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The ‘‘Side Population’’ (SP) discrimination assay is a flow cytometry method used to detect stem cells based
on the dye efflux properties of ABC transporters. We discuss the SP assay and its applications in stem
cell biology, with an emphasis on the technical challenges related to sample preparation, data acquisition,
analysis, and interpretation. We highlight the value of multicolor phenotyping, the impact of DNA ploidy,
and the importance of distinguishing graft versus host cells for an appropriate SP discrimination. To improve
the consistency and reliability of data between laboratories, we propose a set of recommendations for SP
assay data reporting.
The Side Population (SP) discrimination assay is based on the

differential potential of cells to efflux the Hoechst dye via

the ATP-binding cassette (ABC) family of transporter proteins

expressed within the cell membrane. ABC transporters belong

to the superfamily of membrane pumps that catalyze ATP-

dependent transport of various endogenous compounds and

xenobiotics out of the cell. Following sequencing of the human

genome, it has been estimated that between 500 and 1200

genes encode drug transporters (Venter et al., 2001). ABCB1

(P-glycoprotein, MDR1), ABCC1-5 (multidrug-resistant proteins,

MRP1-5), and ABCG2 (breast cancer resistance protein, BRCP1)

are the best-characterized transporter proteins that function to

establish the SP phenotype (Robey et al., 2009; Schinkel and

Jonker, 2003; Sun et al., 2003; Zhou et al., 2001).

The ability of ABC transporters to rapidly efflux lipophilic

fluorescent dyes in vitro serves as the basis of the SP assay,

which was first described using mouse bone marrow cells

(Goodell et al., 1996). The bone marrow SP has been shown to

be highly enriched for functional hematopoietic stem cells

(HSCs) and also overlaps with the phenotypically defined

CD117+Sca-1+Lin�Thy1lo HSC population (Camargo et al.,

2006; Challen et al., 2010). Indeed, combining SP determination

with cell-surface marker phenotyping leads to efficient, reliable

characterization of the HSC subset, and HSCs isolated accord-

ing to these combined traits are one of the most pure and potent

adult stem cell populations available.

Since its development more than 15 years ago, the SP assay

has emerged as a promising method for identifying stem cell

and progenitor populations in different tissues, including umbil-

ical cord blood (Storms et al., 2000), skeletal muscle (Asakura

et al., 2002; Gussoni et al., 1999), kidney (Iwatani et al., 2004),

liver (Shimano et al., 2003), mammary glands (Clayton et al.,

2004), lung (Summer et al., 2003), and forebrain (Kim and Mors-

head, 2003). Importantly, stem cells that exhibit SP properties

are rare in most tissues and often constitute a heterogeneous

population, differing with organ type and stage of development.

Although SPs are clearly enriched in stem cells, several reports
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caution that dye efflux is not a common property of all stem

cell populations (Terunuma et al., 2003; Triel et al., 2004; Zeng

et al., 2009). Moreover, the SP phenomenon is not restricted to

the stem cell phenotype because it has also been described in

certain differentiated cells in adult tissues. Indeed, ABC trans-

porters are expressed by specialized cells in several organs,

including small intestine (Mayer et al., 1996), liver, kidney (Smit

et al., 1998), brain microvessel endothelial cells (Schinkel,

1999), epithelial cells of blood-cerebrospinal fluid barrier (Segal,

2000), blood-testis barrier (Choo et al., 2000), and placenta (Lan-

kas et al., 1998). In these tissues, the transporters are thought to

play a role in protection against the cytotoxic effects of toxins

and xenobiotics (multiple drug resistance) by limiting toxin/

drug entry into certain tissues and promoting their elimination

into the bile and urine (Fromm, 2000).

The identification of cancer stem-like cells has further raised

the interest in the SP technique, and the SP phenotype might

explain the resistance of a subpopulation of tumor cells to

chemotherapy (Chua et al., 2008; Dean et al., 2005; Hirsch-

mann-Jax et al., 2004; Ling, 1995; Szotek et al., 2006; Wu

et al., 2007). SP cells have been identified in a number of cancers

where they have been shown to display increased capacity of

self-renewal and tumorigenicity when transplanted into immuno-

compromised mice (Bleau et al., 2009; Chiba et al., 2006;

Chua et al., 2008; Haraguchi et al., 2006; Ho et al., 2007; Mitsu-

take et al., 2007; Patrawala et al., 2005;Wu and Alman, 2008;Wu

et al., 2007). The percentage of SP cells in primary mesenchymal

tumors appears to correlate with tumor grade and has been

proposed as a predictor of patient outcome (Wu et al., 2007).

SP cells from colon and breast carcinoma display higher expres-

sion of stem-cell-related genes compared to non-SP cells (Har-

aguchi et al., 2006; Zhou et al., 2007). However, it should be

emphasized that, similar to normal tissues, not every cancer

contains SP cells. Therefore, SP cells may only represent one

of the putative cancer stem cell populations.

