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S1 Background

Conventional force fields (FFs) allow to study large systems, e.g. entire viruses (81–83), in atomic 

detail. They achieve this remarkable efficiency by modeling chemical interactions as a sum over 

simple empirical terms (84–86). However, while very efficient, their accuracy is limited (87) 

and they typically cannot describe chemical reactions. Although there are various efforts to 

increase the accuracy of classical FFs, for example by including polarization effects (88, 89) 

and sophisticated models for anisotropic charge distributions (90–94), or by developing reactive 

FFs (95, 96), they are clearly much faster to evaluate but typically cannot compete with the 

accuracy of machine learned force fields (MLFFs) (97–103). Machine learning (ML) methods 

“learn the rules” of quantum mechanics (104) and their representation from data, allowing to skip 

computationally expensive ab initio simulations. Beyond FF construction, there are several other 

applications of ML to quantum chemistry (QC). One of the earliest uses of ML in QC was the 

exploration of chemical space (105–108). However, ML can also be used to accelerate studies 

that typically rely on MD simulations or other dynamical equations (109). For example, it can 

be used to directly sample equilibrium distributions (110, 111) or rare events (112), or directly 

predict reaction rates (113). Further, ML is used for predicting protein structure (114–116), 

solving the Schrödinger (117–119), predicting wave functions (120–122), modelling solvated 

systems (123), generating molecules and solving inverse design problems (124–130), and even 

for planning chemical syntheses (131).

For a more detailed overview of the use of ML in molecular and material science, refer to 

Refs. 132–137, for an overview of applications in molecular simulations, refer to Ref. 138, and 

for reviews on the exploration of chemical space, refer to Refs. 139 and 140, furthermore general 

reviews can be found in Refs. 104, 131, 141–146.



S2 MD simulations with conventional force fields

S2.1 Equilibration and detailed setup

After initial preparation (resolving doubly- or ill-defined residues and atom type definitions

present in the original files from the respective sources specified in the main manuscript), classical

molecular dynamics (MD) simulations of solvated systems were initialized by resolvating the

systems in cubic simulation boxes with a minimum protein-to-box distance of 1.6 nm. Unless

explicitly specified otherwise, simulation cells were solvated in TIP3P water with physiological

concentrations of NaCl with excess Na+- or Cl–-ions to neutralize the simulation box where

needed. The solvated structures were subsequently optimized to a maximum atomic force of

1’000 kJ/mol/nm and equilibrated in a four-step procedure consisting of (a time step of 2 fs was

used in all cases):

1) a short NVT-simulation of 50’000 steps (simulation time 100 ps)

2) NPT simulation (Berendsen barostat) of 50’000 steps (100 ps)

3) NPT simulation (Parrinello-Rahman barostat (72)) of 100’000 steps (200 ps) with fully

constrained bonds

4) and 100’000 steps (200 ps) with constraints on all bonds involving hydrogen.

In all equilibration runs a constant temperature thermostat with stochastic velocity rescaling (71) 

set to the final simulation temperature was employed. Throughout all steps, the AMBER99SB-

ILDN force field (24) was used.

For AcAla15Lys-chains involving the charged LysH+ terminus, topology and AMBER defini-

tions have been adapted accordingly using the default AMBER99SB-ILDN parametrization.

For the gasphase AcAla15Lys+H+, we adopted pseudo-gasphase settings as detailed in 

Ref. 70 using maximal unit cells while disabling particle-mesh Ewald electrostatics. The



constant temperature (pseudo-)gasphase simulations were prepared by structure optimization

(maximum atomic force of 1’000 kJ/mol/nm). The reported simulations were then run in an NVT

ensemble initialized with velocities randomly drawn from a Maxwell-Boltzmann distribution

correponding to twice the simulation temperature.

S3 Sampling structures for top-down fragmentation

To train a model that can be used to simulate trajectories of a particular system of interest, we

want to train it on a diverse set of top-down fragments representative of a variety of conformations.

The general strategy is to cluster configurations that occur in classical MD simulations, select

some representatives for each cluster, and then decompose the whole configurations into spherical

regions that are small enough to run DFT calculations on them (top-down fragments). Different

systems have different characteristics when it comes to the possible conformations:

• The poly-alanine systems unfold and thus show a lot of variation, but the overall system is

comparatively small (contains few atoms).

• Crambin in aqueous solution contains many different atoms, but due to presence of three

disulfide bridges, the protein itself shows variations mainly determined by the states of the

disulfide bridges, so clustering is straightforward.

