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Update of Euclidean windows of the hadronic vacuum polarization
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We compute the standard Euclidean window of the hadronic vacuum polarization using multiple
independent blinded analyses. We improve the continuum and infinite-volume extrapolations of the dominant
quark-connected light-quark isospin-symmetric contribution and address additional subleading systematic
effects from sea-charm quarks and residual chiral-symmetry breaking from first principles. We find
ay = 235.56(65)(50) x 1071, which is in 3.8 tension with the recently published dispersive result of
ay =229.4(1.4) x 107'% [G. Colangelo, A. X. El-Khadra, M. Hoferichter, A. Keshavarzi, C. Lehner,
P. Stoffer, and T. Teubner, Phys. Lett. B 833, 137313 (2022)] and in agreement with other recent lattice
determinations. We also provide a result for the standard short-distance window. The results reported here are
unchanged compared to our presentation at the Edinburgh workshop of the g-2 Theory Initiative in 2022
[C. Lehner, Talk Presented at the 5th Plenary Meeting of the g-2 Theory Initiative in Edinburgh (2022)].

DOI: 10.1103/PhysRevD.108.054507

I. INTRODUCTION

The anomalous magnetic moment of the muon a, is
defined as the relative deviation of the muon’s Landé factor
gy from Dirac’s relativistic quantum mechanics result,
a, = g,/2 — 1. It is one of the most precisely determined
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quantities in particle physics and has exhibited a persistent
tension between the experimentally measured value and the
Standard Model theory result.

In order to reduce the experimental uncertainties,
substantial efforts are currently undertaken at Fermilab
(E989) and planned at J-PARC (E34) [1]. In 2021, the
Fermilab experiment released first results [2] confirming
the previously best result obtained by the BNL E821
experiment [3] and reducing the experimental uncertainty
from 0.54 ppm to 0.46 ppm. Over the next few years, the
Fermilab experiment aims to reduce the uncertainty further
to approximately 0.14 ppm [4].

The Standard Model result provided by the Muon g-2
Theory Initiative [5-25] currently has an uncertainty of

Published by the American Physical Society
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0.37 ppm and is in 4.2¢ tension with the experimental
value. A further reduction of the theory uncertainty by at
least a factor of 2 is therefore needed [26] to match the
expected experimental progress over the next few years.
More than 90% of the theory uncertainty is due to the
leading-order hadronic vacuum polarization (HVP) con-
tribution such that a reduction of its uncertainty is particu-
larly pressing.

The leading-order HVP contribution a}i"*'© can be
related to e e~ decays using a dispersion relation such that,
to the degree that there is no new physics in e e~ decays, it
can be used to represent the Standard Model theory result.
The Muon g-2 Theory Initiative result quoted above uses this
method to determine the HVP contribution. One can also
relate the HVP contribution to hadronic 7 decays; however,
this requires precise first-principles knowledge of the needed
isospin rotation. Our Collaboration is working on such a
calculation [27], and we will report on related progress in a
separate publication. Finally, the HVP contribution can be
computed from first principles using systematically improv-
able lattice QCD + QED methods.

Until recently, lattice QCD + QED methods have not
yet been competitive with the precision provided by the
dispersive method. The BMW Collaboration, however, has
now produced a lattice QCD + QED result with 0.8%
precision [28], which is close to the current 0.6% precision
of the dispersive method. The BMW value taken by itself
only leads to a 1.5¢ tension for a,. At the same time,
the BMW value for the HVP contribution is in a 2.1¢
tension with the dispersive result provided by the Muon g-2
Theory Initiative.