Thus, the SP assay constitutes a highly valuable primary puri-

fication strategy for isolating potential stem/progenitor cells from
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Table 1. Overview of the SP Protocol

SP Protocol Steps Critical Parameters Proposed Data Reporting Details

(1) Cell/tissue extraction stable in vitro cell line culture conditions; fresh primary

tissue

type and origin of cell line/tissue; inbred animal strains

(2) Single-cell suspension optimized dissociation protocol; stable cell

concentration (nucleated cells)

type of dissociation protocol (type of instruments and

enzymes); dissociation conditions and time

(3) Hoechst dye efflux appropriate dye concentration; stable incubation

conditions (time, temperature, darkness); inhibition

controls

Hoechst or other dye concentration in SP test (if other

than recommended justification should be provided);

cell concentration in SP test; type and concentration of

efflux inhibitors

(4) Cell-surface phenotyping inhibition of cell metabolic activity (cold incubation

conditions); antibody type and concentration; dead

cell discrimination marker

(see Table 2 for published examples and references)

antibody clone and fluorochrome; antibody

concentration/dilution and staining conditions (time,

temperature)

(5) Data acquisition flow cytometer with a high power UV laser (50–100

mV); sensitive ‘Hoechst red’ channel detector; low

coefficients of variation (CVs); low sample pressure

(Hoechst profile in linear mode); high cell concentration

flow cytometer model used, shear pressure; laser

types and power used; emission wavelength,

specification of filters

(6) Data analysis gating strategy including: single-cell analysis with

debris exclusion; erythrocyte exclusion; dead cell

discrimination; inhibition controls; cell surface

phenotyping; cell ploidy

software package(s) used for analysis:

display of gating strategy, including percentage of

events in each gate; display of examples of gating

strategy on dot plots applied before SPgate, including

scale used (linear/log) and specification of the

population displayed on the plot; display of SP test and

inhibition controls to validate the SP gate; for SP cell

membrane phenotyping display of SP on phenotyping

plot and phenotyped population on Hoechst plot

(back-gating)

Chronological steps in the multicolor SP assay (left column) and associated critical parameters (middle column), as discussed in text. Right column:

recommendations of parameters to be included for data reporting of SP assay.
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various tissues, particularly in the absence of specific cell-

surface markers. Nevertheless it is important to keep in mind

that in most tissues, the SP phenotype is not exclusive to stem

cells. While a number of detailed SP method protocols (Goodell,

2005; Goodell et al., 2005; Lin and Goodell, 2006; Petriz, 2007)

and reviews summarizing our knowledge of SP cells in different

tissues (e.g., Challen and Little, 2006; Schroeder, 2010; Wan

et al., 2010; Wu and Alman, 2008) have been published, here

we provide an overview of the principle and potential of the SP

assay and focus on the critical parameters that can challenge

the experimental design, conduct, and interpretation of results

when performing this assay. We highlight the value of combining

the SP assay with multicolor phenotyping, as well as the impact

of DNA ploidy on SP analysis, particularly in the context of

cancer stem-like cells. We also provide suggestions on how to

improve reproducibility of the SP analysis between laboratories

and how to standardize data reporting from SP assays. An over-

view of the SP protocol and the associated critical parameters is

provided in Table 1.

Principle, Potential, and Pitfalls of the SP Assay
In the early 1990s, it was shown that in vitro cultures of a subpop-

ulation of bone marrow cells are able to efflux fluorescent dyes,

such as Hoechst 33342 or Rhodamine 123 applied alone or in

combination (Li and Johnson, 1992; McAlister et al., 1990; Wolf

et al., 1993). Hoechst is a fluorescent dye that binds all nucleic

acidswith apreference for theAT-rich regionsof theminorgroove

of DNA (Lalande and Miller, 1979). Hoechst 33342, in contrast to
Hoechst 33258, can traverse the intact plasma membrane of

living cells. While uptake of the dye occurs uniformly in all cells

through passive diffusion, efflux is an active energy-driven

process. Only cells expressing a sufficient number of ABC trans-

porters are able to actively efflux the dye out of the cell.

Visualization of the Hoechst profile simultaneously in two

distinct channels of the flow cytometer, published first in 1996

by Goodell and colleagues, resulted in a significantly improved

resolution of the cell population with efflux properties (Goodell

et al., 1996). Optimal SP resolution requires a flow cytometer

equipped with an ultraviolet (UV) laser. Hoechst 33342, when

excited by UV light, emits fluorescence that can be detected in

two distinct channels on the flow cytometer: the ‘‘Hoechst

Blue’’ (450/50 nm band-pass filter) and the ‘‘Hoechst Red’’

(675/20 nm long-pass filter) channel, while a dichroic mirror

(LP635 nm) is used to split the emission wavelengths. As the

‘‘Hoechst Red’’ channel is more sensitive to small changes in

dye concentration, the so called ‘‘side population’’ (SP) cells

emerge as a distinct dim ‘‘tail’’ extending first on the left side

of G0/G1 cells (often referred to as the main population) toward

the lower ‘‘Hoechst Blue’’ signal (for example, see Figure 1), and

which is lost upon inhibition of ABC transporter activity. If a UV

laser is unavailable on the flow cytometer, Hoechst can also be

excited with non-UV wavelengths. However, in our experience,

neither Hoechst excitation by the near-UV or violet laser (Telford

and Frolova, 2004) nor the use of alternative non-UV excitable

DNA dyes (Telford et al., 2007) leads to the sharp SP resolution

as observed with traditional UV sources.
Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc. 137



