Publikasi

by Universitas Ahmad Dahlan Yogyakarta 37

Submission date: 31-Jan-2024 01:35PM (UTC+0700)
Submission ID: 2282741704

File name: clean-revised-manuscript.docx (2.04M)
Word count: 9601

Character count: 55234



Optimization of Use Case Point Through The Use of Metaheuristic Algorithm

in Estimating Software Effort
Ardiansyah'", Mulki Indana Zulfa?, Ali Tarmuji®, Farisna Hamid Jabbar*
134Department of Informatics, Universitas Ahmad Dahlan
’Department of Electrical Engine‘ang, Jenderal Soedirman University

Corresponding email: ardiansyah@tif.uad.ac.id

Abstract

Use Case Points estimation framework relies on the complexity weight parameters to estimate
software development projects. However, due to the discontinue parameters, it lead to abrupt
weight classification and results in inaccurate estimation. Several research studies have addressed
these weaknesses by employing various approaches, including fuzzy logic, regression analysis,
and optimization techniques. Nevertheless, the utilization of optimization techniques to determine
use case weight parameter values has yet to be extensively explored, with the potential to enhance
accuracy further. Motivated by this, the current research delves into various metaheuristic search-
based algorithms, such as genetic algorithms, Firefly algorithms, Reptile search algorithms,
Particle swarm optimization, and Grey Wolf optimizers. The experimental investigation was
carried out using a Silhavy UCP estimation dataset, which contains 71 project data from three
software houses and is publicly available. Furthermore, we compared the performance between
models based on metaheuristic algorithms. The findings indicate that the performance of the
Firefly algorithm outperforms the others based on five accuracy metrics: mean absolute error,
mean balance relative error, mean inverted relative error, standardized accuracy, and effect size.
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1. Introduction

Estimating software development projects belongs to the planning phase in the software
development life cycle (SDLC) [1]. Software Effort Estimation (SEE) assesses the effort and
associated costs needed to create a new software system. Effort estimation is paramount for
software companies, as they must guarantee that the software is delivered within predefined time
and budget limitations. Nevertheless, most software projects exceed their designated time and

budget limit, with delays and cost overruns being persistent challenges in software development




for numerous years [2]. There are three groups of methods for estimating software effort: expert
judgment, algorithmic, and machine learning. Expert-based methods entail consulting one or more
experts, leveraging their domain expertise and comprehension of the organizational context to
estimate the cost of software projects. Analytical hierarchy process (AHP), Delphi, and Planning
Poker methods belong to the expert judgment group. The algorithmic group consists of methods
used to estimate effort based on software requirements specifications. Methods that fall into this
category are COCOMO, SLIM, Function Points, Use Case Points (UCP), COSMIC, and so on.
Meanwhile, the machine learning-based group is a set of methods that applies learning algorithms
to estimate software project efforts such as regression, artificial neural network (ANN), case-based
reasoning (CBR), and others.

One popular software sizing and estimation framework is Use aase Points (UCP) [3]. UCP
determines the software size by multiplying use case diagrams and the productivity factor (PF). In
the second phase of the UCP process, as iﬁlicated by Table 1, the complexity weight of the use
case (UC) is categorized into three levels: simple, average, and complex. The weight assignment
to each complexity level is determined by the number of transactions of the Use Cases (UC). The
original UCP framework consists of three levels of complexity weights, namely 5, 10, and 15, for
Simple, Average, and Complex, respectively. The original level of complexity weighting has faced
criticism from researchers&le to its discontinuous nature in the complexity hierarchy, leading to
occasional inaccuracies in measurements and abrupt classifications of use cases. For instance, the
use case containing eight transactions possesses twice the weight of the use case involving seven
transactions. Furthermore, they exclude the consideration of large use case transactions. As an
illustration, a use case with 25 transactions holds equal weight as a use case involving nine
fransactions.

Numerous efforts have been made to tackle the sudden classification problem associated with the
complexity weighting level in the use case. For example, the currently available fuzzy methods
are employed and suggested by [4]-[6]. The fuzzy approach is consistently employed for
discretizing the prevailing level of complexity weighting. It aims to alleviate the sudden
classification problem by offering a continuous and inﬁemental classification process. Most

research demonstrates that using fuzzy on UCP enhances estimation performance compared with

the original UCP.




Employing a continuous level of use case weighting enables us to enhance UCP accuracy through
an optimization approach. Optimization stands out as a renowned approach for addressing
continuous problems. The implementation of metaheuristic optimization in software effort
atimation is called search-based software estimation (SBSE).

The research focused on search-based software effort estimation has been employed in numerous
studies [7]. For example, Cased-Based Reasoning (CBR) effort estimation has been optimized by
using Genetic Programming (GP) [8], [9], Particle Swarm Optimization (PSO) [10], evolutionary-
based algorithm [11]-[13], and hybrid PSO-SA [14]. Firefly [15], [16], PSO [17]-[20], GA [21],
and DE [22] are employed to enhance the optimization of COCOMO effort estimation. Although
the previous works succeeded in improving the utilization of the use case complexity weight by
applying PSO [23] and MUCPSO [24], these two investigations were still hampered by prematur
convergence and local optimum traps. In addition, these studies only use the PSO algorithm and
do not investigate various alternative metaheuristic algorithms.

Thus, this article extensively investigates various metaheuristic search-based models aimed at
optimizing parameter values for the use case complexity weight. The methods under scrutiny
encompass Genetic Algorithm (GA), Firefly Algorithm (FA), Reptile Search Algorithm (RSA),
Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). These metaheuristic
algoritms are employed because they have more diverse characteristics as well as strength and
weakness to solve the particular optimization problem in search-based software effort estimation.
Forexample, RSA and GWO are two algorithms that based on encircling and hunting mechanisms.
PSO and Firefly are algorithms based on large flocks of animal looking for food. Meanwhile, GA
is an algorithm that adopt evolutionary theory. The experimental analysis was carried out using a
publicly accessible UCP estimation dataset. The effectiveness of diverse metaheuristic search-
based models has been assessed through various performance evaluation metrics. The findings and
insights derived from these experiments can be instrumental in constructing ensemble models for
UCP estimation. Moreover, the contribution of this presented work: our study involved a thorough
exploration of five metaheuristic search-based models using unimodal and multimodal test
functions, a novel approach that had not been previously undertaken in search-based software

effort estimation field.

