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ABSTRACT

The advancement of clustering heuristics has demonstrated that the
addresses of Bitcoin, which are protected by their anonymous mech-
anisms, can be de-anonymized. While the state-of-the-art (SOTA)
clustering heuristics focus on confirmed transactions stored in the
blockchain, they ignore unconfirmed transactions in the mempool.
These unconfirmed transactions contain information about trans-
actions before being stored in the blockchain, covering additional
address associations that can improve Bitcoin address clustering.
In this paper, we bridge the gap by combining confirmed and
unconfirmed transactions for effective Bitcoin address clustering.
First, we introduce a reliable data collection framework to collect
both confirmed and unconfirmed Bitcoin transactions. Second, we
propose two novel clustering heuristics that exploit specific behav-
ior patterns in unconfirmed transactions and uncover additional
address associations. Finally, we construct a labeled dataset and
experimentally show that the effectiveness of our proposed cluster-
ing heuristics, improving recall by at least three times with higher
precision compared to the SOTA clustering heuristics. Our findings
show the value of unconfirmed transactions for Bitcoin address
clustering and further reveal the challenges of achieving anonymity
in Bitcoin. To the best of our knowledge, our study is the first to
explore unconfirmed transactions for Bitcoin address clustering.
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« Security and privacy — Pseudonymity, anonymity and un-
traceability.
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1 INTRODUCTION

Introduced in 2008, Bitcoin [28] provides a pseudo-anonymous pay-
ment system that tries to decouple a user’s real identity from his
Bitcoin addresses. Bitcoin utilizes the blockchain as the distributed
ledger. In Bitcoin, when a transaction is initiated, it is stored in a
temporary storage of unconfirmed transactions, commonly referred
to as the mempool. An unconfirmed transaction becomes a con-
firmed transaction only when stored in a confirmed block of the
blockchain. Notably, a new confirmed transaction is considered ir-
reversible when the blockchain receives five confirmed blocks after
the transaction [4]. Furthermore, some unconfirmed transactions
may become failed transactions with no chance of being confirmed.

In Bitcoin transactions, users can generate an unlimited number
of new addresses for various transactions to hide their real identities.
The pseudo-anonymous ecosystem of Bitcoin has attracted an in-
creasing number of users, including criminals who leverage Bitcoin
to obfuscate their real identities during the transfer of illicit funds.
To deal with such criminal activities in Bitcoin, a large number of
studies focus on Bitcoin de-anonymization. Central to this domain
is the notion of Bitcoin address clustering [48], which aims to iden-
tify multiple addresses controlled by the same entity. At present, the
clustering heuristic stands as the predominant method for Bitcoin
address clustering, which achieves address clustering by analyzing
behavior patterns in confirmed transactions [17, 18, 26, 35, 39, 41].
For instance, transactions with multiple inputs usually arise when
a user lacks an Unspent Transaction Output (UTXO) that has suf-
ficient bitcoins to cover the payment. One straightforward idea,
known as the co-spend heuristic [17, 26, 39], considers that all in-
put addresses in a Bitcoin transaction belong to the same entity. In
practice, clustering heuristics find extensive application in various
domains, including case investigations [5, 9, 30] and the tracking
of illicit funds [13, 22, 41], particularly within firms specializing in
blockchain data analytics, such as Chainalysis [3].

However, the state-of-the-art (SOTA) clustering heuristics focus
only on confirmed transactions but ignore unconfirmed transac-
tions, leading to numerous undiscovered address associations. On
the one hand, some unconfirmed transactions will not be stored in
the blockchain if they become failed transactions. Consequently,
the SOTA clustering heuristics miss potentially valuable address
associations hidden in these failed transactions. On the other hand,
unconfirmed transactions can provide important insights into the
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state of transactions before being stored in the blockchain. For
example, to incentivize miners to store a user’s unconfirmed trans-
action in the blockchain more quickly, the user may initiate a new
transaction with a high fee that spends the UTXO(s) of the un-
confirmed transaction. This behavior forms a dependency chain
in the mempool that contains address associations. However, the
dependencies among transactions are not stored in the blockchain
later. Thus, focusing only on confirmed transactions cannot capture
such insight.

In this paper, we present a practical approach for improving
Bitcoin address clustering, leveraging both confirmed and uncon-
firmed transactions. First, we introduce a reliable data collection
framework, including two sub-components: Confirmed Transac-
tion Collector (CTC) and Unconfirmed Transaction Processor (UTP).
Hereby, CTC, which utilizes a single node running a Bitcoin client
Bitcoin Core, is responsible for copying confirmed transactions in
the blockchain. UTP is responsible for recording and processing
unconfirmed transactions in real time. It comprises five nodes, each
of which runs a modified Bitcoin Core. Subsequently, we propose
two novel clustering heuristics specifically designed for uncon-
firmed transactions, leveraging the Replace-by-fee (RBF) proposed
by Bitcoin Improvement Proposal (BIP)125 [11] and the uncon-
firmed transaction dependency chain mentioned in BIP141 [24].
To validate our approach, we construct a labeled dataset based on
Bitcoin ordinal inscriptions [36] and demonstrate that our approach
improves the recall by at least three times with higher precision
compared to the SOTA clustering heuristics. The increase in recall
indicates that our approach uncovers additional address associa-
tions, thus reducing entities incorrectly clustered. Furthermore, we
show that our approach reduces the number of entities in the clus-
tering results of the SOTA clustering heuristics by at least 20.28%,
which can reduce the error of addresses that should belong to the
same entity, but being clustered into multiple entities. Finally, we
find that unconfirmed transactions have a greater impact on the
clustering results for future periods than those from past periods.

To the best of our knowledge, our study is the first to explore un-
confirmed transactions to cluster addresses in Bitcoin. In summary,
our main contributions in this paper are threefold:

o Novel heuristics: We propose two novel clustering heuristics to
uncover additional address associations by analyzing the specific
behavior patterns in unconfirmed transactions, in order to im-
prove Bitcoin address clustering. Experimental results show that
our proposed clustering heuristics can effectively utilize uncon-
firmed transactions to uncover address associations, significantly
improving recall by at least three times with higher precision.
Data collection: We introduce a reliable data collection frame-
work to record and process unconfirmed transactions in Bitcoin
in real time. We release a part of the dataset? as a benchmark for
future studies.