Poly-alanine systems

In our classical MD simulation of AceAla15Nme and AceAlanLys + H+ in solution at tempera-

tures 280K, 300K, and 310K, (2 µs each) the poly-alanine chain did not keep a helix structure, 

but assumed almost arbitrary conformations. So we cannot define different well defined clusters, 

but we can still use a clustering algorithm to find a  diverse and representative sample of the 

configurations seen during the trajectories.



We used affinity propagation (147) as the clustering algorithm. This algorithm takes as input

a matrix specifying “similarities” between two objects, and a “preference” that specifies the cost

of adding a new cluster (which is balanced with the gain in similarity obtained by switching

nearby objects to the new cluster). The output is a set of clusters with one object in each cluster

designated as the representative of this cluster. The number of clusters is controlled by the

relation between similarities and the preference; default choices for the preference include the

median similarity and the lowest similarity, but in general the preference can be tuned to produce

clusters at the desired granularity.

To compare two configurations of atoms, we move them so that the center of mass is at

the origin, and then use the rotation that gives the minimal mean square distance between the

atoms. The similarity is then the negative sum of the square distances. We set the preference to

-50 compared to a median similarity between -14 and -31 for the six trajectories, this gave 240

cluster for AceAlanLys + H+ molecule, and 266 cluster for the AceAla15Nme molecule.

Crambin

Initial structure were taken from PDB entry 2FD7. The incorrect residues SER11 and VAL15

have been remodeled using PyMOL.

Crambin has 3 disulfide bridges at atoms (NCCS:SCCN)

• 31-33-35-38:561-558-556-554

• 41-43-45-48:449-446-444-442

• 220-222-224-227:373-370-368-366

These disulfide bridges have two stable positions, in two MD simulations over 5 µs each we 

observed the first and the third disulfide bridge to flip between stable positions (measured as 

dihedral angle of the N-C-C-S configurations). Together with a twist at an Arginine residue, these

https://www.rcsb.org/structure/2fd7


explained almost all the variations seen. We computed 22 clusters and made sure all observed

variations were represented.

S4 Comparison to ground truth for AcAla15NME trajecto-
ries

To check the accuracy of our GEMS simulation, we select samples from 100 trajectories of 

2500 steps starting from a common stretched initial conformation. We subsample by only taking 

every second time step, which leaves 125,000 conformations. We use affinity propagation (see 

Section S3) to get representative samples. The similarity is the negative sum of square distances 

between corresponding non-hydrogen atoms, after centering the molecules and applying an 

optimal rotation.

However, using affinity propagation directly on these trajectories would have a large bias 

towards stable end conformations: Our trajectories contain stable end conformations for roughly 

half of the time, so affinity propagation with the default settings would spend most representatives 

on the stable conformations, largely ignoring the interesting folding part. To reduce this bias, we 

use a preprocessing step that removes conformations that have a small distance to an already 

selected point. (The threshold used was 9 Å 2 for the sum of the square distances, corresponding 

to 0.3 Å per non-hydrogen atom for the RMSE.)

This reduces the stable tails of the trajectories, but if we do this only within the trajectories, 

we get another bias around the common initial conformation. Computing pairwise distances for 

the union of all trajectories would be computationally expensive, so we use an approximation: 

We randomly mix all 100 trajectories and subdivide them into a partition of smaller subsets, and 

remove “almost duplicates” (as above) only inside each of the partitions. We then mix again and 

thin out again three more times. This removes most of the “almost duplicates”, and we arrive at 

25,249 conformations from the original 125,000 conformations. On these 25,249 we can then



run the affinity propagation; using a preference of −1500 Å2 we arrive at 1554 representatives.

Plotting the distance from the nearest representative (blue curve) over the trajectories now shows

an even average distance: The red curve is a rolling average over 100 time points, it hovers

around 0.4 Å. The x-axis gives the time steps in the simulation. After every 2500 steps = 250 ps

the next trajectory starts, so in the image below there are data from the first two trajectories. In

the blue curve, conformations that are selected as cluster representatives can be seen as time

points in which the blue curve touches the x-axis (since the distance to the closest representative

is then 0). We can see that there are regions that need more representatives (e.g. when folding

happens), and regions which only have occasional representatives (in the more stable end phase),

but the average distance stays approximately constant (see Fig. S1). While this takes care of any

Figure S1: Distance (RMSE) to nearest representative for AcAla15NME trajectories. The 
blue curve shows the instantaneous distance, while the red curve shows the average.

obvious bias towards common or stable positions, we also add a list of 1000 conformations that 

are as far away as possible from all previously selected conformations. These can be thought 

of as untypical or unstable conformations, and we want to make sure that our model works for 

them as well as it does for the maybe more typical cluster representatives.