2. Related Work




The examination of effort estimation in UCP research reveals three main trends: the refinement of
the UCP sizing approach, the scrutiny and simplification of UCP, and the fusion of UCP with data
mining and machine learning (MLDM) techniques.

Numero& research works have suggested the overhaul of the UCP sizing method. Ref. [25]
adapted the use case complexity weight by applying fuzzy theory, and [24] effectively optimized
this adjusted weight. In [26], two new variables, namely size-transactions and entity objects, were
introduced and calculated based on the information in the use case description. The research
presented by [27] has revised the assessment of actor complexity and addressed the consideration
of non-functional requirements. This study made a significant contribution to enhancing the
adaptability of UCP for incremental development approaches.

Ref. [28], [29] examined and simplified the UCP better to comprehend the effects of technical and
environmental complexity factors. The authors recommended fine-tuning the environmental
factors according to the organization's type to enhaﬁe estimation accuracy. In contrast, [30] and
[31] omitted various segments of the UCP in order to simplify the UCP calculation process. The
researcher contended that these sections are of negligible importance in effort estimation. In a
recent development, [32] enhanced the accuracy of the modified UCP by refinement of the
environment complexity factors (ECF) and technical complexity factors (TCF) and employing a
model of multiple regression for estimation.

Recent years have witnessed the exploration of MDLM techniques to enhance the UCP’s
performance. The introduction of a log-linear regression model [33] establishes relations between
UCP, effort, and productivity factors. A hybrid model was introduced in a subsequent study
referenced as [34]. This model concurrently predicts the PF and effort estimation by leveraging
past projects. Similarly, [34] calculated the effort required by utilizing team productivity and UCP
with Treebost.

The overarching objective of SEE research is to reduce the disparity between the real and predicted
effort value. The rigidity weight level of the use case complexity has a notable influence on the
accuracy of the estimation, as indicated by [6]. Furthermore, it is worth noting that the initial
complexity and assigned weight value may not accurately represent real-world scenarios, as
suggested in [35]. Fortunately, this was previously validated by [3], indicating that the suggested
complexity weight is derived from the subjective assessment of individuals at Objective Systems.

Ref. [3] also emphasizes the need for additional data to refine parameters, models, and weights.




The initial weight should not be considered the definitive and optimal weighting parameter. In
simpler terms, it is crucial to have flexibility in granularity to establish the most appropriate
weighting system and achieve the highest estimation performance. Three primary methodologies
revolve around proposing improvements to the complexity weight of use cases: introducing
additional weight levels, discretizing the existing scale, and calibrating in thihway as outlined.
Two critical parameters for SEE were introduced in [36]: the specifications of actors and the use
case. At the same time, [37] assessed TCF and ECF. To compute the number of transactions and
automatically generate the class diagrams, [38] proposed USIM to determine the project size.
Numerous studies have suggested incorporating additional complexity weight levels to account
for factors that influence the level of complexity weight. Examples such as the nature of the
application and the particular manner in which use cases are employed constitute two determinants
affecting the degree of complexity weighting. Thus, it is advisable to re-evaluate the complexity
eight by specific circumstances. As part of their proposal, [39] introduced weight values of 10
for simple, 15 for average, and 20 for complex. In Cﬁtrast, [40] proposed “most complex” as an
additional degree of complexity weight to enhance the complexity weight of the use case. Ref.
[40] suggested including an extra "critical" level in their proposal. In Reference [41], an additional
"very high" level for use cases with more than 14 transactions was proposed, with corresponding
weight assignments of 5, 10, 15, and 20. In contrast, on the other hand, three more complexity
weights were introduced by [42]: 20, 25, and 30.
In order to reduce the existing level of complexity weights, a fuzzy approach is commonly used.
This approach aims at reducing categorization abruption by gradually and continuously classifying
them. Early attempts to discretize the established complexity weight levels were put forward by
[4]-[6]. [5] expanded the complexity weight levels from three to five. They introduced the
Extended Use Case Points (EUCP) by combining the theory of fuzzy logic and the Bayesian Belief
Network (BBN). The outcomes indicated that the proposed EUCP outperformed UCP in the case
of the two projects. Ref. [4] introduced the discretization degree of complexity weight that
extended use-case complexity from 3 to 4. The outcomes of their study indicated that the suggested
weight level demonstrated an increment of 5.5 person-hours, accompanied by a 15.45% margin of
error, as determined from an analysis of four authentic project datasets. Ref [6] proposed ten levels

of complexity weight based on the count of transactions associated with each use case. Their results




showed a 22% improvement in particular projects concerning the proposed approach, assuming
that ten transactions were covered by the most extensive use case and had a complexity factor 15.
The investigation into UCP adjustment was initiated by [43] and continued by [35]. In the work of
[43], a six-tier use case complexity weighting system was introduced as an alternative to the
original three-tier weighting scheme outlined by Karner [3]. They used a neural network to
calibrate these six proposed complexity weight levels. In order to cope with any sudden change in
complexity levels and weights, Fuzzy Logic has been applied following successful calibration of
the weights. Unfortunately, there was no evidence of any experimental results or model validation
in this study.

On the other hand, [35] delved intoﬁayesian analysis for calibrating use case weighting. As inputs,
their study collected the weight of the use case and the empirical project data. The weighting of a
priori-based use case is used to calculate the mean and variance. Simultaneously, empirical project
data was utilized to calibrate the weights of the use case via a multiple linear regression process.
In the last phase of this calibration procedure, the outcomes of the mean and variance were
harnessed to compute the Bayesian weighted average, ultimately producing Bayesian weight
estimations as the resulting output. This approach underwent assessment through data analysis
from 105 projects, which was subsequently juxtaposed against a priori estimations, regression-
based, and Karner’s UCP method. As a result, the Bayesian approach demonstrated superior
accuracy in effort estimation.