Labeling method: We present a method for constructing a la-
beled dataset based on Bitcoin ordinal inscriptions. This method
addresses, to some extent, the critical issue in the field of Bitcoin

! https://bitcoin.org/en/releases/22.0/
2See details at https:/drive.google.com/drive/folders/1Ve5p9qro8zh6IVelLqQMB4ALS
vdhLjiT?usp=sharing
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Figure 1: Life-cycle of a Bitcoin transaction.

address clustering, i.e., the lack of labeled datasets to validate clus-
tering results. In this paper, we construct and release a dataset?
encompassing 20 entities and 62,971 addresses.

2 BACKGROUND
2.1 Mempool in a Bitcoin Node

Bitcoin is established on a set of Bitcoin nodes, each of which stores
a ledger of confirmed transactions. Bitcoin blockchain acts as the
distributed ledger.

As shown in Figure 1, before a transaction is stored in the
blockchain, it (as an unconfirmed transaction) is temporarily stored
in the mempool of a node. The node will validate the transaction
that is from other nodes or initiated by itself based on established
criteria, such as signature validity. If the transaction meets the
established criteria, the node will add the transaction to its mem-
pool. Miners select transactions from their own mempools and then
store these transactions in a block. They compete to append the
block to the blockchain through proof-of-work. The winning miner
propagates his block to other nodes, while other nodes append
the block to their own ledgers. When the block is appended to the
ledgers of all nodes, it indicates that the block is appended to the
blockchain. Then, transactions in the block become confirmed trans-
actions. Note that some unconfirmed transactions might never get
confirmed due to, e.g., paying insufficient fees. These transactions
are considered as failed transactions.

Each unconfirmed transaction in the mempool has some addi-
tional fields, e.g., replaceable, time, depends, and spentby, which are
not present in confirmed transactions. The latter three fields are
exclusively available when a transaction is in Bitcoin mempool and
disappear once the transaction is confirmed. (1) The field replace-
able is a Boolean value, indicating whether this transaction can be
replaced by another transaction. (2) The field time annotates the
moment at which the transaction enters a particular node’s mem-
pool that may exhibit minor variances across different mempools.
(3) The field depends of a transaction records unconfirmed trans-
actions whose UTXO(s) is spent by this transaction. (4) The field
spentby of a transaction records unconfirmed transactions spending
outputs of this transaction. These fields contain rich information
about a transaction before it is confirmed, which can be utilized in
our study for Bitcoin address clustering.

3See details at https://github.com/UnconfirmedTransactions/LabeledDataset
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Figure 2: Our approach for Bitcoin address clustering by combining unconfirmed transactions and confirmed transactions.

2.2 Bitcoin Address Clustering

The SOTA clustering heuristics rely on behavior patterns in con-
firmed transactions to uncover address associations. For example,
the co-spend heuristic considers that all inputs of a transaction
are controlled by the same entity. In practice, however, a few stud-
ies [13, 17, 18] advocate the exclusion of Coinjoin transactions [25]
before applying the co-spend heuristic. This is mainly because Coin-
join transactions employ a trustless method for combining multiple
Bitcoin payments into a single transaction, thereby obfuscating the
relationship between senders and recipients.

In addition, various heuristics, known as the change heuristics,
have been introduced in previous studies [1, 6, 7, 18, 26]. In Bitcoin,
a UTXO represents a certain amount of bitcoins. It is an indivisible
unit and must be fully spent in a transaction. This requires senders
to use a change address to receive the remaining bitcoins. Thus, the
address of the sender (the input address) and the change address
should be controlled by the same entity. For such heuristics, it is
key to identify change addresses in transactions.

So far, the SOTA clustering heuristics focus only on behavior
patterns in confirmed transactions, but ignore the additional infor-
mation of unconfirmed transactions.

3 APPROACH
3.1 Overview

As shown in Figure 2, our approach consists of two components:
Data Collector and Heuristics Executor. Data Collector contains
two sub-components: Confirmed Transaction Collector (CTC) and
Unconfirmed Transaction Processor (UTP). CTC copies confirmed
transactions from the ledger of a node, while UTP collects and
processes unconfirmed transactions. Data Collector subsequently
transfers both confirmed and unconfirmed transactions to Heuris-
tics Executor. Then, Heuristics Executor, consisting of our proposed
clustering heuristics and the SOTA clustering heuristics, clusters
Bitcoin addresses.

3.2 Data Collector

CTC. As shown in Figure 2, CTC with one node running a Bitcoin
client, referred to as Bitcoin Core, copies confirmed transactions
from the ledger of the node. As a consequence of the Taproot
upgrade of Bitcoin, a new address type known as Taproot address
has been introduced [44]. Notably, BlockSci [17], a widely used
Bitcoin transaction parsing tool, is unable to parse this address
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Figure 3: The number of transactions collected vs. the number
of nodes running a modified Bitcoin core.

type. We optimize BlockSci as BlockSci-modified*, which can parse
Taproot addresses, thereby ensuring the integrity of our dataset.
UTP. UTP consists of a set (five in this paper) of nodes, each of
which runs a modified Bitcoin Core. It aims to collect as many
unconfirmed transactions as possible in Bitcoin. Here, UTP tries to
solve two key issues as follows:

(1) How can UTP collect unconfirmed transactions in real time?
When using the Remote Procedure Call interface provided by Bit-
coin Core to collect unconfirmed transactions, the first call has to ob-
tain hashes of unconfirmed transactions in the mempool presently.
Then, the second call retrieves detailed transactions based on these
hashes. Due to the time gap between these two calls, part of the
transactions may be removed from the mempool, resulting in miss-
ing these removed transactions. To collect unconfirmed transactions
in real time, we modify Bitcoin Core. Our modified Bitcoin Core®
monitors the arrival of all transactions and record them in real time.

