
Jacobian Code Generated by Source
Transformation and Vertex Elimination
Can Be as Efficient as Hand-Coding

SHAUN A. FORTH, MOHAMED TADJOUDDINE, and JOHN D. PRYCE
Cranfield University (Shrivenham Campus)
and
JOHN K. REID
JKR Associates

This article presents the first extended set of results from ELIAD, a source-transformation im-
plementation of the vertex-elimination Automatic Differentiation approach to calculating the
Jacobians of functions defined by Fortran code (Griewank and Reese, Automatic Differentiation
of Algorithms: Theory, Implementation, and Application, 1991, pp. 126–135). We introduce the
necessary theory in terms of well known algorithms of numerical linear algebra applied to the
linear, extended Jacobian system that prescribes the relationship between the derivatives of all
variables in the function code. Using an example, we highlight the potential for numerical in-
stability in vertex-elimination. We describe the source transformation implementation of our tool
ELIAD and present results from five test cases, four of which are taken from the MINPACK-2 collec-
tion (Averick et al, Report ANL/MCS-TM-150, 1992) and for which hand-coded Jacobian codes are
available. On five computer/compiler platforms, we show that the Jacobian code obtained by ELIAD
is as efficient as hand-coded Jacobian code. It is also between 2 to 20 times more efficient than
that produced by current, state of the art, Automatic Differentiation tools even when such tools
make use of sophisticated techniques such as sparse Jacobian compression. We demonstrate the
effectiveness of reverse-ordered pre-elimination from the (successively updated) extended Jacobian
system of all intermediate variables used once. Thereafter, the monotonic forward/reverse ordered
eliminations of all other intermediates is shown to be very efficient. On only one test case were
orderings determined by the Markowitz or related VLR heuristics found superior. A re-ordering of
the statements of the Jacobian code, with the aim of reducing reads and writes of data from cache
to registers, was found to have mixed effects but could be very beneficial.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Stability (and in-
stability); G.1.4 [Numerical Analysis]: Quadrature and Numerical Differentiation—Automatic

This work was funded by the UK’s EPSRC and MOD under grant GR/R21882.
Authors’ addresses: S. A. Forth, M. Tadjouddine (Engineering Systems Department), and
J. D. Pryce (Communications and Information Sytems Engineering), Cranfield University
(Shrivenham Campus), Shrivenham, Swindon SN6 8LA, UK; email: {S.A.Forth; M.Tadjouddine;
J.D.Pryce}@cranfield.ac.uk; J. K. Reid, JKR Associates and Rutherford Appleton Laboratory, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, UK; email: J.K.Reid@rl.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0098-3500/04/0900-0266 $5.00

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004, Pages 266–299.

li2106
Text Box
ACM Transactions on Mathematical Software (TOMS).
Volume 30, Issue 3, September 2004, pp266-299

Jacobian Code by Vertex Elimination • 267

differentiation; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—Systems of equa-
tions; G.1.6 [Numerical Analysis]: Optimization—Least squares methods; G.4 [Mathematical
Software]: Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Jacobian, source transformation, vertex elimination

GLOSSARY
A Adjoint matrix
ci, j Local derivative ∂�i/∂u j
C Matrix of local derivatives
D Solution of extended Jacobian system
ei i-th column of unit matrix
f Given function
∇f(x) Jacobian matrix, of order m × n
m Number of dependent variables
n Number of independent variables
N = n + p + m
N|c|=1Number of unit entries ci, j = ±1 in C
N|c|�=1Number of non-unit entries in C
Nevals Number of separate evaluations timed
Nrepet Number of repeats of timing test

p Number of intermediate variables
P Matrix associated with extended system
q Number of columns in S
Q Matrix associated with extended system
S Seed matrix of order n × q or m × q
si i-th column of S
ui i-th code variable
u All active variables
v Variables of the code-list
wi i-th intermediate variable
w Intermediate variables
W Computational work
x Independent variables
y Dependent variables

1. INTRODUCTION

Automatic Differentiation (AD) concerns the process of taking a function
y = f (x), with f defined by a computer code, that maps independent variables
x ∈ IRn to dependent variables y ∈ IRm and then constructing new code that
will also calculate derivatives of f. AD relies on the fact that each statement of
the code involving floating-point numbers may be individually differentiated.
The forward mode of AD creates new code that, for each of the code’s variables,
calculates the numerical values of the variable and its derivatives with respect
to the independent variables. Reverse (or adjoint) mode AD produces code that
passes forward through the original code storing information required for a re-
verse pass in which the sensitivities of the nominated dependent variables to
changes in the values of the code’s variables are calculated. A thorough intro-
duction to the field may be found in Griewank [2000] and further theoretical
results and applications may be found in the collections [Griewank and Corliss
1991; Berz et al. 1996; Corliss et al. 2001].

AD software tools exist for codes written in Fortran [Bischof et al. 1996a;
Giering and Kaminski 1998; Faure and Papegay 1998; Pryce and Reid 1998],
C and C++ [Bischof et al. 1997; Bendtsen and Stauning 1996; Griewank et al.
1996] and Matlab [Verma 1998; Forth 2001; Bischof et al. 2002] amongst other
programming languages. These tools implement AD in one of two ways, source
transformation or operator overloading.

Source transformation Griewank [2000, Section 5.7–5.8] involves use of so-
phisticated compiler techniques. For the forward mode, new code is produced
that, when executed, calculates derivatives as well as values for the dependent
variables. In reverse mode, new code is produced that will calculate so-called

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

268 • S. A. Forth et al.

adjoint values backwards through an enhanced version of the original code
in such a way as to calculate ST ∇f(x) for any matrix S with m rows.

Alternatively, the operator overloading approach [Griewank 2000,
Section 5.1–5.6] utilises a feature available in some modern, object-oriented
computer languages. New types of variable are defined that store the variable’s
value and, for forward mode, also store its derivatives. For reverse mode,
instead of derivatives, sufficient information is saved (to a so-called tape)
to enable the required reverse propagation of sensitivities. In both cases,
arithmetic operations and intrinsic functions are extended to the new types.

For languages such as Fortran or C (for which optimising compilers exist)
and applied to code featuring scalar assignments, it is generally found that the
source transformation approach produces more efficient derivative code (see,
e.g., Tadjouddine et al. [2001] and Pryce and Reid [1998]).

Our work is motivated by the particular requirement for Jacobian code in
solving systems of nonlinear equations via Newton’s, or a related method. Such
systems arise in applications such as computational fluid dynamics, computa-
tional chemistry, and data-fitting. For examples, see the test cases of Averick
et al. [1992] and references therein. In such cases, the system Jacobian may
be needed for direct solution of a Newton update. Alternatively, when using
Krylov-based solvers for which Jacobian-vector products may be evaluated by
finite differencing or conventional AD tools, the Jacobian frequently needs to
be determined for preconditioning, for example, when using incomplete LU fac-
torisation [Hovland and McInnes 2001].

When discussing sparsity, we will use the term entry for a matrix coefficient
that we represent explicitly because we cannot be sure that it is zero. An entry
may ‘accidentally’ have the value zero, so the term ‘nonzero’ is not suitable.

The structure of the rest of this article is as follows: In Section 2 and
Section 3, we review the matrix interpretation of the conventional forward and
reverse modes of AD and then the vertex elimination approach of Griewank and
Reese [1991]. This is necessary to understand the implementation of our vertex
elimination tool ELIAD. ELIAD is implemented via source transformation as
described in Section 4. Our test environment is explained in Section 5. In
Section 6, we present and discuss an extended set of results from ELIAD. For
these test cases, we demonstrate that AD via vertex elimination and source
transformation enables the calculation of Jacobians as fast as hand-coded Jaco-
bian code and with more than twice the efficiency of present AD tools and tech-
niques. Section 7 presents conclusions and the outlook for extending ELIAD’s
coverage of Fortran and improving it to produce even faster Jacobian code.

2. MATRIX INTERPRETATION OF AUTOMATIC DIFFERENTIATION

The matrix interpretation of AD [Griewank 2000, Sect. 8.1] allows us to view
the standard forward and reverse modes of AD in terms of the well-known
forward and back substitution algorithms for systems of linear equations with
triangular coefficient matrices. In Section 2.1, we introduce the lower triangular
extended Jacobian system and, in Section 2.2, we indicate how this system is
solved in forward and reverse mode AD. We then consider the exploitation of

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 269

sparsity, the number of floating-point operations involved, and how to treat the
temporary variables that occur within statements.

2.1 The Extended Jacobian System

For a function f : x ∈ IRn �→ y ∈ IRm that is defined by computer code and which
we wish to differentiate, we define three (sub)groups of the code’s variables:

independent variables: x = (xi, i = 1, . . . , n) whose values must be supplied
and with respect to which the derivatives ∂y/∂x are
required,

dependent variables: y = (yi, i = 1, . . . , m) which must be calculated and
whose derivatives are required,

intermediate variables: w = (wi, i = 1, . . . , p) whose values are calculated (per-
haps indirectly) from the x and which are needed to
calculate (perhaps indirectly) the y.

Collectively, these variables are termed active variables. We define inactive
variables as those which are not active.

Example 2.1 (Example Code). For the code fragment

w1 = log(x1 ∗ x2)
w2 = x2 ∗ x2

3 − a
w3 = b ∗ w1 + x2/x3

y1 = w2
1 + w2 − x2

y2 = √
w3 − w2

we wish to calculate ∂(y1, y2)/∂(x1, x2, x3). Hence, x1, x2, x3 are the n = 3 inde-
pendent variables, y1, y2 are the m = 2 dependent variables, and w1, w2, w3 are
the p = 3 intermediate variables. Values of the variables a, b must be supplied
but, since we do not require derivatives with respect to them, they are inactive.

For the purposes of analysis, we regard an execution of the function code as
defining N = n + p + m internal variables ui, i = 1, . . . , N in the following
manner. First there are n copies of the independent variables to the internal
variables,

ui = xi, i = 1, . . . n, (1)
followed by the p + m statements of the code

ui = �i({u j } j≺i), i = n + 1, . . . , N , (2)

where the precedence relation j ≺ i means that the variable u j is involved
in the expression �i. Each �i represents a composition of one or more elemen-
tal/intrinsic functions or elemental/intrinsic operators of the programming lan-
guage. For the most part, we will assume that no expression for a dependent
variable involves another dependent variable, that is, if i > n + p and j ≺ i,
then j ≤ n + p. This may be ensured by making a copy of any dependent vari-
able used to calculate another dependent variable, but we will also explain how
to avoid the need for this.

Example 2.2 (Example Code). The code fragment of Example 2.1 may be
rewritten in the form of (1) to (2) as

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

270 • S. A. Forth et al.

u1 = x1

u2 = x2

u3 = x3

u4 = �4(u1, u2) = log(u1 ∗ u2)
u5 = �5(u2, u3) = u2 ∗ u2

3 − a
u6 = �6(u2, u3, u4) = b ∗ u4 + u2/u3

u7 = �7(u2, u4, u5) = u2
4 + u5 − u2

u8 = �8(u5, u6) = √
u6 − u5




.