These methodologies have a broader option to enhance the complexity factor by expanding
Karner’s UCP method, which has shown positive results by using continuous and incremented
classification values. However, despite the endeavors of researchers referenced in [32] and [44] to
enhance the performance of UCP, they did not delve into the possibilities associated with
continuous complexity weight levels when optimizing functions. Metaheuristics optimization,
renowned for its ability to handle continuous function optimization, can effectively mitigate abrupt
complexity-level changes.

While prior research has indeed succeeded in enhancing the utilization of use case complexity
weight through the application of PSO [23] and MUCPSO [24], it is essential to note that these
two studies have focused solely on the utilization of the PSO algorithm. They have not explored

the potential benefits of various alternative metaheuristic algorithms.




Therefore, this study comprehensively examines various metaheuristic search-based models to
optimize the weights of use case complexity. The methods under investigation include genetic
algorithms, firefly algorithms, reptile search algorithms, particle swarm optimization, and grey

wolf optimizers.

3. Background

31ucp

The UCP metho«b‘;uggested by [3] comprises seven steps, as summarized in Table 1. Firstly,
calculate UAW (unadjusted actor weighting) and UUCW (unadjusted use case weighting) by
classifying actors and use cases into three levels of complexity: Simple (1), Average (2), and
Complex (3). The sum of UAW and UUCW yields unadjusted use case points (UUCP). Secondly,
it calculates technical and environmental complexity factors. Finally, project size and estimated
effort can be determined using these factors.

Table 1. Use Case Points estimation parameters and formula

Parameter Formula
3
UAW = W; x Actor;
i=1
UAW . . :
where W; represents the weight factor, categorized as | for simple, 2 for
average, and 3 for complex actors.
3
UUCw = W; x UC;
i=1
uucw where W; represents a weight factor, classified as 5 for simple, 10 for
average, and 15 for complex use cases, respectively.
uucCp vuucp = UAW + UUCW
13
TCE TCF = 0.6 + (0.01 x> W x Gi)
i=1
8
ECF ECF = 1.4 + (—0.03 X Z W, x Gi)
i=1
Project Size UCP = UUCP X TCF X ECF
Effort = UCP X PF
Estimated Effort | PF represents the productivity factor, and assigning a value of 20 person-
hours per UCP is possible.




In addition to the original weight levels, Table 2 presents the complexity weight levels proposed

[6] and [46].

Table 2. The original and modified use case complexity weight level

Number of Use Case Original weight level Modified weight level
Transactions

1-2 5 5.00
3 5 6.45
4 10 7.50
5 10 8.55
6 10 10.00
7 10 1140
8 15 12.50
9 15 13.60
>10 15 15.00

3.2 Metaheuristic Algorithms

Grey Wolf Optimizer

The Grey Wolf Optimizer algorithm, introduced by [46], is inspired by grey wolves' social
structure and hunting behavior. Grey wolves in the wild operate within a hierarchical structure
consisting of alpha, beta, delta, and omega wolves, each with distinct roles in the pack. These roles
are translated into the GWO algorithm's search mechanisms to explore and exploit the solution
space effectively.

The GWO algorithm begins with an initial population of grey wolves, where each wolf represents
a potential solution to the optimization problem. The algorithm iteratively updates the positions of
the wolves to converge towards an optimal solution. The fundamental mechanisms are shown by

the following Algorithm 1.

Generate initial grey wolf population x;(i = 1,2, ...,n)

Initialize a, A, and C

Calculate the fitness value of each wolf
X, = the best wolf

Xp = the runner up best wolf




X5 = the third best wolf
While (t < max number of iterations)
For each wolf

Update the position of the current wolf
End for

Update a, A, and C
Compute the fitness value of all wolf
Update X, Xz, dan X
t=t+1
end while
return X,
Algorithm 1. The pseudo-code of GWO

Particle Swarm Optimize
PSO drew inspiration from the behavior of b&ds flocking and fish schooling in search of locations
with an ample food supply [21]. PSO begins by randomly generating a popaation based on swarm
size parameters. This population compriscﬁ\l particles, with each particle i representing a potential
solution to the problem. Each individual particle is represented by the vector x; in the decision
space and possesses both position (x) and velocity (v) attributes, as indicated in Eq. (1) and Eq.
(2).
v; = wv; + C1Ry X (Pbest; — x;) + C,R; X (Gbest; — x;) (1)
Xig1 =X T (2)
where v; represents the current or initialized velocity of the particle, which is endowed with a
random number value falling within the interval [0, 1] at the onset of the population generation
process. Constants C; and C,, cognitive and social learning factors, remain unchanging throughout
the computation. R; and R, are stochastic variables defined within the [0, 1] range. Pbest;
represents the most optimal position attained by particle 7, while Gbest; represents the ove&ll best
position achieved by the entire ensemble particles. Lastly, x; is used to denote the present position
of the particle. Additionally, © is an inertia weight, a constant value set to 0.9. Algorithm 2 outlined

the PSO in pseudo-code format to provide a schematic representation of the algorithm.

Generate initial population x;(i = 1,2, ...,n)
Gbest = maximum fitness value of particle in population
Pbests = initial population
While t < max iterations
For each particle in the population
Update velocity




Update position
Update particle
Update pbest
End for
Updated population
Update gbest
End while
Return gbest
Algorithm 2. The pseudo-code of PSO

Firefly
The Firefly Algorithm (FA), created by [47], [48], draws inspiration from the idealized behavior
of fireflies' flashing characteristics. These flashing characteristics can be simplified into the
following three rules for ease of understanding:
- In the FA, all fireflies are considered unisex, meaning that one firefly is attracted to other
fireflies irrespective of their gender;
- Inthe FA, tE attractiveness of a firefly is directly proportional to its brightness. Therefore,
comparing two flashing fireflies, the less bright one will move toward the brighter one.
This attractiveness is influenced by brightness, and both attractiveness and brightness
decrease as the distance between fireflies increases. If no firefly is found to be brighter than
a particular firefly, it will move randomly.
- The brightness or light intensity of a firefly is influenced or determined by the
characteristics of the objective function landscape that is being optimized.
The light intensity I (r) changes monotonically and exponentially with distance r. This relationship
can be expressed as
I =Iye ™ 3
where the original light intensity is [, and the light absorption coefficient is y. The attractiveness
B of a firefly can be defined based on the light intensity seen by neighboring fireflies. This
relationship is expressed as follows:

B =Poe" ©
where the attractiveness at v = 0 is 8, plays a crucial role in this definition. It is important to note
that the exponent yr can be replaced with other functions, such as yr™ when m > 0. In summary,
Algorithm 3 outlined the FA in pseudo-code format to provide a schematic representation of the

algorithm.