(2) How can UTP collect unconfirmed transactions in Bitcoin as
many as possible? Due to multiple factors such as the decentralized
network of Bitcoin, network latency, and bandwidth limitations,
unconfirmed transactions received by different nodes might vary.
To achieve a comprehensive collection of unconfirmed transactions
in Bitcoin, we perform experiments to evaluate the completeness of

4See details at https://github.com/UnconfirmedTransactions/BlockSci-modified
5See details at https://github.com/UnconfirmedTransactions/BitcoinCore-modified
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unconfirmed transactions collected by UTP. We increase the num-
ber of nodes and measure the number of deduplicated unconfirmed
transactions collected per day from May 1, 2022 to May 7, 2022.
Figure 3 shows that the number of deduplicated unconfirmed trans-
actions rarely increases when the number of nodes reaches five.
Similarly, as shown in Appendix A, the total number of unconfirmed
transactions shows almost no increase when the number of nodes
exceeds 5. That is, UTP can collect approximately all unconfirmed
transactions in Bitcoin when deploying five nodes. Therefore, we
deploy five nodes, each of which runs a modified Bitcoin Core, to
collect as many unconfirmed transactions as possible in Bitcoin.

As shown in Appendix B, there are some extra fields of an un-
confirmed transaction in the mempool. In this paper, we focus on
seven fields, i.e., fee, vsize, time, removetime, depends, spentby, and
replaceable, which are relevant to subsequent analysis of behavior
patterns in unconfirmed transactions.

Finally, we build a mempool state database for the mempools
of five nodes. In the database, we set time and removetime as in-
dexes for each unconfirmed transaction. Given a specific time, the
database is able to retrieve every unconfirmed transaction in each
mempool at the moment. Note that a transaction output may be
spent by multiple unconfirmed transactions. We make two adjust-
ments to the original transaction structure. Specifically, the first
field output.is_spent, a Boolean type, indicates whether the output
has been spent by transactions. The second field output.spent_tx is
a list containing hashes of transactions that spend this output.

Since failed transactions are removed from the mempool and no
longer exist in Bitcoin, we can simply identify failed transactions by
excluding confirmed transactions from unconfirmed transactions.

3.3 Novel Clustering Heuristics

We explore two mechanisms in unconfirmed transactions to design
novel clustering heuristics.

(1) Replace-by-fee (RBF) [11]. It allows a sender to replace their
unconfirmed transaction by initiating another transaction that pays
a higher fee. Due to the limitation of fixed block size, miners give
priority to transactions with a higher feerate (fee/vsize) to maximize
their profit. Note that a transaction can only be replaced when the
field replaceable of the transaction is set to true.

(2) Unconfirmed transaction dependency chain [24]. The Bit-
coin mempool is designed to accept unconfirmed transactions that
spend UTXO(s) of other unconfirmed transactions. The user can
initiate a new transaction to spend UTXO(s) of his unconfirmed
transactions. As a result, it is common to form an unconfirmed trans-
action dependency chain in the mempool. In a dependency chain,
each unconfirmed transaction spends UTXO(s) of the preceding
unconfirmed transaction, which in turn spends UTXO(s) of another
unconfirmed transaction, and so forth. Dependency chains typically
form for two reasons. One is that users want miners to store their
multiple transactions in the blockchain at one time, without waiting
for a transaction to be confirmed before initiating a new one that
spends UTXO(s) of the transaction. The other reason is related to
a transaction pattern known as Child-Pays-for-Parent (CPFP). To
incentivize miners to store the parent transaction of a user in the
blockchain early, the user can initiate a child transaction that pays
a high fee and spends UTXO(s) of the parent transaction.
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For the first mechanism, we design a clustering heuristic, replace-
ment change shown in Figure 2, to identify the change address.

Replacement Change heuristic. Let T denote a set of transactions,
defined as T = {tx1,tx2,...,txp} with n > 2. We identify the
change address if (1) the field replaceable of each transaction in
T is True; (2) transactions in T spend the same UTXO; (3) fees
of transactions in T increase as the field time increases; and (4)
the address appears in the output of each transaction in T and the
amounts received by the address decrease as the field time increases.

This heuristic works for the following reason. In real-world trade
of goods, the price of goods is typically negotiated between two
parties and does not change arbitrarily. When the sender increases
the fee, the amount paid to the recipient remains the same, while
the amount received by the change address decreases. As shown in
Figure 4, txy, tx3, and tx4 all attempt to spend the 0.35 BTC in addr;.
When the fee increases, the amount received by addrs remains the
same, and the amount received by addrs decreases. Therefore, we
can identify addr,, which consistently receives the same amount, as
the recipient address, and identify addrs, which receives a gradually
smaller amount, as the sender’s change address.

For the second mechanism, we design another clustering heuris-
tic, dependency chain shown in Figure 2, for the unconfirmed trans-
action dependency chain.

Dependency Chain heuristic. Let T denote a sequence of uncon-
firmed transactions, defined as T = (tx1, txo,...,tx,) withn > 2.
Each transaction txy. in the range 2 < k < n spends partial outputs
of the previous transaction txj_1, denoted as Op_;. Considering
that tx; is the first transaction and spends outputs of confirmed
transactions, we use Oy to represent all inputs of tx;. For every k
in the range 2 < k < n, if (1) the hash of txy. is in the field spentby
of txj_q; or (2) the hash of tx;_; is in the field depends of txy, all
transactions in T are initiated by one same entity, i.e., UZzOOk are
all controlled by the same entity.
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This heuristic works for two reasons. First, in the design of popu-
lar Bitcoin wallets like Binance, Coinbase, Electrum, and BlueWallet,
users can view and spend UTXO(s) of unconfirmed transactions
initiated by themselves. To protect funds for users, these wallets
do not allow users to view and spend UTXO(s) sent to them in
the unconfirmed transactions initiated by others. Second, a Bit-
coin transaction is considered irreversible when it is stored in the
block and then five new blocks are added to the blockchain. For
commercial trades, users do not use unconfirmed transactions as
an indicator of fund arrival or spend UTXO(s) of unconfirmed
transactions. Instead, they have to wait for new blocks to ensure
transaction security and irreversibility. As a result, transactions
between different entities do not form an unconfirmed transaction
dependency chain.

As shown in Figure 5, we can identify two dependency chains:
(tx1, txo, tx4) and (tx1, tx2, txs5), while the three transactions tx1,
tx3, and txg, as well as the two transactions tx1 and tx3, do not form
a dependency chain. Applying this new heuristic, we can cluster
{addry, addry, addrs} into the first entity and {addro, addry, addrs}
into a second entity. These two entities can be further merged into
a larger entity due to the common address addr in both clusters.

