1658 10.3 601 
  1681 10.3 808 
  1680 10.9 442 
  1683 9.5 1094 

 
Table 6-2 Results exploding ball & button tests on AWL multi-purpose spot/projection welder 
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Results for the explosion test conducted at 1864N WITH spring coupling in the actuator 
assembly (Figure 6-36) are displayed in  
Table 6-9  acceleration explosion test 1864N, with spring. 

 
Figure 6-36 AWL velocity response to explosion test at 1864N, WITH connecting spring 
 
 

a1 [mm/s²] (current flowing) a2 [mm/s²] (current flowing) 
187.12 187.96 

 acceleration = 0.84m/s² 
 actuator force with mass of 9.5kg = 8N 

 
Table 6-9  acceleration explosion test 1864N, with spring 
 
Results of the reduction in actuator force caused by the welding current in the AWL machine 
with the coupling spring mounted and removed are displayed in Figure 6-37 below. 
 

 
 

Figure 6-37 Reduction in actuator force caused by the welding current following explosion tests 
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6.2.7 Fracture tests with lateral force 
 

 
Figure 6-41 Displacement responses fracture test 2507N with and without lateral force on welding head 
 
Considering the difficulty to have a fracture pin break at fully identical loads, it takes about 
50 fracture tests to obtain a pair of identical actuator loads at the moment of fracture. 
The displacement responses in Figure 6-41 follow a fracture test conducted with an actuator 
load of 2507N without any lateral force acting on the moving welding head on the one hand 
(blue graph) and on the other hand a fracture test conducted with an actuator force of 2705N 
with a lateral force of 50N acting horizontal and away from the welding window on the 
moving welding head. 
As is noticeable, the displacement curves are very close to one another. 
When measuring after an elapsed time of 0.005s, the difference in displacement is of 
0.016mm. If we would compare both displacement signals as being motions with constant 

acceleration, it would give us:     ݏ	ሺ݀݅ݐ݈݊݁݉݁ܿܽ݌ݏሻ ൌ 	 ଵ
ଶ
	 .   ²ݐ	ܽ

 

          0.016݉݉ ൌ	 ଵ
ଶ
	 . ܽ	ሺ0.005ሻ²  

 
 
What in this case would give a difference in acceleration  a of 1.28m/s² 
 
Given a welding head mass from the fracture or explosion tests of 9.5kg, Newton’s second 
law would lead us to a difference in actuator force    F of 12N 
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Figure 6-42 Displacement responses fracture test 3333N with and without lateral force on welding head 
 
The displacement responses in Figure 6-42 follow a fracture test conducted with an actuator 
load of 3333N without any lateral force acting on the moving welding head on the one hand 
(blue graph) and on the other hand a fracture test conducted with an actuator force of 3335N 
with a lateral force of 100N acting horizontal and away from the welding window on the 
moving welding head. 
As is noticeable, the displacement curves are very close to one another. 
When measuring after an elapsed time of 0.005s, the difference in displacement is of 
0.072mm. If we would compare both displacement signals as being motions with constant 

acceleration, it would give us:   ݏ	ሺ݀݅ݐ݈݊݁݉݁ܿܽ݌ݏሻ ൌ 	 ଵ
ଶ
	 .   ²ݐ	ܽ

 

          0.072݉݉ ൌ	 ଵ
ଶ
	 . ܽ	ሺ0.005ሻ² 

 
What in this case would give a difference in acceleration  ܽ of 5.76m/s² 
 
Given a welding head mass from the fracture or explosion tests of 9.5kg, Newton’s second 
law would lead us to a difference in actuator force    ܨ of 52N 
 

 
Figure 6-43 Displacement responses fracture test 5000N spring/NO spring in actuator assembly and 
without lateral force on welding head 
 
The displacement responses in Figure 6-43 follow a fracture test conducted with an actuator 
load of 4902N with the coupling spring mounted in the actuator piston assembly (blue graph) 
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and one with an actuator load of 5034N and without the coupling spring mounted. Both 
responses result from a fracture test without any lateral force exerted on the moving welding 
head. 
As is noticeable, even with 132N less in actuator force, the response with the spring mounted 
is better in comparison with the one where the spring is not mounted. 
When measuring after an elapsed time of 0.003s, the difference in displacement is of 
0.027mm. If we would compare both displacement signals as being motions with constant 

acceleration, it would give us:     ݏ	ሺ݀݅ݐ݈݊݁݉݁ܿܽ݌ݏሻ ൌ 	 ଵ
ଶ
	 .   ²ݐ	ܽ

 

            0.027݉݉ ൌ	 ଵ
ଶ
	 . ܽ	ሺ0.003ሻ²  

 
 
What in this case would give a difference in acceleration  a of 6m/s² 
 
Given a welding head mass from the fracture or explosion tests of 9.5kg, Newton’s second 
law would lead us to a difference in actuator force    F of 57N to be added with the initial 
difference in actuator force of 132N = 189N 
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Figure 6--53 Exploding button test AWL (part 1
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Figure 6-
 
 

-54 Exploding button test AWL (part 2
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Figure 6--55 Exploding button test AWL (part 3
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Figure 6--56 Exploding button test AWL (part 4
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Figure 6--57 Exploding button test AWL (part 5
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Figure 6--70 Exploding button test on Mc Grego
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Figure 6--71 Exploding button test on Mc Grego
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Figure 6--72 Exploding button test on Mc Grego
 

or (part 3) 
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Figure 6--74 Exploding button test on Mc Grego
 

or (part 5) 

 

 



 

 

Figure 6--75 Exploding button test on Mc Grego
 

or (part 6) 
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6.6 ARO Servo electric  
Without full access to this machine and its control system, it is impossible to perform fracture 
or explosion tests on it and draw conclusions from them. 
 
 

6.7 Overview of results per machine tested 
Please find in Table 6-14 below an overview of the calculated machine data  with their 95% 
confidence intervals as they were calculated following fracture and explosion tests on each 
machine tested and using the data processing procedure as described in Section 5.2 and in 
detail in Appendix D.  
Values for damping factors are not given since these are dependent on friction, highly 
influenced by the specific force level at which the (fracture) test is performed. The latter 
shows clearly from the results in Section 6. 
 