The assignments of (1) and (2) can be written as the following system of
nonlinear equations

0 = xi − ui, i = 1, . . . , n
0 = �i({u j } j≺i) − ui, i = n + 1, . . . , N

}
. (3)

We assume that the functions �i have continuous first derivatives, define the
gradient operator ∇ by ∇ = (∂/∂x1, . . . , ∂/∂xn), and differentiate (3) with respect
to the independent variables x1, . . . , xn, to give

−∇ui = −ei, i = 1, . . . , n∑
j≺i ci, j ∇u j − ∇ui = 0, i = n + 1, . . . , N

}
, (4)

where ei is the n-vector with unit entry in position i and ci, j are the local deriva-
tives ci, j = ∂�i/∂u j . On defining the matrix C = {ci, j }1≤i, j≤N to be composed
of all such entries and zeros elsewhere, the linear system (4) can be compactly
rewritten as the extended Jacobian system

(C − IN)D = −P, (5)

with D = ∇u and

P =
[

In

0(m+p)×n

]
. (6)

The matrix C−IN is called the extended Jacobian and is necessarily lower tri-
angular because each value ui is calculated from previously calculated values
u j with j ≺ i. We define N|c|=1 to be the number of entries in C taking the value
±1 and N|c|�=1 to be the number of other entries.

Example 2.3 (Extended Jacobian System). For our example code, the ex-
tended Jacobian system is given by



−1
−1

−1
c4,1 c4,2 −1

c5,2 c5,3 −1
c6,2 c6,3 c6,4 −1
c7,2 c7,4 c7,5 −1

c8,5 c8,6 −1







∇u1

∇u2

∇u3

∇u4

∇u5

∇u6

∇u7

∇u8




=




−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




,

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 271

with entries in the extended Jacobian given by

c4,1 = 1/u1,
c4,2 = 1/u2,

c5,2 = u2
3,

c5,3 = 2 ∗ u2 ∗ u3,
c6,2 = 1/u3,

c6,3 = −u2/u2
3,

c6,4 = b
c7,2 = −1,
c7,4 = 2 ∗ u4,
c7,5 = 1,
c8,5 = −1
c8,6 = 1/(2

√
u6)




. (7)

We see that N|c|=1 = 3 and N|c|�=1 = 9.

2.2 Forward and Reverse Mode AD

In the forward method, we solve the lower triangular system (5) for the n
columns of D by forward substitution, then extract the last m rows to obtain
the Jacobian. By defining the matrix Q to be

Q =
[

0(n+p)×m

Im

]
, (8)

we can express the solution of Eq. (5) and the extraction of the final m rows of
D as

∇f = QT (C − IN)−1(−P). (9)

If we group the terms as ∇f = QT [(C−IN)−1(−P)], we have a formal description
of forward mode AD. Alternatively, by grouping Eq. (9) as ∇f = [(−QT)(C −
IN)−1]P, and defining adjoint quantities A as the solution, by back-substitution,
of the upper-triangular system,

(C − IN)T A = −Q, (10)

we obtain the Jacobian as the first n columns of AT , or more formally ∇f = AT P.
This is a matrix interpretation of reverse mode AD [Griewank 2000, pp. 161–
162].

It should be noted that present AD tools, such as TAMC, are designed to
calculate an arbitrary Jacobian-matrix product (forward mode) or an arbitrary
matrix-Jacobian product (reverse mode). Consequently, they allow for P to be
of the form P =

[
S

0(m+p)×q

]
for an arbitrary full matrix S with n rows and q

columns and Q to be of the form Q =
[

0(n+p)×q
S

]
for an arbitrary full matrix

S with m rows and q columns. Such a matrix S is termed a seed matrix. We
denote its i-th column by si. Of course, the solutions D of (5) or A of (10) are
then no longer simple derivatives or adjoints, but are linear combinations ∇f si
of derivatives or sT

j ∇f of adjoints. It may readily be verified that if S is full, the
solution of (5) or (10) is full (apart from ‘accidental’ cancellations where two
values sum to zero) since each of the last p+m rows and each of the first n+p
columns of C has at least one entry. To calculate the Jacobian ∇f using such
tools, the seed matrix S must be set to In (forward mode) or Im (reverse mode).

Let us consider these two approaches for our Example 2.3.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

272 • S. A. Forth et al.

Example 2.4 (Forward mode AD). Forward mode AD solves the linear sys-
tem of Example 2.3 using 9 × 3 = 27 multiplications and 7 × 3 = 21 additions/
subtractions, that is, 48 floating-point operations (flops).

Example 2.5 (Reverse/Adjoint Mode AD). For Example 2.3 the adjoint sys-
tem is solved using 9 × 2 = 18 multiplications and 5 × 2 = 10 additions/
subtractions, that is, 28 flops.

For our simple example, reverse mode AD uses fewer arithmetic operations
than forward mode. In both examples, we have neglected multiplications by unit
entries ci, j = ±1. We have, however, counted the multiplications and additions
by zero that occur when S is not full. This is because the basic operation is the
addition of a multiple of ∇ui to ∇u j and testing for zeros in ∇ui would slow the
code.

2.3 Taking Account of Sparsity

If no account is taken of sparsity in S and if the given function f takes time
W (f), forward mode AD calculates the Jacobian in time O(n)×W (f) and reverse
mode does so in time O(m) × W (f) [Griewank 2000]. For problems with many
independent variables (n � 1) and few dependents, we see that reverse mode
is to be preferred (e.g., large scale optimization).

For Jacobians with known sparsity pattern, there are established techniques
for reducing the size of the seed matrix S needed to calculate all nonzero en-
tries of ∇f(x) [Griewank 2000, Chap. 7]. Such techniques, collectively termed
Jacobian compression, frequently reduce the size, but not to less than q columns
in forward mode or q rows in reverse with q the maximum number of entries
in any row (forward mode) or column (reverse mode) of the Jacobian.

Another possibility is to employ a data structure that permits all operations
with values that are known to be zero to be avoided completely. This is the
approach taken by our code ELIAD. Explicit code is generated for each of the
elimination operations

ci, j = ci, j − ci,kck, j

for which ci,k and ck, j are both entries. No code is generated where is it known
a priori that either ci,k or ck, j is always zero.

The techniques discussed so far in this section assume that the sparsity
structure is fixed, so that the set of vectors or generated code needs to be de-
termined once, and they are thus static exploitations of the Jacobian sparsity.
An alternative is via the dynamic exploitation of sparsity. Here, the data are
stored in some sparse format that is adjusted dynamically (at run time). Prime
examples of such an approach are the use of the SparsLinC library in ADIFOR

[Bischof et al. 1996a, 1996b], use of sparse options in AD01 [Pryce and Reid
1998], and exploitation of the sparse matrix class of Matlab [Coleman and
Verma 1998; Forth 2001]. The formal operations count for such an approach
is low, but the overhead of manipulating the sparse storage typically makes
them uncompetitive unless the sparsity structure is not fixed [Griewank 2000,
p. 156]. The approach is also of use in determining a fixed sparsity structure
prior to Jacobian compression.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 273

2.4 Computational Cost of Forward and Reverse Mode AD

For a given function f, we assume the computational cost W (∇f) of evaluating
its derivatives via AD may be written as

W (∇f) = W (f) + W (C) + W (linear solve), (11)

where:

—W (f) is the cost of evaluating the original function.
—W (C) is the cost of evaluating C, that is, all the local derivatives ci, j .
—W (linear solve) is the cost of solving the linear system (5) or (10).

We will measure the cost in floating-point operations (flops), concentrating on
W (linear solve) since we can have little influence on the other two costs.

Griewank [2000, Chap. 3] takes account of the time required for data trans-
fers from and to the floating-point registers under rather conservative condi-
tions. However, as we shall see in Sections 3.1 and 4, our optimized derivative
code may access extended Jacobian entries in a nonsequential way and this,
together with the effects of compiler optimizations make this time difficult to
quantify and so, regretfully, we neglect it in this subsection. This approxima-
tion is in line with that of previous work [Griewank and Reese 1991; Griewank
2000, Chap. 8].

For forward mode AD and without exploiting Jacobian compression or dy-
namic sparsity (see Section 2.3), the cost of the linear solve of (5) is given by

W (linear solve (forward mode)) = n(2N|c|�=1 + N|c|=1 − p − m). (12)

We incur n multiplications when multiplying a row by a ci, j �= ±1 and n addi-
tions for all entries as we accumulate the vectors to the ui. We subtract the cost
of n(m+ p) additions since the first gradient in each line of the forward substitu-
tion is assigned and not added to the intermediate’s or dependent’s derivatives.

For a sparse Jacobian, (forward) Jacobian compression techniques frequently
allow the Jacobian ∇f(x) to be recovered from q < n Jacobian-vector products
∇f(x)si, i = 1, . . . , q. Clearly, the cost of calculating this is given by (12), but
with n replaced by q.

Similarly, for reverse mode AD, the computational cost of the linear solve
associated with (10) is

W (linear solve (reverse mode)) = m(2N|c|�=1 + N|c|=1 − p − n). (13)

If Jacobian compression is possible, we propagate q vector-Jacobian products
sT

j ∇f(x), j = 1, . . . , q, and extract the Jacobian with a resulting cost for the
linear solve given by (13) with m replaced by q.

2.5 Statement-Level Versus Code-List Differentiation

So far in this article, we have differentiated each statement locally with respect
to the active variables that appear in its right-hand side. This is termed a
statement-level differentiation. An alternative, used later in this article, is
based on the code list [Griewank 2000], in which the original program is

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

274 • S. A. Forth et al.

rewritten so that the right-hand side of each statement has a single unary or
binary operation.

Example 2.6 (Code-List). A possible code list for Example 2.1 is:

v1 ≡ x1

v2 ≡ x2

v3 ≡ x3

v4 = v1 ∗ v2

v5 = log(v4)

v6 = v2
3

v7 = v6 ∗ v2

v8 = v7 − a
v9 = 1/v3

v10 = v2 ∗ v9

v11 = b ∗ v5

v12 = v11 + v10

v13 = v8 − v2

v14 = v2
5

v15 = √
v12

v16 = v14 + v13

v17 = v15 − v8

in which the division has been replaced by the nonlinear reciprocal operation
followed by a multiplication, and statements are ordered such that the final
two variables v16, v17 correspond to the dependent variables y1, y2.

3. AUTOMATIC DIFFERENTIATION BY VERTEX ELIMINATION

If there are no intermediate variables (p = 0), the second line of Eq. (4) shows
that the matrix C is the Jacobian ∇f(x). Griewank and Reese [1991] therefore
systematically reduced the extended Jacobian system (5) by Gaussian elimina-
tion of the intermediate variables to obtain the Jacobian. Their original analysis
actually used the computational graph but was later reinterpreted [Griewank
2000] using the extended Jacobian. We defer the graph interpretation until
Section 3.2, first introducing vertex elimination via the extended Jacobian
description in Section 3.1 since we believe it is more accessible to the scientific
computing community. We discuss the connection to standard AD algorithms
in Section 3.3. In Section 3.4, we discuss techniques to determine the order
in which we choose to eliminate intermediates from the extended Jacobian. In
Section 3.5, we show that a poor choice of ordering may lead to accumulation of
roundoff and instability. Section 3.6 describes techniques for statement-level
differentiation of the function, which motivate the pre-elimination strategy of
Section 3.7.

3.1 Reduction of the Extended Jacobian

To reduce the extended Jacobian, we apply Gaussian elimination, pivoting on
the diagonal entries of the columns corresponding to intermediate variables.
In each case, we add multiples of the pivot row to later rows to create zeros
below the diagonal in the pivot column. Since the pivot row and pivot column
are no longer relevant, we then discard them—this is what makes it Gaussian,
rather than the less efficient Jordan, elimination. Note that the form of the
extended Jacobian is preserved in the sense that it remains lower triangular
with diagonal entries equal to −1.