Figure 1. Gating Strategy for SP Data Analysis
An example of a step-by-step gating strategy and the resulting percentage of cell populations is shown for mouse bone marrow, a well-established example of
SP-containing tissue (Goodell et al., 1996; Lin and Goodell, 2006). Appropriate discrimination of single, viable, and nucleated cells is crucial for adequate char-
acterization of the SP.
(A) Gating strategy. (1) Cells are distinguished from debris on the flow-cytometric profile based on the Forward Scatter (FSC, related to the cell size) and Side
Scatter (SSC, related to cell granularity). (2) To assure that a detected signal arises from single cells, cell doublets and aggregates are gated out based on their
properties displayed on the SSC area (SSC-A) versus height (SSC-H) dot plot. (3) Dead cells are recognized by their strong positivity for the dead cell discrim-
ination marker. (4) Due to its function as a DNA-binding dye, the Hoechst dye fluorescence signal can be used to visualize cells in a specific phase of the cell cycle
(G0/G1, S, and G2/M) by indicating the DNA content per cell. The cell-cycle status of the major cell populations is highlighted by the dotted circles on the dot plot.
For cell suspensions from primary tissue, enucleated erythrocytes (marked in red) can be excluded by applying an additional ‘‘Hoechst’’ gate on the ‘‘Hoechst
Red’’/‘‘Hoechst Blue’’ dot plot in the linear scale. (5) SP cells are recognized as a dim tail extending first on the left side of G0/G1 cells toward the lower ‘‘Hoechst
Blue’’ signal. (6) Erythrocytes can also be recognized and gated as the Hoechst negative cell population on the ‘‘Hoechst Red’’ and/or ‘‘Hoechst blue’’ channel
displayed in the logarithmic scale.
(B) Gating tree. The gating tree indicates the sequential procedure applied to select out the final population for SP discrimination and the percentage of cells
(gated events) resulting from each gating step. ‘‘% Parent’’ indicates the percentage of gated events relative to the preceding gate, while ‘‘% Total’’ indicates
the percentage of gated events relative to all events recorded. The SP assay was performed according to the classical SP protocol (Goodell et al., 1996; Lin
and Goodell, 2006). Briefly, cells were resuspended in prewarmed DMEM, 2% FBS 10 mM HEPES (pH 7.4) (1 3 106 cells/ml nucleated cells). Samples were
incubated in the presence of 5 mg/ml Hoechst 33342 for 90 min at 37�C with agitation in the dark, followed by rinsing in cold HBSS 2% FBS, 10 mM HEPES
(pH 7.4) buffer. All subsequent steps were done at 4�C. The Near-IR Live/Dead marker (Invitrogen) was used for dead cell discrimination (30 min at 4�C in the
dark). Data acquisition was performed at 4�C with the FACS Aria SORP cytometer (BD Biosciences) using DIVA software. The analysis of bone marrow SP
does not differ betweenmouse strains; however, the exact percentage of SPmay vary according to the genetic background of themouse. Note that bonemarrow
isolated fromNOD/Scidmice (shown here) gives a higher percentage of SP (1.9%) compared to normal bonemarrow (0.3%–0.5%), because of the lack of mature
lymphocytes in these mice (Niclou et al., 2008).
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Importantly, since the SP assay is based on an active meta-

bolic process, it does not only serve as a positive/negative

marker for cell phenotyping, but carries additional information

about the functional status of the cells. It also has a significant

resolution advantage over classical immunostaining with anti-

bodies against ABC transporters. Due to its high sensitivity,

even rare SP events (<0.5% of the total cell population) can be

detected within heterogeneous samples. The combination of

the SP assay with cell surface phenotyping can lead to a further

characterization of putative stem cell and cancer stem cell

populations. Moreover, the SP assay, being performed on viable
138 Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc.
cell populations, enables subsequent functional characterization

of the cells in vitro and in vivo, which is not possible with many

other DNA-binding dyes.

In contrast to classical cell-surface staining protocols for

flow-cytometric analysis, the SP assay requires an additional

dye incubation step for the appropriate equilibration of the dye

between the extracellular and intracellular compartment prior

to dye efflux by cells expressing ABC transporters. ABC trans-

porter-mediated dye efflux is an active and dynamic biological

process and, thus, is highly sensitive to even slight modifications

in the staining procedure. This sensitivity can easily lead to
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irreproducible results and/or discrepancies in results between

laboratories, which have called into question the reliability of

the SP assay. However, we believe that insight into the critical

parameters of the assay (discussed in detail in the next para-

graphs) will allow the technique to be adopted by a larger

research community and to be applied to less well-studied

tissues (e.g., solid tissues, including tumors).
Critical Parameters of the Side Population Protocol
Influence of Cell Integrity, Concentration,

and Erythrocyte Contamination

The preparation of a viable single cell suspension is a crucial step

in the SP assay. This goal is particularly challenging for solid

tissues requiring mechanical and/or enzymatic dissociation

steps which inevitably affects cell viability and protein integrity

at the cell surface. Therefore, dissociation protocols often

require adaptation for each tissue type, to achieve single cell

suspensions with minimal cellular damage. The culture condi-

tions of established cell lines may also influence the SP analysis.

Since the percentage of SP cells depends on cell density,

nutrient composition, serum and oxygen levels, it is advisable

to standardize the culture conditions between SP assays to

obtain reproducible results (Tavaluc et al., 2007).

In addition to viability, the cell concentration of the single-cell

suspension is another key parameter to be considered in the SP

protocol. Changing the cell number between samples and

experiments directly influences the equilibration of Hoechst

between the buffer and the intracellular compartment. Although

1 3 106 cells/ml per test is a standard concentration frequently

reported, it is important, when working with primary tissues,

that only viable and nucleated cells are counted in the reported

cell concentration. In highly vascularized tissue, such as bone

marrow or brain, the presence of erythrocytes will strongly influ-

ence the Hoechst equilibration and the percentage of SP cells re-

corded and should, therefore, not be included in the cell count. If

enucleated cells cannot be properly distinguished at the time of

sample analysis, erythrocyte cell lysis can be performed on

a small test sample to recalculate the ratio between nucleated

and enucleated cells. Erythrocyte lysis on the whole sample

preparation is possible using the classical lysis protocol, e.g.,

with ammonium chloride, but cannot be performed with most

of the commercially available lysis solutions, which cause cell

fixation. Nevertheless, as cell viability and cell number are

already compromised after tissue dissociation, we prefer to

avoid the lysis step. Also, any pre-enrichment technique,

including magnetic sorting, is not advisable for small-volume

samples because it may compromise cell number and viability.