Calculated mass 
[kg] 

(95% CI) 
AWL multi purpose spot/projection welder 

Fracture, no spring in system 12,15  (11,95‐12,34) 

Fracture, outside working range spring 11,98  (11,71‐12,25) 

Fracture, inside working range spring 10,58  (10,04‐11,12) 

Exploding button, inside working range spring 9,89  (9,66‐10,13) 

Exploding ball, inside working range spring 9,88  (9,55‐10,21) 

PECO Messer Griessheim roll membrane welder  8,23  (8,18‐8,28) 

ARO multi purpose welder (pneumatic)  21,35  (21,13‐21,58) 

Mc Gregor µ‐resistance welding head  0,135  (0,131‐0,138) 

         
Table 6-14 Overview of machine data on all machines tested 
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7 Discussion 
 
In this chapter, discussion of results generated during the present work as well as their 
comparison to other published data is included. It is divided into four sections: 
 
a) use of different step function imposing tests and machine evaluations 
Use of the fracture and explosion test procedures and their resulting machine specific data is 
expected to contribute to more detailed and correct data input into Finite Element Analysis 
software. The latter resulting in more realistic output that mimic reality more closely. 
The degree of realism in the presented model and its supporting procedures is compared with 
previous published work. 
 
b) importance of machine specific phenomena like ‘stick-slip’, viscous damping and even the 
welding current itself on machine mechanical behaviour will be analysed and discussed.  
Understanding the influence of the specific make of a resistance machines welding head on 
behaviour will allow for a more correct choice of machine towards a specific welding 
application. 
 
c) machine follow-up improving devices 
Mechanical machine response during the follow-up stage in projection welding can 
deliberately be adapted to a specific welding application. Practical design solutions will be 
proposed. 
 
d) alternative design geometries for projection embossments 
Improved weldability as well as properties of the joint after welding can be achieved by using 
alternative geometrical projection designs. The latter in the meanwhile patented and fully 
implemented in windscreen wiper design as well as in high-end cookware; 
 

7.1 Step function imposing tests and machine evaluations 
 
There are undisputable differences between the fracture and the explosion test that result in a 
potential shifted application field for both tests in practice. Also the degree of difficulty to 
install and/or conduct the test on a specific machine is discussed. 
Adoption of the test in International Standards like ISO 669 like for instance in its Annex A 
‘Dynamic mechanical behaviour’ would be advisable. 

7.1.1 Fracture test 
This test offers the possibility in combination with the model presented in this thesis to make 
machine evaluations and calculate machine specific data that in turn enables more realistic 
numerical simulations of a resistance welding application on specific machines. 
It is a simple test, capable of imposing an aggressive step function on the mechanically loaded 
welding heads from normal load to zero load.  
The test in its closed canister design is completely safe and uses standard and low cost dowel 
pins or alternative brittle breaking elements. 
Measurements made during fracture tests on different machines in Chapter 6 reveal that this 
test in combination with the processing procedure presented in this thesis enables the 
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calculation of the lumped mass of the moving welding head following a single or at maximum 
a few tests.  
Following the tests conducted on the AWL standard spot/projection welder under study in this 
work (see 6.2 AWL machine), it is clear that this test is capable of determining damping 
characteristics of a machine at a wide variety of different actuator loads. 
This evaluation is possible due to the large displacements automatically made by the moving 
welding head in response to the step function that this specific test imposes on the machine. 
Displacements in the order of a cm or even more are normal as a response to a fracture 
imposed. This is in contrast to what happens in reality as soon as a welding head comes in 
motion, attempting to follow the decreasing reaction force against the actuator force when 
workpieces collapse under heating. Displacements in the order of a few tenths of a mm to a 
few mm at maximum are of a more realistic level considering the large majority of welding 
applications. However, in projection welding of hollow components, like cross-tube welding 
or in projection welding of materials with lower Elasticity Moduli, larger displacements 
occur.  
The fracture test allows us to make a complete evaluation of the mechanical properties of a 
resistance welding machine’s moving welding head in full accordance with the theoretical 
approach of pneumatic actuators by Gould [23], [21]. The latter is very interesting for general 
understanding of all machines where the welding force necessary is generated through an 
actuator that is driven at nearly constant force. This is the case for all fully pneumatic 
actuators and for actuators where an actuator (pneumatic, hydraulic, electro-mechanic or 
piezzo-electric) with a bi-stable state (on or off) loads a spring actuator when it is in its on 
state, under condition that the spring is well-chosen in order not to drop too much force 
during the displacements due to be made during welding. 
The theoretical model used copes well with reality as is proven by the calculated results using 
the processing procedure developed in this work. Calculated lumped masses are very realistic 
and close to weighing results of the dismantled physical components of the welding head 
tested. Calculated damping coefficients are also realistic and follow the same tendency as 
frictional measurements. 
Disadvantageous in the use of the fracture test is the introduction of a significant shock to the 
machine frame, the machine arms, the moving welding head as well as in the machines’ 
foundation. This leads to a lot of vibrations that are effectively measured along with the 
response signals. These vibrations do not jeopardize the calculated results as such, they 
however highly influence the regression coefficients obtained when calculating the model 
results.  
The major disadvantage in the use of the fracture test is however the issue of the large scatter 
on the force level at which the fracture effectively takes place. This necessitates the 
application of a force measurement system on all fracture tests made, in order to enable 
correct calculation of mass and damping factor in processing afterwards. Additionally it needs 
to be mentioned that the fracture test is not applicable on micro welding machines due to its 
physical dimensions.  
Using the fracture test in its open design requires safety precautions to be made before 
conducting the test in order not to harm personnel or damage equipment with the ejected 
fracture pin. These particles are projected away and reach very high velocities, making them 
dangerous projectiles that can travel several metres.  
Although small versions of the test were made and used, application of the test on a micro-
welding machine is very difficult to impossible due to lack of stable breaking elements. 
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7.1.2 Explosion test 
This test, reported earlier as an easy means for hands-on machine comparison [24] at TWI and 
British Steel [25] and proposed by Gould [23] in his so-called ball model describing the 
follow-up process of a resistance welding machine, offers the possibility in combination with 
the model and processing procedure presented in this thesis to make machine evaluations and 
calculate machine specific data. The latter data subsequently enable more realistic numerical 
simulation of resistance welding applications. 
It is a very simple test, capable of imposing a step function on the mechanically loaded 
welding heads from normal load to zero load and all of this without imposing vibration in the 
machine frame, its arms, its welding head nor in the machine foundation.  
The test is completely safe when simple shielding by means of a piece of cardboard or an 
alternative is used. It can be operated with standard ball bearing elements or with custom 
made buttons that can be cut to the required dimensions from low-cost standard welding filler 
wire. 
The test setup for an explosion test is so simple that nothing on the machine to be tested needs 
to be dismantled or replaced. The element to explode is placed between a sandwich of two 
intermediate conductive layers and introduced between the machine’s electrodes, followed by 
the execution of the test. The power source of the machine under study itself delivers the 
energy necessary for heating and vaporising parts of the element to explode and its 
surrounding intermediate layers. 
Measurements made during explosion tests on different machines in Chapter 6 reveal that this 
test in combination with the processing procedure presented in this thesis enables calculation 
of the lumped mass of the moving welding head following a single or at maximum a few 
tests.  
In contrast with the fracture test, this test does not allow for imposing a step function on a 
machines’ welding head that results in large displacements. Nevertheless, it allows for 
realistic displacements that mimic those made in the vast majority of projection welds. The 
fact that the extreme case of a splash weld is highly surpassed by this test, still resulting in 
very smooth kinematic responses by the welding head without introducing vibrations into the 
machine, is certainly an advantage. 
Hence, machine behaviour as response to the worst case scenario in projection welding can be 
measured. As a matter of fact, previous publications [19], [20], [21], resulted in a boost in 
understanding of the welding process, but they all describe follow-up over large 
displacements, the latter enabling for welding head velocities to increase to extreme values 
never reached during real welding. However, reference [18] advises to use a real circular 
projection and have this heated above the expulsion limit to make machine evaluations.  
Following the tests conducted on the AWL standard spot/projection welder under study in this 
work (see 6.2 AWL machine), it is obvious that the use of this test, followed by the data 
processing procedure presented in this work is to be made with the necessary precaution and 
with sound knowledge. Since the response signals only cover very small displacements not 
leading to high welding head velocities, it follows that damping effects as they are described 
by others [19], [20], [31], [34], [35], [23] are very difficult to be calculated and resulting in 
realistic and useable values. 
It also needs to be mentioned that the explosion test can be executed to a certain actuator force 
level, depending on the energy the machine’s power source can supply. High actuator loads 
will decrease contact resistances between the intermediate layers and the element to explode, 
leading in extremis to plastic deformation of the element rather than melting and vaporising it.  
All of this should not pose a problem, since the welding heads’ lumped mass can be 
calculated at low actuator force levels and accelerations subsequently can be calculated at 
different actuator load levels. Calculated lumped masses are very realistic and close to 
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weighing results of the dismantled physical components of the welding heads tested. Results 
from tests on a Mc Gregor micro-welding head confirm the ease of use of this test in practice 
and have proven reliability considering the agreement between calculated mass by testing and 
the weighed values of the latter. 
 

