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Abstract—The new wave of mega-constellations in low-earth
orbits (LEOs), which occupy frequency bands that are also
used by legacy geostationary orbit satellites (GSOs), will even-
tually result in increased interference events. In this paper, we
explore the application of unsupervised deep learning models,
specifically convolutional autoencoders (CAEs), for detecting
non-Geostationary Orbit Satellite (NGSO) interference in GSO
ground stations (GGS). We propose and evaluate two DL models,
the CAE1D model handling amplitude values as 1D data, and
the CAE2D model handling In-phase/Quadrature (IQ) samples
as 2D data. Through rigorous experimentation, we examine the
models’ performance against traditional energy detector (ED)
methods, employing single-model (SM) and multi-models (MMs)
approaches for training the models. Our findings reveal that
DL models, particularly under the MMs approach, significantly
outperform conventional methods with up to 11% in the prob-
ability of detecting interference, demonstrating the potential of
advanced machine learning techniques to improve the reliability
of satellite communication systems, especially for such fast-
varying interference environments (LEO mobility), where only
GSO interference-free signals are needed for training the models.

Index Terms—GSOs, NGSOs, Interference Detection, Satellite
Communication, Convolutional Autoencoders (CAEs).

I. INTRODUCTION

The recent development of large constellations of non-
geostationary orbit (NGSO) satellites, especially in low-Earth
orbits (LEO), addresses the significant challenge of connecting
almost 37% of the global population who currently lack Inter-
net access [1]. The proliferation of LEO orbit satellites raises
substantial risks of unintentional interference with legacy
geostationary orbit satellites (GSOs) communications since
both systems have been assigned to the same frequency bands
[2]. In this paper, we investigate the interference detection
problem as it lays the basis for interference management.

The need to enhance both the intricacy and power utilization
aspects of conventional interference detection processes has
led to an increased interest in the potential application of
advanced machine learning (ML) and deep learning (DL)
strategies as alternatives [3]. One ML/DL model can learn
from interference-free data , and then automatically detect
various types of interference signals, thus reducing the re-
quirement for separate units for each interference type without
needing any prior knowledge to detect interference. Pellaco et
al. [3] employed a Long Short-Term Memory (LSTM) model
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to identify interferences in the NGSO satellite signal spec-
trum observed at GSO ground stations (GGSs). This method
was specifically designed to pinpoint intentional jamming
incorporated into NGSO communication. Vazquez et al. [4]
introduce a convolutional autoencoder (CAE) model to detect
interference signals in satellite communication, by processing
in-phase and quadrature (IQ) samples. Their study focused on
high-level exploration of ML for interference detection. Saifal-
dawla et al. [5] developed a DL model based on autoencoder
(AE) for automatic detection of NGSO system interference
with GSO-GGS communication. Their study concentrated on
a singular modulation scheme (ModCod) applied to both GSO
and NGSO systems.

In this paper, we utilize advanced DL models capable
of detecting NGSO interference signals in GSO signals at
GGS, which were simulated using a realistic satellite sce-
nario explained within the paper. Our models incorporates the
convolutional process into the AE-based design, enhancing its
ability to extract features from input data that have spatial or
temporal patterns. We introduced DL models that are capable
of detecting interference in 1D or 2D data, with less complex
architectures and more detection capabilities compared to the
one in [4]. This paper main contributions can be outlined as
follows,

• We design, develop, and implement two distinct DL
models, 1) one model is dedicated for 1D data, or the
magnitude representation of the signal, namely, CAE1D.
2) The second model is dedicated for 2D data, or the
I/Q representation of the signal, namely, CAE2D. By
comparing CAE1D versus CAE2D we can observe which
representation is better at detecting interference.

• We investigate which approach of model training is more
promising to detect interference, 1) Having one model
trained with all GSO ModCods data combined, namely
single-model (SM) approach. 2) Having many models,
each trained with specific GSO ModCod, namely, multi-
models (MMs) approach. By evaluating both approaches,
we can observe which one is given better interference
detection accuracy.

• We conducted a thorough comparative interference detec-
tion analysis between our newly developed DL models
and traditional energy detector (ED) method. This com-
parison highlights the strengths and potential improve-



ments offered by the proposed DL models.