We illustrate this with the extended Jacobian system of Example 2.3. We
start with the system

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 275




−1
−1

−1

c4,1 c4,2 −1
c5,2 c5,3 −1
c6,2 c6,3 c6,4 −1

−1 c7,4 1 −1
−1 c8,6 −1







∇u1

∇u2

∇u3

∇u4

∇u5

∇u6

∇u7

∇u8




=




−1
−1

−1




. (14)

First, pivoting on diagonal 4, we add multiples c6,4 and c7,4 of row 4 to rows 6
and 7. This creates two new entries, or fill-ins, c6,1 = c6,4 ∗ c4,1, c7,1 = c7,4 ∗ c4,1,
and modifies two entries, c6,2 = c6,2 + c6,4 ∗ c4,2, c7,2 = −1 + c7,4 ∗ c4,2. Row and
column 4 are now discarded to give



−1
−1

−1

c5,2 c5,3 −1
c6,1 c6,2 c6,3 −1

c7,1 c7,2 1 −1
−1 c8,6 −1







∇u1

∇u2

∇u3

∇u5

∇u6

∇u7

∇u8




=




−1
−1

−1




. (15)

We now pivot on the new diagonal 4. This requires one modification c7,2 =
c7,2 + c5,2 and three fill-ins c7,3 = c5,3, c8,2 = −c5,2, c8,3 = −c5,3. The pivot row
and column are now discarded.

For the final pivot step, we have two modifications c8,2 = c8,2 + c8,6 ∗ c6,2,
c8,3 = c8,3 + c8,6 ∗ c6,3 and one fill-in c8,1 = c8,6 ∗ c6,1 to yield


−1

−1
−1

c7,1 c7,2 c7,3 −1
c8,1 c8,2 c8,3 −1







∇u1
∇u2
∇u3

∇u7
∇u8


 =




−1
−1

−1


 .

Clearly, we now have

∇f(x) =
[

c7,1 c7,2 c7,3

c8,1 c8,2 c8,3

]

and, neglecting the cost of sign changes, the Jacobian has been calculated with a
total cost of 12 floating-point operations (flops). This is a substantial saving over
the forward mode of Example 2.4 (48 flops) and reverse mode of Example 2.5
(28 flops).

It is trivial to allow for entries ci, j in the final m columns of C (when some
expressions for dependent variables involve other dependent variables). We
simply perform Gaussian elimination on each such column, but do not discard
the pivot row.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

276 • S. A. Forth et al.

Fig. 1. Graph representation of the vertex elimination of Section 3.1.

3.2 The Computational Graph Description

The description of Section 3.1 suggests that Gaussian elimination, rather than
vertex elimination, would be a more appropriate name for the algorithms of
this paper. To explain the origins of the term vertex elimination, we return to
the original graph based description of Griewank and Reese [1991].

In Figure 1(a), we show the computational graph for our example before
any eliminations have been performed. The graph has vertices labelled 1 to
8 corresponding to the internal variables u1 to u8 of Example 2.2. Vertices 1
to 3, corresponding to the independent variables, are placed at the bottom of
the graph and the dependents, labelled 7 and 8, are at the top. Vertices 4 to 6,
corresponding to intermediates, lie in the center. There is a directed edge from
vertex j to vertex i if j ≺ i and the edge is labelled with the associated local
derivative ci, j as given in (7). This labelling is what makes it the “linearized”
computational graph.

The derivative of any dependent variable i with respect to any independent j
is given by the sum of the products of all edge labels for paths connecting j to i in
the graph [Griewank 2000, p. 169]. For example, u7 is connected to u2 via three
paths given by the 3 sets of edge labels {c7,4, c4,2}, {c7,2} and {c7,5, c5,2} and so,

∂u7

∂u2
= c7,4 ∗ c4,2 + c7,2 + c7,5 ∗ c5,2.

Consequently, we see that a vertex labelled k and all associated edges ck, j≺k ,
ci,k≺i (short for any ck, j where j ≺ k, respectively, ci,k where k ≺ i), can be

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 277

eliminated from the graph by using the following procedure. We take each
out-edge labelled ci,k≺i leaving vertex k and each in-edge ck, j≺k entering and add
the product ci,k ∗ ck, j to the edge ci, j , creating a new edge ci, j if required. The
edges ci,k≺i,ck, j≺k may now be removed from the graph since their contributions
to the Jacobian calculation have been added to other edges of the graph.

Example 3.1 (Vertex Elimination in the Computational Graph). Vertex 4
in Figure 1(a) has two in-edges c4,1, c4,2 and two out-edges c7,4, c6,4. Conse-
quently, there are four products of out-edges with in-edges c7,4 ∗ c4,1, c7,4 ∗ c4,2,
c6,4 ∗ c4,1 and c6,4 ∗ c4,1. Of these products, two are added to existing edges of the
graph c7,2 = c7,2 + c7,4 ∗ c4,2, c6,2 = c6,2 + c6,4 ∗ c4,2, and two require new edges
(shown in bold in Figure 1(b)) to be added, c6,1 = c6,4 ∗ c4,1, c7,1 = c7,4 ∗ c4,1. Once
these operations have been performed, vertex 4 and its associated edges may
be removed leaving the graph of Figure 1(b).

Comparison of the operations of Example 3.1 with the first Gaussian elim-
ination performed on the extended Jacobian of Section 3.1 demonstrates the
equivalence of the two interpretations, matrix and graph, of vertex elimination.
Figures 1(c) and 1(d) show the graph after elimination of vertices 5 and 6 respec-
tively. The numerical operations involved to update edge labels are precisely
those of Section 3.1 used to update the extended Jacobian entries. Figure 1(d)
shows the graph after eliminating all intermediate vertices and associated
edges. We see that the graph is bipartite, that is, the vertices form two disjoint
sets, independent and dependent, and the only edges go from an independent
to a dependent. Each edge’s label corresponds to a desired partial derivative.

Any entries ci, j in the final m columns of C correspond to edges between
dependent variables. Their elimination (see final paragraph of Section 3.1)
corresponds to elimination of edges. For our example, if there is an edge c8,7
and it is eliminated last, all the edges to node 8 must be modified: c8,i =
c8,i + c7,i ∗ c8,7, i = 1, 2, 3.

3.3 The Connection to Standard AD Algorithms

There is a close relationship between the elimination algorithm with the pivots
taken in forward order, and the Forward Mode of AD, equivalent to solving the
system (5) by forward substitution (Section 2.2). We may write the extended
Jacobian C − I in the equivalent block form [Griewank 2000, p. 22],

C − I =




−In 0 0
B L − Ip 0
R T −Im


 , (16)

with L strictly lower-triangular. We must now solve,


−In 0 0
B L − Ip 0
R T −Im





 ∇x

∇w
∇y


 =


 −In

0
0


 . (17)

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

278 • S. A. Forth et al.

Forward substitution, as for conventional forward mode AD, gives

∇x = In,
∇w = −(L − Ip)−1B∇x = −(L − Ip)−1B,

∇y = R∇x + T∇w = R − T(L − Ip)−1B.

In the elimination approach, we eliminate subdiagonal entries in the L block
and all entries in the T block from (17),


−In 0 0

−(L − Ip)−1B −Ip 0
R − T(L − Ip)−1B 0 −Im





 ∇x

∇w
∇y


 =


 −In

0
0


 , (18)

to leave the Jacobian in the lower-left block. The two approaches are thus al-
gebraically equivalent [Griewank 2000, Section 8.1]. We also see that in the
forward-substitution approach fill-in is confined to the n columns of the system
right-hand side matrix, whereas in the elimination approach it is confined to
the first n columns of the extended Jacobian. Note that the matrix (L − Ip)
is lower triangular and so the product (L − Ip)−1B is determined by forward
substitution and not by inverting the matrix and multiplying.

Similarly, the Reverse Mode is equivalent to elimination with the pivots
taken in reverse order. This confines fill-in to the R and T blocks. It is equivalent
to solving the transposed system (10) by back-substitution. For our example,
this technique also requires 12 flops to calculate the Jacobian.

If full advantage of sparsity is taken, then the forward- and reverse-ordered
eliminations will never use more floating-point operations than conventional
forward and reverse mode AD, even when conventional techniques use features
such as Jacobian compression or a sparse representation of gradients and ad-
joints [Griewank and Reese 1991].

3.4 Elimination Sequences

From the above discussion it is clear that, instead of using the elimination
approach for calculating Jacobians, we could simply implement forward and
reverse mode AD and explicitly account for the sparsity of directional deriva-
tives or adjoints. However, an advantage of the elimination approach is that it
removes the restriction to monotonic increasing or decreasing pivot orderings
and some other pivot sequence might be chosen. The use of nonmonotonic pivot
sequences is referred to as cross-country elimination [Griewank 2000, Chap. 8.]
and the extra degrees of freedom so gained give scope for reducing the compu-
tational cost. However, we do note that the forward and reverse orderings have
the advantage of confining fill-in to blocks B and R or R and T. Another pivot
ordering is likely to create fill-ins in block L. This block is usually far larger
than B, R or T, since there are usually far more intermediate variables than
independent or dependent variables. There is therefore a danger of producing a
large number of fill-ins, which must be removed later in the elimination process
and which would compromise efficiency.

The problem of choosing a good pivot sequence for Gaussian elimination of
sparse matrices has been well studied [Duff et al. 1989]. One of the earliest

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 279

pivot ordering heuristics is due to Markowitz [1957]. The Markowitz heuristic
involves, at each elimination step, choosing the next pivot to minimize the prod-
uct of the number of other entries in its row and the number of other entries in
its column. This product, known as the Markowitz cost, is an upper bound both
on the fill-in at the next elimination step and on the number of multiplications
required (noting that pivots are all −1 and that some of the other entries may
have the value 1 or −1). Although the Markowitz heuristic is often very success-
ful in reducing the operations count, there are simple examples [Griewank 2000,
p. 179] for which it is found to be suboptimal. In his thesis, Naumann [1999]
suggested the use of what he called the Vertex Lowest Relative (VLR) heuristic
also termed Relatively Greedy Markowitz by Griewank [2000, p. 179]. This VLR
heuristic cost is the difference between the current (Markowitz) cost of a can-
didate pivot and the cost of eliminating it last in the elimination sequence. We
have previously noted [Tadjouddine et al. 2001] that the VLR heuristic tends to
eliminate those intermediate variables calculated near the start or end of the
code after those in the middle.

In the event of two or more candidate pivots having an equal minimum
Markowitz or VLR cost, then a tie-breaking strategy must be used. Griewank
and Reese [1991] selected the candidate that resulted in most entries in the
extended Jacobian being removed. In our work, we choose the last pivot with
minimum cost [Tadjouddine et al. 2001].

3.5 Roundoff

The accuracy of automatic differentiation necessarily depends on the accuracy
of the calculation of the function and its local derivatives ci, j . If this is ill condi-
tioned, as for example when the “wrong” method for the calculation of a small
root of a quadratic equation is employed, the derivative calculation will be ill
conditioned too. However, it is important to know if damage might be inflicted
by a poor choice of elimination sequence. One of the authors [Reid 2003] has
considered this.

The forward method is just forward substitution applied to the system (5)
and standard backward error analysis [Wilkinson 1965, pp. 247–248] shows
that, for each column of P, we will have solved a nearby problem

(C + δC − IN)d = −p, (19)

with |δci, j | ≤ (3r/2 + 3)|ci, j |, where r is the largest number of entries in a row
of C. Although the perturbations will differ from column to column, we will in
each case have done no worse than we would have done for an exact calculation
for very slightly perturbed local derivatives ci, j . The same very satisfactory
result holds for the backward method since it is back-substitution applied to
the system (10).

Unfortunately, Reid [2003] has found an (admittedly artificial) example that
shows that another pivot sequence can be unstable. If the entries of C are

c2k,2k−1 = 2.0, c2k+1,2k−1 = 2.0, c2k+1,2k = −1.0, k = 1, 2, . . . , l , (20)

the pivot sequence 1, 3, . . . , 2l − 1, 2, 4, . . . , 2l , leads approximately to the dou-
bling of the size of matrix entries at each stage until 2l − 1. The matrix C − I is

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

280 • S. A. Forth et al.

not ill-conditioned, so the final solution is not large, but large rounding errors
will have occurred in intermediate stages.