In 2018, our Collaboration introduced Euclidean win-
dow quantities [29], which allow for the separation of the
most challenging short and long time-distance contribu-
tions to a;/YP=O. The remaining standard window quantity,
alVPLOW “is much easier to compute at high precision in
lattice QCD + QED and can also be computed using the
dispersive method [28-31]. The BMW Collaboration’s
calculation of aflYPXOW is in fact in 3.76 tension with
the dispersive result, which has motivated many lattice
collaborations to focus on high-precision calculations of
aVPEOW first in order to clarify the situation. In this work,
we provide a significantly improved calculation of
afVPLOW We focus on the quark-connected light-quark
contribution in the isospin-symmetric limit, which accounts
for almost 90% of a}YPXOW_ Special attention is given to
the continuum limit for which we replace our previous
continuum extrapolation based on a single approach using
two lattice spacings with one based on eight distinct
approaches using three lattice spacings. We perform this
update using a blinding procedure with five independent
analysis groups. This blinding procedure is implemented to
avoid bias toward our previous computation of aj; V" “OWV in
Ref. [29], the dispersive results, or other lattice results.

This paper is organized as follows. In Sec. II, we describe
our methodology before giving computational details
in Sec. III. In Sec. IV, we discuss blinded results and
explain convergence to the final prescription to determine
aiVPLOV Finally, in Sec. V, we present unblinded results
and compare them to other groups’ results, including data-
driven ones, before concluding in Sec. VI.

II. METHODOLOGY

We first define the time-momentum representation in
Sec. II A, which provides the basis for the definition of the
Euclidean windows in Sec. II B. In Sec. II C, we define the
isospin-symmetric world around which we expand. Special
care is taken such that the isospin-symmetric contribution
can be compared directly with other lattice results. In
Sec. II D, we describe our blinding procedure.

A. Time-momentum representation

Starting  from  the vector current J,(x) =
i> ;O Pp(x)y,¥,(x) with fractional electric charge Qf
and sum over quark flavors f, we may write

VPO =% "w, C(1), (1)
=0

with the correlator,

3 X j=0.1.2

where the weights w, capture the photon and muon part of
the HVP diagrams. The sum over j =0, 1, 2 is over the
spatial directions. A complete list of diagrams is given in
Fig. 1. The weights can be expressed as a one-dimensional
integral [32],

w=se [T (= S0 )

with fine-structure constant o and

m20*Z*(0)(1 - 0*Z
o) =" ﬁ;; 2ZZ%Q)(Q))’

/Q4 +4Q2m/24 _ Q2
Z(Q) = (4)

22 )
2m, 0

where m,, is the muon mass. Note that we sum only over
non-negative ¢ in Eq. (1), yielding an additional symmetry
factor of 2 in w,. Using a lattice discretization for the
photon momenta, an alternative weight,
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FIG. 1. The diagrams of a complete calculation of aj} "*-©

when formulated as an expansion around an isospin-symmetric limit. In the

isospin-symmetric limit, there is a quark-connected (left) and quark-disconnected contribution (right). For the QED- and strong-isospin-
breaking (SIB) corrections, we indicate the photon vertices that connect to the muon with filled dots and only show the respective
subdiagrams. For the QED corrections, one has to enforce the exchange of gluons between the quark loops in diagram F to avoid double-
counting of higher-order HVP contributions. For the SIB corrections, the crosses denote scalar operator insertions to allow for a linear

correction in the respective quark masses.

wt — 8(12/ dQQ (COS (Qt)
0

O )0,

can be defined, which gives the same value of af/V*© in the

continuum limit. We use both versions to scrutlmze the
continuum extrapolation.

The correlator C(t) is computed in lattice QCD + QED at
physical pion mass with nondegenerate up- and down- quark
masses including up-, down-, strange-, and charm-quark
contributions. The missing bottom-quark contributions are
estimated using perturbative QCD.