Note that our proposed heuristics aim to uncover address associ-
ations that are beyond the scope of the SOTA clustering heuristics,
rather than replacing them. The final clustering result is the com-
bination of the results of the SOTA clustering heuristics and our
proposed heuristics.

4 EVALUATION

To evaluate the effectiveness of our approach, this section presents
the experimental results to address three key issues as follows:

(1) Clustering result validation. Is the clustering result of our
approach accurate, and does our approach possess the capability
to uncover additional address associations? (Section 4.3)

(2) Impact measurement. How much impact does our approach
have on the clustering results of the SOTA clustering heuristics?
(Section 4.4)

(3) Temporal analysis. What pattern does the impact of our ap-
proach show across different periods? (Section 4.5)

4.1 Dataset

We collect a total of 116,514,258 unconfirmed transactions (from
May 1, 2022 to May 31, 2023). Among these, 113,296,795 (97.24%)
unconfirmed transactions become confirmed transactions, while the
rest of them (2.76%) become failed transactions. These confirmed
transactions involve 179,352,220 Bitcoin addresses, while the failed
transactions involve 12,366,745 Bitcoin addresses, 843,892 of which
are not recorded in any confirmed transactions. Two case studies in
Appendix C show the presence of behavior patterns in unconfirmed
transactions, while not present in confirmed transactions.

Among all unconfirmed transactions, 44,558,888 (38.24%) have
the field replaceable set to true, indicating their potential for replace-
ment by other transactions. Within this subset, 3,217,463 (2.76%)
are actually replaced and end up as failed transactions. Additionally,
26,060,639 transactions (22.37%) have non-null values for the field
depends or spentby, indicating the formation of dependency chains.
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4.2 Baseline

As shown in Figure 2, we employ six SOTA clustering heuristics as
the baseline.

Co-spend (short for CS) considers all inputs of a transaction are
controlled by the same entity if the transaction is not a Coinjoin
transaction. We use the algorithm developed by Goldfeder et al. [7]
to determine whether a transaction is a Coinjoin transaction.
Androulaki et al. (short for A) [1] identify the change address of
a transaction sender if (1) the transaction must have exactly two
outputs; and (2) the address is the only fresh address in the outputs,
meaning that it has not been previously used in the blockchain.
Meiklejohn et al. (short for M) [26] identify the change address of a
transaction sender if (1) the transaction is not a coinbase transaction;
(2) the address is the only fresh address in the outputs; and (3) there
is no address used as both an input and an output in this transaction.
Goldfeder et al. (short for G) [7] utilize the criteria established by
Meiklejohn et al. [26], but they also add a further condition: (4) the
transaction cannot be a Coinjoin transaction.

Ermilov et al. (short for E) [6] identify the change address of a
transaction sender if (1) the number of inputs is not two; (2) the
transaction has exactly two outputs; (3) there is no address used
both as an input and an output in the transaction; (4) the address is
the only fresh address in outputs; and (5) the amount received by
the address is precise to a minimum of four decimal places.
Kappos et al. (short for K) [18] identify the change address of a
transaction sender if (1) the transaction is a node in a peel chain;
(2) the amount received by the address is spent and the spent trans-
action is also a node in the peel chain.

To describe experimental results clearly, we assign a name to
each clustering result, composed of the heuristic and the state of
transactions. The SC clustering result refers to the result of apply-
ing one of the SOTA clustering heuristics to confirmed transactions.
The SF clustering result refers to the result of applying one of the
SOTA clustering heuristics to failed transactions. The NU cluster-
ing result refers to the result of applying our proposed clustering
heuristics to unconfirmed transactions. We denote the merging of
clustering results with a plus sign. For instance, SC+SF represents a
merge of SC and SF clustering results under the same heuristic. In
cases where no heuristic is applied, we refer to it as None, with each
address being considered as an isolated entity. Note that merging
the SC and SF clustering results essentially represents applying the
SOTA clustering heuristics to unconfirmed transactions.

4.3 Clustering Result Validation

To validate clustering results, we construct a labeled dataset and
analyze the clustering results from multiple metrics.

Labeling method. Validating clustering results requires the avail-
ability of labeled datasets. However, there is no publicly available
labeled dataset since our dataset is relatively recent. Thus, we pro-
pose a labeling method to validate our clustering results.

The labeling method is based on Bitcoin ordinal inscriptions [42].
Bitcoin ordinal inscriptions are digital assets created by attaching
information to an individual satoshi, the smallest denomination
in Bitcoin, through the Ordinals protocol [36]. Two features are
worth noting in this protocol. First, creating an individual ordinal
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Table 1: Number of addresses per collection that we collect.

Name Number ‘ name Number
DogePunks 11,596 | Battle of BTC 11,118
BTC Virus 9,993 | Bixels 10,024
Bitcoin Crypto DickButts 8,195 | Mesh Beatles 3,305
OrdiRats 2,317 | Bsos 1,819
420 Rabbits 1,192 | Block Gods 1,049
Taproot Cows 557 | Pixel Panda Wars 399
STARBREEDER 374 | bitCroSkull 334
Cubic A: Kaz Marquis 196 | Familiar Fronks 169
Majo 110 | Ordinal Cat Warriors 102
10? Islands 101 | iDclub Pass 21

inscription must follow a two-phase procedure: a commit transac-
tion and a reveal transaction [36]. Thus, both commit and reveal
transactions are initiated by the same entity. Second, an ordinal
inscription collection consists of a set of individual ordinal inscrip-
tions. In the early stages, it is common to employ off-chain data
and social consensus to establish the attribution of inscriptions to
specific collections. After the parent-child inscription mechanism is
introduced, it is utilized to create collections, with child inscriptions
being created exclusively by the owner of the parent inscription,
resulting in all children being members of the same collection [36].
Thus, all ordinal inscriptions of a collection are created by the same
entity. In summary, the input addresses of both commit and reveal
transactions for each inscription in a collection are controlled by
the same entity (see more details in Appendix D).