S5 MD simulations with GEMS

The MD simulations with GEMS are performed with the SchNetPack (77) toolbox providing 

an interface to the Atomic Simulation Environment (148) to run MD simulations with machine



learning models. SchNetPack includes a fully functional MD suite, which can be used to perform

efficient MD and PIMD simulations in different ensembles. The SpookyNet (17) model is used

to implement

schnetpack.md.calculators.MDCalculator

interface from SchNetPack. See figure S2 for the schematic and corresponding papers for more

details. Both SpookyNet and SchNetPack are written in PyTorch and thus can be used to run

MD simulations directly on GPU increasing performance (and decreasing time per simulation

step) by orders on magnitude compared to CPU-based models.
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Figure S2: MD implementation. Only the blue box (schnetpack.MDCalculator subclass using
SpookyNet model to get forces predictions from atom positions and charges) needs to be
implemented. SchNetPack Simulator takes care of running MD simulation, checkpointing and
writing logs and trajectories to disk.



S6 Transferability of GEMS models trained on different top-
down fragments

Since top-down fragments are system-specific, it is instructive to investigate the transferability 

of GEMS models to systems that are not covered by the top-down fragments they were trained 

on. To this end, we apply the model for crambin to the prediction of the gas-phase ACE2-RBD 

binding curves shown in Fig. 9 and the folding of AceAla15Nme. We find that compared to the 

system-specific GEMS model, ACE2-RBD binding energies are systematically over-predicted, 

but relative binding strengths of SARS-CoV-1 and SARS-CoV-2 match closely (see Fig. S4). 

For the folding of AceAla15Nme, we find that trajectories with the crambin model follow the 

same folding mechanism (via “wavy intermediate”) observed for the system-specific model. 

However, the formed helix seems to be more biased towards an α-helical conformation with less 

310-helical content (see Fig. S5). To be specific, while a 10 ns trajectory of the helical state with 

the poly-alanine-specific GEMS model suggests a ∼38/62 mixture of α- and 310-helices, the 

crambin-specific GEMS model predicts roughly 80%–90% α-helical content in the helical state. 

This suggests that while GEMS models are somewhat transferable even without system-specific 

training, quantitative results seem to require system-specific top-down reference data. However, 

it might still be possible to construct top-down reference data covering a large class of proteins, 

such that a single GEMS model is able to describe multiple systems with the same accuracy as a 

system-specific model.

As an additional extreme test of transferability, we apply the crambin-specific GEMS model 

and a variant trained only on bottom-up fragments, to a 5 ns NPT simulation of a pure water box 

containing 8393 water molecules at 300 K and ambient pressure. Note that the solvated protein 

fragments dataset (67) we use as basis for the bottom-up fragments contains almost exclusively 

pure or (micro-)solvated protein fragments. Less than 0.4% of the dataset correspond to structures



containing only water molecules, with at most 40 water molecules in total (see Ref. 19 for details). 

While top-down fragments constructed from the protein-solvent interface contain some water 

molecules, by construction, the top-down fragments never contain only water molecules. As 

such, both GEMS models investigated here are strongly biased towards the correct description 

of the protein-water interface and should not be expected to give quantitative results for bulk 

water. Nonetheless, we find that both variants of GEMS predict the density of water reasonably 

well as 1014±2 kg/m3 (crambin model) and 955±2 kg/m3 (general fragments only) compared 

to the experimental density of 996 kg/m3. The oxygen-oxygen radial distribution functions 

(see Fig. S3) predicted by GEMS indicate that overall, the water is “too structured” compared 

to the experiment. This effect has also been observed for Car-Parrinello MD simulations of 

liquid water (149), where it was found that the inclusion of nuclear quantum effects (NQEs) can 

significantly improve the agreement between simulations and experiments. Similarly, simulations 

at the PBE0+TS-vdW(SC) level of theory also found the water to be “too structured” (37), and 

approximately incorporating nuclear quantum effects by raising the simulation temperature to 

330 K was found to significantly improve agreement with e xperiment. A  similar effect can 

be seen for GEMS simulations at 330 K, where the increased temperature leads to a better 

agreement with the experimental reference (see Fig. S3). Another possible explanation for the 

discrepancies is that due to the training data, GEMS is biased towards the description of water at 

protein interfaces, where it is generally more structured than in bulk water.