While this negative result leads us to be cautious, we have not encountered
instability in practical cases.

3.6 Statement-Level Differentiation

Now consider the statement-level differentiated version of the code, ignoring
the possibility of array operations permitted, for example, in the Fortran 95
language. One approach, adopted by TAMC [Giering and Kaminski 1998], is to
differentiate each statement symbolically. This has the potential disadvantage
of generating local derivative code with many common subexpressions; though
we would expect these to be eliminated by today’s optimising compilers. Alter-
natively, the right-hand side of a statement may be regarded as composed of
the corresponding several lines of the code list, eventually assigning one value
to the left-hand side. To obtain the local derivatives ci, j associated with the
statement, it is a well-established technique to differentiate the local code list
using reverse mode AD. This strategy is used by ADIFOR [Bischof et al. 1996a]
within an overall forward mode AD approach.

3.7 Reverse Pre-Elimination

One way to order the eliminations within the extended Jacobian of the code-list
is to follow ADIFOR by starting with reverse-ordered elimination of the set of
intermediate variables within a statement. This may be seen as a sequence of
eliminations of intermediate variables with single successors. This is desirable
since each such elimination reduces the number of entries in C by at least one.
To see this, suppose the variable has k predecessors and a single successor,
consider the square submatrix of order k + 2


C11 − Ik

C21 −1
C31 C32 −1


 (21)

corresponding to all the variables involved where the variable itself is in the
middle. There can be no fill outside this submatrix since there are no entries
outside it in the row and column of the intermediate variable. Furthermore,
all fill takes place within C31. Because of our choice of variables, C21 is a full
submatrix of order 1×k and C32 is a nonzero 1×1 submatrix. We therefore lose
k+1 entries when we discard the pivot row and column and end with k entries
in C31. Thus the number of entries is reduced by at least one (more if C31 starts
as nonzero).

This suggests that it is desirable to eliminate any intermediate variable with
a single successor. We have therefore implemented a reverse pre-elimination
strategy in which we repeatedly consider all intermediate variables starting
from the last and proceeding to the first and successively eliminate each one
encountered which has a single successor. Note that this will include the elim-
ination from the code-list extended Jacobian of all intermediate variables from
within any statement and so mimics the statement-level reverse strategy of

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 281

ADIFOR [Bischof et al. 1996a]. Reverse pre-elimination will also eliminate any
variable used in the right-hand side of only one other statement and so reduce
the number of arithmetic operations, both in the code-list and the statement-
level extended Jacobian. In particular, the result of any unary operation will be
eliminated, a process referred to as hoisting in Bischof [1991].

The elimination AD techniques described above have been implemented in
our source transformation AD tool ELIAD which we now describe.

4. THE ELIAD TOOL

ELIAD is a vertex elimination AD tool, written in Java and uses a front-end
(parser) and back-end (pretty-printer) generated by ANTLR [Parr et al. 2000].
Though we still regard ELIAD as a proof-of-concept tool, it is available from
the authors. It uses source-transformation to convert Fortran code for a func-
tion f into Fortran code for f and its Jacobian. ELIAD performs a bi-directional
data flow analysis to determine active variables from user specified indepen-
dent and dependent variables [Hascoet et al. 2003]. It then performs a symbolic
differentiation of each statement of the function (or its code-list) to obtain each
subdiagonal entry ci, j of the extended Jacobian. All such entries, and those gen-
erated by fill-in during elimination, become separate (scalar) Fortran variables,
for example, c7,1 might appear in the code as the variable c 7 1. Each elimina-
tion operation, following a chosen pivot sequence, becomes a set of separate
Fortran statements, for example, the fill-in c7,1 = c7,4c4,1 becomes

c 7 1 = c 7 4*c 4 1

Work is in hand to improve ELIAD’s ability to suppress the multiplication if one
of the operands is known a priori to be ±1 and perform other such optimizations.

ELIAD allows arrays as input arguments provided their indexing is static,
that is, can be calculated a priori. In effect, ELIAD unrolls them. For instance,
if the inputs are two arrays each of length 5, then their elements become input
variables x1 to x5 and x6 to x10, respectively.

ELIAD allows branching [Tadjouddine et al. 2003], though no such test prob-
lems are considered in this paper. Results for one test problem may be found
in Forth and Tadjouddine [2003]. Currently, no kind of loop is supported.

The chief advantage of this approach is that it permits sparsity in the elim-
ination to be exploited to the maximum. A disadvantage is that the sparsity
pattern of the matrix C (or a modest overestimate) must be known a priori.
Also, though the generated code runs very fast, its length is roughly propor-
tional to the number of elimination operations, which may be expected to grow
more than linearly in the length of the f code. However, as we shall see in
Section 6, ELIAD has been applied successfully to loop-free subroutines with
between 8 to 134 independent, 5 to 252 dependent and over 1000 intermediate
variables.

After ELIAD has built the extended Jacobian, it applies some algorithm—
currently an external program—to determine a good pivot sequence using the
Markowitz or a related heuristic, and uses this to generate the Jacobian code.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

282 • S. A. Forth et al.

4.1 Generating the Jacobian Code
Using the abstract syntax tree of the input code [Aho et al. 1995] and associated
symbolic information, ELIAD intersperses the original code with assignments
that compute local partial derivatives statement by statement. Then, using the
given elimination sequence, it generates a series of scalar assignments that
eliminate all coefficients of intermediate variables from the extended Jacobian.
Each statement computes a new entry or updates an existing entry of the ex-
tended Jacobian as may be seen in the following example.

Example 4.1 (Jacobian Code). The Jacobian code using the reverse
ordering—that is, eliminating intermediate variables u6, u5 and u4 in that
order—from the five nontrivial assignments of Example 2.2 could be built up
as follows:

! Calculate the values of the variables and local derivatives
c_4_1 = 1/u_1; c_4_2 = 1/u_2
u_4 = log(u_1*u_2)
c_5_2 = u_3**2; c_5_3 = 2*u_2*u_3
u_5 = u_2*u_3**2-a
c_6_2=1/u_3; c_6_3=-u_2/u_3**2; c_6_4=b
u_6 = b*u_4+u_2/u_3
c_7_2=-1; c_7_4=2*u_4; c_7_5=1
u_7 = u_4**2+u_5-u_2
c_8_5=-1; c_8_6=1/(2*sqrt(u_6))
u_8 = sqrt(u_6)-u_5
! Eliminate entries in row 6
c_8_2=c_8_6*c_6_2; c_8_3=c_8_6*c_6_3; c_8_4 = c_8_6*c_6_4
! Eliminate entries in row 5
c_7_2 = c_7_2+c_7_5*c_5_2; c_7_3=c_7_5*c_5_3
c_8_2=c_8_2+c_8_5*c_5_2; c_8_3=c_8_3+c_8_5*c_5_3
! Eliminate entries in row 4
c_8_1 = c_8_4*c_4_1; c_8_2=c_8_2+c_8_4*c_4_2
c_7_1 = c_7_4*c_4_1; c_7_2=c_7_2+c_7_4*c_4_2

This leaves the Jacobian’s entries in variables c_7_1, c_7_2, c_7_3, c_8_1, c_8_2,
and c_8_3.

As a final step, ELIAD generates assignments that copy the Jacobian values
into an array before exiting the Jacobian code.

There is much freedom in the order in which the above statements can be
placed. For example, c_4_1 and c_4_2 are not used until the last two lines. It
was found that strategies to reorder the Jacobian code can significantly affect
performance on some platforms, see Section 6.1.4.

5. TEST ENVIRONMENT

We wish to compare the performance of Jacobian code produced by our vertex-
elimination AD tool ELIAD with that produced by hand and by the conventional
AD tools ADIFOR and TAMC.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 283

We selected the five platforms described in Appendix A. We regard these as
typical of those presently in use for scientific computing. All the processors are
termed superscalar, being able to perform several instructions (e.g., adds, mul-
tiplies, and loads from memory to arithmetic registers) in parallel via so-called
pipelines. For arithmetic to be performed in a floating-point pipeline, the nec-
essary data must reside in one of the small number of arithmetic registers. All
the processors have a memory hierarchy with relatively fast transfer of data
between the arithmetic registers and the level-1 cache. Required data not in
the level-1 cache must be transferred from the larger level-2 cache at a slower
rate. If the data is not currently in the level-2 cache, it must be transferred
from the main memory at an even slower rate.

The optimizing compilers available for these platforms seek to maximise
performance by rescheduling arithmetic operations to minimise the number
of data transfers between registers and cache. A major constraint in such op-
timizations is that if another instruction calls for a value not yet loaded to a
register, a so-called stall occurs and the processor must wait. The ALPHA, SGI
and AMD platforms of our study feature out-of-order execution, in which the
processor maintains a queue of arithmetic operations so that if the one at the
head of the queue stalls, it can switch to an operation in the queue that is able
to execute. As a result, the efficiency of code running on these highly sophis-
ticated processors is less dependent on compiler optimisation than for other
processors. More details on such issues may be found in Goedecker and Hoisie
[2001].

Of our five test cases, four are taken from the MINPACK-2 collection [Averick
et al. 1992] of optimization test problems. Hand-coded Jacobian code is provided.
The supplied subroutines include branching to allow for the calculation of the
function alone, the function and its Jacobian, or a standard optimization start
point x. So that measured CPU times do not include the cost of the (expensive)
branching, three new subroutines were created from each original MINPACK
subroutine to perform these tasks separately. ELIAD cannot deal with loops at
present, so a PERL script was used to unroll them all. Two of the test cases
(see Section 6.2.3, Section 6.2.4) have sparse Jacobians. In these two cases all
assignments of zero values to the Jacobian were removed. The nominal cost
in floating-point operations W (f) was obtained from the modified MINPACK
code by using a PERL script to count the number of times that *, + , - and /
operations appear in the source code.

On all platforms, it is possible to arrange compilation so that subroutines
are inlined [Goedecker and Hoisie 2001, p. 77], that is, the compiler inserts
the body of the subroutine directly into the calling routine. Inlining removes
the overhead associated with the subroutine call and so improves efficiency.
Inlining may dramatically increase the size of the overall program and so may
not be possible for larger subroutines. In our test cases, the function evalua-
tion subroutines are sufficiently small as to be readily inlined. In contrast, the
Jacobian evaluation routines are larger which typically prevents their inlining.
It is usual in AD efficiency analysis to examine the ratio of Jacobian to function
evaluation times. Because this ratio would be severely distorted by inlining of
the function evaluation and not the Jacobian we explicitly prevented inlining

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

284 • S. A. Forth et al.

by compiling all subroutines individually and, on our SGI platform, turning off
interprocedural optimizations.

For each test problem, a driver program was written to execute and time
different Jacobian evaluation techniques. To check that the Jacobians were
calculated correctly, we compared each to one produced by the hand-coded
routine if available or ADIFOR otherwise. The checks were made outside the
code that we timed to avoid distorting the times. Each set of values for the
independent variables was generated by using the Fortran intrinsic routine
random number.

The CPU timers on these processors are not able to time short executions
with good relative accuracy. It is therefore necessary to calculate many
Jacobians in each case. Simply repeating the calculation for a single x might
give unreasonably short times since it would allow more use of level-1 cache
than would be possible in a genuine application. Therefore, for each test
problem and each platform, we generated and stored many (Nevals) vectors x
and calculated Jacobians for them all.