7.2 Measurements on AWL machine 

7.2.1 Fracture and explosion tests 
Results from fracture tests actually resulted in uniform values for calculated lumped mass of 
the moving welding head components in the lower actuator force values and with values 
above 3kN. However, within the 0.6kN to 3kN range, results deviated from the weighed 
values on the machine itself. Hence a quest for design drawings from the welding head 
followed without result at the constructor, resulting in the complete dismantling of the 
welding head. The latter revealing the presence of a spring coupling between actuator piston 
and moving welding head slide assembly, surrounded by a compression limiter, the latter 
enabling for setting the compression force range of the spring coupling. (see Figure 5-25)   
Figure 5-26 shows a schematic block diagram representing the moving welding head with its 
degrees of freedom and limitations. 
 
It must be mentioned that the fraction and explosion tests executed on the AWL machine 
revealed the typical construction of this specific welding head. 
Fracture tests also show that a feature of this spring coupling is to disengage the piston with 
its seals and the piston rod with its additional mass from the rest of the moving welding head 
components. This alters machine behaviour favourably within the force range of the coupling 
spring.  

7.2.2 Influence of current on machine behaviour 
Explosion tests carried out on the AWL multi-purpose pedestal spot/projection welder 
revealed the influence of current flow on acceleration values measured. Welding current 
causing changes in welding force due to Lorentz forces generated were already mentioned in 
previous research by Williams [25], and others [36] and more recently confirmed in tests 
performed by Wu [37]. 
In the schematic representation of the secondary current path of a resistance welding machine 
in the right image of Figure 2-14 [37], Wu draws the directions of welding current and the 
directions of resulting Lorentz forces acting on the conductors. Two major influences can be 
notices:  

a) Forces F1, acting on the horizontal conductors and directed outward from the 
welding window; 

b) Forces F2, acting on the vertical conductors and acting outward from the welding 
window; 
 

Forces a) act immediately opposite to the normal actuator force thus decreasing the latter, 
explaining the decrease in acceleration from the welding head as soon as current is flowing 
and an immediate increase in acceleration from the welding head as soon as current is 
interrupted when the conducting button vaporises. 
Forces b) act sideways on the moving welding head, thus in the explosion tests and the 
fracture tests with the application of current, they do not result in more friction in the force 
range where the coupling spring between actuator piston rod and lower slide is active 
(between 0.6kN and 3kN), thus inducing no influence on actuator force and acceleration in 



 

185 
 

this working range. These forces however have a significant influence leading to increased 
friction out of the working range of the coupling spring or even more pronounced in the tests 
conducted with the spring coupling removed from the moving welding heads’ assembly. 
 
Note in Figure 6-37 that dismantling the welding head and removing the spring alters the 
influence that welding current has on reduction of the actuator force. The latter can only be 
explained by the increased friction present at the higher actuator forces. This is 
understandable considering the construction of the actuators’ piston seal (see Figure 7-1). The 
latter is made with an angular lip squeezed progressively against the actuators’ cylinder wall.  
 

 
 
Figure 7-1 AWL piston seal 
 
Fracture tests with the application of current during the test reveal that current indeed reduces 
acceleration of the welding head as long as current flows. 
 
Following the definition of Lorentz forces, 

 

ܨ ൌ 	 ஜ		ூభ		ூమ		௅
ଶగ	௔

 [Nm-1 ] 

 
Giving in the case of the fracture test in Figure 6-38 with length of upper conductor welding 
head (part of throat depth) = 0.26m and throat gap (or separation) = 0.18m:  

 

ܨ ൌ 	 ଶ∗ଵ଴
షళ	ଵ଴଴଴଴మ∗଴.ଶ଺

଴.ଵ଼
 = 29N 

 
This value is certainly of the same order as the loss of force causing the decrease in 
acceleration leading to the difference in displacement as seen in Figure 6-38. Lorentz forces 
will also cause the moving welding head to be loaded with a force faced outwards, with the 
dimensions of throat depth = 0.3m and length of electrode assembly = 0.12m: 
 

ܨ ൌ 	 ଶ∗ଵ଴
షళ	ଵ଴଴଴଴మ∗଴.ଵଶ

଴.ଷ
 = 8N 
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7.2.3 Fracture tests with application of lateral force 
From these tests, simulating Lorentz forces acting lateral and outwards on the moving 
welding head seen in Figure 6-41, we conclude that no significant influence can be measured 
in the actuator force range (0.6kN to 3kN) where the coupling spring disengages the piston 
and piston rod from the lower slide.  
Tests conducted with an actuator force outside of the working range of the coupling spring, as 
seen in Figure 6-42, reveal a measureable influence due to increased friction between piston 
seal and actuator cylinder wall. Removing the coupling spring from the actuator assembly 
increases the influence as seen in Figure 6-43. However, when the forces used to impose a 
lateral load on the welding head to examine the influence were increased to over 100N, 
(exceeding Lorentz forces that might act in the lateral direction on the welding head realistic 
by over a factor 10), there is no further effect 
The Lorentz forces act both laterally and axially and the axial effect in this AWL machine 
setup has a more significant influence. 
 