A valuable alternative to mechanical or chemical separation

techniques is to first exclude erythrocytes from the cell count

prior to Hoechst staining and, second, from the analysis by im-

plementing an additional gate to select only nucleated cells

(example in Figure 1A, erythrocytes depicted in red). If present,

enucleated erythrocytes appear as negative events in the

‘‘Hoechst red’’ and ‘‘Hoechst blue’’ channels and can properly

be visualized if one of the Hoechst channels is displayed in the

logarithmic scale (Figure 1A). In this context, it is important to

realize that an adequate gating strategy during data analysis,

focusing on single, viable, nucleated cell populations, is crucial
to reliably determine the presence and the percentage of the

SP (Figure 1).

Staining Protocol: Influence of Hoechst Concentration

and Hoechst Toxicity

The SP discrimination is also greatly affected by the concentra-

tion of Hoechst 33342 (Montanaro et al., 2004). As different dye

concentrations (3–20 mg/ml) are reported in the literature, a direct

comparison of results is often impossible. While 5 mg/ml Hoechst

is considered standard for most tissues, including bone marrow,

some tissues, such as muscle and skin, were found to require

a higher dye concentration for optimal SP resolution (Gussoni

et al., 1999; Montanaro et al., 2004). To increase the chance of

SP detection, researchers tend to decrease the concentration

of the dye, not realizing that cells with an unsaturated Hoechst

staining can be mistaken for SP cells (see example in

Figure 2A). Alternatively, in SP-containing tissues, non-SP cells

can be inappropriately included in the SP gate. On the other

hand, oversaturated Hoechst can lead to increased cell death,

poor resolution, or even total loss of the SP. For newly studied

tissues, we propose to perform Hoechst saturation and toxicity

dose response curves, with the optimal dye concentration lying

within a plateau region, where the percentage of SP cells is

stable (Figure 2A). Importantly, the Hoechst concentration curve

needs to be combined with transporter inhibition tests in order to

confirm the specificity of the dye efflux (see below).

A main pitfall of the SP assay is its high sensitivity to slight vari-

ations in staining conditions. Stable incubation conditions such

as temperature (37�C), duration, and light conditions (darkness)

are essential for proper dye equilibration and to minimize cellular

toxicity. Although a range of incubation times have been re-

ported for different species, in our hands, no significant differ-

ence between SP discrimination and frequency was detected

for mouse and human cells (using incubation times between

90–120 min). In case of doubt, a time-course experiment can

be performed to assess the minimal incubation time required

for best SP discrimination. For adequate temperature control,

the Hoechst incubation step is classically carried out in a water

bath. In order to avoid manual mixing of the tubes, dye incuba-

tion can also be successfully performed in a 37�C incubator

(e.g., tissue culture incubator) equipped with a gentle shaker.

Importantly, each step following the Hoechst staining, including

washing, centrifugation, antibody staining, and data acquisition,

should be performed in the cold (4�C) and in the dark, thus mini-

mizing metabolic activity of the cells and preserving the Hoechst

profile.

As a DNA-binding molecule, Hoechst is toxic for cells, partic-

ularly at high concentrations. The toxic effect is even more

profound upon exposure to UV light. Therefore, another major

caveat of the SP assay is the effect of Hoechst staining on cell

survival after SP analysis and cell sorting. There is, at present,

a strong controversy regarding the clonogenic and tumorigenic

potential of stem cell/cancer stem cell SP and non-SP popula-

tions within cell lines, primary tissues, and tumor biopsies

(Adamski et al., 2007; Camargo et al., 2006; Wu et al., 2007;

Zheng et al., 2007; Zhou et al., 2007). The possibility that

increased clonogenicity of SP cells is based on their efflux

capacity leading to decreased Hoechst toxicity is difficult to

exclude. It has also been suggested that cell viability is minimally

affected by Hoechst at the concentration used but may, rather,
Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc. 139



Figure 2. Critical Parameters in the SP Protocol
(A) Hoechst concentration. The importance of the appropriate Hoechst concentration for the reliable detection of the SP is shown for the MCF7 cells, a well-
established SP-containing cell line (Patrawala et al., 2005; Yin et al., 2008). Since the optimal dye concentration for best SP resolution may vary according to
the cell type analyzed (Montanaro et al., 2004), a Hoechst concentration curve can be performed (e.g., 2.5–12 mg/ml). Based on efflux inhibition controls
(data not shown), 5mg/ml of Hoechst is sufficient for dye saturation in these cells (SP�1%). Decreasing the Hoechst concentration below 5 mg/ml leads to an
unsaturated Hoechst profile where non-SP cells are introduced in the SP gate (SPz 11%), while elevated Hoechst concentrations lead to reduced SP resolution
(SP < 0.2%). Only single viable cells are displayed on the dot plots.

140 Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc.
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be compromised by the cell-sorting step (Camargo et al., 2006;

Goodell et al., 1997). In view of this unresolved issue, we recom-

mend including functional viability assays in vitro or in vivo of any

isolated fractions in order to detect any confounding factors

related to dye toxicity and cell sorting.

Significance of ABC Inhibition Controls

A significant number of ABC transporter inhibitors is available,

which are characterized by different specificities toward distinct

ABC family members. Verapamil, cyclosporine A, and proben-

ecid target the ABCB1 protein (Potschka and Loscher, 2001),

while Fumitremorgin C (FTC) is highly specific in its ability to

block the ABCG2 protein (Rabindran et al., 2000; Yin et al.,

2008) because it exhibits minimal effect on ABCB1 and

ABCC1-5 transporters. Nevertheless, some of the inhibitors of

ABCB1 and ABCC1, such as imatinib, also inhibit ABCG2 activity

(Robey et al., 2009). Indeed, no selective inhibitor has been iden-

tified thus far that blocks the ABCC subfamily or its individual

members (Loscher and Potschka, 2005b).