For all the test problems considered, we found that as Nevals was increased
there came a point where the average time for a Jacobian calculation would
markedly increase. By considering the storage requirements for the sets of in-
dependent variables, dependent variables and Jacobians, we found that this
increase coincided with the storage requirements increasing beyond that of
the level-2 cache. Consequently, to ensure that timings are realistic, we chose
Nevals for each platform and each problem such that all data associated with
calculation and storage comfortably fits in the level-2 cache. Since this did
not involve enough computation for accurate timing, we repeated this pro-
cess a number (Nrepet) of times. Values of Nevals and Nrepet used for each plat-
form and each of the test problems of Section 6 are given in Table XII of
Appendix B.

Even with this two-level set of repeated calculations, we found that occasion-
ally the times varied from run to run. Usually, there were two distinct sets of
times, with little variation within each set. We believe that this effect is caused
by the different placement of arrays in memory at load time affecting the way
data is moved in and out of the caches. We therefore ran each test ten times
and report the average.

6. TEST-PROBLEMS AND ALGORITHM ENHANCEMENTS

In Section 6.1, we describe in detail the performance of Jacobian code for the
the Roe flux CFD problem [Roe 1981], generated both by conventional means
and via ELIAD. We have considered this problem previously [Tadjouddine
et al. 2002], though not in conjunction with the pre-elimination technique of
Section 3.7 which, together with a more careful choice of Nevals (cf. Section 5
and Table XII), has improved the timings obtained. Section 6.2 presents the
four test cases for which hand-coded Jacobian code is available. In Section 6.3,
we discuss common issues arising from all five test cases. Note that function
nominal flops W (f), numbers of lines of noncomment code (l.o.c) and measured
CPU times for all test cases are presented in Table XIII of Appendix B.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 285

Table I. Ratios of Jacobian to Function Flop Counts, Number of Lines of Code (l.o.c.) and
Ratios of Jacobian to Function CPU Times for Roe Flux

Ratios of CPU times
flops ratio

Technique W (∇f)/W (f) l.o.c. ALPHA SGI Ultra10 PIII AMD
ADIFOR 15.95 637 9.50 12.87 36.19 8.94 9.07
TAMC-F 21.18 499 9.79 13.15 13.11 9.65 9.80
TAMC-R 12.69 816 7.94 11.16 15.76 11.00 8.40
FD 12.14 11.80 12.14 11.52 11.57 10.91
VE-SL-F 8.89 1534 4.88 6.74 14.12 8.77 5.85
VE-SL-R 7.32 1274 4.25 5.80 9.01 4.87 4.87
VE-CL-F 12.85 3175 4.59 6.50 20.56 12.16 7.49
VE-CL-R 9.50 2433 4.10 5.98 8.66 8.44 5.66
VE-SLP-F 7.85 1412 4.52 5.42 8.24 6.29 5.01
VE-SLP-R 6.78 1261 4.19 4.81 7.58 4.55 4.50
VE-CLP-F 8.35 2123 4.71 5.49 7.74 6.95 5.27
VE-CLP-R 7.28 1917 3.99 5.11 7.21 4.85 4.70
VE-SLP-F-DFT 7.85 1412 4.53 5.70 9.29 5.05 5.32
VE-SLP-R-DFT 6.78 1261 3.99 4.97 7.11 4.55 4.71
VE-CLP-F-DFT 8.35 2123 4.43 5.74 9.21 6.81 5.74
VE-CLP-R-DFT 7.28 1971 4.07 5.45 7.24 4.69 4.96
VE-SLP-Mark 7.35 1317 4.52 5.44 8.57 5.32 4.88
VE-SLP-VLR 6.60 1222 3.96 5.27 7.08 4.33 4.38
VE-CLP-Mark 7.86 2026 4.56 5.27 9.18 6.31 5.07
VE-CLP-VLR 7.11 1933 4.12 4.75 7.65 4.44 4.56
VE-SLP-Mark-DFT 7.35 1317 4.52 5.66 9.96 4.80 4.82
VE-SLP-VLR-DFT 6.60 1222 4.33 5.07 7.68 4.20 4.39
VE-CLP-Mark-DFT 7.86 2026 4.57 5.13 9.41 5.63 5.32
VE-CLP-VLR-DFT 7.11 1933 4.15 5.19 6.93 4.67 4.68

6.1 Roe Flux

Table I presents performance data for several techniques applied to calculating
the 5 × 10 dense Jacobian ∇f(x) of the Roe flux function [Roe 1981]. For each
technique, we give W (∇f)/W (f), the ratio of the nominal number of floating-
point operations within the generated Jacobian code to those in the function
code (computed by a simple PERL script), the numbers of (noncomment) lines
in the Jacobian code (l.o.c.) and the corresponding ratios of CPU times. The
operations counts W (∇(f)) and W (f) will, in general, be over-estimates of the
number of floating-point operations performed since they do not take account
of optimizations performed by the compiler. In particular, the ELIAD gener-
ated Jacobian code may contain statements assigning an entry of the extended
Jacobian to be a trivial 1 or −1 and elsewhere use this entry to multiply others.
Also, such an entry may be added to another trivial entry, resulting in a zero
or non-trivial integer value. We assume the compiler performs constant value
propagation and evaluation [Goedecker and Hoisie 2001, p. 32] to avoid such
unnecessary arithmetic operations. For each platform, the entry corresponding
to the AD technique with the smallest ratio of CPU times is highlighted in bold
and any entry with a ratio that is nearly as small is underlined.

6.1.1 Established Techniques. The first four rows of Table I correspond to
established techniques: the use of the AD tools ADIFOR and TAMC in forward

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

286 • S. A. Forth et al.

mode, TAMC in reverse mode, and one-sided finite differencing. Specifically,
ADIFOR refers to ADIFOR 2.0D [Bischof et al. 1998] generated forward mode AD
Jacobian code using the following options: AD EXCEPTION FLAVOR = performance
to avoid any calls to ADIFOR’s exception handling library; and AD SUPPRESS LDG =
true; AD SUPPRESS NUM COLS = true to ensure that all loops within the ADIFOR

generated code are of fixed length and hence are candidates for unrolling at high
levels of compiler optimization. TAMC-F and TAMC-R refers to TAMC generated
forward and reverse mode AD code respectively, both obtained with the option
-jacobian.

6.1.2 Vertex Elimination with Forward and Reverse Orderings. The next
four rows, labelled VE-SL-F to VE-CL-R correspond to the vertex elimination
(VE) AD code generated by ELIAD. The first pair use statement-level (SL) dif-
ferentiation and the second pair use code-list (CL) differentiation. In each of
these two pairs, the first uses the forward (F) elimination ordering and the
second the reverse (R) ordering. It is seen that for each platform, with the ex-
ception of the Ultra10, the best of these four results is about twice as fast as the
best established technique. For this problem m < n and, as we might expect,
the reverse ordered elimination always out-performs the forward ordered with
both statement-level and code-list differentiation; TAMC is not as consistent in
this respect. On the Ultra10, PIII and AMD platforms the code-list differen-
tiated variants are often significantly less efficient than their statement-level
differentiated counterparts.

6.1.3 Reverse Pre-Elimination. In Table I, rows VE-SLP-F and VE-SLP-R
correspond to a statement-level symbolic differentiation, followed by a reverse
pre-elimination (Section 3.7) and then a forward- and reverse-ordered elimina-
tions of all remaining vertices. Rows VE-CLP-F and VE-CLP-R are the code-
list differentiated equivalents. We see that reverse pre-elimination reduces the
nominal flops count and subsequently improves performance for all bar one
case.

6.1.4 Depth-First Traversal (DFT) Statement Re-Ordering. In Section 5,
we briefly described how optimising compilers may re-schedule floating-point
operations in an algebraically consistent manner, in an attempt to keep the
processor’s floating-point pipelines full and improve performance. We also re-
marked that for those platforms that support out-of-order execution, this op-
timization is less important. In Tadjouddine et al. [2002], we reported that
changing the order of the statements in the Jacobian code generated by ELIAD
could dramatically affect the performance of the code on platforms that do not
support floating-point out-of-order execution. We conjectured, and showed for
one example, that this was due to better instruction scheduling resulting in
fewer reads and writes from cache to registers and hence fewer stalls in the
floating-point pipelines.

To assess the impact of statement ordering in the derivative code, we re-
ordered the assignment statements without altering the data dependencies
within the code, with the aim of using each assigned value soon after its as-
signment. This was done by a using modified version of the depth-first traversal

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 287

(DFT) algorithm [Knuth 1997]. Namely, we regarded the statements in the
derivative code as the vertices of an acyclic graph, with the output statements
at the top and an edge from s to t if the variable assigned by statement s ap-
pears in the right-hand side expression in statement t. Then, we arranged the
statements in the postorder produced by a depth-first traversal of this graph.

Rows VE-SLP-F-DFT to VE-CLP-R-DFT of Table I show the result of employ-
ing our DFT strategy to the codes of rows VE-SLP-F to VE-CLP-R. In contrast
to previous results [Tadjouddine et al. 2002], obtained without pre-elimination,
we see that the results of employing DFT are mixed. For example, timings on
the PIII platform are improved but those on the SGI and AMD are worsened.

6.1.5 Cross-Country Vertex Elimination. Rows VE-SLP-Mark to VE-CLP-
VLR of Table I show the result of employing the Markowitz and VLR heuristics
of Section 3.4 to order the vertex elimination, after the reverse pre-elimination
of Section 3.7. The resulting VE-SLP-VLR has the lowest nominal flop count
obtained for this problem and is the fastest executing on the ALPHA and AMD
platforms. The VE-CLP-VLR case also has a low nominal flop count and is
fastest on the SGI.

Employing DFT reordering to the cross-country elimination Jacobian code
(rows VE-SLP-Mark-DFT to VE-CLP-VLR-DFT) again had mixed results. How-
ever, on the Ultra10 and PIII platforms use of DFT ensures that one of the
low flop cross-country techniques, VE-CLP-VLR-DFT on Ultra10 and VE-SLP-
VLR-DFT on PIII, becomes the fastest.

6.2 Further Test Cases

Given the encouraging results for the Roe case, we now consider four further
test cases taken from Averick et al. [1992] and for which hand-coded Jacobians
are available.

6.2.1 HHD—Human Heart Dipole. Table II presents performance data for
calculating the dense 8 × 8 Jacobian of this test problem. The same techniques
are used as in Section 6.1 with the addition of a row for the hand-coded
Jacobian results. Note that Markowitz and VLR orderings when applied to
either the statement-level or code-list differentiation produced equivalent elim-
ination sequences (the codes differed only in statement ordering) and so only
the Markowitz results are shown.

6.2.2 CPF—Combustion of Propane (Full Formulation). Table III gives
data for calculating the 53 entry, 11 × 11 Jacobian of the CPF problem. The
Markowitz and VLR orderings are equivalent to the forward ordering and so
not shown.

6.2.3 CTS—Coating Thickness Standardization. The CTS problem has a
252 × 134 sparse Jacobian with a maximum of 6 entries per row and 63 per
column. The coding is such that a statement-level differentiation has no in-
termediate variables, that is, p = 0. In contrast, the code-list uses p = 1386
intermediates. Table IV gives the nominal flop and CPU ratios as for our pre-
vious examples, except that compression is used for the conventional methods:

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

288 • S. A. Forth et al.