The specific process of the labeling method is given as follows.
First, we gather a Bitcoin ordinal inscription collection, defined
as S = {01,02,...,0n} with n > 2. For each ordinal inscription o
in S, we identify its corresponding commit transaction ctx; and
reveal transaction rtxp. Next, we extract the input addresses of
transaction ctxj and rtxg in the range 1 < k < n, denoted as Ii.
Finally, we consider UZ:OIk are controlled by the same entity.

For this paper, we sample collections based on the creation time
and the size, ensuring that our dataset can reflect the entire ordinal
inscription ecosystem. As a result, we gather 20 collections (entities)
from the website [31] and label 62,971 addresses as the validation
dataset, as shown in Table 1. The creation time of these collections
spans each month from February 2023 to May 2023. Besides, these
collections encompass a variable quantity of addresses, ranging
from several dozen to over ten thousand.

Validation metrics. We measure clustering results from two as-
pects. First, we show the number of entities successfully identi-
fied (N). Second, we evaluate the quality of addresses in each identi-
fied entity through four metrics: Precision (P), Recall (R), Weighted
Precision (WP), and Weighted Recall (WR). The first two metrics
are commonly used in the study [2], while the last two metrics are
introduced in the study [41]. The definitions of these four metrics
are as follows, where m denotes the total number of entities, i.e.,
20, and E; denotes ith entity. Addresses of E; are clustered into
n clusters, with c;; representing the jth cluster of E;. We denote
the union of these clusters as C;. We use the set v;; to denote the
addresses of Ei that are clustered into the cluster c;;. We denote the
union of vj; as V;. wyj represents the proportion of the set ¢;; within
entity E;. The greater the number of addresses within a cluster, the
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Table 2: Comparison between our proposed clustering heuris-
tics and SOTA clustering heuristics.

Heuristics N P(%) R(%) WP(%) WR(%)
CS 8 0.09 4.47 7.37 2.81
CS+NU 18 94.27 74.32 42.23 18.73
CS+A 10 28.49 3.93 14.11 2.85
CS+A+NU 16 94.49 59.58 35.53 18.24
CS+M 12 5529 11.84 11.75 0.24
CS+M+NU 15 90.29 52.04 27.89 6.23
CS+G 12 5529 11.84 11.75 0.24
CS+G+NU 15 90.29 52.04 27.89 6.23
CS+E 9 3543 4.96 11.96 2.81
CS+E+NU 18 9458 73.87 42.15 18.74
CS+K 12 75.21 12.46 12.52 8.32
CS+K+NU 16 90.43 77.53 27.72 16.28

more accurately it reflects the characteristics of the entity and, thus,
the higher its significance in the clustering results.

_XE il _ X5 vl
ey it |Eil
m n m n
1 Vi 1 Z}..l
wp= LS Sl wr LSS,
mF = G (==l
n n |Cl]|
where v;; = E; N ¢y, V; =Uuij, Ci=| Jecij, wj= .
= = ICil

Validation results. Table 2 demonstrates the effectiveness of our
proposed clustering heuristics compared to the SOTA clustering
heuristics. Our proposed clustering heuristics identify more enti-
ties while achieving a precision of over 90%. Notably, our proposed
heuristic significantly improves recall. Even in the smallest improve-
ment cases CS+M and CS+G, our proposed clustering heuristics still
improve recall by three times with higher precision. This indicates
that our proposed clustering heuristics can uncover many addi-
tional address associations that are beyond the scope of the SOTA
clustering heuristics. Both weighted precision and weighted recall
exhibit a significant improvement, further showing our proposed
clustering heuristics can uncover additional address associations
and identify more addresses belonging to the same entity. Signifi-
cantly, the results for both CS+M and CS+G are identical. This is
because CS already achieves the exclusion of Coinjoin transactions,
which is the sole distinction between CS+G and CS+M.

4.4 Impact Measurement

Building upon the effectiveness of our proposed clustering heuris-
tics, we measure their impact on the SC clustering results.

Settings. We apply the SOTA clustering heuristics to failed transac-
tions and our proposed clustering heuristics to unconfirmed trans-
actions to uncover additional address associations. When no cluster-
ing heuristic is applied, we consider each address in the confirmed
transactions as an isolated entity, i.e., 179,352,220 isolated entities.
Measurement metric. We employ the reduced number of entities
in the clustering results as the metric to measure the impact of our
approach. Suppose the SOTA clustering heuristics cluster addresses
of an entity into n clusters, denoted as {C1,Ca, ...,Cp} with n > 2.
Our proposed clustering heuristics produce an additional cluster,
denoted as Cpy1. If Cpy1 NC; # O for i in the range 1 < i < n,
Cn+1 can merge these n clusters, reducing the number of entities.
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Figure 6: Comparison of the number of entities in the SC clustering result and other three clustering results. While an isolated
entity contains only one Bitcoin address, a non-isolated entity contains multiple Bitcoin addresses.

Note that C; may contain only one Bitcoin address for i in the range
1 < i < n.Hence, the reduction in the number of entities reflects the
ability of our approach to reduce errors where addresses belonging
to the same entity are clustered into multiple entities.

Measurement results. Figure 6(a) shows the impact of failed trans-
actions on the SC clustering results. The SC+SF clustering result
has a reduced number of entities compared to the SC clustering
result across various SOTA clustering heuristics. Notably, the most
significant reduction is observed in the result of the CS heuristic,
with a reduction of 1,770,474 entities (2.41% of the total entities).
This highlights that failed transactions contain additional address
associations that are currently ignored.

Figure 6(b) shows the impact of our proposed clustering heuris-
tics on the SC clustering results. The SC+NU clustering result has
significantly fewer entities than the SC clustering result across vari-
ous clustering heuristics. Notably, the CS+M clustering result is the
most affected, with a reduction of 9,377,248 entities (21.01% of the
total entities). This indicates that our proposed clustering heuristics
reveal numerous address associations in unconfirmed transactions
that are beyond the scope of the SOTA clustering heuristics.

Figure 6(c) shows the comprehensive impact of both failed trans-
actions and our proposed clustering heuristics on the SC clustering
results. The results indicate that a part of the SF clustering results
and NU clustering results exhibit no overlap, further reducing the
number of entities. The CS+M clustering result is the most affected,
with a reduction of 10,214,920 entities (22.89% of the total entities).
Our approach utilizes failed transactions and our proposed cluster-
ing heuristics to uncover numerous additional address associations,
significantly improving the SC clustering results.