Appropriate SP discrimination relies heavily on transporter

inhibition control experiments, particularly for very rare SP

events (0.1%–0.5%). The observed loss of SP following trans-

porter inhibition allows a confirmation of SP identity and

excludes any erroneous SP events. The high variability observed

in the published SP gating strategies and the lack of justification

thereof represents a major problem in the literature: in some

reports, the SP gate is placed close or even within the G0/G1

region (and/or apoptotic cells) while in others it is limited to the

low side of the SP. Transporter inhibition controls allow an

unequivocal definition of the boundary between the SP and

non-SP cell population, thereby justifying the gating strategy

(Figure 2B).

It should also be noted that dye efflux can be triggered by

several types of transporters expressed within the same cell or

within distinct subpopulations of the SP. For instance, the tissue

distribution of ABCG2 overlaps extensively with that of ABCB1,

and expression of different transporters has been detected

within the same tissues (reviewed in Robey et al., 2009; Schinkel

and Jonker, 2003; Sun et al., 2003; Zhou et al., 2001). Further-

more, ABC transporter expression changes during organ devel-

opment. For example, SP cells in the fetal brain are sensitive to

the ABCG2 inhibitor Ko143, whereas in the adult forebrain, the

SP is inhibited by the ABCB1 inhibitor verapamil, despite the

fact that both SP populations comprise mainly cells of endothe-

lial origin (Mouthon et al., 2006).

To ensure maximal transporter inhibition leading to a precise

adjustment of the SP gate, it is preferable to establish a dose-
(B) Effux inhibition controls. An appropriate SP discrimination and gating requires c
inhibition tests with Fumitremorgin C (FTC) and verapamil is shown for brain tissue
verapamil (2mMand 100mM respectively) for 20min prior to and during Hoechst sta
inhibition is observed with verapamil. Co-incubation with the two inhibitors results
mined by more than one transporter. Importantly, the control with the strongest in
a ‘positive control’ by performing the inhibition tests simultaneously on a well de
(C) Debris and dead cell discrimination. To illustrate the importance of adequate de
in cell lines that do not contain SP cells (U87 and SF767 glioma cells) are shown. T
exclusion, (3) single-cell events after aggregate exclusion, and (4) single viable ce
for each population is displayed on each dot plot. Most of the putative SP even
whereas in SF767 cells, dead-cell discrimination is required to abolish inappro
may explain controversial results for U87 and other glioma cell lines reported i
2004; Patrawala et al., 2005). A uniform decrease of the signal in both Hoechst c
U87, arrow on dot plot 4). SF767 cells were obtained from the UCSF Tissue Ban
response curve for several inhibitors. If necessary, e.g., in poorly

defined tissues, this optimization step may even be conducted

with different Hoechst concentrations. Only those populations

showing decreased efflux properties upon inhibition can be

considered as a valid SP. If SP cells show sensitivity to several

inhibitors, controls containing a combination of two or more

chemicals can be applied (for example see Figure 2B). In the

presence of a heterogeneous SP, where cell subpopulations

react differently to varying inhibitors, the SP gate may be option-

ally divided into several subgates according to the separation

profile and the SP behavior in inhibition tests. In summary,

because of the high sensitivity of the SP protocol, it is highly

advisable to include inhibition controls in each experiment,

thus validating the specificity of the Hoechst profile obtained.

In addition, it is useful to include a well-defined SP model as

a positive control and validate the inhibition controls simulta-

neously in the known model and in the specific population of

interest.

Significance of Dead Cell Discrimination Prior

to SP Analysis

Adequate exclusion of dead cells is crucial for any flow-cytomet-

ric data analysis. Dead cells exhibit properties distinct from their

viable counterparts, such as unspecific antibody binding. The

Hoechst dye binds to all DNA, whether associated with live,

dead, or apoptotic cells or debris. Dead cells can inappropriately

appear as SP and, thus, an appropriate gating strategy plays an

essential role in defining the Hoechst profile of single, viable, and

nucleated cells (Figure 1). In many cases, dead-cell particles,

which could be mistaken for SP cells, can be gated out by debris

exclusion, as shown for the U87 cell line (Figure 2C) that does

not contain SP cells (Bleau et al., 2009). However, for other

SP-negative cell lines, additional dead-cell discrimination is

indispensable (e.g., SF767 cell line; Figure 2C) and can be easily

integrated in the SP analysis by application of an adequate dead-

cell discrimination marker.

Furthermore, during apoptosis, the cellular DNA content is

diminished, as degraded DNA leaks out during cell rinsing and

staining (Compton, 1992). Because some cell lines show a high

proportion of apoptotic cells, which display a uniform decrease

of the signal in both Hoechst channels, apoptotic cells can easily

bemistaken for SP cells (see, e.g., U87 cells in Figure 2C, arrow).

The original protocol developed by Goodell and colleagues for

bone marrow employed propidium iodide (PI) for dead-cell

discrimination. Although successfully used as a dead-cell

marker, PI is excited by the UV laser and is detected in the

‘‘Hoechst red’’ channel, giving rise to an additional PI signal in
ontrol experiments with one or more ABC transporter inhibitors. An example of
(see e.g., (Loscher and Potschka, 2005a)). Cells were incubated with FTC and
ining. FTC leads only to a partial inhibition of brain-derived SP, while significant
in full SP efflux inhibition, indicating that the efflux potential in brain SP is deter-
hibition effect is used for the final set up of the SP gate. It is advisable to include
fined SP model.
bris and dead cell discrimination on SP detection, two examples of SP analysis
he SP profile is displayed for (1) all events recorded, (2) cell events after debris
lls after dead-cell exclusion. The percentage of events displayed in the SP gate
ts in U87 cells can already be eliminated after appropriate debris exclusion,
priate SP events. Inadequate Hoechst concentrations and gating strategies
n the literature (Bleau et al., 2009; Chua et al., 2008; Hirschmann-Jax et al.,
hannels represents apoptotic cells which should not be mistaken for SP (see
k.
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Table 2. Examples of SP Phenotyping in Different Tissues