B. Euclidean windows

In the following, we suppress the leading-order HVP
LO label for brevity. Following [29], we define Euclidean
windows that partition the contributions of time slices ¢
in Eq. (1) into short-distance (SD), window (W), and
long-distance (LD) contributions. To make the quantities

well-defined at nonzero lattice spacing, we introduce smear-
ing kernels with width A. We write

a, = aﬁD + aﬁv + abD, (6)
where
Pt A) = > Cltyw,[1=O(t.15,A)].  (7)
=0
ay (to.11.8) =Y C(t)w,[O(t.19. A) = O(1, 1. )], (8)
=0

t=0

O(r,1,,A), )

O(t,7,A) = [l +tanh [(r — ') /A]] /2. (10)
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All contributions are well-defined individually and can be
computed using lattice methods as well as dispersive
methods by relating the correlator,

1 )
C(1) :—2/ d(\/E)R(s)se_ﬁ’, (11)
127 0
to the R ratio,
35 Lo
R(s) = P o(s,ete” — had). (12)

Within a lattice calculation, discretization effects are most
severe for the SD contribution, while statistical noise and
finite-volume effects are most pronounced in the LD con-
tribution. The window quantity aflv has small statistical and
systematic errors.

As recently argued in Ref. [30], the systematic study of
window quantities a)) (o, ;, A) as a function of #o and #, is
useful to constrain energy regions within the R ratio
contributing to a possible tension between lattice and
dispersive results. First lattice results with a high resolution
in g and ¢, are already available [33]. Windows with larger
values of 7, and #; are more sensitive to low-energy states
and are useful for checking effective field theory as argued
in Ref. [34]. A systematic study of the short-distance
window a3°(y, A) as a function of 7, is also useful as
argued in Ref. [35], where the a;° (1, A) defined as above
are called one-sided windows since 1 —0(r,7y,A) =
[1 —tanh [(r —1y)/A]]/2 = O(tg, 1, A). In the current work,
we focus on the short-distance and window contributions
for the standard values of 7, = 0.4 fm, #; = 1.0 fm, and
A =0.15 fm [29].

C. Isospin-symmetric world

It is convenient to perform the calculation as an expan-
sion around an isospin-symmetric point [29,36-38].
We therefore compute the diagrams of Fig. 1 individually.
The exact choice of the expansion point is inconsequential
for the total a,; however, care is needed if one attempts to
compare isospin-symmetric results provided by different
groups [39].

In this work, we present results for two choices of
the isospin-symmetric world. The first choice is the RBC/
UKQCD18 world defined by

m, =0.135 GeV,  my = 0.4957 GeV,
mq = 1.67225 GeV, (13)

consistent with our previous work [29]. In this update, we
also consider the effects from dynamical sea-charm quarks
from first principles and therefore, extend this choice by

mp, = 1.96847 GeV. (14)

Since one of the main goals of this work is to scrutinize the
result of Ref. [28], we also consider a second choice,

m, = 0.13497 GeV,  m,,, = 0.6898 GeV,
wp = 0.17236 fm, (15)

which we label as the BMW20 world. The quantity m, is
obtained from the ground-state energy of the quark-
connected pseudoscalar §s meson two-point function.
This choice is consistent with the isospin-symmetric world
defined in Ref. [28]. For the sea-charm study, we adopt
Eq. (14) also in this case.

We define these parameters to the exact values given
above without additional uncertainty. This avoids an
unnecessary inflation of uncertainties when comparing
isospin-symmetric lattice results. The experimental uncer-
tainties of the physical hadron spectrum are then taken into
account when applying the isospin-breaking corrections.

To support the careful tuning of the isospin-symmetric
world, we generated additional near-physical-pion-mass
ensembles allowing for the explicit calculation of light
and strange quark-mass derivatives. Our choice of dis-
cretization and simulation parameters is summarized in
Table I. We also generated ensembles with dynamical
charm quarks and ensembles with varying extent of the
fifth dimension of our domain-wall fermions, L,, to
control for residual chiral-symmetry-breaking effects.
Finally, we include results at physical pion mass and a
finer lattice spacing of a~! ~2.7 GeV.