7.2.4 Stick – slip test 
Much research in the past focussed on specific machine properties and their influence on 
machine behaviour [31], [34], [35], [26], [27], others focussed on the influence of these 
properties on weld quality and electrode life [6], [7], [30], [31]. Dupuy [38] concludes from 
his tests on five different pneumatically actuated machines that stick – slip influences 
machine follow-up behaviour. 
In the tests conducted in the present work, the pneumatic actuated moving welding head of 
the AWL machine was forced in equilibrium at different actuator loads by means of inflating 
a rubber bellows. Afterwards, the moving welding head was manually displaced upwards, 
immediately followed by recording the actuator force. Subsequently, the moving welding 
head was manually forced downwards, again followed by recording the actuator force. 
The results give us the static friction of the welding head at different actuator loads. 
Kinematic friction is generally accepted in engineering machine construction guides, to have 
values of 10 to 20% lower than the static friction values. 
From Table 6-10 and Figure 6-44, we conclude that the absolute value of static friction (and 
automatically the absolute value of kinematic friction) increases with increasing pneumatic 
pressure in the moving welding head actuator. Considering the physical design of the piston 
seal on this AWL machines’ actuator, this is logical behaviour. Increased pneumatic pressure 
in the actuator cylinder will squeeze the sealing lips tighter to the cylinder wall, thus 
increasing friction. 
The additional influence of lateral force will be similar at different actuator pneumatic 
pressures, since the lateral force will force moving welding head in the lateral direction, but 
always proportional to the lateral force acting on it. 
When looking at the fracture test results in Table 6-1 and Figure 6-10 in combination with the 
stick-slip friction tests from Table 6-10 and Figure 6-44 then we conclude that damping 
effects in welding head motion are caused by friction rather than viscous damping in the 
welding cylinder. 
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7.2.5 High speed camera evaluation 
Both exploding ball as exploding button tests were evaluated on the AWL machine by means 
of high speed video recording. Both test procedures using intermediate conductive layers with 
a high bulk resistance and high contact resistance values result in significant ‘digging-in’ by 
the element exploding into the intermediate layers. The latter creates a cavity capable of 
encapsulating remains of molten material from the exploding element that wasn’t projected 
away during the explosion. This effect prevents the welding current resuming before the 
electrodes make contact again. Exploding button tests show less tendency for molten material 
to remain trapped since there is a more pronounced tendency for material from the contact 
area ‘intermediate layer – button’ to be projected to the side instead of down and upwards. 
The welding head velocity signals as a response to both these step function imposing tests 
(ball and button) have a very smooth course, without abrupt changes in velocity as seen in the 
fracture test responses. 
The major practical advantage of the exploding button test is the ease of application as the 
button remains in place as it is introduced between the welding heads. The use of intermediate 
layers avoids damage to electrodes and allows us to introduce the sandwich intermediate layer 
– button – intermediate layer with ease between the standard electrodes mounted on a 
machine. 
 

7.3 Measurements on PECO roll membrane machine 
Results from fracture tests made on this machine, presented in Table 6-11 and Figure 6-61 
lead to the conclusion that a welding head with this specific feature of a so-called low friction 
piston results in follow-up behaviour ruled by a still significantly high mass of 8kg and 
damping values comparable with those obtained with a standard pneumatic actuator like the 
one on the AWL machine. What does show as an advantage is the damping factors not 
increasing with increasing actuator force, as could be expected from this type of actuator. This 
is only advantageous when large displacements are needed, for instance in a projection 
welding application. 
 

7.4 Measurements on ARO pneumatic multi-purpose machine 

7.4.1 Fracture and explosion tests 
Fracture and explosion test results presented in Table 6-12 and Figure 6-62 both reveal the 
high lumped mass of this moving welding heads’ assembly in full agreement with the 
weighed values of the dismantled individual components. Damping factors increase 
proportional with pneumatic pressure in the actuator as could be expected from this type of 
actuator.  
It shows from these tests that this is not the optimal machine for projection welding of 
components that require fast follow-up at low actuator forces.  
This machine was used for evaluation of wire pieces or buttons to serve as an exploding 
element in an explosion test. Results in Figure 6-63 reveal the necessity for sufficient welding 
current to apply at a given actuator force in order to measure the welding heads’ response 
rather than the plastic deformation of the wire or button. 
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7.4.2 High speed camera evaluations 
These high speed video recordings were made from a distance with a zoom objective, 
resulting in clear macro view on material being expelled from between the electrodes. All 
explosion tests carried out for this occasion were conducted without the use of intermediate 
layers increasing heating and ‘digging’. It shows clear from the images in  Figure 6-66 and 
Figure 6-67 that initial heating causes the ‘digging’ effect into the electrodes as also noticed 
in more detail and with a microscope objective on the AWL machine, followed by the 
overheating and vaporising of material, driving most molten material away in a horizontal 
plane due to the limitation made by the electrodes. 
Vaporised material is clearly visible as a white cloud escaping from between the electrodes.  
Interesting to notice also in Figure 6-67 is the secondary explosion occurring due to the 
bouncing effect of the moving welding head and the deflection of the fixed electrode. 
 

7.5 Mc Gregor µ-resistance welding head 

7.5.1 Explosion tests 
Table 6-13 and Figure 6-68 give the processed results from explosion test made on this 
welding machine in-situ at the Philips plant in Turnhout Belgium and confirm why this small 
machine is used as a  standard in hundreds of factory mechanisations. Due to the small 
lumped mass of the welding head, measured accurately from the processing procedure 
presented in this work, and in full accordance with the weighed values of the components in 
combination with very low damping coefficients defined, this is an extremely fast workpiece 
collapse follower.  
This statement is to be taken literally, since a difficult cross-wire welding combination 
between a Molybdenum and a steel wire, that is a high melting against a low melting material, 
often used by Philips to evaluate the follow-up capabilities of a welding application does not 
explode under identical conditions used in the explosion test as is apparent from high speed 
recording. 
 