Initialize a populagipn of fireflies x;(i = 1,2,...,n)
y = Coefficient of light absorption
while (t < MaxGeneration)
for i = 1:n all n fireflies
for j = 1:i all n fireflies
light intensity [; at X; is calculated using f (x;)
if (I; > 1)
Move firefly i towards j in all 4 dimensions
end if
attractiveness varies with distance r via exp[—y7]
evaluate new solutions and update light intensity
end for j
end for i
Rank the fireflies and find the current best
end while
return the best firefly
Algorithm 3. The pseudo-code of FA

Genetic Algorithm

The Genetic algorithms first proposed by [49] encompass the following fundamental processes: 1)
encoding the objective or optimization functions, 2) establishing a fitness function or selection
criteria, 3) generating a population of individuals, 4) cycling through evolution iterations, which
involve evaluating the fitness of all individuals in the population, creating a new population
through actions such as crossover, mutation, and fitness-proportionate reproduction, replacing the
old population, and iterating once more using the new population; 5) decode the outcomes acquired
from the solution to the problem. These steps can be represented schematically in the pseudo-code

of genetic algorithms, as illustrated in Algorithm 4.

Define an objective function f(x), x = (xq, ..., xp)"
Translate the solution into chromosome representations.
Initialize GA parameters: number of chromosomes, number of generations, mutation rate (nir),
crossover rate (cr), etc
Generate the initial population
While (1 < number of generations)
Generate fresh solution through a combination of crossover and mutation
If cr > rand, Crossover; end if
If mr > rand, Mutate; end if
If fitness value increases, accept the new solution
Select the current best solution for the next generation
End while
Return the best solution
Algorithm 4. The pseudo-code of GA




aeptile Search Optimizer

The optimization process starts with the creation of a randomly selected set of candidate solutions
that will be used to form an early population at RSA. Throughout the repetition trajectory, the
search mechanisms of RSA systematically explore potential positions in search of near-optimal
solutions. In this pursuit, each solution adjusts its positions based on the processes outlined in the
RSA algorithm, potentially replacing its positions with those from the best-obtained solution found
thus far.

The search procedures are classified as two primary methods of exploration and exploitation to
ensure balance in both exploration and exploitation. Exploration is based on a strategy of high or
belly walking and exploitation based ﬁl hunting coordination or cooperation. The potential

candidates use these strate&s to widen the search area when t < and seek to converge with near-

optimal solutions if t > E In the initial exploration phase, the high walking movement strategy is

employed when t < %. Subsequently, as t progresses and r%ches between t < 2§and t> 2, the
7
belly walking movement strategy is adopted. During the exploitation phase, the hunting

o . . . . - T T
coordlnatlg strategy is put into action when it falls within the range of t < 3 andt > 2. In
7

contrast, the hunting cooperation strategy is deployed when t < T and t > 3 g. The RSA shall

cease to operate as soon as it complies with the applicable termination criteria. In Algorithm 5, a

pseudocode is provided for the proposed RSA algorithm.

Initialize RSA parameters o, B, etc
Initialize reptile population x;(i = 1,2, ..., N)
While (t<T)
Calculate fitness value for all reptile
Find the best fitness value of all reptiles so far
(Epdate Evolutionary Sense (ES)
For (i=1 to N) do
For (j=1to N) do
Update the 1, R, P, and values, respectively
T
If (t < Z) then
Update reptile using a high walking procedure
Else if (t <2 Eand t> E) then
Update reptile using belly walking procedure

Else if (r <3 liand t>2 1—") then




Update reptile using hunting coordination procedure
Else
Update reptile using hunting cooperation procedure
End if
End for j
End for i
End while
Return best reptile (best(X))
Algorithm 5. The pseudo-code of RSA

4. Methods

The objective of effort estimation is to reduce the disparity in accuracy between the actual effort
and the estimated effort, as denoted in Eq. 5. Hence, Figure 1 illustrates the proposed method of
this study. As depicted in the figure, the complexity weighting comprises two primary elements:
actors and use cases. Optimization in the use case component is performed individually using
metaheuristic algorithms, including GWO, PSO, GA, RSA, and FA. Each algorithm will search
the use case complexity weight that provide optimal result according to the allowed weight range.
The results of these optimizations for actors and use cases are combined to generate the Unadjusted
Use Case Points (UUCP).

Additionally, in conjunction with complexity factors (TCF and ECF), the actors and use cases
contribute to the calculation of software size, specifically in UCP metric units. Subsequently, the
obtained software size is multiplied by the PF (Productivity Factor) parameter to derive the
estimated effort value, expressed in person-hour units. A detailed description of methods including

dataset and evaluation techniques used is discussed specifically in section 4.1,4.2, and 4.3.
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(20 Person Hours)

Figure 1. The proposed model

4.1 Experimental design

Figure 2 shows the complete experimental design flow. The experimental design is provided to
outline the details of the experiment at each stage. The dataset is divided into two, namely training
data and test data. Test data is only taken for one instance. This means that each project will
definitely become test data. This is in accordance with the validation method used, namely Leave
one out cross validation.