We determined the ensemble parameters in two ways.
First, we used the new ensembles to obtain the quark-mass
dependence of the quantities defined in Eqgs. (13) and (15).
We then tune the dimensionless m,/mq and my /mg for the
RBC/UKQCDI18 world and wgm, and wym,, for the
BMW20 world to the values provided in Eqgs. (13) and (15).
Any of the three dimensionful values can then equivalently
be used to determine the lattice spacing a for a given
ensemble. For the Ny = 2 + 1 + 1 ensembles, we also tune
mps/mgq for the RBC/UKQCD18 world and wym,,_ for the
BMW20 world to the value provided in Eq. (14). We
provide the results for the RBC/UKQCDI18 world in
Table I. In addition, we also performed an update of our
global fit [45] for which we found consistent results.
A detailed discussion of the updated global fit will be
published separately. The two determinations of ensemble
parameters were performed by disjoint subgroups of
authors.

D. Blinding procedure

Since we provide an update of a previous result [29]
compared to which a lower value would mean agreement
with the dispersive method and a higher value would mean
agreement with the lattice result of Ref. [28], two values
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TABLE L.

List of ensembles with parameters determined in the RBC/UKQCD18 isospin symmetric world. Unless specified otherwise,

the ensembles have Iwasaki gauge action and M&bius [42] domain-wall [43,44] fermion sea quarks with b — ¢ = 1. The parameters b
and c are defined in Ref. [45]. For the Ny = 2 + 1 + 1 ensembles, the charm quarks couple to three-times p = 0.1 stout smeared gauge
fields as in Refs. [46,47]. The scripts generating the new ensembles are publicly available [48]. The 241D and 32ID ensembles have an
additional DSDR term [45] in the gauge action. The 24ID and 32ID ensemble parameters are taken from Ref. [49].

ID a~'/GeV Ny L3xTxLy/a* b+c amgx10*  m,/MeV mg /MeV mp /GeV  m,L
481 1.731228) 2+1 483 x 96 x 24 2 6.1 139.32(30)  499.44(88) e 3.9
641 2.3549(49) 241 643 x 128 x 12 2 3.1 138.98(43) 507.5(1.5) e 3.8
961 2.6920(67) 241 963 x 192 x 12 2 2.3 131.29(66)  484.5(2.3) e 4.7
1 1.7310(35) 241 323 x 64 x 24 2 6.3 208.1(1.1) 514.0(1.8) e 3.8
2 1.7257(74) 241 243 % 48 x 32 2 4.6 285.4(2.9) 537.8(4.6) e 4.0
3 1.7306(46) 241 323 x 64 x 24 2 6.5 211.3(2.3) 603.8(6.1) e 39
4 1.7400(73) 241 243 x 48 x 24 2 6.2 274.8(2.5) 530.1(3.1) e 3.8
5 1.7498(73) 2+1+1 243 x 48 x 24 2 6.7 279.8(3.5) 539.1(5.3) 1.9902(69) 3.8
7 1.7566(81) 24141 243 x 48 x 24 2 7.9 272.5(5.9) 523(10) 1.3882(57) 3.7
A 1.7556(83) 241 243 x 48 x 8 2 42 307.4(3.5) 557.3(5.7) e 4.2
241D 1.0230(20) 241 243 x 64 x 24 4 23 142.96(30) 515.7(1.0) e 34
321D 1.0230(20) 241 323 x 64 x 24 4 23 142.66(30) 515.7(1.0) e 4.5

that are in 3.70 tension with each other, we believe it is
crucial to perform this update in a blinded manner.

We implement the blinding by creating modified corre-
lators C,(¢) from the unaltered correlators Cy(7). For each
lattice ensemble, we use

Cy(1) = (by + bya* + bya*)Cy(1), (16)

with respective lattice spacing a and random coefficients
by, by, and b, that are common for each ensemble but
different for each analysis group. The parameter b, is
drawn from a Gaussian distribution with mean ¢ = 1.0 and
standard deviation ¢ = 0.2. The dimensionful parameters
b, and b, are drawn from a flat distribution with maximum
values of |ba?| =0.05 and |b,a*| =0.0025 for our
coarsest lattice cutoff a~! = 1.73 GeV. This procedure
based on three random numbers per analysis group prevents
the possibility of complete unblinding based on previously
shared data on the coarser two ensembles [29]. The
blinding factors were generated and directly applied to
Cy by author CL. This process took a given seed for the
random number generator as input such that only this seed
and not the blinding factors were directly accessible to CL.