II. SYSTEM MODEL

In this paper, the emphasis is placed on satellites within
GSO as the main system, and NGSO satellites, particularly in
LEO orbits, are considered as possible sources of interference
for GGS, as shown in Fig. 1.
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Fig. 1. NGSO-to-GSO interference scenario, where interference from NGSO
is detected at GGS receiver unit

At a time instant ”t”, assuming that the impairments of up-
down conversion are compensated ideally compensated, the
desired received signal yx(t) atv the GGS is given as,

yx(t) = x(t)
√
SNR + ζ(t), (1)

where x(t) is desired baseband signal, formed by modu-
lated symbols obtained from a ModCod scheme following
the DVB-S2X standard. Each symbol in x(t) possesses an
average power and span for a time interval Tx. The duration
Tx is inversely proportional to the signal bandwidth Bx, as
represented by the equation Tx = 1

Bx
. The signal x(t) is

shaped using a raised cosine filter, which has unit energy and
a duration of Tx. The term ζ(t) denote the complex-valued
additive white Gaussian noise (AWGN) with a zero mean,
sustaining unit power across the bandwidth 2Bx. Finally, SNR
represents the received Signal-to-Noise Ratio (SNR) of the
GSO signal, which can be calculated using the following
equation,

SNR[dB] = PEIR,x+Gr,max−LFS, x−LA−κ−TGS−Bx, (2)

where PEIR,x denotes the GSO satellite equivalent isotropic
radiated power (EIRP), which merges the power of transmis-
sion of the satellite antenna and its gain. The term Gr,max
denote the maximum receiving antenna gain of the GGS. The
free space path loss (FSPL) at this link is represented by LFS, x,
while LA denotes the additional link losses. κ denotes the
Boltzmann constant,TGS denotes the noise temperature of the
receiver, while Bx refers to the GSO signal bandwidth.

Simultaneously, a LEO satellite may transmit an interfering
signal towards GGS. Thus, the interference signal components
yi(t) received at GGS can be expressed as follows,

yi(t) = i(t)ej2π(fc,i−fc,x)t
√
INR, (3)

where i(t), is the interfering baseband signal, consists
of modulated symbols selected from a ModCod scheme in
accordance with the DVB-S2X standard, can be same as GSO
signal or different. This information is not known by the GGS.
Each symbol in i(t) possesses an average power and span for
a duration of Ti. This time span is inversely proportional to
the signal bandwidth Bi, thus Ti = 1

Bi
. The production of

the i(t) signal includes the utilization of a raised cosine filter
with a duration of Ti and unit energy, in addition to a roll-off
factor that varies between 0 and 1. The signal i(t) undergoes
down-conversion from its bandpass, utilizing its LEO carrier
frequency fc,i and the GSO carrier frequency fc,x. For the
sake of simplicity, we assume that the bandwidths of both
the desired and interfering signals completely overlap. Finally,
in (3), INR represents the Interference-to-Noise ratio (INR)
of LEO signal, which can be derived using the subsequent
equation,

INR[dB] = PEIR,i +Gr,i(θi)− LFS,i − κ− TGS −Bx, (4)

where PEIR, i denotes the EIRP of LEO satellite. The term
Gr, i indicates the gain of the GGS receiving antenna with
respect to the LEO satellite. θi is the off-boresight angle that
determines the alignment of the GGS main beam lobe with
the LEO communication link, see Fig. 1.

When there is interference from LEO, the combined signal
received by the GGS, which includes the desired GSO signal
components, interference from LEO signal components, and
noise, can be mathematically represented as follows,

y(t) = x(t)
√
SNR + i(t)ej2π(fc,i−fc,x)t

√
INR + ζ(t). (5)

At GGS, in the process of converting from analog to
digital (A/D), the received signal is subjected to sampling
at a frequency of fs = 1

Ts
Hz, where Ts denotes the

sampling duration, the signal combined of M total number of
I/Q samples. Eventually, we get a vector of complex-valued
numbers yx ∈ CM from (1) in case of GSO interference-free
signals, or y ∈ CM as from (5) in the case of GSO signals
with LEO interference.