Appendix E shows the individual contributions of the two pro-
posed clustering heuristics to the improvement of clustering re-
sults, revealing that the dependency chain heuristic significantly
contributes to the improvement.

4.5 Temporal Analysis

Considering that the state of a transaction changes over time, our
approach has varying degrees of impact on the SC clustering results
across different periods. Hence, we conduct a monthly temporal
analysis of our approach’s impact on the SC clustering results in
different periods, according to the reduced number of entities.
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Figure 7: Temporal impact of our approach on the SC clus-
tering results.

First, as shown in Figure 7, our approach has the most significant
impact on the SC clustering results in the current month, and the
impact on other months decreases month by month. Notably, we
observe that the clustering results of our approach in the current
month have a more significant impact on the SC clustering results
in the subsequent month compared to the previous month. This is
mainly because unconfirmed transactions collected by UTP in the
current month may be confirmed in the subsequent month, thus
leading to a more significant impact on the SC clustering results.

Second, as shown in the diagonal, the impact of our approach
exhibits a growing trend over time, indicating its enduring effect.
Notably, the impact experiences a significant enhancement in Janu-
ary 2023. Our analysis attributes this phenomenon primarily to the
emergence and widespread adoption of Bitcoin ordinal inscriptions
in January 2023 [36]. When users create a collection of ordinal in-
scriptions, they often utilize unconfirmed transaction dependency
chains to create numerous ordinal inscriptions at the same time.
Experimental results in Appendix F further demonstrate that the
impact of our approach becomes more pronounced following the
emergence of ordinal inscriptions.
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5 DISCUSSION

The impact of Coinjoin transactions on clustering heuris-
tics. Coinjoin transactions render the SOTA clustering heuristics
ineffective. In this paper, our proposed clustering heuristics utilize
replacement transactions and unconfirmed transaction dependency
chains. To ensure timely transaction confirmation, users often avoid
employing Coinjoin transactions to facilitate operations in both
cases. Furthermore, the replacement transaction heuristic imposes
very strict constraints, which reliably identify the change address.

False positive of our proposed clustering heuristics. To acceler-
ate the confirmation of a transaction, the sender transmits the trans-
action hash and the corresponding UTXO to the recipient before
the transaction is confirmed. The recipient then utilizes this UTXO
to initiate a new transaction, forming an unconfirmed transaction
dependency chain. In this dependency chain, addresses involved
are not controlled by the same entity. However, this situation re-
mains infrequent due to its potential association with unconfirmed
transaction attacks, a subtype of double-spend attacks.

Labeled dataset construction. With the development of third-
party platforms for Bitcoin ordinal inscriptions, users often use
these platforms to create ordinal inscription collections for con-
venience. In this situation, a third-party platform creates multiple
collections on behalf of users. Thus, all input addresses for the
ordinal inscription creation transactions in these collections are
controlled by the third-party platform. While this situation intro-
duces certain imperfections into the labeled dataset, the address
associations within each entity in our dataset remain accurate.
Furthermore, the creation time of ordinal inscription collections
in our dataset predates the development of third-party platforms.
Therefore, our dataset is minimally affected by this situation.

User privacy leakage in unconfirmed transactions. The exper-
imental results in Section 4 reveal that unconfirmed transactions
can significantly reduce the anonymity of Bitcoin, but it ultimately
benefits Bitcoin users by motivating further research into privacy
protocols for the mempool.

6 RELATED WORK
6.1 Clustering Bitcoin Addresses

Many studies attempt to achieve de-anonymization by proposing
various clustering heuristics. The SOTA clustering heuristics can
generally be categorized into two main groups: the co-spend heuris-
tic and the change heuristic. The co-spend heuristic, observed in
the white paper [28], is applied in many studies [1, 21, 26, 35, 39].
Based on the co-spend heuristic, Kalodner et al. [17] propose to re-
duce clustering interference caused by Coinjoin transactions. Then,
Meiklejohn et al. [26] and Androulaki et al. [1] propose the change
heuristic to determine which transaction output is the address to
receive change. Goldfeder et al. [7] and Ermilov et al. [6] further
refine this heuristic. Kappos et al. [18] consider the transaction pat-
tern peel chain to identify the change address. The change heuristic
has been used to track illicit fund flows [13, 14, 22, 32-34, 45].
There are also studies on analyzing the effectiveness of various
clustering heuristics [2, 8, 12, 23, 29, 48]. Cazabet et al. [2] high-
light that only employing the co-spend heuristic has a relatively
low recall but a high precision. Zheng et al. [48] demonstrate that
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the existing clustering heuristics do not guarantee the comprehen-
siveness, accuracy, and efficiency of the clustering results. Liu et
al. [23] point out that all clustering heuristics rely on confirmed
transactions stored in the blockchain.

6.2 Analyzing Bitcoin Mempool

Related studies focus on two issues: predicting the transaction
confirmation time and analyzing unconfirmed transactions.

Predicting the transaction confirmation time. Many studies [10,
20, 27, 40, 46, 47] propose various methods to estimate the confir-
mation time. Gundlach et al. [10] predict the confirmation time
of Bitcoin transactions by modeling the confirmation time as the
time to ruin of a Cramer-Lundberg (CL) model. Ko et al. [20] and
Zhang et al. [46] employ machine learning techniques to predict
confirmation time of unconfirmed transactions, taking into account
various factors such as block states, and mempool states.