For the current update, we established five analysis
groups (called A-E in the following), composed of non-
overlapping subgroups of authors. The different analysis
groups were provided with the ensemble parameters and
the, respectively, blinded correlator data. They then sepa-
rately decided on their respective analysis procedures
without interacting with other groups. The chosen methods
are described in Sec. IV A. After the groups completed their
analyses, we started a relative unblinding procedure during
which two groups would jointly discuss and scrutinize their
approaches. In this process, some important findings

emerged, as described in Sec. IV C. Based on these
discussions, the Collaboration then converged on a pre-
ferred prescription that is described in Sec. IV D. At this
point, the prescription was frozen and a complete unblind-
ing performed. The results are discussed in Sec. V.

III. COMPUTATIONAL DETAILS

In the following, we describe in detail the computational
methods used in this work. We explain aspects of data
generation as well as crucial components of the various a,
analyses.

A. Overview of improvements

Compared to our previous calculation of Ref. [29], we
have made several substantial improvements. With regard
to the statistical uncertainty, we increased the statistical
sample size for the correlators on ensembles 481 and 641 by
a factor of 4. Improvements reducing systematic uncer-
tainties are described in the following.

To improve the continuum extrapolation, we add a finer
lattice spacing at physical pion mass with a=! = 2.7 GeV.
We also consider an additional discretization for the vector
current by studying both local-conserved as well as local-
local correlators. This can be done in a cost-efficient
manner as described in Sec. III B. In addition, we use
two different renormalization procedures for the local
vector current. The first procedure, which we label Zy,
follows Ref. [45] and uses that the expectation value of the
charge operator in a pion state equals one. The second
procedure, which we label Z3, uses the ratio of local-
conserved to local-local correlators interpolated to fixed
Euclidean time 7* to define the current normalization. The
particular choice of #* is described in Sec. IV A. Finally, we
use two different weight functions w, and w;, see Egs. (3)
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and (5), at a given lattice spacing. This gives a total of
3x2x2x2=24 data points to study the continuum
extrapolation, which improves our previous extrapolation
based on two data points.

To reduce parametric uncertainties, we generated new
near-physical pion- and kaon-mass ensembles to calculate
parametric derivatives with respect to quark masses. In
Sec. III E, we also show how to obtain parametric deriv-
atives inspired by master-field methodology [50].

We previously estimated the missing sea-charm effects
using perturbative QCD [45]. For this update, we have
generated new ensembles with dynamical charm quarks,
which we match to our Ny = 2 + 1 ensembles as described
in Sec. III C.

Domain-wall fermions exhibit only small chiral sym-
metry breaking, which is commonly quantified using the
residual mass m, [44,51]. For this reason, a very small
linear discretization error is allowed. We previously
neglected such effects but have now generated new
ensembles with different extents of the fifth dimension
L, to quantify them from first principles.

Since we only have a small number of configurations
for the new 961 ensemble, we also investigate a new five-
dimensional master-field statistical error estimate in
Sec. IIID to considerably reduce the uncertainty on our
estimate of statistical variance concerning this ensemble.

B. Local- and conserved-current correlators

In addition to the local lattice vector current J,,, which we
denote in the following as J| 1 we consider the conserved
lattice vector current J|; as defined in Ref. [45]. We consider
the correlators,

Cab(,)%z ST EEN0),  (17)

x j=0,12

in the local-local (C") and local-conserved (C'°) versions.
After performing the fermionic Wick contraction, the source
is always local and the sink varies between local and
conserved. The contraction code is publicly available [52].
It uses an all-mode-averaging procedure [53-56] combined
with additional averaging of the low-low component of the
correlator [29]. Our approach again relies on approximating
the low-mode space on a coarse grid as introduced in
Ref. [57]. For the 96l ensemble, this yields a reduction of
data volume by a factor of 30. This is crucial not just for data
storage but also for the computational performance of
low-mode estimates due to the reduced memory-transfer
requirements.