III. DATA PREPARATION

Assume we generated N data points of yx or y signal
samples. From now onwards, a data point in N will indexed
as yn ∈ CM where n = 1, 2,...,N . Later on, we utilize DL
models based on unsupervised learning and need to train the
models on interference-free data only, but the evaluation is
based on interference and interference-free data. Thus, our
datasets generation is composed of three parts:

1) Training datasets: We emulate an scenario with a single
GSO satellite and a GGS who is pointing towards such GSO
satellite and receiving the interference-free signal for a period
of time Ttr, and save Ntr data points using a small simulation



step of ∆τtr. We repeat the simulation three times and vary the
loss factor LA which causes the adaptive coding and modula-
tion scheme (ACM) to transmit using different ModCods. In
particular, we consider three ModCods, that is, QPSK, 8PSK
and 16APSK. The values of SNR and the signal samples are
saved in three different sets, namely (Ytr,QPSK ∈ CNtr×M ,
Ytr,8PSK ∈ CNtr×M , and Ytr,16APSK ∈ CNtr×M ). A
fourth dataset is set by combining all three ModCods sets
together: [Ytr,QPSK ,Ytr,8PSK ,Ytr,16PSK], it can be denoted
as Ytr ∈ C3Ntr×M .

2) Validation datasets: Similar to the training datasets, we
generate interference-free datasets for models validation, using
Tva, ∆τva, and generating Nva data points.

3) Testing datasets: For the testing datasets, we added
LEO satellite to the simulation, and assumed it uses 16APSK
ModCod all the time. For Tts, ∆τts, here we collect Nts

data of SNR and INR values, then use them to generate
both interference-free and interference signals samples for
evaluating the models. Thus, the total generated testing data
size is doubled. Specifically, we repeat the simulation three
times1, and store three different sets based on GSO ModCods,
namely (Yts,QPSK ∈ C2Nts×M , Yts,8PSK ∈ C2Nts×M ,
and Yts,16APSK ∈ C2Nts×M ). Similar to the training and
validation datasets, a fourth dataset is generated by combining
all three ModCods matrices together, and it can be denoted
as Yts ∈ C6Ntr×M . Finally, we manually added a data label
column at the end of each dataset matrix, with an ”0” label for
interference-free data and an ”1” label for interference data.

Given that machine learning algorithms do not support
direct input data of complex numbers, we will explore the
effectiveness of two different data representations for detecting
interference:

1) Received signals as amplitude values (1D-Data): Gen-
erated by transforming the I/Q samples into a column
vector of the signals magnitude values, each vector has
a shape of M . The new datasets will be denoted by
simply adding the letter A to the generated matrices,
e.g., YA

tr. We will refer to this data representation as
Amplitude data, and each data point can be expressed
by the following equation,

yAn = |yn| ∈ RM , (6)

2) Received signals as I/Q samples (2D-Data): Generated
by splitting I/Q samples into two columns (real and
imaginary parts). From the DL perspective, all inputs are
real numbers, composed as a matrix of shape (M , 2).
The new datasets will be denoted by simply adding the
letters IQ to the generated matrices, e.g., YIQ

tr . We will
refer to this data representation as I/Q data, and each
data point can be expressed by the following equation,

yIQn = [Re{yn}; Im{yn}] ∈ RM×2, (7)
1Notice here all three times, INR data will have the exact values because

no additional losses are added to (4), and this is intentional for the purpose
of comparing the models detection performance in similar interference con-
ditions.

IV. PROPOSED DEEP LEARNING MODELS

We propose DL models, based on CAE architecture, for
interference detection tasks. This entails initially training the
CAE using signal data devoid of interference. Subsequently,
we aim to establish a reliable reconstruction error threshold.
Ultimately, this threshold will be applied to signals, with
or without interference. An interference is flagged when the
detected error values exceed this predetermined threshold.

A. Notation and Assumptions

We denote a model input as yn e.g., yAn or yIQn . Each
input, before being fed to the model, undergoes an element-
wise normalization, scaled between 0 and 1 based on the
minimum value and the maximum value in the training dataset
of interest.

A CAE model utilizes an encoder to compress any input yn
into a representation of lower-dimensional latent space. The
decoder then decodes this lower-dimensional representation
back to the original dimension, resulting in a reconstructed
version of yn. The objective of a CAE is to acquire a produc-
tive and significant representation of the input by reducing a
loss metric between the initial input (yn) and the reconstructed
output (ŷn). The loss function employed to train and assess
the performance of all models is the mean absolute error
(LMAE). The computation entails taking the average of the
absolute differences between the predicted values and the
actual values. The expected result is for CAE to successfully
reconstruct data without any interference, resulting in a low
LMAE value. However, if interference is encountered during
the reconstruction process, a higher LMAE value will be
observed. By establishing a threshold β for the LMAE values,
it becomes feasible to distinguish between instances with no
interference and instances with interference. Consequently, β
can be considered as the interference score, such as,

dn =

{
1 Interfence, if LMAE > β

0 Interfence-free, otherwise
(8)

where dn denotes the decision made by the model for the
input yn after going through the thresholding process.