Tissue Type SP Cell Type Characterized Phenotyping Markers References

Bone marrow hematopoietic stem cells Lin� Sca-1+ CD117+ CD34/low Flk2�

CD45+ CD44+
Goodell et al. (1996); Camargo et al. (2006);

Lin and Goodell (2006); Challen et al. (2010)

Lung bone marrow-derived cells CD45+ CD34+ CD31+ ;

CD45� CD34� CD31+/�
Summer et al. (2003); Summer et al. (2004)

Liver very heterogeneous bone

marrow-derived population

CD45+ CD34+ CD117+ Sca-1+ Thy1+;

CD45� CD34+ CD117+ Sca-1+ Thy1+
Wulf et al. (2003)

Skeletal

muscle

muscle stem cells;

bone marrow-derived cells

Lin� Sca-1+ CD45�;
Lin� Sca-1+ CD45+

Asakura et al. (2002); Gussoni et al. (1999)

Testis testis stem cells CD45� CD34� Sca-1+ CD117+/� Lassalle et al. (2004); Falciatori et al. (2004)

Brain endothelial cells; astroglial cells;

microglia; fetal neural stem cells

CD31+ CD133+ CD45�; A2B5+;
CD11b+; CD15+ CD133+ CD31�

Mouthon et al. (2006)

Reports on multicolor phenotyping of SP populations from different tissues. In many tissues (lung, liver, muscle, brain) several cell types with different

phenotypic profiles were identified within the SP.
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the Hoechst profile, which can be confusing for nonexperienced

researchers. Since PI is also excited by a blue laser, measuring

PI emission on a logarithmic scale using a different PMT

(BP630/30) has been recommended in order to achieve a more

precise discrimination of dead cells (Petriz, 2007). Recently,

novel dead-cell discrimination markers have been developed,

which are not excited by the UV laser and show a narrow range

of emission wavelength. In our experience, such markers,

including the newDNA-binding reagents (e.g., TO-PRO-3 iodide)

or cell membrane dyes (e.g., the LIVE/DEAD Fixable Dead Cell

Stains) are of a superior value for SP analysis, particularly in

combination with multicolor phenotyping.

Multicolor SP Phenotyping
A major challenge in stem cell biology is the identification of

specific cell-surface markers that unambiguously characterize

a given stem cell population. Although the dye efflux property

has been found to be a valid feature for isolating potential

stem/progenitor cells from various sources, the SP populations

are often heterogeneous. In several studies the combination of

the SP assay with additional phenotyping significantly increased

the purity of stem cells (references in Table 2). Multicolor pheno-

typing is becoming a standard in flow cytometry and can be

combined with the SP assay if the antibody staining is carried

out in the cold (4�C). Such phenotyping provides essential infor-

mation as to the cellular subpopulations present within an iden-

tified SP. In Figure 3, we provide an example of the potential data

display for SP phenotyping in heterogeneous tissues, such as

the brain and bone marrow. In order to determine the heteroge-

neity of the SP, the distribution of SP cells can be shown within

the phenotyped cell population (e.g., Figure 3A). In addition,

the Hoechst profile can be displayed for the population of

interest to indicate the percentage of cells containing the dye

efflux property (e.g., Figure 3B). A ‘‘back-gating’’ of the pheno-

typed populations is useful to validate the gating strategy, as

small inadequate shifts in gating can significantly influence final

results. Moreover, as the prolonged SP protocol can lead to

instability of the Hoechst profile, studies addressing SP subpop-

ulations with multicolor phenotyping require efflux inhibition

tests in combination with the cell-surface staining (as in

Figure 2B). It should also be noted that within a heterogeneous
142 Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc.
SP where varying levels of ABC transporters are expressed,

different subpopulations can occupy distinct positions within

the SP gate, with certain cells exhibiting stronger efflux proper-

ties than others (Montanaro et al., 2004). In this case, dividing

the SP gate into subgates can be helpful.

Although potentially challenging, multicolor phenotyping of

the SP provides important critical information: first, as

mentioned earlier, the SPmay contain not only a uniform somatic

stem cell population, but also early progenitor cells, which may

have lost their stem cell potential and phenotypic signature but

kept the dye efflux property. For example, it has been shown

that cell surface phenotyping in the bone-marrow-derived SP

leads to further purification of the HSCs, excluding other

precursor cells and multipotential progenitors (Camargo et al.,

2006; Lin and Goodell, 2006). Second, the SP can contain

more than one stem cell population. In solid tissues, such as

lung, liver, or skeletal muscle, the SP has been found to be

very heterogeneous and includes not only resident stem cells

but also bone marrow derived stem cells (Asakura et al., 2002;

Summer et al., 2003, 2004; Wulf et al., 2003). The testis SP pop-

ulation has been found to consist of spermatogonial, germinal,

and mesenchymal stem cells (Falciatori et al., 2004; Lassalle

et al., 2004). Last but not least, in certain organs, ABC trans-

porter-expressing cells are not associated with stem cell proper-

ties. For example, in the brain, ABC transporters are widely

expressed in endothelial cells, where they play a major role in

the maintenance of the blood-brain barrier (Cooray et al., 2002;

Hori et al., 2004; Orford et al., 2009; Zhang et al., 2003). Indeed,

within fetal and adult brain, endothelial cells constitute the vast

majority of the SP population (Mouthon et al., 2006).