Analyzing unconfirmed transactions. Saad et al. [37, 38] in-
vestigate the impact of DDoS attacks on the mempool size and
the fees paid by users. Meanwhile, Dae-Yong et al. [19] examine
the variation of unconfirmed transactions in different mempools
through the Jaccard similarity index. They find that unconfirmed
transactions in mempools are significantly different when a new
block is produced. Kallurkar et al. [16] focus on statistics of failed
transactions and the primary reasons for the transaction failure.
Furthermore, they point out that the area of failed transactions
remains unexplored. To further explore the impact of the mempool
on users, we focus on the user privacy disclosed by unconfirmed
transactions (including failed transactions) in the mempool, and
design clustering heuristics for unconfirmed transactions.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a practical approach to cluster Bitcoin
addresses by combining confirmed and unconfirmed transactions,
significantly improving Bitcoin address clustering. The key idea
is to explore specific behavior patterns in unconfirmed transac-
tions and propose two novel clustering heuristics for unconfirmed
transactions. Then, we construct a labeled dataset based on Bitcoin
ordinal inscription to validate the clustering result, and measure
the impact of our approach. Experimental results reveal that our
proposed clustering heuristics can uncover additional address asso-
ciations and reduce the error of addresses controlled by the same
entity being clustered into multiple entities.

In future, we aim to extend our analysis to other cryptocurrencies
based on the UTXO model, such as Litecoin. We will also analyze
the Ethereum mempool to explore the traceability of funds under
the account-balance model.
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APPENDIX

A IMPACT OF NODE COUNT ON COLLECTING
UNCONFIRMED TRANSACTIONS

To further analyze the correlation between the number of uncon-
firmed transactions collected and the number of nodes, we deploy
multiple nodes to collect unconfirmed transactions on December 3
and 4, 2023. Figure 8 demonstrates that the total number of uncon-
firmed transactions collected rarely increases once the number of
nodes exceeds 5 in our environment.
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Figure 8: The number of transactions collected vs. the number
of nodes running a modified Bitcoin core.

B FIELDS OF AN UNCONFIRMED
TRANSACTION

Table 3 lists the fields of an unconfirmed transaction, showing many
details that are not included in confirmed transactions.

C CASE STUDIES

Although unconfirmed transactions or even failed transactions are
not stored in the blockchain, they can still reveal the motivations
behind why users initiate these transactions. This section demon-
strates the high value of failed transactions in analyzing transaction
behaviors through two case studies.

C.1 Analysis of Binance Exchange Address

One of the primary safeguards employed by Bitcoin exchanges to
prevent attacks is the utilization of cold and hot storage technology,
accompanied by carefully designed risk control systems [21].
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Table 3: Fields of an unconfirmed transaction. Fields with a
star (*) are only present in unconfirmed transactions.

Name Content

txid hash of transaction, not including witness data.
wixid hash of transaction, including witness data.
inputs the inputs of transaction.

outputs the outputs of transaction.

fee transaction fee in BTC

vsize virtual transaction size

weight transaction weight

time* local time when the transaction enters mempool
removetime* local time when the transaction is removed
height* block height when transaction enters mempool
descendantcount® number of descendant transactions
descendantsize® vsize of descendant transactions
descendantfees™ modified fees of descendant transactions
ancestorcount™ number of ancestor transactions

ancestorsize® vsize of ancestor transactions

ancestorfees™ modified fees of ancestor transactions
depends™ unconfirmed transactions used as inputs
spentby™ unconfirmed transactions spending outputs
replaceable* whether this transaction could be replaced

There are three main types of addresses controlled by Bitcoin
exchanges: hot wallet addresses, cold wallet addresses, and user
wallet addresses. The primary function of the hot wallet is to main-
tain a pool of bitcoins for user withdrawal demand. The user wallet
address is created by the exchange, and the exchange holds the pri-
vate key of the address. Users can deposit bitcoins to the exchange
using the user wallet address.

Figure 9 shows a failed Binance transaction, its replacement
confirmed transaction, and two other confirmed transactions re-
lated to Binance exchange. The address bclq...7s3h is labeled with
Binance exchange by Blockchain.com [15]. When the transaction
66c¢1...9dc6 is confirmed, the transaction dc43...ef51 is initiated to
transfer bitcoins in the address bclq...wwvq to Binance exchange
address. Three minutes after initiating the transaction dc43...ef51,
the same user initiates the transaction 4161... bb25. The second
transaction spends the same UTXO but pays a much higher fee. As
a result, miners choose to store the second transaction in a block,
which is eventually confirmed. The transaction dc43...ef51 turns out
to be a failed transaction, which is removed by all Bitcoin nodes and
can never be confirmed again. Then another transaction 6903...4583
with 100 inputs and 1 output is initiated, transferring bitcoins from
the address 19Fa...Hd5X to the address bclgq...7s3h.

From the content of the transaction dc43...ef51 and the transaction
6903...4583, the purpose of the address bclq...wwvq is to transfer
its bitcoins to the address bclgq...7s3h. A question worth analyzing
is why the user would replace the transaction dc43...ef51 with the
second one 4161...bb25.

To answer this question, we investigate 127 confirmed transac-
tions involving the address bclq..wwvg. All outgoing transactions
of the address bclg..wwvq consist of one input and one output.
When the address bclq...wwvq transfers bitcoins to other addresses,
the recipient address is always the address 19Fa...Hd5X. The address
19Fa...Hd5X then transfers bitcoins to the address bclg...7s3h. Both
incoming and outgoing transactions of the address bclg...wwvq oc-
cur in pairs, i.e., the address receives bitcoins and then transfers out
all the bitcoins it receives. Therefore, we infer that the transaction



Exploring Unconfirmed Transactions for Effective Bitcoin Address Clustering

Failed Transaction

WWW ’24, May 13-17, 2024, Singapore, Singapore

‘
i
|
Hash:66¢1...9dc6 1 2022-11-18 12:55:47 Fee:0.00004070 BTC! Hash:6903.. 4583
Lot L el Tee I
2022-11-18 06:13:12 Fee:0.00062852 BTC ' From To ; 2022-11-18 23:55:02 Fee:0.00200000 BTC
i
From To o (Dbelg...wwvg (l)bcéq..ﬂs}h ! From o
belq...7s3h (1) belg...4vlx ! (Binance) 1 (1) ILSA..mfYx  (1)belq...7s3h
(Binance) H : (Binance)
(ll)bclq.:.wqu Hash:4161...bb25 (48) 19Fa...Hd5X
(44)belq...7s3h 2022-11-18 12:58:01 Fee:0.00045200 BTC G
(Binance) (100) 1Dyg...tjsG
From To
(1)beclq...wwvq (1)19Fa.. . Hd5X
Figure 9: Analysis of Binance Exchange Address.
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dc43...ef5 originates from an error made by Binance exchange. The
address bclq...7s3h is a hot wallet address, and under the rules of
Binance exchange, the address bclq...wwvq cannot transfer bitcoins
directly to the address bciq...7s3h. Therefore, when the transaction
dc43...ef51is initiated, the operator or script discovers the misopera-
tion and initiates another high-fee transaction 4161...bb25 to replace
the first one.