B. Models Details

We present two separate CAE models, one for each data
representations. Both models has equal complexity, which is
often associated with the number of parameters (weights and
biases) it has to learn. We chose the final dimensions and
hyperparameters after preliminary testing experience.

1) 1D Convolutional Autoencoder Model (CAE2D): Fig. 2a
detailed the CAE1D model architecture. Which dedicated to
process 1D data (i.e., Amplitude data). In the encoder, the
input is reshaped into a different dimension to prepare it
for convolution. In this case, the input is a 2D array that is
reshaped into a 3D tensor suitable for 1D convolution (batch,
features, filters). M refers to the number of features in the in-
put. Conv1D Layer performs 1D convolution on the input data,
and kr = 3 specifies the kernel size of the convolution filter.



Decoder

Reshape

(M) (M,1) (
𝐌

𝟐
, 
𝐌

𝟖
)

𝐌

𝟖
(kr = 3)

+
𝐌

𝟖
(po = 2)

𝐌

𝟒
(kr = 3)

Encoder
Bottleneck

M 
(kr = 3)

𝐌

𝟒
(kr = 3)

+
𝐌

𝟐
(po = 2)

(
𝐌

𝟒
, M)

Conv1D MaxPooling1D UpSampling1D 

M (st = 2)
+

𝐌

𝟐
(kr = 3)

(
𝐌

𝟐
, 
𝐌

𝟐
)

𝐌

𝟐
(st = 2)

+
𝐌

𝟒
(kr = 3)

(M, 
𝐌

𝟒
)

𝐌

𝟖
(kr = 3)

(M, 
𝐌

𝟖
)

M (kr = 1)

(M, 1) (M)

Flatten

(
𝐌

𝟒
, 
𝐌

𝟐
)

𝒚𝒏
𝑨 ෝ𝒚𝒏

𝑨

(
𝐌

𝟐
, 
𝐌

𝟒
)

(a) CAE1D Model

Decoder

𝒚𝒏
𝑰𝑸

Reshape

(M, 2) (M, 2, 1) (
𝐌

𝟐
, 2, 

𝐌

𝟖
)

𝐌

𝟖
(kr = 3x1)

+
𝐌

𝟖
(po = 2x1)

𝐌

𝟒
(kr = 3x1)

Encoder
Bottleneck

M (kr = 3x1)
𝐌

𝟐
(kr = 3x1)

+
𝐌

𝟐
(po = 2x1)

Conv2D MaxPooling2D UpSampling2D 

M (st = 2x1)
+

𝐌

𝟐
(kr = 3x1)

𝐌

𝟐
(st = 2x1)

+
𝐌

𝟒
(kr = 3x1)

𝐌

𝟖
(kr = 3x1) M (kr = 1x1)

(
𝐌

𝟐
, 2, 

𝐌

𝟒
) (

𝐌

𝟒
, 2, 

𝐌

𝟐
) (

𝐌

𝟒
, 2, M) (

𝐌

𝟐
, 2, 

𝐌

𝟐
) (M, 2, 

𝐌

𝟒
)

Reshape

(M, 2)(M, 2, 1)(M, 2, 
𝐌

𝟖
)

ෝ𝒚𝒏
𝑰𝑸

(b) CAE2D Model

Fig. 2. Proposed Deep Learning Models

MaxPooling1D layer performs downsampling by taking the
maximum value over a pool size, reducing the dimensionality
of the data, po = 2 indicates the pooling size. The Bottleneck
layers continue reducing the features dimension to the latent
space representation of size M

4 .
In the Decoder, an UpSampling1D layers performs the op-

posite operation of max pooling it increases the dimensionality
of the data by repeating the values, effectively undoing the
downsampling from the encoder. Finally, a Conv1D layer that
has M filters and a kernel size of 1 generates a solitary feature
map. This feature map is subsequently flattened, and produce
the reconstructed output ŷn, which has a size of M .

2) 2D Convolutional Autoencoder Model (CAE2D): Fig. 2a
illustrates a CAE2D model architecture. The primary differ-
ence from CAE1D is that the CAE2D model will only process
on 2D data (i.e., I/Q data), which is reflected in the use of 2D
convolutional, pooling, and upsampling layers. In this case, the
input is a 3D array that is reshaped to a 4D tensor, suitable for
2D convolution (batch, features, height, filters). The reshaping
of the input and output to accommodate the two-dimensional
nature of the data.