7.5.2 High speed camera evaluations 
High speed recording revealed the synchronisation between initiation of melting and 
establishment of a high acceleration value driving the moving welding head downwards. 
The usefulness of Fronius Deltaspot tape as an intermediate layer is proven, offering the 
possibility of even higher current loading without damaging the electrodes. The use of this 
copper plated AISI 304 stainless steel process tape is simple and its use is highly 
recommended. (you can simply cut the required length from a reel with normal scissors, bend 
it in the shape you like to handle it with the most comfort, place the button in between and 
introduce the sandwich between the electrodes)  
With a little attention, the disadvantage of the intermediate layers touching and conducting 
too early can be prevented. 
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7.6 ARO servo electric 
Without full access to the machines’ control system and its control algorithms it is impossible 
to even conduct fracture tests on this machine. Explosion tests work, but since the spring 
follow-up system, present in each of these machines was pre-installed and loaded to operate at 
a force level above 4kN, data obtained from explosion tests executed below this force level 
are not reported. Without the feature of the spring follow-up system, there remains a slow 
following system of the servo motor with its drive spindle, in the configuration of our 
laboratory machine capable of developing a maximum velocity of 200mm/s. 
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9 Conclusions 
 

 A new process model based on welding head response to a step function in actuator 
force and its necessary data processing procedure was developed. Welding head 
response signals can be recorded and both displacement or velocity response of the 
welding head on the imposed step function can be used as input for the data 
processing procedure. This enables calculation  of total lumped mass of the moving 
welding head in combination with its damping factor.  
 

 New and state of the art non-contact and non-invasive measuring and data-acquisition 
techniques and procedures were developed and tested that enable in-situ measurement 
of machine welding head responses to the imposed step functions. 
These measuring techniques also allow for assessment of a working resistance 
welding application in a running production environment. 

 
 Machine specific data, related to a specific application can be measured and/or 

calculated and can afterwards be used as input data to enable more accurate finite 
element calculations of that specific welding application. 

 
 A new test, the free fracture test, was developed to impose a step function on the 

welding head and hence calculation of machine parameters. This test was shown to 
provide accurate measurements. However, it imposes an aggressive step function 
(never achieved in real welding situations) which introduces vibrations. 

 
 The explosion test was developed to more realistically simulate machine movement. 

This test also enables accurate calculation of effective lumped mass. Initial work 
utilised ball bearing elements but the final version of the test uses buttons, fabricated 
from welding filler wire where both the geometry and the material can be chosen. 
This test is straightforward and easy to use in-situ. 
 

 The influence of Lorentz forces generated by the welding current on the force 
equilibrium in a resistance welding machine was examined. These forces are definitely 
present and alter machine behaviour. Specifically these effects can be important at low 
actuator force levels in combination with high current levels. 

 
 The level of the static friction force and resulting stick-slip effects at different actuator 

force levels were studied and these match with the damping effects occurring during 
welding head response on a step function imposing test. 

 
 High speed camera evaluations were made both of the free fracture test and the 

explosion tests. The latter leading to a better understanding of the physical processes 
taking place prior, during and after the explosion. 
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 An innovative new projection geometry was designed incorporating a sacrificial 
groove around the projection. This new geometry has major benefits in achieving full 
setdown with no gap left, and in maintaining stable current density and hence improve 
weld quality. This new technique has been used extensively in industry. 
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10 Recommendations for further work 

  
 Although step function imposing test setups and procedures have been developed in 

this work, the author suggests that further work on optimisation might help for 
successful transfer to the workfloor. 
 

 Further research in the field of servo electric actuated machines, or even all types of 
actuators using an electronic feedback control for weld head motion would be 
advisable.  This should however be executed with full cooperation of the machine 
constructor.  
 

 Influence of current on machine mechanical behaviour could be a subject for further 
study.  
 

 Explosion tests have the disadvantage that they cannot be used in the higher actuator 
force levels due to the decrease in contact resistance at these higher force levels in 
combination with insufficient available welding current from the machines’ power 
source. It would be advisable to search for possible alternative materials or material 
combinations that allow for testing at higher load levels. 
 

 Spring follow-up systems used in capacitor discharge machines to improve behaviour 
in projection welding deserve further attention, since this type of machines becomes 
more widely used in a wider variety of applications. 
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Appendix A - Physical properties materials used 
 

 
 

  308L 309L 316L 430 
LNb 

13 % Cr 
405 

17 % Cr 
430 

S235 Hasteloy 
276C 
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om
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ti
on

 w
ei

gh
t %

 

C 0,02 – 
0,03 

< 0,03 < 0,03 < 0,03 0,08 0,12 0,17 0,01 

Mn 1,6 – 
1,75 

1,8 1,7 0,5 1,00 1,00 1,40 1 

Si 0,4 – 
0,475 

0,5 0,5 0,5 1,00 1,00  0,08 

Cr 20,25 24,0 19,0 18,2 11,5 – 
14,5 

16,0 – 
18,0 

 16 

Ni 10 13,0 12,0     57 
P 0,015 0,03   0,04 0,04 0,03  
S 0,015 0,02   0,03 0,03 0,03  

M
ec

ha
ni

ca
l p

ro
pe

rt
ie
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Density 
(kg/m³) 

7700 - 
8030 

8030 8027 7700 7800 7800 7800 8890 

Poisson ratio 0,27 – 
0,30 

0,27 – 
0,30 

0,27 – 
0,30 

0,27 – 
0,30 

0,27 – 
0,30 

0,27 – 
0,30 

0,27 – 
0,30 

 

E – Modulus 
(GPa) 

190 - 
210 

200 190 - 
210 

220 200 200 210 205 

Tensile 
strength (MPa) 

620 600 620 420 480 480 360 785 

Yield strength 
(MPa) 

450 440 440 275 275 275 235 365 

Strain at 
fracture (%) 

36 41 37 26 16 20 32 59 

Insnoering (%) 36 41 37 26 45 45 32  

T
he
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al
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ro
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er
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Coefficient of 
thermal 
expansion 
((µm/m).°C) 

17,2 15,6 15,9 10 10,8 10,4 11 11,2 

Thermal 
conductivity 
(W/m.K) 

15,2 15,6 16,2 25 27 26,1 41 - 
52 

10,2 

Specific heat 
(J/kg.K) 
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530 

427 

E
le

ct
ri

ca
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Electrical 
resistance 
(µΩ.cm) 

72 78 74 60 60 60  20 
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The reaction force ‘Fr’ is of metallurgical nature.   
 