For a given point source, the local-local and local-
conserved correlators are highly correlated. We therefore
compute the ratio C'°/C" using only a few correlated
source positions and multiply this ratio with our full-
statistics estimator of C" to obtain our estimator for C'.
In Fig. 2, we plot the ratio for the 961 ensemble.

0.8

Iy /Al
Cty/Cltty ——
0.75 +""""""""""’"""****7:—

-

0.7 - |

0.65 B

055F * e

0.5 . :
0 5 10 15 20

t/a

FIG. 2. Ratio C'*(¢)/C"(z) as a function of Euclidean time ¢ on
the 961 ensemble.

For the 961 ensemble an additional improvement was
made. For this ensemble, we generate a dataset in which
two source positions at time-slice ¢ and ¢ + 96 are com-
bined with a Z, number. For short and intermediate
distances, this effectively doubles our statistics at the same
cost. A second lower-statistics single time-slice dataset is
provided to account for the effects of the backwards
propagation of the additional time slice.

Finally, all correlators are provided with identical
valence- and sea-quark masses. In this manner, we can
perform a purely unitary data analysis. For the 641
ensemble, however, for historical reasons, the eigenvectors
were generated for a partially quenched mass am =
0.0006203 instead of the unitary mass am = 0.0006780
[45]. For this reason, a small additional correlated dataset
was generated at am = 0.001774 such that the unitary
correlators can be obtained by

a,(0.0006780)
— a,,(0.0006203) + (0.0006780

X (0.001774) — ,,(0.0006203)

0.001774 —0.0006203
a,(0.001774) - a,,(0.0006203)
20 - (18)

—0.0006203

~a,(0.0006203) +

Nonlinear effects in the small quark-mass shift are negli-
gible for the precision goals of the present calculation.

C. Sea-charm effects

In this work, we estimate the effects of sea-charm quarks
from first principles. Most of our ensembles have N, =
2 4 1 sea quarks with an isospin-symmetric up- and down-
quark pair and an additional strange quark. To study the
sea-charm effects from first principles, we have generated
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FIG.3. Wilson-flowed energy density E(t;) multiplied with the
flow time ty foer =2+ land N, = 2 4+ 1 + 1 ensembles. The
small statistical uncertainties for each line are shown as an
error band.

additional Ny = 2 + 1 + 1 ensembles with different charm
masses to separate the physical effects from a modification
of discretization errors. We list the ensemble parameters
in Table I.

We match the Ny =2+ 1 and Ny =2+ 1 + 1 ensem-
bles to the same pion and kaon masses and the Wilson-
flowed [58] energy density at long distance. In Fig. 3, we
show #,E(t;) with flow time ¢, and Wilson-flowed energy
density E(t;) for the nominal ensemble 4, 5, and 7 of
Table 1. At shorter distances, we observe a clear signal of
charm effects in the energy density. For the lighter charm
mass, this effect extends to longer distances. We plot
t7E(ty) instead of the dimensionless r7E(zy) since all
plotted ensembles share the same lattice spacing and the
interesting features are better highlighted in this way.

We use these matched ensembles to measure the sea-
charm contributions to the HVP. We do this in particular for
the short-distance window, where most of the effect should
appear. The exact approach used by the different analysis
groups is explained in Sec. IVA.

D. Five-dimensional master-field statistical errors

For the 961 ensemble, we currently only have 33 gauge
field configurations in contrast to the 641 and 481 ensembles
for which we have 238 and 386 gauge field configurations,
respectively. In order to obtain a reliable statistical-error
estimate on the 961 ensemble, we have performed a slightly
modified master-field error analysis [50]. In our approach,
we improve the covariance estimate by considering a five-
dimensional master field with Markov time as an additional
fifth dimension. We expect exponential locality in the fifth
dimension governed by the eigenmodes of the Markov
transition matrix and in the four space-time dimensions
governed by the eigenmodes of the QCD Hamiltonian.