Each test data consists of seven attributes or effort drivers as shown in Table 3. The UUWC value
is generated by the summation flwtion of multiplying the use case weights with the Simple,
Average, and Complex attributes. The weight of the three use case will be determined using the
five metaheuristic algorithms. The weight that gives optimum results is then used to calculate
UUCP and estimated effort. The estimated effort is then compared with the actual results in order

to calculate the accuracy performance.
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Figure 2 Experimental design flow

4.2 Dataset

This research utilized historical project data derived from three actual software companies.
Seventy-one projects collected by Silhavy [50] constitute the dataset for this project. The dataset
encompasses various problem domains, including insurance, government, banking, etc. The
dataset comprises a total of thirty-eight (38) effort drivers. For this study, we utilized seven (7)
effort drivers and excluded the remainder. The comprehensive set of effort drivers encompasses
simple, average, and complex use case (UC), technical and environmental complexity factors,
UAW, and actual effort. These effort drivers were selected based on their significant influence
within the UCP estimation methodologydas outlined in Table 1. Most projects were executed

utilizing programming languages such as Java and C#. Summary statistics for the project dataset

are provided in Table 3.

Table 3 Descriptive statistics forﬁ dataset of 71 projects
Effort Driver Avg StDev Skewness Kurtosis  Max Min
Simple 27 29 3.29 17.658 20 0.00
Average 15.84 5.37 0.296 0.140 30 3.00
Complex 1429 4.45 0.191 -0.290 27 5.00
UAW 1049 5.01 0.803 -1.264 19 6.00
TCF 0.92 0.114 -0.269 -1.019 1.12 0.71
ECF 0.86 0.117 -0.556 0.861 1.09 0.51

Actual Effort ~ 6558.72 664 .24 0.574 -0.922 7970 5775




Referring to Table 3 reveals distinct distributions among the variables under consideration. UC-
Average, UC-Complex, and TCF exhibit distribution patterns that closely resemble a normal
distribution, ahevidenced by their skewness values approaching zero. Conversely, UC-Simple
deviates from a normal distribution, with its skewness significantly deviating from zero. Notably,
the UC-Complex variable demonstrates a relatively wider distribution, indicated by a kurtosis
value of -0.290. At the same time, UC-Simple displays a leptokurtosis curve, indicated by its
substantially high kurtosis value of 17.658. It is important to note that a kurtosis value below three
suggests a lower susceptibility to outliers. Only UC-Simple surpasses this threshold among the
mentioned_yariables, indicating a higher susceptibility to outliers. This infers that Average,
Complex, UAW, TCF, ECF, and Actual Effort variables are comparatively less prone to outlier
effects. Notably, the majority of the project use cases are of average complexity. This highlights
that the Average variable has a mean and maximum value that is broader in range compared to the

Simple and Complex effort drivers.

4.3 Model Validation & Evaluation

In this study, model validation was carried out utilizing the Leave-One-Out Cross-Validation
(LOOCV) technique. LOOCV involves partitioning each dataset into n-1 folds for training data
and one-fold for testing data. LOOCV was chosen due to its lower conclusion instability resulting
from random selection in training and testing data, in contrast to the potential instability
experienced in k-fold, 3-way, and 10-way techniques [51].

The performance of the estimation model was assessed using a variety of measurements. In this
study, six measurement metrics were employed: absolute error (AE), mean absolute error (MAE),
mean balance relative error (MBRE), mean inverted balance relative error (MIBRE), standardized
accuracy, and effect size. These performance metrics were chosen due to their non-biased nature,
in contrast to metrics such as mean squared error (MSE), mean absolute percentage error (MAPE),

and prediction accuracy (PRED) that have been known to exhibit bias in their results [52], [53].

The comprehensive list of model performance evaluation formulas is presented in Table 4.

Table 4 Performance measurement list

Measure Formula

Absolute error (AE) AE = |y; — §il




Mean absolute error (MAE) MAE = lz“ AE,
n =1

i 1~ AE;
Mean balance relative error MBRE = Z . t_
i=1 min(y;, ¥;)
i i 1 AE,
Mean inverted balance relative error MIBRE = _z i _
i=1 max(y;, ;)

Standardized accuracy [52], [53]

MAE,
SAp. =1~— L) x 100
J MAE

Py

Effect size [52], [53] MAEpj — MAE,
A=—1 0
Se

0

Based on Table 4, y; and ¥; represent the actual and estimated effort for the i-th project,

respectively. MAEpj denotes the Mean Absolute Error (MAE) value generated by the j-th
estimation model, such as FA+UCP, RSA+UCP, etc. Meanwhile, 1"14‘1‘1!_*',',_,0 is obtained from the

random guessing technique, and Sp, represents the standard deviation produced by the P, model.

5. Experimental results and discussions

The experimental results are described in two parts. First are the evaluation results of 12
benchmark functions, and second are the experimental results of metaheuristic optimization on
UCP. Furthermore, the parameter settings should be determined based on the best-performing or
commonly used configurations in Table 5 to ensure a fair comparison between algorithms.

Table 5. Parameter settings of five metaheuristic algorithms

Algorithm Parameters
Grey Wolf Optimizer (GWO) [54] | PopSize = 100, Ty,q.= 20
Firefly Algorithm (FA) [55] PopSize = 20, Ty02= 20, 0=0.5, Brin = 0.2, =1, y=1

Particle Swarm  Optimization | PopSize = 70, T,,,0 = 20, Wy = 0.9, 0, = 0.4, C, =
(PSO) 2,C, =2

Genetic Algorithms (GA) PopSize = 20, Ty, go= 20, Cr=0.25, Mr=0.1

Reptile Search Optimizer (RSA) | PopSize = 30, T,,,,= 20, a=0.1, = 0.1

[56]

5.1 Evaluation of Classic Benchmark Functions
In order to assess the exploitation and exploration potential of optimization algorithms, 12

benchmark functions, consisting of six unimodal and six multimodal functions, are used in this




study. An overview of the benchmark functions, including their functions names, types,

dimensions, ranges, and
fmin value is given in Table 6. Additionally, their two-dimensional representations are depicted in
Figure 3. There are six benchmark functions, labeled with ID and function names F1-F6, which
are unimodal and are employed to assess the exploitation ability. Subsequently, six benchmark
functions, denoted by ID and function names F7-F12, are considered multimodal, featuring
numerous local optima that increase as the dimensionality grows. These functions are utilized to
evaluate the exploration capability. Table 7 provides an overview of the assessment results
pertaining to four metrics: the best optimal solution, the least favorable solution, the average
solution, and the standard deviation (STD).