Video S1: Thermal stability of AceAla15Lys + H+. Full video available at https://youtu.
be/QZIc3a4OjJk

Video S2: Folding of AceAla15Nme. Full video available at https://youtu.be/
ZuKW292DKKw.

https://youtu.be/QZIc3a4OjJk
https://youtu.be/QZIc3a4OjJk
https://youtu.be/ZuKW292DKKw
https://youtu.be/ZuKW292DKKw
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Figure S3: Oxygen-oxygen radial distribution function for 5 ns long GEMS simulations of
pure bulk water (8393 water molecules). Experimental results are taken from Ref. 150, results
for PBE0+TS-vdW(SC) from Ref. 37.



A   GEMS (SARS-CoV model)

B   GEMS (crambin model)

Figure S4: Gas-phase binding curves of the ACE2 (blue) and the receptor binding domain
(RBD) of the SARS-CoV spike protein (red) predicted with the system-specific GEMS
model in comparison to the crambin model. While the crambin model systematically predicts
stronger binding, the average difference in well-depth ∆E between SARS-CoV-2 and SARS-
CoV-1 closely matches the value predicted by the system-specific value.
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Figure S5: Secondary structural motifs (determined by STRIDE (38)) along typical folding
trajectories of AcAla15NME simulated with the GEMS model trained for crambin. Starting
from a random coil, AcAla15NME quickly folds into a helical state via an intermediate that is
primarily classified as turn.



GEMS

Figure S6: Correlation of predicted and ab initio reference (ground truth) energies and
forces for AceAla15Nme conformations sampled from 100 aggregated 250 ps MD trajecto-
ries (25 ns total) in the NVT ensemble at 300 K simulated with GEMS. Conformations are
sampled either from densely (1554 structures) or sparsely (1000 structures) populated regions of
conformational space.



AmberFF

Figure S7: First alternative correlation plot of ab initio reference (ground truth) energies
and forces. Same as Fig. S6, but showing the correlation for predictions with the AmberFF.



Figure S8: Second alternative correlation plot of ab initio reference (ground truth) energies
and forces. Same as Fig. S6, but for a GEMS model trained without top-down fragments.



MLFF

AmberFF

Figure S9: Secondary structural motifs (determined by STRIDE (38)) along additional 
folding trajectories of AcAla15NME. Starting from a random coil, AcAla15NME quickly folds 
into a helical state. For GEMS, this occurs via an intermediate that is primarily classified as turn 
and the helical state is a dynamic mixture between 310- and α-helices, whereas for AmberFF, the 
peptide directly folds into a rigid α-helix.
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Figure S10: Secondary structural motifs (determined by STRIDE (38)) along representa-
tive trajectories of AcAla15NME simulated with GEMS* (trained only on bottom-up, but
not top-down fragments). Without learning the correct long-range interactions from the top-
down fragments, the model is unable to predict the correct folding process and the peptide
primarily stays a random coil.
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Figure S11: Secondary structural motifs (determined by STRIDE (38)) along represen-
tative folding trajectories of AcAla15NME simulated with GEMS in comparison to sim-
ulations with conventional force fields Amber ff99SB (AmberFF) (24), CHARMM27
(CHARMM FF) (45), and GROMOS96 53A5 (GROMOS FF) (46). While AmberFF and
CHARMM FF both predict folding to a rigid α-helix, GEMS predicts a dynamical equilibrium
between 310- and α-helices.



A

B

Figure S12: Number of α- and 310-helical H-bonds during GEMS MD simulations of helical 
AceAla15Lys + H+ in gas phase at different temperatures. (A) GEMS model trained with 
top-down fragments. The sharp drop in the number of H-bonds in the dynamics at 800 K 
indicates the formation of a random coil. (B) Same as panel A, but for a model trained without 
top-down fragments. The number of H-bonds is lower on average for all temperatures and a 
random coil is formed at a lower temperature.



Figure S13: Covalent and non-covalent interactions in crambin responsible for its three-
dimensional structure. Hydrogen bonds between backbone-backbone and backbone-sidechain
atoms are shown in orange and cyan, and disulfide bridges in yellow. Backbone and sidechain
atoms are only shown if relevant to one of the interactions. Six different viewpoints are shown.

Figure S14: Structure of crambin (left cartoon, right all-atom) after solvation and subse-
quent minimization with GROMACS starting from different experimental structures of 
crambin reported in the Protein Data Bank (PDB). The results from PDB entries 2FD7 (48)
(red, resolution 1.75 Å), 1EJG (75) (green, resolution 0.54 Å), and 3NIR (76) (blue, resolution 
0.48 Å) have root mean square deviations (RMSDs) of 0.808 Å, 0.540 Å, and 0.486 Å from the 
averaged structure, respectively.
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Figure S15: Backbone bond length distributions in GEMS and AmberFF simulations of
crambin compared to a high-resolution crystal structure. (75) GEMS shows systematically
shorter bond lengths than AmberFF, but both distributions are consistent with the experimental
reference.