For an observable O, , with Markov time 7 and space-
time coordinate x, we consider the statistical average,

0-L > 0. (19)

|V| (zx)eV

with set V that contains all tuples (z,x) for which the
observable was determined. Note that we explicitly allow
for sparse sampling in space-time as well as Markov time.
The covariance of two such observables O and O’ is then
given by

Cov, , (0.0')
1
VIV’

(<01,x0;’,x’> -

(zx) eV, eV,
Jx=r|<xc Jo—7 | <2

(0::)(0L 1)), (20)

and studying Cov,_, (O, O’) as a function of 7, and x. to
identify a plateau for large 7. and x.. In practice, we
estimate Cov, , (0,0') based on a given set of gauge
configurations, which adds an error suppressed by the
inverse square root of the number of sampled five-
dimensional points. In comparison, the Jackknife estimator
has an uncertainty suppressed by the inverse square root of
the number of gauge configurations, such that its uncer-
tainty is generally much larger. The distance |x — x'| takes
the field boundary conditions into account, i.e., for periodic
boundary conditions, we consider the shortest distance
between mirror images.

For arbitrarily sparse V, the various O, , are effectively
all statistically independent such that we expect a plateau
already for very small 7, and x,.. In general, just before
reaching the gauge noise limit, the plateaus still start early
in x.. Conversely, a rising behavior in x,. signals that our
sample points are significantly correlated. We tune the
sampling of our vector correlators to be such that we almost
reach the gauge noise limit, and therefore, plateaus are
reached for modest values of x,.. In Fig. 4, we compare the
statistical uncertainty of C(¢) on the 96I ensemble deter-
mined by the five-dimensional master-field approach to the
Jackknife estimate.

E. Master-field parametric derivatives

In order to tune the Ny = 2 + 1 + 1 ensembles described
in Sec. III C, we found the master-field formalism useful to
get initial estimates of parametric derivatives with respect
to the gauge-action parameter f as well as the sea-charm
mass. To simplify the discussion, we set a = 1 in this
subsection.

Consider a general gauge action,

s=—pMte= Dy, @

X
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Ya=8 —— for sea-quark mass m and
2 Ya=10 ——
e — el -]
o Ya=20 Dgi(m) = m(DSVI (m)—1), (24)
@ 1'5?$zzzzzzzzzzzzzzzzizizzzz?
o1 §eccoccoccosssssssessssnnns i with overlap operator D, [42,60]. We find that the traces of
57 55— D3 (m) can be efficiently estimated using our tadpole field
L i approach of Ref. [61]. For domain-wall fermions, an addi-
(?3 tional flavor enters the path integral as the determinant ratio,
o
05T i det(D(m)D7!(1)), (25)
with five-dimensional Dirac operator D(m). For m = 1, this
% 5 10 15 20 25 factoris trivial, and we can view including an additional flavor

FIG. 4. The statistical uncertainty of C(#) determined by
Eq. (20) multiplied with a blinding factor ¢ determined by the
five-dimensional master-field approach (individual data points)
compared to the Jackknife estimate (solid lines). For these
estimates, we use randomly selected 660 point sources per 33
configurations on the 961 ensemble. Due to the sparseness of our
measurement setup, we observe a plateau in x,. starting essentially
from the smallest value. The plot is made after having established
a plateau in 7.

with space-time dimension N, and field of Wilson loops A,
anchored at a point x. It is not crucial how we exactly
identify the location x as long as the coordinate behaves
properly under translations of the system. One can then
show that for a general observable O in N, = 4 without
explicit § dependence,

d3(0) = 6 lim Cov,, (0,A),

X—00

(22)

with Covy , defined in Eq. (20). Setting O to the Wilson-

flowed energy density E(t/), e.g., allows us to determine

the f derivative of the Wilson-flow scales ¢, and w [58,59].
We can also show that

9,(0) = lim Covq, (0. Tr[Dg/ (m))),

X.—00

(23)

1
%6H|HL /

. / % oL/
T

where C* is the correlator at finite spatial volume L* and
C® is the infinite-volume version. The equation depends on
the pion mass m, and the monopole-mass parameter n1,.