Table II. Ratios of Jacobian to Function Flop Counts, Numbers of Lines of Code (l.o.c.) and
Ratios of Jacobian to Function CPU Times for Human Heart Dipole Problem

Ratios of CPU times
flops ratio

Technique W (∇f)/W (f) l.o.c. ALPHA SGI Ultra10 PIII AMD
Hand-coded 2.00 205 2.97 3.88 4.79 2.22 2.64
ADIFOR 13.88 229 15.30 21.26 18.61 14.59 13.80
TAMC-F 18.31 196 16.93 24.27 24.85 16.62 14.90
TAMC-R 20.79 324 20.25 37.82 27.07 26.36 23.09
FD 9.19 12.26 12.58 13.46 10.90 12.28
VE-SL-F 3.05 362 3.05 4.28 3.75 3.32 3.82
VE-SL-R 3.00 356 3.26 3.92 3.83 3.35 3.79
VE-CL-F 5.00 826 2.92 4.50 4.01 3.83 4.26
VE-CL-R 3.95 721 2.79 4.01 3.52 3.74 4.33
VE-SLP-F 3.05 348 2.75 3.83 3.50 3.21 3.73
VE-SLP-R 3.05 349 2.61 3.76 3.43 3.29 3.70
VE-CLP-F 3.90 706 2.79 3.90 3.80 3.61 4.24
VE-CLP-R 3.90 707 2.79 3.74 3.19 3.63 4.09
VE-SLP-F-DFT 3.05 348 2.99 3.80 3.54 3.22 3.52
VE-SLP-R-DFT 3.05 349 2.62 3.71 3.88 3.28 3.53
VE-CLP-F-DFT 3.90 706 3.19 3.88 3.86 3.56 3.80
VE-CLP-R-DFT 3.90 707 3.25 3.93 3.19 3.43 3.46
VE-SLP-Mark 3.00 344 2.70 3.85 3.36 3.26 3.69
VE-CLP-Mark 3.86 701 2.82 3.91 4.02 3.83 4.21
VE-SLP-Mark-DFT 3.00 344 2.99 3.81 3.53 3.29 3.54
VE-CLP-Mark-DFT 3.86 701 3.17 3.88 3.86 3.43 3.77

Table III. Ratio of Jacobian to Function Flop Counts, Number of Lines of Code (l.o.c.) and Ratio
of Jacobian to Function CPU Times for Combustion of Propane (Full Formulation)

Ratios of CPU times
flops ratio

Technique W (∇f)/W (f) l.o.c. ALPHA SGI Ultra10 PIII AMD
Hand-coded 2.24 237 1.97 2.42 3.66 2.23 2.86
ADIFOR 14.44 517 5.89 6.63 10.69 5.76 8.81
TAMC-F 24.76 115 6.60 7.41 11.52 6.95 12.92
TAMC-R 27.03 163 9.49 10.49 19.85 9.85 12.53
FD 15.56 — 14.56 13.70 14.15 13.43 14.42
VE-SL-F 3.04 342 1.77 1.91 2.53 2.15 3.12
VE-SL-R 2.41 291 1.82 1.94 2.60 2.23 3.14
VE-CL-F 3.81 607 1.77 1.91 2.55 2.23 3.24
VE-CL-R 2.78 523 1.68 1.89 2.35 2.18 3.11
VE-SLP-F 2.37 225 1.74 1.49 1.93 2.02 2.94
VE-SLP-R 2.40 226 1.66 1.64 1.84 2.04 2.93
VE-CLP-F 2.75 453 1.62 1.50 1.87 1.97 2.86
VE-CLP-R 2.78 455 1.64 1.60 1.85 1.98 2.86
VE-SLP-F-DFT 2.37 225 1.37 1.53 1.85 1.85 2.27
VE-SLP-R-DFT 2.40 226 1.34 1.52 1.95 1.88 2.27
VE-CLP-F-DFT 2.75 453 1.32 1.72 1.89 1.84 2.32
VE-CLP-R-DFT 2.78 455 1.35 1.54 1.81 1.84 2.31

ADIFOR(cmp), TAMC-F(cmp) and FD(cmp). We use the DSM software [Coleman
et al. 1984] to obtain a column compression for the supplied sparsity pattern
allowing the Jacobian to be reconstructed from q = 6 Jacobian-vector prod-
ucts. Note that since we unroll loops prior to differentiation for ELIAD’s benefit,

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 289

Table IV. Ratios of Jacobian to Function Flop Counts. Numbers of Lines of Code (l.o.c.)
and Ratios of Jacobian to Function CPU Times for Coating Thickness Standardization

Ratios of CPU times
Ratios of flops

Technique W (∇f)/W (f) l.o.c. ALPHA SGI Ultra10 PIII AMD
Hand-coded 1.85 1419 4.62 3.79 9.63 3.89 3.18
ADIFOR(cmp) 6.38 2311 37.42 48.84 75.80 25.40 30.23
TAMC-F(cmp) 11.15 1688 33.19 48.90 74.81 25.40 30.96
FD(cmp) 6.00 33.35 32.52 49.91 19.73 27.01
VE-SL 1.85 2468 4.07 4.12 7.28 4.30 3.09
VE-CL-F 3.23 11160 4.08 4.07 9.48 5.47 4.08
VE-CL-R 2.54 9800 4.16 4.06 9.66 5.20 3.78
VE-SL-DFT 1.85 2468 4.85 4.86 9.96 3.78 2.60
VE-CL-F-DFT 3.23 11160 4.75 4.83 8.48 4.36 3.11
VE-CL-R-DFT 2.54 9800 4.74 4.82 9.31 4.36 2.87

then for consistency we apply ADIFOR and TAMC to the function coding after loop-
unrolling. In practice, this made little difference to CPU times but does lead to a
large number of lines of code as seen in Table IV. The application of ADIFOR with
the SPARSLINC library for sparse storage of gradients was tried on the ALPHA
and Ultra10 platforms, but results were disappointing being approximately 10
times slower than compressed finite differencing.

The row labelled VE-SL refers to vertex elimination AD with differentiation
at the statement level. Since there are no intermediate variables for statement-
level differentiation of this problem, as explained above, the partial derivatives
of each statement correspond to entries in the Jacobian. With reference to (16),
the subblocks B, L and T of the extended Jacobian are empty and subblock R is
the required function Jacobian. No linear solve is required, W (linear solve) = 0,
and the computed statement partial derivatives are inserted directly into the
Jacobian. The equality of “Ratios of flops” for Hand-coded and VE-SL indicates
their equivalence. This is not true for conventional AD. For example, in forward
mode AD the coefficients R multiply the length n (or length q for compression)
vectors of the ∇xi, i = 1, . . . , n.

The reverse pre-elimination of Section 3.7 is not necessary on this prob-
lem since it will produce the same elimination sequence as the reverse order-
ing [Naumann 1999, p. 55]. No cross-country elimination sequences were used
for this problem since use of reverse pre-elimination alone would allow for
Jacobian evaluation.

6.2.4 FIC—Flow in Channel. For this problem the supplied subroutine
uses p = 680 intermediate variables and its code-list p = 1328. The resulting
32 × 32 Jacobian is sparse with a maximum of 9 nonzeros per row and per
column. Table V gives the nominal flop and CPU ratios as before. For the estab-
lished techniques, we again use the DSM software to enable row compression of
the Jacobian calculation using q = 9 Jacobian-vector products and the function
is unrolled prior to differentiation. An interesting feature of the FIC problem is
that each of its intermediate variables is used in only one other statement. Con-
sequently, reverse pre-elimination alone eliminates all intermediate variables
and is equivalent to the reverse orderings VE-SL-R and VE-CL-R. Because of

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

290 • S. A. Forth et al.

Table V. Ratios of Jacobian to Function Flop Counts, Numbers of Lines of Code (l.o.c.)
and Ratios of Jacobian to Function CPU Times for Flow in Channel

Ratios of CPU times
Ratios of flops

Technique W (∇f)/W (f) l.o.c. ALPHA SGI Ultra10 PIII AMD
Hand-coded 1.91 1786 2.44 2.72 8.33 3.34 2.58
ADIFOR(cmp) 10.44 2989 15.50 57.93 38.48 47.68 59.52
TAMC-F(cmp) 10.85 3508 15.54 56.66 38.57 46.84 57.95
FD(cmp) 9.20 15.06 17.61 18.59 30.24 17.42
VE-SL-F 3.49 6300 2.21 3.08 3.82 4.18 2.78
VE-SL-R 2.25 4420 2.14 3.10 4.05 5.12 3.66
VE-CL-F 4.44 9982 2.33 3.26 4.94 4.87 3.35
VE-CL-R 2.75 7411 2.12 3.09 3.41 5.17 3.33
VE-SL-R-DFT 2.25 4420 2.10 2.97 4.89 4.72 2.67
VE-CL-R-DFT 2.75 7411 2.12 3.02 6.80 4.91 2.56

this, no pre-eliminated results are shown. We also give results for the DFT code-
reordering applied to these two cases. No cross-country elimination results are
shown since they could not improve on pre-elimination.

6.3 Discussion of the Results

We now discuss the results of Tables I to V.

6.3.1 Forward and Reverse Vertex Elimination. In Tables I to V, the ratio
of the nominal operations count W (∇(f))/W (f) for rows VE-SL-F to VE-CL-R in-
dicates that forward and reverse vertex elimination should give much improved
performance compared to the established techniques and this is confirmed in
the run-time ratios. Indeed on the ALPHA and Ultra10 platforms, the vertex
elimination techniques almost always out-perform the hand-coded Jacobian
code, where available, and the best always does so.

6.3.2 Forward and Reverse Vertex Elimination with Reverse Pre-
Elimination. The difference in nominal flops between the code-list and
statement-level differentiated Jacobian codes may be greatly reduced by using
reverse pre-elimination (Section 3.7). For example, compare VE-CL-F/VE-CL-R
and VE-CLP-F/VE-CLP-R in Tables I to II. The reduction is particularly note-
worthy for the forward orderings (VE-CL-R, VE-CLP-F) of these tables. Pre-
elimination may also improve a statement-level differentiated code in cases
where an active intermediate variable of the original function code is only used
once. See, for example, Table I.

In terms of run-time, the application of pre-elimination usually improves ef-
ficiency. Sometimes the improvement is very substantial (see Table I, Ultra10
and PIII) and sometimes there is hardly any change despite a worthwhile re-
duction in the number of operations (see Table I, ALPHA). We believe this
is associated with how well the compiler optimizes the code. We see that re-
verse pre-elimination rarely increases run time. We conclude that this is a very
worthwhile strategy to use.

6.3.3 Depth-First Traversal (DFT) Statement Reordering. The results with
depth-first traversal (DFT) statement re-ordering (Section 6.1.4) were very

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 291

Fig. 2. Variable usage in the CPF Jacobian code VE-SLP-F. Each row corresponds to a statement
and its entries indicate the statements that calculated the values of the variables involved.

mixed. Significant gains were sometimes made: ALPHA and AMD of Table III,
PIII and AMD of Table IV, PIII and AMD of Table V. Sometimes significant
losses were made: ALPHA, SGI of Table IV, Ultra10 of Table V. When success-
ful, DFT appears to act as desired by reducing the number of memory operations
performed. For example, in Table V the application of DFT re-ordering to the
VE-SL-R subroutine to give VE-SL-R-DFT results in an 8% speed-up on the
PIII platform. On examining the associated assembler we find that this is most
likely to be due to a 14% drop in the number of loads and 8% drop in the num-
ber of stores. Conversely, on the Ultra10 platform we get a 21% reduction in
efficiency on applying DFT and this is found to be associated with an undesired
27% increase in the number of stores.

To understand how DFT reordering can reduce reads and writes to and from
cache, consider the CPF problem with results of Table III. With only four ex-
ceptions, application of DFT reordering improves performance. Figures 2 and 3
show within which statements of the Jacobian codes VE-SLP-R and VE-SLP-R-
DFT the variables are used. The first empty 29 rows in both plots correspond to
the 11 independent variables and 18 constants (which are not calculated). En-
tries in columns 1 to 29 therefore denote uses of these variables and constants.
In Figure 2, rows 30 to 62 correspond to the calculation of the function and
local derivatives in the VE-SLP-R code; rows 63 to 87 correspond to the vertex
elimination of intermediates from the function’s extended Jacobian; and rows
88 to 141 represent the assignment of the calculated scalar Jacobian entries
to their matrix storage. Note that several columns are empty and correspond
to variables unused in the right-hand side of any other statement, for exam-
ple, assignments to the Jacobian. We see that the statements using a variable’s
value are often widely separated from the statement that calculated that value.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

292 • S. A. Forth et al.