Figure S16: DFT runtime distribution for crambin fragments. The majority of calculations
finish after around two days.
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Figure S17: Effect of top-down fragments on crambin dynamics. A GEMS model trained 
only on bottom-up fragments and without any top-down fragments (GEMS*) is compared 
to the results of AmberFF and a regular GEMS model. (A) Ramachandran map for crambin 
(color-coded by residue number) (see also Fig. 4B). Although the results for GEMS* are 
qualitatively similar to those of GEMS, some regions in the Ramachandran map are sampled less 
frequently and appear closer to the results observed for AmberFF. (B) Distribution of root mean 
square deviations (RMSDs, excluding hydrogen atoms) between conformations sampled at times 
t and t + ∆t (see also Fig. 4D). Dynamics with the GEMS* (green) resembles those of GEMS 
(blue) for small values of ∆t, but fluctuations for large ∆t are closer to those of AmberFF.



Figure S18: Torsion angles for residue 17, arginine. x–axis: Angle, y–axis: Density. The
longest residues, Arginine, give (together with the disulfide bridges) the largest contributions
to systematic differences in the conformation. The structure of the Arginine residue is given
by its 4 torsion angles, their distribution is plotted with respect to Amber, GEMS, and GEMS*
trajectories. GEMS shows more flexibility than Amber, GEMS* is somewhere in between, but
closer to Amber.

Figure S19: Torsion angles for residue 10, arginine, top: original, below: averaged over 
100 time steps. Amber oscillates more on fast timescales, but around a well defined ground 
state. GEMS has more variations of the ground state for χ1, χ2, χ3.(It seems χ4 is an exception 
in which GEMS behaves like Amber.)



Figure S20: Torsion angles for cysteine residues. Rows 1 and 3: original, rows 2 and 4:
averaged over 100 time steps. Amber oscillates more on fast timescales, but around a well
defined ground state. GEMS has more variations of the ground state.
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Figure S21: GEMS method overview. The GEMS method consists of three main steps: 1) 
Generation of reference data, 2) Training a machine learning model, and 3) Running MD 
simulations. In this work, step 1) is achieved by calculating PBE0+MBD reference data for a 
combination of bottom-up and top-down fragments. For step 2), we train a SpookyNet model, 
and for step 3) we use the MD package included in SchNetPack. However, all individual steps 
can be replaced in future work, for example, different reference data could be used, or another 
ML method instead of SpookyNet could be used as MLFF.
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Figure S22: RMSD (excluding hydrogen atoms) of crambin during GEMS and AmberFF
trajectories with respect to 20 low energy water refined structures of crambin in dode-
cylphosphocholine micelles based on NMR measurements (29). At each time point, the
minimum RMSD to any of the 20 reference structures is shown. The average minimum RMSD
of GEMS trajectories (1.00 Å and 1.04 Å) and AmberFF trajectories (0.96 Å and 0.95 Å) is
comparable.
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Figure S23: RMSD per residue of crambin w.r.t. average structure. A structural ensemble
based on NMR measurements (29) (top) is compared to the structural ensemble sampled during
MD simulations with GEMS (middle) and AmberFF (bottom). The box extends from the lower
to upper quartile with whiskers extending to 1.5 times the interquartile range. A red line indicates
the median value.
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Figure S24: RMSD (excluding hydrogen atoms) of crambin during GEMS and AmberFF
trajectories with respect to a high-resolution crystal structure (PDB entry 1EJG (75)).
GEMS trajectories have a slightly larger average RMSD (0.92 Å and 1.12 Å) compared to
AmberFF (0.75 Å and 0.76 Å), indicating that the structure is more flexible overall. Importantly,
the RMSD of both GEMS and AmberFF trajectories does not increase over time, indicating that
the folded structure of crambin is stable over the time scale of the simulation.
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Figure S25: Distribution of fragment size in the training data for training GEMS for cram-
bin. General fragments (blue) are not system-specific and relevant for all proteins in aqueous 
solution (the isolated peak at 120 atoms corresponds to structures consisting of 40 spherically 
arranged water molecules, resembling a “cutout” from bulk water). Crambin fragments (orange) 
were generated using the top-down approach described in the main text and are specific to 
crambin in solution.
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Figure S26: Distribution of pairwise distances in the training data for training GEMS for
crambin. General fragments (blue) are not system-specific and relevant for all proteins in
aqueous solution. Crambin fragments (orange) were generated using the top-down approach
described in the main text and are specific to crambin in solution.
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