GWO performs better than any of the metaheuristics algorithms in applying to a subset of functions
with ID values F2 and F6, given that it is based on two quantitative metrics, namely mean solution
and STD, from 6 unimodal functions designed as F1 to F6. Meanwhile, RSA outperforms all other
algorithms in the F1, F3, F4,and FS5 test functions.

Subsequently, the analysis of six multimodal functions, identified as F7 through F12, reveals that
the RSA method consistently surpasses its competing counterparts. Specifically, it attains
significantly reduced mean solutions for functions F7, F8, F9, F10, and F12. RSA exhibits
suboptimal performance solely when confronted with the F11 function, wherein GWO
demonstrates superior capabilities for this specific function.

Similar benchmarking has been carried out by [47], which shows that FA is superior to PSO and
GA in the Schwefel, Rosenbrock, Ackley, Rastrigin, and Griewank test functions. These results
are the same as the results obtained in this study. However, when faced with relatively new
algorithms, namely RSA and GWO, it turns out that FA's performance is inferior to both. This is
due to RSA's exploration ability, which uses two techniques: high walk and belly walk. Likewise,
two other techniques are used in the exploitation phase: hunting coordination and cooperation.
These four techniques produce great diversity. In addition, the stochastic coefficients of GWO

produce dense solutions to exploit the optimal solution area.
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Table 6. The benchmark functions: F1-F6 for unimodal, and F7-F12 for multimodal

Fuggtions Type Dim Range fmin
F1 Sphere Unimodal 30 [-100, 100] 0
F2 Schwefel 2.22 | Unimodal 30 [-10, 10] 0
F3 Schwefel 1.2 Unimodal 30 [-100, 100] 0
F4 Schwefel 2.21 | Unimodal 30 [-100, 100] 0
F5 Rosenbrock Unimodal 30 [-30, 30] 0
F6 Step Unimodal 30 [-100, 100] 0
F7 Quartic Noise | Multimodal 30 [-1.25,1.28] 0
F8 Schwefel 2.26 | Multimodal 30 [-500, 500] —418.9829
X Dim
F9 Rastrigin Multimodal 30 [-5.12,5.12] 0
F10 Ackley Multimodal 30 [-32, 32] 0
F11 Griewank Multimodal 30 [-600, 600] 0
F12 Penalized Multimodal 30 [-50, 50] 0
Table 7. Comparison of FA, GA, GWO,PSO, and RSA for 12 benchmark functions
Functions Metric FA GA GWO PSO RSA
F1 Sphere Best S.60E+04 | 541E+04 | 5.83E-24 2.80E+05 | 0.00




Worst 8.52E+04 | 9.42E+04 | 6.28E-21 3.00E+05 | 842E-26
Mean 6.77E+04 | 7.67E+04 | 1.31E-21 2.87E+05 | 4.63E-27
STD 7576.46 10078.89 1.84E-21 457247 1.71E-26

F2 Schwefel Best 1.84E+02 | 3.13E+02 | 1.32E-21 5.63E+02 | 3.63E-57

222 Worst 227E+02 | 2.13E+02 | 6.83E-14 5.83E+02 | 1.00E-08
Mean 2.10E+02 | 2.53E+02 [ S.11E-15 5.76E+02 | 1.67E-09
STD 10.99 26.66 1.36E-14 6.59 3.73E-09

F3 Schwefel Best 7TA0E+05 | 5.63E+05 | 4.13E-24 4.15E+06 | 0.00E+00

12 Worst 1.23E+06 1.39E4+06 | 5.80E-21 4.52E+06 | 7.38E-22
Mean 1.04E+06 1.09E+06 | 1.13E-21 4.34E+06 | 2.58E-23
STD 120362.33 | 224568.22 | 1.51E-21 103173.77 | 1.32E-22

F4 Schwefel Best 8.21E+01 8.36E+01 | 1.28E-20 1.00E+02 | 0.00E+00

221 Worst 8.88E+01 0.79E+01 | 6.48E-15 1.00E+02 | 245E-21
Mean 8.61E+01 9.12E+01 | 4.65E-16 1.00E+02 | 1.89E-22
STD 1.99 3.97 1.32E-15 0 5.83E-22

F5 Rosenbrock | Best 145E+08 | 2.07E+08 | 2.87E401 | 2.12E+09 | 2.88E+01
Worst 2.63E+08 | 4.10E+08 | 2.90E4+01 | 2.36E+09 | 2.90E+01
Mean 2.17E+08 | 2.93E+08 | 2.89E+01 | 2.23E+09 | 290E+01
STD 26225079.4 | 48752581 | 0.078 59548404 | 0.04

F6 Step Best 592E+04 | 5.43E+04 | 7.13E-01 2.82E+05 | 7.24E+00
Worst 8.64E+04 | 9.09E+04 | 7.50E+00 | 3.00E+05 | 7.50E+00
Mean 7.09E+04 | 7.34E+04 | 5.38E+00 | 2.89E+05 | 7.37E+00
STD 7046.94657 | 913395 2.33 4186.15 0.12

F7 Quartic Best 308E+09 | 231E+09 | 1.07E401 | 4.12E+10 | 9.32E+00

Noise Worst 6.02E+09 | 7.94E+09 | 1.36E401 | 4.65E+10 | 1.12E+01
Mean 4.69E+09 | 536E+09 | 1.25E+01 | 4.38E+10 [ 1.03E+01
STD 807671301 | 147885086 [ 0.75 1.21E+09 | 049

F8 Schwefel Best 2.52E-02 2.01E+00 | -8.88E-05 |-2.02E+03 | -3.74E-05

226 Worst 4.15E+00 1.52E4+03 | 1.35E-16 1.57E+03 | 0.00E+00
Mean 1 44E+00 1.39E+02 | -1.20E-05 | 3.27E+01 | -2.54E-06
STD 1.27 307.87 2.46E-05 82831 7.23E-06