Fig. 3. Variable usage in the the DFT reordered CPF Jacobian code VE-SLP-F-DFT. Each row
corresponds to a statement and its entries indicate the statements that calculated the values of
the variables involved.

For example, statement 141 uses the result of statement 86—separated by 55
other statements. Unless the compiler itself performs significant reordering
of the arithmetic instructions of the Jacobian code, then to keep all variables
in registers between their calculation and last use will require a large num-
ber of registers. In Figure 3, we see that, with only a handful of exceptions,
DFT reordering ensures entries of rows 30 to 141 lie either in the first 22
columns, corresponding to uses of independent variables and constants, or are
clustered close to the diagonal corresponding to use of a value shortly after its
calculation. Consequently if the independents are first read from cache and, to-
gether with the problem constants, kept in 22 registers throughout, then only
a small number of other registers will be needed to avoid reads and writes
to cache other than those necessary to store the function values and Jacobian
entries.

In a significant number of cases our best result (highlighted in bold) was
obtained with a DFT code, which means that the technique should not be dis-
missed despite its mixed performance. The technique clearly needs improve-
ment. Its most apparent weakness is that it fails to account for multiple uses of
the independent variables and other constants. If, as in Figure 3, such uses are
distributed throughout the code, and the numbers of such variables and con-
stants is close to or exceeds the number of registers available, then performance
will be impaired by the many loads and stores required.

6.3.4 Cross-Country Vertex Elimination. Only Table I shows operation
count gains from cross-country vertex elimination that are other than negli-
gible. In Table I, across all platforms, the best results were obtained by cross-
country vertex elimination, sometimes aided by DFT statement re-ordering.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 293

Table VI. Size and Number of Entries in Blocks B, L, R and T of the Extended
Jacobians (Eq. (17)) for Test Cases Differentiated at Statement Level. Figures

in Brackets are After Reverse Pre-Elimination

Size Number of entries in block

Problem n m p B L R T
Roe 10 5 62 (36) 39 (39) 140 (88) 5 (5) 14 (37)
HHD 8 8 18 (18) 8 (8) 16 (16) 0 (0) 68 (68)
CPF 11 11 12 (2) 12 (1) 10 (1) 38 (49) 6 (5)
CTS 134 252 0 (0) 0 (0) 0 (0) 882 (882) 0 (0)
FIC 32 32 582 (0) 582 (0) 486 (0) 16 (246) 96 (0)

Why it is only for the Roe case that cross-country elimination produces bene-
fits demands some explanation. Table VI shows the number of entries in each of
the blocks of the extended Jacobian as defined by Eq. (17) before and after pre-
elimination. For the two sparse cases CTS and FIC of Sections 6.2.3 and 6.2.4,
pre-elimination alone obtains the Jacobian in block R with other blocks then
empty. For the CPF problem of Section 6.2.2, pre-elimination eliminates all
but 2 intermediates, so there can only be two subsequent, distinct elimination
sequences for the statement-level differentiated code, namely forward and re-
verse orderings. This explains why use of the Markowitz and VLR heuristics
leads to no improvement in the number of flops. After pre-elimination, the HHD
problem of Section 6.2.1 still has 18 intermediates and so there is scope for the
Markowitz and VLR heuristics to improve efficiency. A small reduction in nomi-
nal flops is obtained, though the two sequences are equivalent and performance
is not significantly improved.

However, for the Roe problem of Section 6.1, 36 intermediates and 88 entries
in block L remain after pre-elimination. This greater complexity gives scope
for the Markowitz and VLR heuristics to have a greater impact on the number
of flops. Hence only for this case do the heuristics result in the most efficient
Jacobian code, even so the improvement is small.

6.3.5 Code-List versus Statement-Level Differentiation. In Tables I–V we
see that the pre-eliminated statement-level differentiated vertex-elimination
codes always use fewer nominal flops and, in 38 of the 55 distinct problem/
platform combinations (excluding DFT reorderings), out-perform the corre-
sponding code-list differentiated codes.

6.4 Overall Performance of Vertex-Elimination AD

Given the many variations in Jacobian code produced by ELIAD (statement-
level or code-list differentiation, pre-elimination, elimination orderings and
code re-orderings) it is useful to summarise the performance of the best ELIAD
generated Jacobian code with respect to the other calculation methods.

Table VII gives the speed-up obtained in moving from 1-sided finite differ-
encing (using row compression where applicable) to our best vertex elimination
method for each problem and each platform. The inherent truncation error as-
sociated with finite differencing and the superior efficiency of factors between
1.7 to 11 for the ELIAD generated code appear to justify use of elimination AD

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

294 • S. A. Forth et al.

Table VII. Speed-Up of Best Vertex Elimination AD
over 1-Sided Finite Differencing

Platform

Problem ALPHA SGI Ultra10 PIII AMD
Roe 3.0 2.6 1.7 2.8 2.5
HHD 4.7 3.4 4.2 3.4 3.5
CPF 11.0 9.2 7.8 7.3 6.4
CTS 8.2 8.0 6.9 4.6 10.4
FIC 7.2 6.2 5.5 7.2 6.9

Table VIII. Speed-Up of Best Vertex Elimination over
Best Conventional AD

Platform

Problem ALPHA SGI Ultra10 PIII AMD
Roe 2.0 2.3 1.9 2.1 1.9
HHD 5.9 5.7 5.8 4.5 4.0
CPF 4.5 4.4 5.9 3.2 3.9
CTS 8.2 12.0 10.3 5.9 11.6
FIC 7.4 20.0 11.3 11.2 22.8

Table IX. Speed-Up of Best Vertex Elimination AD
over Hand-Coded Jacobian Code

Platform

Problem ALPHA SGI Ultra10 PIII AMD
HHD 1.13 1.05 1.50 0.69 0.76
CPF 1.49 1.62 2.02 1.22 1.26
CTS 1.14 0.93 1.32 1.12 1.22
FIC 1.16 0.96 2.44 0.80 1.02

over finite differencing, though the efficiency of finite differencing would be
improved by allowing the compiler to inline function calls.

Table VIII gives the speed-up obtained in moving from the best conven-
tional AD technique to our best vertex elimination method for each problem
and each platform. Speed-ups of between 1.9 to 22.8 demonstrate the superior-
ity of vertex-elimination AD over conventional forward and reverse mode AD
for Jacobian calculation.

Table IX gives the speed-up obtained in moving from hand-coded Jacobian
code to our best vertex elimination method for the 4 problems for which we have
hand-coded Jacobians. Only for 5 of the 20 problem/platform combinations is
hand-coding superior, and for two of these the discrepancy is within 7%.

7. CONCLUSIONS AND PLANS FOR FUTURE WORK

In this paper, we have presented the first extended set of results from ELIAD, a
source-transformation implementation of the vertex-elimination AD approach
to Jacobian calculation of functions defined by Fortran code. Careful timings
demonstrate an efficiency equal to that obtained by hand-coding and between
2 to 20 times superior to conventional AD techniques. This superiority is due

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 295

to ELIAD’s fuller exploitation of the sparsity of the extended Jacobian system
that governs the relationship between the derivatives of all variables in the
function code. Further, this exploitation of sparsity is performed at the Jacobian
code generation stage, with statements generated only for those arithmetic
operations involving nonzero entries in the extended Jacobian.

Vertex elimination requires an ordering, or pivot sequence, in which
to eliminate the derivatives of intermediate variables from the extended
Jacobian. Monotonic increasing and decreasing orderings correspond to
sparsity-exploiting variants of conventional forward and reverse mode AD
[Griewank and Reese 1991]. Consequently, vertex-elimination AD never uses
more floating-point operations than conventional AD. The use of cross-country
(i.e., nonmonotonic) orderings gives further scope for reducing the number
of floating-point operations. We have found that employing a pre-elimination
strategy of eliminating any intermediate variable used only once, followed by
a forward or reverse ordered elimination of all other intermediates, is very
successful, both in reducing the number of floating-point operations and im-
proving run-times. In the future, we wish to improve this strategy in the light
of recent work [Naumann 2003]. More involved ordering heuristics, such as the
Markowitz and VLR strategies, were only worthwhile for one test case stud-
ied to date. Recently, elimination AD has been generalized to edge [Naumann
1999] and face [Naumann 2001, 2004] eliminations, which may further reduce
the number of flops required for Jacobian calculation. We are currently assess-
ing these techniques for inclusion into ELIAD.

Interestingly, we found that reordering a Jacobian code’s statements fre-
quently affected its performance. This appears to be due to changes in the
number of loads and stores from cache to registers in the assembler of the re-
ordered code. We are currently performing an in-depth study of the assembler
produced for all the Jacobian codes of our study in order to get a better under-
standing of this issue and consequently improve both elimination heuristics
and our code re-ordering strategy.

For the sparse Jacobian cases (FIC and CTS), the ELIAD generated Jacobian
code was between 6 to 20 times more efficient than conventional AD using
Jacobian compression. So, vertex-elimination AD appears excellently suited to
least squares optimisation problems and numerical PDE solvers, where efficient
Jacobian calculation enables fast solution via Newton-like solvers. To be more
generally applicable for such problems requires removal of ELIAD’s present re-
striction to loop-free code. This will greatly complicate ELIAD’s activity analysis
which will have to handle array indices as index ranges and not fixed values as
at present. The techniques of Tadjouddine et al. [1998] and Tadjouddine [1999]
will be modified to enable this. The ability to store such Jacobians in a suitable
sparse matrix format will also be necessary.

At the time of writing, ELIAD’s functionality is being extended to include
subprograms. A hierarchical approach utilising a conservative activity anal-
ysis of all variables in all possible branches and subroutines is adopted.
This approach automates and generalizes that of Bischof and Haghighat [1996].

There are still many open questions related to the optimal calculation of
Jacobians by elimination, both theoretical and implementational. Despite this,

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

296 • S. A. Forth et al.

Table X. Platforms

a) Processors

Platform Processor CPU L1-Cache L2-Cache
ALPHA EV6 667 MHz 128 KB 8 MB
SGI R12000 300 MHz 64 KB 8 MB
Ultra10 SUN Ultra10 440 MHz 32 KB 2 MB
PIII Pentium 3 700 MHz 32 KB 256 KB
AMD Athlon XP1800+ 1533 MHz 128 KB 256 KB

b) Compilers

Platform Compiler Options
ALPHA Compaq f95 5.4 -O5 -fast -arch host -tune host
SGI f90 MIPSPro 7.3 -Ofast -IPA:inline=OFF -INLINE:none
Ultra10 Workshop f90 6.0 -fast
PIII/AMD Compaq Visual Fortran /architecture:host

/assume:noaccuracy sensitive
/inline:manual /math library:fast
/tune:host /opt:fast

Table XI. Summary Statistics for Test
Problem Functions

Problem n m p-SL p-CL
Roe 10 5 62 208
HHD 8 8 20 84
CPF 11 11 13 57
CTS 134 252 0 1386
FIC 32 32 680 1328

we feel certain that, with such issues now being studied in depth, the days
of scientists and engineers painstakingly hand-coding Jacobian code to ensure
efficiency are numbered.