In summary, it is important to emphasize that ABC trans-

porters are not exclusive to stem cells, and the term ‘‘side

population cell’’ should not be equated with ‘‘stem cell.’’ Cell

surface multicolor phenotyping can provide important additional

clues on the identity of the SP cells. Also of interest in this respect

is the presence of internal markers or the cell-cycle profile of the

SP, which can, however, only be examined after sorting of the SP

cells. Obviously, in order to confirm the stem cell nature of phe-

notyped SP cells, downstream characterization at the functional

level is indispensable. Thus, the identification of bona fide stem

cells/cancer stem-like cells always requires in vitro and in vivo



Figure 3. Multicolor SP Phenotyping
Examples of multicolor phenotyping of the SP are displayed for mouse bone marrow and brain as reported, e.g., in Camargo et al. (2006), Lin and Goodell (2006),
and (Mouthon et al. (2006). The Hoechst profile (A) and the phenotyped profile (B) of single, viable, and nucleated cells is displayed.
(A) Heterogeneity within SP. To determine the heterogeneity of the SP, the gated SP events can be displayed on the phenotyped dot plot.
(B) Dye efflux property within phenotyped population. Conversely, the stained population of interest can also be shown on the Hoechst plot to indicate the propor-
tion of phenotyped cells that carry the dye efflux property. Importantly, the phenotyped SP subpopulations need to be further confirmed by inhibition controls.
(C) Gating tree: the gating trees of bone marrow and brain cell populations, indicating the appropriate percentage of cells within each gated population relative to
parent or total events. SP multicolor phenotyping (CD117/CD44) in bone marrow: �93.6% of bone marrow SP cells are CD117+CD44+, while CD117�CD44+

represent only less than�3.9%of bonemarrow SP (A). Importantly, CD117+CD44+ cells are heterogeneous, and only 25%of themdisplay the dye efflux property
(B). SP multicolor phenotyping (CD31/CD44) in brain tissue: �85.7% of brain-derived SP cells are CD31+CD44� corresponding to endothelial cells (A), and
�92.5% of the CD31+CD44� cells display the dye efflux property (B). The SP protocol was as in Figure 1. Cells were subsequently incubated with antibody conju-
gates for 30 min at 4�C in the dark (mCD117-PE Immunotools no. 22151173 10 ml/test; h/mCD44-PECy7 eBioscience no. 25-0441 1.2 ml/test; mCD31-APC BD
Bioscience no. 551262 5 ml/test), in the presence of the Near-IR Live/Dead marker (Invitrogen). Results were confirmed with inhibition controls combined with
antibody staining as outlined in Figure 2B.
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functional assays, including colony-forming cell assays, cell

differentiation assays, engraftment into lethally irradiated mice,

or xenografts in immunocompromised animals.

Influence of Tumor/Host Populations and Cell Ploidy in
SP Analysis for Cancer Stem Cells
With a growing focus on cancer stem cell populations, the SP

discrimination assay has recently been used to assess the

presence of putative cancer stem cells in a variety of cancer

cell lines and primary tumors. Cancer research models are

not perfect, and each carries its own advantages and pitfalls.

For patient biopsies or animal models (xenografts or transgenic

models), flow-cytometric analysis, including the SP assay, is

often hampered by the heterogeneity of the sample and the

lack of distinction between tumor and normal cells (Bleau

et al., 2009; Harris et al., 2008). In the current literature, putative

cancer stem cells within tumor biopsies or xenografts are often

characterized with a limited number of phenotypic markers,

while neglecting that other differentiated cell populations or

stromal cells within a tumor can display similar phenotypic

properties. It is worth noting that SP cells within a tumor

mass do not always represent tumor cells but can arise from

stromal populations carrying dye efflux properties. For

example, in brain tumors derived from mouse models, the SP

is, similar to the normal brain, largely composed of mouse

endothelial cells, and the nonendothelial SP of mouse brain
tumors could be tumor and/or stroma derived (Bleau et al.,

2009; Mouthon et al., 2006) (see also Figure 3). Therefore,

a further characterization of the SP population detected within

a tumor mass, based on genotypic and phenotypic profiling, is

mandatory in order to confirm their cellular origin. In xenograft

models commonly used in cancer research, the discrimination

between transplanted tumor cells and normal host cells is

possible, though rarely done, either by phenotyping with

species-specific and/or cell type-specific antibodies or by

marking one population with a fluorescent label. In this respect,

the use of a GFP-expressing immunodeficient mouse model is

of great value (Niclou et al., 2008) (see also Figure 4). Compar-

ison of a tumor-derived SP with the Hoechst profile from

healthy tissue can also facilitate data interpretation, but it

should be kept in mind, though, that tumors attract many

different cell types, including endogenous stem cell populations

from distinct parts of the body. Gliomas, for example, which are

highly heterogeneous brain tumors, are known to recruit

different types of host cells, such as neural stem cells, mesen-

chymal stem cells, and endothelial cells (Bjerkvig et al., 2009;