C. Performance Metrics

The effectiveness of these models in identifying GSO
interference-free instances (negative classes), and NGSO inter-
ference instances (positive classes) at GGS is evaluated using
the following key performance indicators [6], 1) Accuracy
score evaluates the percentage of accurate predictions made by
the model out of all the predictions, 2) Precision score refers
to the accuracy of the model in correctly detecting instances
of interference, 3) Recall score indicates the model sensitivity
to instances of interference, in our scenario it also indicates,
the probability of detection, and the true positives rate. 4)
F1− Score is the harmonic mean of precision and recall,
5) AUC score is a scalar value indicates the area under the
receiver operating characteristic curve (ROC) curve, this value
quantifies the model capability to differentiate between NGSO
interference instances and GSO interference-free instances.

V. EXPERIMENTAL RESULTS

A. Data Generation

The NGSO-to-GSO satellites simulation and SNR and INR
values calculations conducted using the same approach ex-
plained in details in [5]. The simulation UTC startTime is 01-
Aug-2023 06:07:00. The orbital movement of the chosen GSO
and LEO satellites is computed using the built-in functions
in MATLAB. These functions give approximations of the
latitude, longitude, and altitude at different points in time
based on the satellites’ trajectory. The link budget parameters
are shown in Table I.

TABLE I
SIMULATION AND LINK BUDGET PARAMETERS

Parameters Values
Ttr, Tva, Tts 120 seconds

∆τtr,∆τva,∆τts 50, 16 & 16 ms
Ntr, Nva, Nts 7200, 2400 & 2400

PEIR,x 52.2 dBW
Bx 50 MHz
fc,x 11.750 GHz
LA 0 to 9 dB

PEIR,i 44.7 dBW
Bi 50 MHz
fc,i 11.750 GHz
TGS 250◦ K

Gr,max 42.2 dBi

The values of LFS,i and Gr,i(θi), from (4), vary with the
changing positions of the STARLINK satellite. With this setup,
we generated GSO SNR values for each ModCod as follows,
1) QPSK ModCod for SNR between [2 - 5.9] dB, 1) 8PSK
ModCod for SNR between [6 - 9.9] dB, and 3) 16APSK
ModCod for SNR between [10 - 14.9] dB. For the testing
data, the values of INR range from [-24.4 to 33.3] dB for all
GSO ModCods scenarios, as shown in Fig. 3. Furthermore,
the roll-off factor of the raised cosine filter was set to 0.25
and the sampling frequency fs = 100 MHz, which generated
signals with a total of M = 800 samples.



Fig. 3. SNR and INR values per GSO ModCod

B. Training the autoencoder model

For one data representation (Amplitude data, or I/Q data),
we generated a dataset matrix for each GSO ModCod sepa-
rately, then an additional dataset matrix combine all matrices
is generated as explained in Section III. In this part, we inves-
tigate the model performance using two types of approaches
for training.

1) Single Model approach (SM): where we train and eval-
uate one model to detect interference in all GSO Mod-
Cods, i.e. using the combined GSO ModCods datasets.

2) Multi-Models approach (MMs): where we train and
evaluate the model to detect interference on specific
GSO ModCods, i.e., using the separated GSO ModCods
datasets. Finally, we will have three trained models that
collaboratively detect interference.

The models proposed in Section IV are constructed using
the Python with the assistance of the Tensorflow and Keras
frameworks. MAE is chosen as the primary loss function for
all models, and the optimizer utilized is Adam. The weights
parameters are updated through the use of training datasets,
and the validation datasets are employed to validate the results.
All the models underwent training for a total of 80 epochs,
using a mini-batch size of 64. Fig. 4 displays an input data,
the reconstructed output, and the reconstruction error regions,
obtained from the CAE1D using the SM approach, after re-
verses normalization. The presence of interference in the data
indicates a higher reconstruction error (failed reconstructions).
This outcome is anticipated because the models were trained
using interference-free data, making it more challenging to
reconstruct interference data.