APPENDIXES

A. PLATFORMS

We ran test cases on COMPAQ ALPHA, Silicon Graphics and SUN UNIX
machines with processor/compiler combinations denoted ALPHA, SGI and
Ultra10. We also ran on two PC platforms with Pentium 3 and AMD Athlon
processors. Relevant hardware data and the compiler information is given in
Table X.

B. TEST PROBLEM FUNCTION STATISTICS, CPU TIMES AND
OPERATIONS COUNTS

Table XI gives summary statistics for all 5 test problems. Columns p-SL and
p-CL refer to the number of (active) intermediate variables in each function’s
original statements and in its code-list respectively.

Table XII gives Nevals, the number of distinct Jacobians calculated, and Nrepet

the number of times these calculations were repeated, in order to obtain reliable
Jacobian timings.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 297

Table XII. Values of Nevals and Nrepet Used for Each Problem and Platform

Nevals Nrepet

ALPHA,
SGI & PIII & SGI &

Problem Ultra10 AMD ALPHA Ultra10 PIII AMD
Roe 500 60 2000 2000 16667 16667
HHD 2500 312 400 400 3200 12800
CPF 1000 125 2000 500 4000 16000
CTS 1 1 12000 12000 12000 120000
FIC 200 25 100 100 6400 6400

Table XIII. Nominal Floating-Point Operations Counts W (f), Lines of Code
(l.o.c.) and CPU Times for Test Problem Functions

Function CPU time(µs)
W (f)

Problem (flops) l.o.c. ALPHA SGI Ultra10 PIII AMD
Roe 222 139 0.475 0.951 0.806 0.880 0.336
HHD 84 68 0.121 0.224 0.206 0.231 0.0943
CPF 68 45 0.351 0.870 0.503 0.495 0.162
CTS 1638 535 1.18 3.16 2.25 2.49 0.981
FIC 1266 759 1.53 2.93 2.99 1.94 0.878

The second column of Table XIII gives the nominal computational cost
W (f(x)) of calculating the test problems described in Section 6. It is determined
by counting the number of floating operations within the Fortran code using
a simple PERL script. Table XIII also gives the number of noncomment lines
of code (l.o.c.) and the average CPU times required to calculate the test prob-
lem functions f(x), as measured using the CPU TIME intrinsic function of the
Fortran 95 programming language.

ACKNOWLEDGMENTS

We thank Neil Stringfellow and Venkat Sastry for their help in developing the
PERL scripts used in this article and the three anonymous referees for the
great care with which they read our article and for their many suggestions.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1995. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass.

AVERICK, B. M., CARTER, R. G., MORÉ, J. J., AND XUE, G.-L. 1992. The MINPACK-2 test prob-
lem collection. Preprint MCS–P153–0692, ANL/MCS–TM–150, Rev. 1, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, Ill. See ftp://info.mcs.

anl.gov/pub/MINPACK-2/tprobs/P153.ps.Z.
BENDTSEN, C. AND STAUNING, O. 1996. FADBAD, A flexible C++ package for automatic differenti-

ation. Tech. Rep. IMM-REP-1996-17, Technical University of Denmark, IMM, Departement of
Mathematical Modeling, Lyngby.

BERZ, M., BISCHOF, C., CORLISS, G., AND GRIEWANK, A., EDS. 1996. Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia, Pa.

BISCHOF, C., BÜCKER, H., LANG, B., RASCH, A., AND VEHRESCHILD, A. 2002. Combining source trans-
formation and operator overloading techniques to compute derivatives for MATLAB programs.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

298 • S. A. Forth et al.

In Proceedings of the 2nd IEEE International Workshop on Source Code Analysis and Manipu-
lation (SCAM 2002). IEEE Computer Society Press, Los Alamitos, Calif., pp. 65–72.

BISCHOF, C. H. 1991. Issues in parallel automatic differentiation. In Automatic Differentiation of
Algorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss, Eds. SIAM,
Philadelphia, Pa., 100–113.

BISCHOF, C. H., CARLE, A., HOVLAND, P. D., KHADEMI, P., AND MAUER, A. 1998. ADIFOR 2.0 user’s
guide (Revision D). Tech. Rep., Mathematics and Computer Science Division Technical Memoran-
dum no. 192 and Center for Research on Parallel Computation Technical Report CRPC-95516-S.
See www.mcs.anl.gov/adifor.

BISCHOF, C. H., CARLE, A., KHADEMI, P., AND MAUER, A. 1996a. ADIFOR 2.0: Automatic differenti-
ation of Fortran 77 programs. IEEE Computat. Sci. Eng. 3, 3, 18–32.

BISCHOF, C. H. AND HAGHIGHAT, M. R. 1996. Hierarchical approaches to automatic differentiation.
In Computational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G.
Corliss, and A. Griewank, Eds. SIAM, Philadelphia, Pa., 83–94.

BISCHOF, C. H., KHADEMI, P. M., BOUARICHA, A., AND CARLE, A. 1996b. Efficient computations of gra-
dients and Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optimiza.
Meth. Softw. 7, 1–39.

BISCHOF, C. H., ROH, L., AND MAUER, A. 1997. ADIC—An extensible automatic differentiation
tool for ANSI-C. Softw.—Pract. Exp. 27, 12, 1427–1456. See www-fp.mcs.anl.gov/division/

software.
COLEMAN, T. F., GARBOW, B. S., AND MORÉ, J. J. 1984. Software for estimating sparse Jacobian

matrices. ACM Trans. Math. Softw. 10, 3, 329–345.
COLEMAN, T. F. AND VERMA, A. 1998. ADMAT: An automatic differentiation toolbox for MATLAB.

Tech. Rep., Computer Science Department, Cornell University.
CORLISS, G., FAURE, C., GRIEWANK, A., HASCOËT, L., AND NAUMANN, U., Eds. 2001. Automatic Dif-

ferentiation: From Simulation to Optimization. Computer and Information Science. Springer,
New York.

DUFF, I., ERISMAN, A. M., AND REID, J. 1989. Direct methods for sparse matrices. Monographs on
numerical analysis. Oxford University Press.

FAURE, C. AND PAPEGAY, Y. 1998. Odyssée User’s Guide. Version 1.7. Rapport technique RT–0224,
INRIA, Sophia-Antipolis, France. Sept. See www.inria.fr/RRRT/RT-0224.html, and www.inria.

fr/safir/SAM/Odyssee/odyssee.html.
FORTH, S. A. 2001. User guide for MAD—A Matlab automatic differentiation toolbox. Applied

Mathematics and Operational Research Report AMOR 2001/5, Cranfield University (RMCS
Shrivenham), Swindon, SN6 8LA, UK. June.

FORTH, S. A. AND TADJOUDDINE, M. 2003. CFD Newton solvers with EliAD, an elimination auto-
matic differentiation tool. In Computational Fluid Dynamics 2002: Proceedings of the 2nd Inter-
national Conference on Computational Fluid Dynamics, ICCFD (Sydney, Australia). S. Armfield,
P. Morgan, and K. Srinivas, Eds., Springer-Verlag, New York, 134–139.

GIERING, R. AND KAMINSKI, T. 1998. Recipies for adjoint code construction. ACM Trans. Math.
Softw. 24, 4, 437–474. (Also appeared as Max-Planck Institut für Meteorologie Hamburg, Tech-
nical Report No. 212, 1996.)

GOEDECKER, S. AND HOISIE, A. 2001. Performance Optimisation of Numerically Intensive Codes.
Software, Environments, Tools. SIAM, Philadelphia, Pa., ISBN 0-89871-482-3.

GRIEWANK, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, Pa.

GRIEWANK, A. AND CORLISS, G. F., Eds. 1991. Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, Pa.

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. ADOL–C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2, 131–167.

GRIEWANK, A. AND REESE, S. 1991. On the calculation of Jacobian matrices by the Markowitz
rule. In Automatic Differentiation of Algorithms: Theory, Implementation, and Application, A.
Griewank and G. F. Corliss, Eds. SIAM, Philadelphia, Pa., 126–135.

HASCOET, L., NAUMANN, U., AND PASCUAL, V. 2003. TBR analysis in reverse mode auto-
matic differentiation. In Future Generation Computer Systems. Elsevier, Amsterdam, The
Netherlands.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

Jacobian Code by Vertex Elimination • 299

HOVLAND, P. D. AND MCINNES, L. C. 2001. Parallel. simulation of compressible flow using automatic
differentiation and PETSc. Parall. Comput. 27, 4 (Mar.), 503–519.

KNUTH, D. E. 1997. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Adison-Wesley, Reading, Mass.

MARKOWITZ, H. 1957. The elimination form of the inverse and its application. Manage. Sci. 3,
257–269.

NAUMANN, U. 1999. Efficient calculation of Jacobian matrices by optimized application of the
chain rule to computational graphs. Ph.D. thesis, Technical University of Dresden.

NAUMANN, U. 2001. Elimination techniques for cheap Jacobians. In Automatic Differentiation:
From Simulation to Optimization, G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U.
Naumann, Eds. Springer-Verlag, New York, Chapter 29, 241–246.

NAUMANN, U. 2003. Statement-level optimality of tangent-linear and adjoint models. Argonne
National Laboratory, preprint, ANL/MCS-P-1066, June.

NAUMANN, U. 2004. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Math. Prog. 99, 3 (Apr.), 399–421.

PARR, T., LILLY, J., WELLS, P., KLAREN, R., ILLOUZ, M., MITCHELL, J., STANCHFIELD, S., COKER, J.,
ZUKOWSKI, M., AND FLACK, C. 2000. ANTLR Reference Manual. Tech. Rep., MageLang Insti-
tute’s jGuru.com. January. See www.antlr.org/doc/index.html.

PRYCE, J. D. AND REID, J. K. 1998. ADO1, A Fortran 90 code for automatic differentiation. Tech.
Rep. RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11
OQX, England. See ftp://matisa.cc.rl.ac.uk/pub/reports/prRAL98057.ps.gz.

REID, J. 2003. On the stability of automatic differentiation. In preparation.
ROE, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J.

Computat. Phys. 43, 357–372.
TADJOUDDINE, M. 1999. La différentiation automatique. Ph.D. dissertation, Université de Nice,

Sophia Antipolis, France.
TADJOUDDINE, M., EYSETTE, F., AND FAURE, C. 1998. Sparse Jacobian computation in automatic

differentiation by static program analysis. In Proceedings of the 5th International Static Analysis
Symposium. Number 1503 in Lecture Notes in Computer Science. Springer-Verlag, New York,
311–326.

TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. 2001. AD tools and prospects for optimal AD in
CFD flux Jacobian calculations. In Automatic Differentiation: From Simulation to Optimization,
G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, Eds. Springer-Verlag, New York,
Chapter 30, 247–252.

TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. 2003. Hierarchical automatic differentiation by
vertex elimination and source transformation. In Proceedings of Computational Science and
Its Applications—ICCSA 2003. Lecture Notes in Computer Science, vol. 2. Springer-Verlag,
New York, 115–124.

TADJOUDDINE, M., FORTH, S. A., PRYCE, J. D., AND REID, J. K. 2002. Performance issues for vertex
elimination methods in computing Jacobians using automatic differentiation. In Proceedings of
the 2nd International Conference on Computational Science, P. M. Sloot, Ed. Lecture Notes in
Computer Science, vol. 2. Springer-Verlag, New York, 1077–1086.

VERMA, A. 1998. ADMAT: Automatic differentiation in MATLAB using object oriented methods.
In SIAM Interdisciplinary Workshop on Object Oriented Methods for Interoperability. SIAM,
National Science Foundation, Yorktown Heights, N.Y., 174–183.

WILKINSON, J. 1965. The Algebraic Eigenvalue Problem. Oxford University Press.

Received December 2002; revised October 2003 and February 2004; accepted March 2004

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.