The analysis indicates that Binance exchange manages a variety
of addresses, each with its own unique role and set of duties. Binance
exchange coordinates the interactions between these addresses
carefully to prevent unauthorized Bitcoin transactions.

By analyzing unconfirmed transactions, we can shed light on
the internal risk prevention and control mechanisms of Binance
exchange. This information can assist regulators in verifying the
cryptocurrency exchange’s reported information and inadvertently
disclosed transfer behavior.

C.2 Dust Attacks Against Whale Addresses

The dust attack is defined as malicious behavior that targets Bitcoin
users and privacy by sending tiny amounts of bitcoins to victims’
addresses [43]. The dust attacker attempts to reveal the user’s iden-
tity by collecting data on the aggregation points of tiny amounts
when the user initiates a new transaction through his cryptocur-
rency wallet software. The attackers track the transaction activity
of these addresses in an attempt to link the dusted addresses and
identify the entity behind them [43].

Figure 10 shows a potential dust attack against whale addresses
found in a failed transaction. Figure 10 contains two confirmed
transactions and one failed transaction. In this scenario, the trans-
action 3180...a362 with two inputs and two outputs is initiated first.
When this transaction is confirmed, the address 1KgX...JYEQ trans-
fers its received bitcoins to the address 1FU6...8hKf through the
transaction 4f6e...9ce3. We cannot find anything unusual about this
address 1KgX...JYEQ from confirmed transactions.

However, before the transaction 4f6e...9ce3 is initiated, the trans-
action f125...6b9%a is initiated. These two transactions spend the
same UTXO 1KgX...JYEQ. Due to the much higher fee of the trans-
action 4f6e...9ce3, miners choose to store the transaction 4fée...9ce3
in a block that is eventually confirmed. Therefore, the transaction
f125...6b%a turns out to be a failed transaction. However, the failed
transaction f125...6b9% reflects the user’s malicious behavior, which
is not reflected in confirmed transactions.

More specifically, the transaction f125...6b9a has one input and 9
outputs. Note that all 8 outputs of this transaction have the same
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Figure 10: Dust attack against whale addresses.

revenue, i.e. 0.00000666 BTC ($ 0.12). The remaining output is the
change address of the sender. The addresses bclqg...wezt, belg...9hz6,
and 1Fee...b6uF are labeled by Blockchain.com [15] as FBI3, FBI2 (Silk
Road) and MtGox Hacker respectively. Stolen bitcoins from the
Bitfinex Hack continue to converge to the address bc1q...wezt, which
currently has a balance of over 94,643 BTC without any outgoing
transfers. Nearly 70,000 BTC confiscated by the U.S. government
from the black market site Silk Road are transferred to the address
bclq...9hz6 in early November, 2020. To date, the bitcoins have not
been moved or liquidated. Former Mt.Gox CEO Mark Karpeles con-
firms that the bitcoins residing at the address 1Fee...b6uF are stolen
from the Mt.Gox exchange. The address 1P5Z...DfHQ is controlled
by FTX exchange, which declares bankruptcy on November 14,
2022. The other addresses except 1FU6...8hKf also have a large
balance when this failed transaction f125...6b9a is initiated. Cur-
rently, the balance of the address 3CkU...wz5M is 0. However, the
balance of the address 3CkU...wz5 is more than 50,620 BTC when
the failed transaction f125...6b9a is initiated. Therefore, the address
1KgX...JYEQ initiates transaction f125...6b9a, sending a tiny amount
of bitcoins to multiple whale addresses in an attempt to conduct a
dust attack.

Focusing only on confirmed transactions in the blockchain may
not reveal the true intentions of users. Unconfirmed transactions,
however, can be used to identify malicious behavior that may not
be identified by confirmed transactions alone. Additionally, uncon-
firmed transactions provide an opportunity to identify and under-
stand malicious behavior before it occurs.
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Figure 11: The individual contributions of our proposed
heuristics.
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D DETAILED RATIONALE FOR LABELING
EFFECTIVENESS

Since taproot script can only be created from existing taproot
outputs [44], inscriptions are created using a two-phase (com-
mit/reveal) procedure. In the first phase, a taproot output is created
in the commit transaction, committing to a script that contains
the inscription content. In the second phase, the reveal transaction
spends the output of the commit transaction, thereby revealing the
inscription content in the blockchain.

In the early stages, the provenance of inscriptions is only trace-
able through off-chain data and social consensus, such as the web-
site [31]. The introduction of the parent-child inscription mech-
anism transforms the tracing process. This mechanism involves
using the existing inscription as an input in the reveal transaction,
thereby designating it as the parent of the new inscription. This
mechanism effectively demonstrates that the creator of the child
inscription controls the parent inscription.

E THE INDIVIDUAL CONTRIBUTIONS OF
OUR PROPOSED HEURISTICS

To further analyze the effect of our proposed clustering heuris-
tics, we conduct additional experiments to quantify the individual
contributions of the two proposed clustering heuristics to the im-
provement of the clustering results.

To describe experimental results clearly, we assign a name to
each clustering result, composed of the heuristic and the state of
transactions. The RU clustering result refers to the result of applying
the replacement change heuristic to unconfirmed transactions. The
DU clustering result refers to the result of applying the dependency
chain heuristic to unconfirmed transactions.

Figure 11 demonstrates that the dependency chain heuristic con-
tributes significantly to the improvement. This result is related
to the large proportion of transactions that form the dependency
chain, described in Section 4.1.

F FURTHER TEMPORAL ANALYSIS

To further analyze the impact of our proposed heuristics before
and after the emergence of ordinal inscriptions, we conduct two
experiments, one before January 2023 and one after, to highlight
significant variations. Figure 12 shows that beginning in January
2023, with the emergence of ordinal inscriptions, the impact of our
proposed heuristic has become more pronounced.
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