We suggests utilizing an initial threshold value β0 for each
model and dataset to differentiate between interference-free
and interference data. This value can be obtained from a
combination of mean and standard deviation values of the
MAE loss values in the training dataset LMAE,Train. This
threshold value ensure a satisfactory performance in detecting
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Fig. 4. Input and reconstructed output for an interference-free (left) and
interference data (right)

interference. However, in this paper, we have expanded the
definition of the threshold to include an improved value
(β) by analyzing interference segments (assuming they are
accessible). Specifically, we identify the threshold value that
gives the highest AUC score by utilizing the testing dataset.
For the sake of the space, we use β only, although it can
be extended to discuss the performance of the β0 and β
thresholds.

C. Models evaluation results

The models performance is evaluated by comparing them
with a conventional ED method. In classical detection the-
ory, an ED is considered the optimal likelihood-ratio test
for detecting stochastic signals in environments with white
Gaussian noise [7]. The energy En, which is the square of the
magnitude, is determined by summing the squared amplitudes
of the samples of the signal yn. An energy threshold βE is
established to decide if signal yn contains NGSO interference.
The threshold is constant and is determined by the processed
test datasets using the optimal AUC score approach.

Our proposed CAE1D and CAE2D models, each has
76.21% fewer parameters than the CAE model in [4], indi-
cating a simpler structure that would typically be easier to
train and less prone to overfitting. Thus, we also includes a
performance comparison of our results with the CAE model
approach in [4] to show the superiority of our models.

Fig. 5. Models performance metrics for The SM approach (Left), and the
MMs approach (Right)

Fig. 5 shows radar sharts with performance metrics results
for the proposed models in comparison to CAE [4], and the
ED method, using SM and MMs approaches. In particular, it
highlights that all DL models show a very similar performance,



TABLE II
PERFORMANCE METRICS SUMMARY OF THE PROPOSED MODELS

Model Input Data Train Based Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)

CAE1D Amplitude SM 79.99 84.44 73.51 78.60 79.99
MMs 94.01 97.75 89.94 93.57 94.01

CAE2D I/Q SM 79.30 76.87 83.82 80.19 79.30
MMs 90.92 95.88 85.29 90.07 90.92

CAE [4] I/Q SM 79.39 77.20 83.42 80.19 79.39
MMs 90.33 98.82 81.56 88.77 90.33

ED Energy SM 71.67 100.0 43.35 60.48 71.67
MMs 89.47 100.0 78.93 87.33 89.47

Fig. 6. ROC curves per model for the SM approach (Left), and the MMs
approach (Right)

with the lines overlapping closely, which suggests that all
models perform similarly across the metrics when trained with
either the SM or MMs approaches in comparison to the ED
method. Fig. 6 shows ROC curves, comparing the same models
as previously discussed CAE1D, CAE2D, CAE [4], and ED,
using the SM and MMs training approaches. The CAE1D
model has an AUC of 0.80 under the SM approach and
improves significantly to 0.94 under the MMs approach. While
CAE [4] and CAE2D each have a AUC of 0.79 for the SM
approach, which increases to 0.90 and 0.91, respectively, with
the MMs approach. On the other hand, the ED model exhibits
an AUC of 0.72 with the SM approach and a higher AUC
of 0.89 with the MMs approach. The consistent improvement
across all models when using the MMs training approach
suggests that this approach may be better suited for training
models.

Table II, summarizes the performance metrics of the pro-
posed models CAE1D, CAE2D, CAE [4], and ED in both
training approaches. All metrics are expressed as percentages.
For CAE1D (which processes Amplitude data) and CAE2D
(which processes I/Q data), precision is particularly high with
the MMs approach, suggestion that when they predict an
instance of interference, they are highly likely to be correct.
CAE [4] has a better precision score under MMs approach,
but low scores otherwise. Finally, the ED model has a perfect
precision score under both SM and MMs training, but with low
recall. The precision and recall are the only metrics in which
CAE2D and I/Q data perform better than CAE1D when both
are on SM training. Overall, in terms of detecting interference

and minimizing false alarms, the CAE1D model trained with
MMs approach demonstrates superior performance compared
to other DL models and the ED method.

VI. CONCLUSION

The proposed CAE1D (and Amplitude data), when trained
with the MMs approach, showed remarkable improvement
across all performance metrics such as accuracy, precision,
recall, F1-Score, and AUC, compared to the CAE2D model
(and I/Q data) as well as the traditional ED method. This
improvement underscores the effectiveness of deep learning
in complex interference scenarios and suggests a direction for
future research and development in satellite communication
security and reliability. The University of Luxembourg HPC
facilities were utilized for conducting the experiments [8]. The
data utilized in this study will be accessible to the public
through the Smart-Space project website2.
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