Ziu et al., 2006). Moreover, the aberrant composition of the

hematopoietic system in immunocompromised mouse models

used in cancer research, such as Nude, NOD/Scid, or NOG

mice, needs to be taken into account because these mice

lack certain differentiated cell types, such as mature lympho-

cytes (Niclou et al., 2008).
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Figure 4. Influence of Graft/Host Populations and DNA Ploidy in the SP Analysis
In xenografted cancer models the discrimination between grafted (tumor) cells and endogenous host (stromal) cells is crucial for SP analysis, since both cell pop-
ulations can include cells with SP and/or stem cell properties. The heterogeneity of tumor samples (tumor versus stromal cells) needs to be taken into account
also in patient biopsies and in transgenic animal models. An example of the SP analysis is shown for an orthotopic glioma xenograft (U87 cells) in the eGFP ex-
pressing NOD/Scid mouse (as in (Niclou et al., 2008)). SP cells of gliomas are known to express both endothelial and stem cell markers, whereas U87 cells do not
possess SP properties (Bleau et al., 2009).
(A) Gating strategy for xenografted tumor samples. (1) Highly heterogeneous Hoechst profile are displayed within single, viable, and nucleated cells of the tumor
mass. (2) Human tumor cells are recognized as the eGFP� population of relatively big cells compared to the eGFP+ mouse host cells. Tumor (black) and host
(green) populations displayed on the Hoechst dot plot suggest that the two populations display different levels of ploidy. (3) The DNA histograms visualize
the aneuploidy of tumor cells (U87; Clark et al., 2010) and the normal diploid profile of mouse stromal cells. The overlap of the tumor G0/G1 cells with the
G2/M mouse population is responsible for the overlap on the Hoechst SP profile plot. See also Figure 1 for cell-cycle status visualized on dot plots. After segre-
gation, the appropriate SP gates are adjusted for the tumor and host populations according to their ploidy. The SP should be expected as a distinct tail appearing
next to the G0/G1 population, regardless of their ploidy level. The possibility to distinguish tumor (black) from stromal cells (green) clearly shows that in this
example all SP cells are derived from the host tissue (37% of host cells).
(B) Gating tree. The gating tree indicates the percentage of cells within each gated population relative to parent or total events.
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An additional difficulty in the SP discrimination in cancer

research can arise from varying ploidieswithin tumor cells under-

going clonal selection. Because Hoechst fluorescence intensity

correlates with the DNA content of the cell and the chromatin

structure, it can distinguish different stages of the cell cycle as

well as distinct ploidies within a tumor mass (Arndt-Jovin and Jo-

vin, 1977). Blood and bone marrow consist of mononuclear and
144 Cell Stem Cell 8, February 4, 2011 ª2011 Elsevier Inc.
polynuclear cells, displaying a characteristic Hoechst profile

(see, e.g., Figure 1). Cancer cells often exhibit aneuploid popula-

tions, leading to a more heterogeneous Hoechst profile and

a misinterpretation of the SP assay results. Therefore, we

propose to assess the DNA content of tumor cells within the

SP assay and adjust SP gates appropriately according to the

ploidy of the cells. An example of such a SP gating strategy
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applied to a xenograft tumor is presented in Figure 4, where

within the tumor mass normal diploid stromal cells can be segre-

gated from aneuploid tumor cells.

To summarize, tumor samples consist of heterogeneous cell

populations, including tumor and stromal cells. Therefore, the

discrimination between tumor and stromal cells within an SP

analysis may lead to a better understanding of the efflux property

within the tumor mass and its role in chemoresistance during

treatment. Furthermore, it is advisable to consider the cell ploidy

during data analysis of the Hoechst profile, as separate SP gates

may need to be applied for diploid and aneuploid cells. If the

discrimination is not possible based on marker expression or

on ploidy (e.g., diploid tumors), SP cells can be sorted and tested

for the presence of genetic aberrations associated with tumor

cells, followed by functional assessement with in vitro and

in vivo assays confirming their tumorigenic origin.

Data Reporting of SP Assay Results
Flow cytometry, including the SP assay, depends on stringent

protocol optimization in order to achieve maximum validity

and reproducibility, and efforts have been made recently to

standardize the reporting of flow-cytometry-based results in

peer-reviewed publications (Alexander et al., 2009; Lee et al.,

2008). Since the SP protocol often requires appropriate adapta-

tions for different tissues and species, we believe that standard-

izing the reporting of data can help to improve comparisons

between laboratories. We, therefore, propose a list of parame-

ters related to cell preparation and staining, data acquisition,

and analysis that could be included in the methods section of

publications (summarized in Table 1). Although there are well-

defined populations used in different research centers, the

protocol details can vary across laboratories, making results

challenging to compare across publications. More specifically,

as different enzymatic dissociation procedures can introduce

variability to the SP analysis, inclusion of protocol details on

the generation of cell suspensions is useful. Because of the

high sensitivity of the assay to dye staining conditions, details

on the Hoechst staining procedure should be provided. More-

over, as for any antibody-based method, it is advisable to

provide precise information on the antibody (as recommended

in Alexander et al. [2009]) because a small change, e.g., in the

antibody concentration, can potentially lead to a very different

outcome. Therefore, we emphasize the importance of providing

precise information on Hoechst and antibody staining conditions

as well as gating strategies to facilitate the comparison of data

between reports. Importantly, in order to standardize the data

reported by different laboratories, we also recommend adding

essential parameters of the flow cytometer instrument and

settings used for data acquisition. In this Protocol Review, we

present examples of possible data analysis and display for publi-

cations (Figures 1–4). Most importantly, a clear outline of the

gating hierarchy during SP data analysis (exemplified in Figure 1)

and appropriate justification by inhibition controls can strongly

improve the reliability of the assay and the comparison of results

between laboratories.

Concluding Remarks
During recent years the SP assay has proven to be an extremely

valuable approach for the characterization and isolation of puta-
tive stem cell and cancer stem cell populations, particularly in the

absence of specific markers. Due to its high sensitivity, it allows

the detection of very rare events within heterogeneous cell pop-

ulations. However, the exponential increase in stem cell and

cancer stem cell research in recent years has led to a large

amount of reported SP assay data with sometimes questionable

interpretations. The dynamic nature of the dye efflux property,

relying on an intact cell metabolism, results in greater technical

variations in the determination and quantification of SP cells

than direct immunopurification procedures. In this Protocol

Review, we provide suggestions on how to improve the reliability

and reproducibility of the SP assay, with a particular focus on SP

protocol optimization, adequate controls for all parameters, and

addressing the heterogeneity of SP populations by multicolor

phenotyping and functional assays. We emphasize the chal-

lenges of SP analysis in cancer stem cell research with regard

to discrimination of tumor and stromal cell compartments and

diploid versus aneuploid cell populations. Finally, standardizing

the reporting of data, rather than standardizing the protocol,

may provide significant benefit to the scientific community in

the interpretation of SP results.
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