F9 Rastrigin Best 350E+02 | 3.72E+02 | 0.00E+00 | 8.14E+02 | 0.00E+00
Worst 424E402 | 5.35E402 | 0.00E+00 | 8.68E+02 | 0.00E+00
Mean 386E+02 | 4.62E+02 | 0.00E+00 | 8.40E+02 | 0.00E+00
STD 19.46 4401 0 11.26 0

F10 Ackley Best 580E+02 | 5.88E+02 | 291E+401 |6.10E+02 | 291E+01
Worst 626E+02 | 6.52E+02 | 291E401 | 6.29E+02 | 291E+01
Mean 6.06E+02 | 6.29E+02 | 2.91E+01 | 6.16E+02 | 291E+01
STD 11.65 14.17 0 6.21 0

F11 Griewank | Best 6.96E+02 | 6.66E+03 | 1.64E400 | 3.67E+04 | 3.73E+01
Worst 1.08E+04 1.30E+04 | 5.80E403 | 4.16E+04 | 1.27E+04
Mean 741E+03 | 9.57E+03 | 2.80E+02 | 3.91E+04 | 4.07E+03
STD 2709.47 1488.27 1031.02 977.02 321344

F12 Penalized | Best 485E+04 | 2.57E406 | 2.71E+02 | -2.18E+11 [ 3.60E+00
Worst 3.99E+07 1.69E+10 | 2.71E402 | 6.40E+10 | 2.71E+02




Mean 123E+07 | 2.28E+09 | 2.27E402 | -2.86E+10 | 1.94E+02

STD 11486247.2 | 433100633 | 76.47 6.63E+10 | 98.40

5.2 Evaluation of Empirical Results

This section presents the empirical findings derived from our experimental configuration,
encompassing model validation and assessment. A higher SA value signifies an estimation model's
robustness and statistical significance. A more excellent effect size value indicates a reduced
likelihood that the predictive model was derived by random chance. To address these
considerations, we pose two research questions (RQ):

RQ1: To what extent is P; superior to Py?

RQ2: To what extent do FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP
outperform the Karner+UCP model?

5.2.1 RQ1: The performance of P; versus P,

The five models underwent validation through the assessment of (SA) and ES (A), with the
baseline model being random guessing (Py). As indicated in Table 8, all models achieved SA
values superior to random guessing, with FA+UCP achieving the highest SA value. This
demonstrates that these models were engaged in prediction rather than random guessing, as they
consistently outperformed random guessing. As a result, within the framework of this
investigation, these models produced meaningful and reliable predictions.

On the contrary, all models displayed notably superior ES measurements compared to P,.
FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP demonstrated substantial effect
size improvements. Thus, we can confidently assert that the emergence of these five models was
not a result of random chance. The significance test rendered inconclusive results for all six null
hypotheses, as p-values were below the 0.05 threshold.

Table 8 The outcomes of SA, A, and Sig. are assessed relative to a baseline model of P,

Algorithm SA ES Sig.

FA+UCP 99.7337849077717 1.7306198385471399 | 0.00 (p <0.05)
GA+UCP 99.70517937608656 | 1.729459431930611 | 0.00 (p <0.05)
GWO+UCP 99.71166481163766 | 1.7315092038540898 | 0.00 (p < 0.05)
PSO+UCP 09.71243041125878 | 1.7279026606546029 | 0.00 (p < 0.05)




RSA+UCP 09.72075459687476 | 1.7289635371943752 | 0.00 (p < 0.05)

52.2 RQ2: The performance of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and
RSA+UCP versus Karner+UCP model

The validation process of the five models was conducted using the Karner+UCP model as the
reference point. The selection of the Karner model is based on its significance as a fundamental
reference in the realm of effort estimation studies utilizing the UCP approach. Numerous prior
studies, such as those referenced in [57], [50], [58], and [33], have employed the Karner model for
comparative purposes in their investigations.

Based on Table 9 concerning the effect size, it is worth highlighting that all the models exhibited
substantially more significant effect size enhancements than the Karner+UCP model. These
enhancements exceeded the thresholds indicative of medium to significant effects, which can be
practically meaningful. Consequently, we can confidently assert that these five models did not
arise by chance since the significance test yielded rejection for all four null hypotheses.

Table 9 SA, A, and Sig. results are evaluated with the baseline model being Karner+UCP

Algorithm Standardized Accuracy A Sig.

FA+UCP 44.17589661527976 0.6380015048902027 | 0.00 (p < 0.05)
GA+UCP 38.891466757195836 0.5616821891487283 | 0.00 (p < 0.05)
GWO+UCP | 38.736842824674646 0.5594490640918746 | 0.00 (p < 0.05)
PSO+UCP 39.97863138376142 0.5773833456833154 | 0.00 (p < 0.05)
RSA+UCP 41.60756357990875 0.6009088714141645 | 0.00 (p < 0.05)

Next, we assess the performance of all models to determine the optimum solution obtained for the
estimated UCP effort. Table 10 provides an overview of the examination results, assessed using
six key metrics: the best optimal solution, the least favorable solution, the average solution, the
standard deviation (STDev), MBRE, and MIBRE. The following sections further elaborate on
these metrics to comprehensively understand the results.

In the context of UCP estimation, FA+UCP delivers the best solution among all the algorithms.
However, when considering the worst and mean solution metrics, GA+UCP performs the worst
and highest mean solution. This discovery is consistent with previous research [24], which also

demonstrated that the GA+UCP algorithm performed inadequately in UCP effort estimation.




Table 10 Comparison of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP for UCP

estimation method

Method Best Worst Mean Median | StDev MBRE | MIBRE
FA+UCP 1008.4625 | 1008.5421 | 1008.4916 | 753.59 | 0.019 0.2689 | 0.1541
GA+UCP 1084.5897 | 1128.3754 | 1108.6966 | 826.87 |8.3154 |[0.3123 |0.1701

GWO+UCP 1082.8284 | 1123.9388 | 1100.0671 | 821.24 | 10.8890 | 0.3057 | 0.1680
PSO+UCP 1069.7307 | 1107.0869 | 1090.2106 | 771.72 | 8.7341 | 0.2821 | 0.1663
RSA+UCP 1054.8891 | 10554724 | 1054.9256 | 753.59 |0.1368 | 0.2764 | 0.1613

Table 10 shows that the FA+UCP has performed better than the existing algorithms regarding
different key metrics, but these results need validation. In this section, a statistical analysis was
carried out to examine the characteristics of various algorithms. The Wilcoxon rank-sum test was
utilized to assess the comparative effectiveness of the algorithms employed in this investigation.
The selection of the Wilcoxon rank-sum test was based on the fact that the experimental data used
for this analysis does not need to adhere to any specific distribution and has less effect caused by
outliers [59].