In the fracture test, reaction force ‘Fr’ completely disappears ‘Fr = 0’ , mimicking a weld that 
extremely overheats and explodes.  
  

At that moment: 
dt

dx
b

dt

xd
mFa 

2

2

 

    
This equation is solved using system dynamics by applying Laplace transformation where 
displacement is written as a function of time: 
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As mentioned above, during the fracture test, reaction force ‘Fr’  will suddenly disappear due 
to the brittle pin breaking away. As a result, the machine actuator system is loaded with a step 
function.  A step function is introduced in the Laplace domain by multiplying with  ‘1/s’  
leading us to: 
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Reverse transformation to the time domain:    s  →  t   leads us to: 
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Displacement is expressed here as a function of time.  This means that starting from 
displacement measurements made on the moving welding head in its response to a fracture 
test, mass and damping factor can be calculated iterative.   
 
Since a velocity measurement using a laser vibrometer is by far less invasive in a production 
environment, calculating mass and damping factor starting from a velocity signal is the more 
realistic and practical approach: 
 

Instead of the actuator force symbol Fa, it is more suitable to introduce Ffracture  as the force 
at which fracture is initiated. 
 

dt

dx
     ሻݐ௧௛ሺݒ ൌ െ	
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When the true welding head velocity, ݒ௪  needs to be compared with the theoretical values, 

then initial velocity ݒ଴ needs to be accounted for: 
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The minus sign in front of the formula makes the final value negative to facilitate comparison 
with the measured values for velocity that are negative. 
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Appendix C - Test procedure Free Fracture test 
 
As already mentioned before, formation of a plastically deformable or molten weld pool 
causes workpiece support against the electrodes clamping force to partly disappear. The 
moving welding head will respond to this drop in reaction force by making a displacement in 
the direction of the workpiece. Velocity of this displacement is depending on the lumped 
mass of the welding head (welding head plus every auxiliary attached machine element that 
will have to displace as well), of the damping factor and possibly the elastic spring constant of 
the moving welding head. Resulting from these physical limitations, this welding head 
movement cannot take place infinitely fast and thus will lead to a drop in force exerted by the 
moving welding head on the workpieces. To analyse the latter, a theoretical model is 
developed within the scope of this thesis. The resulting equation of welding head 
displacement or velocity as a function of time contains the machine characterizing parameters 
lumped mass of the moving welding head m [kg] and its damping factor b [N/m/s] at a chosen 
preset welding force F [daN]. 
By means of the free fracture test, a step function is imposed on the welding heads by means 
of breaking of the welding head supporting pin. This step function is necessary in order to 
have a valid theoretical model transferred in practice. By measuring the welding heads 
displacement and/or velocity response to the imposed step function, sufficient data is 
available to subsequently calculate the characterizing machine constants m and b. 
In order to measure welding head motion, measuring equipment and procedures were chosen 
and developed that can deliver accurate and reliable results and that can be used on such an 
endless pallet of different resistance welding machines in so many different production 
environments. Also choice of measuring equipment should be made to assure safety for 
operators in often highly automated production environments. The author’s personal 
experience with significant accidents has led to a focus on safety.  Noninvasive, contactless 
and in general more expensive measuring equipment resulted and with  proven  benefit. This 
has  allowed  assessment of welding applications in production plants without interfering into 
production in a guaranteed safe usage. 
For measurement of  welding head motion,  a laser vibrometer was chosen, capable of 
measuring motion accurately from a relative large distance away from the object to measure.  
The free fracture test has the purpose to apply a step function on the welding head to monitor, 
achieved by breaking a brittle element away from between the electrodes. Pressurizing force 
is built up in the force actuator until the force level for fracture is reached. At that instance, 
reaction force fully disappears resulting in the electrodes to move freely towards each other. 
This motion is measured and resulting data is processed. 
Design of the fracture test needs to follow some important requirements: 

- It must be compact and easy to mount on any production welding machine; 
- The material to fracture (pins) must break in a brittle way in the setup; 
- The test itself should have a low mass in order not to influence the lumped mass of 

the welding head under study; 
- The test rig must retain the three remaining parts of the pin after fracture and must 

ensure no injury or damage is caused; 
The ultimate design result is a cylindrical canister (Figure C - 1) containing supporting 
washers with different inner diameters that offer different supporting distances for the pins to 
break accordingly. After fracture, the three remaining parts of the pin stay trapped in the 
canister. This canister is attached to the stationary welding head. Against the moving welding 
head, the canisters lid is mounted, a metal disc with a hardened steel pin attached to its 
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increase on the remaining cross-section and is instantly followed by the fracture of the 
remaining pin cross-section in two elements that are projected sideways. Considering the 
extreme velocities of the remains of the pin and in order to ensure a guaranteed safe working 
environment,  the fracturing device in a closed canister was designed as seen in Figure C - 1 
before. 
The lower support is engineered in the closed design as washers with support distances (inner 
diameter of the washers) of 20mm, 25mm, 27mm and 32.5mm respectively. The outer 
diameter is 60mm. 
The results of the fracture tests in the closed canister design on steel dowel pins are 
summarized  in Table C - 3 and they are displayed in the graph of Figure C - 4.  

 
Dowel pin 
Diameter 

(mm) 

Dowel pin 
Length 
(mm) 

Supporting 
distance 

(mm) 

 Breaking 
Force 
(daN) 

2.5 40 20 106 
2.5 40 25 85 
2.5 40 27 79 
2.5 40 32.5 65 
2.5 45 20 138 
2.5 45 25 111 
2.5 45 27 102 
2.5 45 32.5 85 
2.5 50 25 114 
2.5 50 32.5 87 
3 40 20 266 
3 40 25 213 
3 40 27 197 
3 40 32.5 164 
3 50 25 182 
3 50 32.5 140 
4 40 20 466 
4 40 25 373 
4 40 27 345 
4 40 32.5 287 
4 60 25 490 
4 60 32.5 376 

 
Table C - 3  Fracture forces for standard steel dowel pins in closed canister 

 
This table contains all combinations of standard hardened positioning pins according to ISO 
8734:1997 as they were tested in the closed canister design fracture mechanism with 
supporting washers. The available fracture forces cover a range from 65daN to 490daN. The 
test can be used safely and reliably to impose a step function in reaction force between the 
welding heads of a machine under study at a given force level. When a force level for a 
specific application is given, the choice of the dowel pin to use in combination with a 
supporting washer can be made quickly. 
Larger pins than diameter 4mm are not used, since they would possibly damage the test 
equipment. Although it needs to be mentioned that it is not necessary to conduct the fracture 
test at higher force levels since following the theoretical model, it is possible to define the 
relevant machine parameters at lower force levels. 
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Fracture tests on hardened steel pins with notch 
 
Machining of a notch is realised by means of EDM wire erosion. The result is a dowel pin 
breaking at force levels below 60daN.  Electro erosion is an accurate machining process 
offering the possibility to cut a notch of defined width and depth in the middle of the dowel 
pins. There is very low scatter on the breaking force levels of pins with identical notch 
dimensions. Dowel pins were machined with a sparking gap of 0.25mm at different sparking 
depths.  In this way, fracture tests can be conducted at force level of few daN. 
  

Material: ISO 8734:1997 Dowel pins 1.5 x 32mm 
Support distance used: 27mm 

Notch depth (mm) Fracture force (daN) 
0 21 

0.25 7.78 
0.5 5.36 
0.75 3.02 

1 1.34 
 
Table C - 4 Fracture forces for steel dowel pins with notch in closed canister 
 
Remark: The results displayed in Table C - 4 and in Figure C - 5 are the mean values of 50 
tests of each notched type of dowel pin. Scatter on the values within the range of 0 to 10%.  
  

 
 

Figure C – 5 Fracture forces for steel dowel pins with notch in closed canister 
 
Hardened steel dowel pins are suited for the purpose of this step function imposing test. At a 
chosen fracture force,  the right dowel pin and according support washer needed can easily be 
selected. Force levels of nearly zero to 490daN can be used. Higher force levels are not 
necessary since the theoretical model is based on a motion signal instead of a force signal. 
To realize the lower force levels, an accurate notch needs to be machined into the standard 
pins. The fracture test is relatively easy to mount on different machine designs. 
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Evaluation was made after Hipping treatment to determine the properties in comparison with 
the untreated ceramic material. Bending tests were carried out on an Instron test bench. Pin 
diameters tested were 3, 4, 5 and 6mm.  

 
Results of Hipped technical ceramics 

 
Diameter 3 mm 
 
Post HIP, the pins meet the demands of low scatter (≤ 10%) and brittle fracture.  
 
Diameters 4, 5 and 6 mm 
 
The length of the HIP – cycle seems to be too short to treat these diameters to their center. 
Many internal discontinuities remain, leading to large scatter (20 to 45%) on the results of 
the fracture force making them unusable as fracture element for the breaking test. On the 
other hand, longer application of the HIP treatment would increase the operational cost of 
the test way beyond what we can afford. 
The HIP treatment certainly has proven to improve the quality of the technical ceramic bars. 
However the financial added value to the already very high prices of the untreated technical 
material make use of this approach unfeasible. 
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- Column H 
Approximated welding head displacement. 







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- Column I 
Shift in displacement 

1xxn         [mm] 

     
- Column J 
Square of the difference between true and approximated welding head velocities, (misfit). 

 2
thw vv   

   
- Column K 
Summation of the squares of differences between true and approximated welding head 
velocities. 

   2
thw vv    

 
Supplementary, the measured value of the force at which fracture took place must be inserted 
in cell L7 and the true measured initial velocity in cell L8. 
 
Graphs 
 
Two graphs are produced: 
 
1. Comparison of velocities 

True measured velocity is compared with approximated velocity. 
 
2. Comparison of displacements 

True measured displacement is compared with approximated displacement. 
 
Processing procedure 
 
1. Set up fracture of explosion test on machine to test. 

 
2. Using a data acquisition system, measure welding head velocity (or displacement) 

during response on fracture or explosion. Record force. Record current. 
 
3. In the data acquisition program, determine the exact moment of fracture or start of 

displacement in the total recorded signals. Starting from the point of time of the 
fracture or the initiation of movement, cut the signals and export them for instance to 
MS excel. 

 
4. Import the velocity signal (or the displacement signal) in function of time into 

columns B and F or C.  
 
5. Input the measured initial welding head velocity in cell R8.  
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Appendix E - Design procedure Spring Follow Up 
system. 

E1 Based on Belleville washers (not intended for conducting current) 
  
If it shows from the results of the fracture tests that the total lumped mass of the moving 
welding head is too large, a spring follow-up system might bring a solution. On the other 
hand, when we calculate the drop in force on a collapsing weld and the latter appears to be too 
high, the same spring follow-up system can avoid expulsion problems and resulting inferior 
welding quality. Indeed, when mass [m] and damping factor [b] of a tested machine are 
defined by means of a fracture- or an explosion test and when the highest acceleration peak 
and the corresponding welding head velocity occurring at this point in time are measured 
during a projection weld in practice on this specific machine, the actuator force needed to 
achieve this kinematical condition can be calculated. The latter portion of the actuator force is 
at that point in time no longer available to compress the workpieces to maintain the weld in 
compressed condition and definitely will lead to expulsions. These problems will nearly never 
occur on applications where actuator force levels can be set at high values in relation to the 
moving welding head mass. But nearly all projection welding applications are vulnerable for 
this specific problematic since one cannot apply high mechanical loads on the workpieces to 
avoid excessive deformations. In practice, a large lumped mass of the welding head with its 
according large inertia indeed will lead to a slow follow-up behaviour as a result. The use of 
the spring follow-up system is intended specifically to decrease the mass underneath the 
springs to be forced into movement when the welds deforms. When the actuator system exerts 
its load, the spring system and the workpieces are loaded. When deformation is induced when 
the weld pool is formed, a drop in reaction force results leading to initiating moving of the 
smaller mass of the welding head underneath the springs, driven by the compressed springs.  
A spring system can only be designed based on the displacement needed during the weld and 
on the weld pressure that is needed. In projection welding, this displacement is part of the 
height of the projection embossments. As a rule of thumb we can state that the allowed drop 
in force of the spring system can only be 5% of the welding force with a total displacement of 
the projection height. 
Choice of springs with low hysteresis is advantageous as are high damping effects since this 
will more quickly dampen out vibrations caused by the follow-up system. Of course, the 
spring system needs to be designed as low as possible in the moving welding head actuator 
system in order to achieve a lumped mass below the springs as low as possible. 
 