The Wilcoxon test results for all algorithms are shown in Table 11. The table shows that the p-
values for most algorithms except GWO+UCP versus GA+UCP are less than 0.05. Hence, we can

conclude that the FA+UCP algorithm has significantly improved over other existing algorithms.

Table 11. The p-value results from the Wilcoxon-rank sum statistical test for each metaheuristic
optimization algorithm, along with Friedman mean rank (FMR)

FA+UCP GA+UCP GWO+UCP | PSO+UCP RSA+UCP
3.007E-13 24298E-13 0.000060 0.000196
0.237863 0.006960 0.002346

FA+UCP
GA+UCP

3.007E-13

GWO+UCP 24298E-13 0.237863 0.010603 0.005171
PSO+UCP 0.000060 0.006960 0.010603 0.005062
RSA+UCP 0.000196 0.002346 0.005171 0.005062

FMR 1.73 3.94 4.10 2.76 2.66
Rank 1 4 5 3 2




Figure 4 presents a plot showing the actual and estimated effort values between FA+UCP and
Karner+UCP models. The x-axis represents the project instance, while the y-axis represents the
value of effort. The continuous black line represents the value of actual effort, while the dotted
blue and orange represent the estimated effort value produced by FA+UCP and Karner+UCP
models. In all cases, the models aim to produce estimated values that closely align with the actual
effort values. When the dotted blue or orange approaches and aligns with the solid black line, it
indicates an accurate estimation by the model. As evident from the results, it can be observed that
FA+UCP exhibits the highest proximity to the actual regression line, implying that the model was
estimated with the highest degree of accuracy.

FA+UCP closely approximates the regression line, indicating that the model has been estimated

with the highest degree of precision.
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Figure 4. The plot showing both the actual and estimated effort values between FA+UCP and
Karner+UCP models

In order to assess whether the optimization method is effective in finding optimum solutions for
UCP functions, further detailed analysis has been carried out. The convergence behavior

comparison of each optimization method from test data number 3 is shown in Figure 5. The




comparison reveals that FA+UCP and PSO+UCP exhibit a faster convergence rate when compared

with GWO+UCP, GA+UCP, and RSA+UCP since the second iteration.
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Beyond convergence analysis, we also investigated diversity analysis for optimal solutions on the
benchmark algorithms with UCP estimating methods, as shown in Figure 6. We see that the median
values of FA+UCP, PSO+UCP, and RSA+UCP are lower than those of GWO+UCP and

GA+UCP. From the interquartile perspective, all optimization-based algorithms show a similar

Figure 5. Convergence behavior comparison of all optimization methods

shape size, indicating that these models have the same spread.
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Figure 6. Best solution diversity analysis of all models

As detailed in section 5.1, RSA and GWO consistently outperformed FA across all benchmark test
functions. However, in the evaluation of UCP estimation, FA+UCP exhibited superior
performance compared to RSA+UCP and GWO+UCP. This finding aligns with a prior study
conducted by [15], which employed COCOMO as the estimation method and indicated that FA
outperforms GA and PSO. The rationale behind this lies in the ability of FA+UCP to maximize
the efficiency of UCP convergence by handling smaller dimensional sizes effectively. This is
critical because larger dimensional sizes tend to result in suboptimal performance for optimization
algorithms, as previously documented by [60], [61]. Furthermore, GWO+UCP underperformed
compared to FA+UCP due to its optimal performance conditions being defined with population
sizes of 50 and a maximum of 600 iterations [62]. In contrast, in our study, the parameter settings

only three dimensions and a maximum of 20 iterations.

6. Threats to Validity




Simple, average, and complex actors in the dataset were determined by previous researchers and
are publicly available. However, we are not aware as to how they were calculated. Thus, the
accuracy of the actors cannot be confirmed. This is a possible threat to construct validity.

This study utilizes only one dataset, which raises concerns about the generalizability of the results.
Neverthless, the dataset employed is an industrial dataset created by proficient developers.
Consequently, the findings may be applicable to software industrial practices. Furthermore, the
dataset predominantly employ the waterfall development methodology, indicating that the
conclusions drawn may not be transferable to the agile methodology.

One possible threat to external validity in this study is the set of metaheuristic algorithms explored
(GA, PSO, GWO, RSA, and FA). Metaheuristic is vast and dynamic field, and any individual
study can only utilize a limited subset of the numerous known metaheuristic algorithms. For
instance, this study does not investigate Salp algorithms, which were emphasized by Tawhid and
Ibrahim [63]. In practical terms, it is not feasible to examine all conceivables algorithms. The most
we can do is establish our experimental procedure and anticipate that other researchers will

implement it with a different set of metaheuristic algorithms.

7. Conclusions

This study suggests that the FA+UCP model exhibited outstanding results compared with
GA+UCP, PSO+UCP, GWO+UCP, and RSA+UCP. As a result, the FA+UCP model introduced
in this study can be valuable for improving the Use Case Point (UCP) estimation performance. Its
high accuracy and ability to search appropriate use case complexity weight make it a promising
tool for UCP to provide more accurate software effort estimation. Hence, the findings of this study
hold practital implications for software project managers. They can utilize the UCP estimation
method which is optimized using the Firefly algorithm.

It must be borne in mind that the parameter configuration of FA+UCP in this study, which is o =
0.5,y =1, was found to be weak in 12 classical test functions but excelled in the UCP effort
estimation evaluation. Therefore, further research is needed to identify the optimal configuration
for the Firefly algorithm to excel in both classical benchmark test functions and UCP effort

estimation evaluations.
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