Example calculation on a Dalex pedestal projection welder: 
Demands towards the spring package: 
Welding force of 2000daN, meaning the springs will be loaded with this force. 
Weld application: projections of 1mm height. 
The spring system thus needs to be able to follow a displacement of 1mm and only lead to a 
drop in force of maximum 5%. 
Calculation: 
Belleville disc springs from eg. Amatec 
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E2 Based on Copper leaf springs (intended for conducting current) 
 
As can be seen in Figure E - 4 below, on the left side a photograph of a spring mounted on a 
test machine, on the right side a schematical representation,  the copper follow-up leaf spring 
can be separated in four separate leaf springs (see arrows in the image). These separate 
springs are mounted per two in series and subsequently in parallel. As a result of the latter, in 
calculating the spring constant of one single spring also gives us the spring constant of the 
total spring package. 
 

 
 

Figure E - 4 Copper follow-up spring mounted on lower welding head 
 
 
When we restrict the loss in force (at projection collapse) to 5 % (cell C6) at a given actuator 
force (cell C5), this leads to a deflection following this actuator force that must be 20 times 
the height of the projection. So assuming the projection height is 0,3mm, the deflection needs 

to be  6 mm, following formula  ߜ ൌ 	 ଴,ଷఱ
భబబ

 , 
௉௥௢௝௘௖௧௜௢௡	௛௘௜௚௛௧
ಲ೗೗೚ೢ೐೏	೏ೝ೚೛	೔೙	೑೚ೝ೎೐

భబబ

  (cel C16).  The spring has a 

linear characteristic. In this way we know the deflection required to be made by the spring at a 
given actuator force. This has to be within the mechanical properties of the material used to 
build the spring. 
 

 
 

Figure E - 5 Leaf spring deflection 
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The spring constant “c” is written as  
ி

ఋ
 (
஺௖௧௨௔௧௢௥	௙௢௥௖௘

ௗ௘௙௟௘௖௧௜௢௡
).   

From   ܿ ൌ
௕.௛య.ா

௅య
  follows that: 

ܮ ൌ 	 ඨ
ܾ	. ݄³	. .	ܧ ߜ

ܨ

య

	ሾ݉݉ሿ 

In this formula,  “b” is the width (cell C9) of the leaf spring, “h” its thickness (eg. cell G5, all 
cells in red, “E” is the E-modulus of the material used (cell c7) and  “F” the actuator force.  In 
this formula,  “F and δ” are given values by the boundary conditions we request.  After input 
of “b and h”, the springs length “L” results.  After varying the values of “b and/or h” we find 
a series of lengths that possibly can be used for this spring. There is however another 
restriction, namely the mechanical strength of the leaf spring that has not been taken into 
account. The material we aim to use in the application of a conductive leaf follow-up spring  
will be presumably a Copper alloy offering a good combination of electrical and mechanical 
properties. For instance the choice can be made to use CCZ (Copper Chromium Zirconium 
alloy) having a maximum tensile strength of 410 N/mm² (cel c10).  We apply a safety 
coefficient (cel c11).  Cell c12 gives us the “allowed stress”. Subsequently, the allowed 

bending stress value “σ” is caluclated: ߪ ൌ 	
ଷ	.ி	.௅

௕	.௛²
	ሾ

ே

௠௠
ሿ.  This value may never exceed the 

maximum tensile strength of the material used, even considering a safety coefficient. All 
combinations not meeting these demands will be considered as “not applicable”. These cells 
are marked “yellow” with an “if-function”.  The cells marked in blue give the length of the 
complete follow-up spring.  The latter is twice the length of the single spring calculated above 
added with twice the length of the connecting pieces at the springs ends (where the three bolts 
are visible in the image) (cell c13) and finally the central stiffer area with increased thickness 
to allow mounting of the spring to the lower welding head and mounting of the lower 
electrode holder respectively (cel c14). 
 
Example calculation: 
 
Assume: F = 3000 N 
Allowed force loss: 5% 
E-modulus: 125000 N/mm² 
Projection height: 0,25 mm 
Spring width: 100 mm 
Tensile strength: 410 N/mm² 
Safety coefficient: 1,2 
Length connecting pieces at ends: 30 mm 
Length central elevated part: 100 mm 
 
Calculation:  
If  these values are entered in the spreadsheet, the most compact spring is the one with a 
thickness of 7.3 mm. 
Entered in the formula: 

	

ܮ ൌ 	 ඨ
ܾ	. ݄³	. .	ܧ ߜ

ܨ

య

	ሾ݉݉ሿ 
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It gives us: ටଵ଴଴	.				଻.ଷ³	.ଵଶହ଴଴଴.ହ

ଷ଴଴଴

య
ൌ 200.86	݉݉ (cell K20) 

Subsequently we need to check if the allowable stress value is not exeeded: 
 

ߪ ൌ 	
3	. .	ܨ ܮ
ܾ	. ݄²

	ሾ
ܰ
݉݉

ሿ 

This gives, 

ߪ ൌ 	
3	.3000	.200.89
100	.			7.3²

ൌ 339.27	ܰ/݉݉² 

This is just below  
ସଵ଴	ே/௠௠²

ଵ.ଶ
ൌ 341.66	ܰ/݉݉² 

Finally the full length of the spring: 
݄ݐ݈݃݊݁	݈ܽݐ݋ܶ ൌ ሺ2 ∗ 200.89ሻ ൅	ሺ2 ∗ 30ሻ ൅ 100 ൌ 561.8	݉݉ (cell L20) 
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minimum in order not to create a thermal overload on the electrodes that could potentially 
damage them. 
Also the amount of different current or heat settings on the machines’ control box that we 
want to supply to every single load setting on the measuring resistance needs to be chosen 
here ( 10). On most machine control boxes, current can be preset as a ‘percentage’ [%] or in 
‘per mille’ [‰] of the maximum available power the machine can deliver. For ease of 
processing it is best to work in steps of 10% or multitudes of 10, for instance in steps of 10 
(10,20,30,40,50,60,70,80,90,99) or in steps of 20 (20,40,50,60,70,80,99) etc…. 
 
Then all is set to start the measurement, through the menu bar we open the recorder screen 
where all activated measuring channels are visual and operational.  
 

 
 
When we hit the ‘record’ button, a communication field opens where comments regarding 
that specific measurement can be added. To maintain an overview over the different 
measurements made, this field can better be commented. 
 
When we hit the “OK”-button, the measurement starts. We set the machine to the lowest heat 
setting (10%) and after measuring the first flow of current we pause the measurement.   
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resistance continuously is not possible. For this reason, the portable discrete variable 
resistance system was developed by the author to enable in situ measurement of both U-I-
characteristics as power characteristics on any resistance welding machine. Semi-automated 
processing was developed that requires a minimum in handling to calculate the measured 
characteristics and display them graphically. However, this processing procedure limits the 
number of measured points per characteristic and the number of characteristic per machine. 
 
 

 
 