R+iu 2n

as changing the sea-quark mass down from m =1 to the
target value. In this way, integrating the parametric derivative
with respect to m allows us to determine the effects of
introducing an additional sea-charm quark. Setting O to the
Wilson-flowed energy density, allows us to determine the
effect of the additional sea-charm quark to the Wilson-flow
scales f, and wy. In Fig. 5, we show the convergence as a
function of x,. for the  derivative as well as the charm-quark
mass derivative at m = 0.8 of E(z;) with 1, = 2.01 ~ £,/2
on the 96l ensemble. The lower scale #,/2 allows for a
statistically more precise estimate of the dependence of the
lattice spacing on 8 and the charm-quark mass.

F. Finite-volume effects

In order to determine the finite-volume effects on C(?),
the analysis groups explored two methods: a direct fit to
the 24ID and 32ID data as well as the Hansen-Patella
approach [62,63]. Details of the former approach are given
in Sec. IVA. For the latter approach, we use a monopole
Ansatz of the electromagnetic pion form factor,

1

) =
P

(26)

and study the dependence on m,,. For this Ansatz, Ref. [63]
gives an expression for the finite-volume corrections for
C(t) in terms of a simple integral,

- 2
dks eik3|t|(4m,2[ + k%)mﬁ e_‘"lL\/;"'T}
(my + k3)? 4k,

d [ e~?ll(2 —4m2)m} } 27)
=m,

dz |(z +m,)*(z* +4p3)

|

The complex shift iy of the integration contour has to be
chosen in the range 0 < u < 2m,; however, the integral
does not depend on the exact choice. Equation (27) only
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FIG.5. We plot for the 961 ensemble Cov, , (E(t;), Tr[Dg (0.8)]) on the left and Covy, (E(;),A) on the right for 1, = 2.01 ~ #,/2.

The Wilson-loop field A is defined in Eq. (21).

considers the pole contribution to the Compton amplitude

and neglects terms of order e~V 2+V3meL a5 well as effects
of finite Euclidean time. This is well justified for our
current precision goal. The effects of the regular contribu-
tion to the Compton amplitude and effects of the finite
Euclidean time extent are known [62,63] and may be
considered in future work.

Note that the finite-volume corrections for the quark-
connected diagram are 19—0 of the total as is easily seen from the
following argument. Consider a theory with quark charges
Q, = 3 = —Q,instead of the physical 0, = 3 = —20,. The
QED charges of mesons made of up and down quarks are
identical in both cases; however, in the Q, = % =-0Qy
theory, the quark-disconnected diagram does not contribute,
while the quark-connected diagram contributes with a Q2 +

2 :% factor instead of the physical Q2 + Q% = g. We
therefore find that %% = 1% of the quark-connected contribu-
tion is equal to the total contribution and equivalently, that the
total correction needs to be multiplied by %0 to obtain the
correction for the quark-connected piece. This simple argu-
ment is consistent with partially quenched chiral perturbation
theory studies [31,33,64].

IV. RELATIVE UNBLINDING

In the following, we summarize the different approaches
of the five analysis groups and show the result of our
relative unblinding process. We highlight important find-
ings and explain the prescription that all five groups agreed
to be used for the full unblinding.

A. Distinct methods of the five analysis groups

Each analysis group received the blinded correlator data
as described in Sec. II D. The separate analysis groups then
discussed the data and agreed on the respective analysis
methods within each group. The confinement of these
discussions to the separate groups lead to a diverse set of

approaches to the data analysis. In the following subsec-
tions, we briefly describe the approaches of each group,
focusing on the differences.

1. Group A

Analysis group A provides results for a)) as well as a3P.
Statistical errors are obtained from a superjackknife pro-
cedure [65,66] for most ensembles combined with a
binning study and using the master-field error estimates
of Sec. III D on ensemble 961. The continuum extrapola-
tions are performed based on the 24 data points over three
lattice spacings described in Sec. III A, where small linear
corrections to shift the individual points to the lines of
constant physics (LCP) are applied first. These corrections
amount to 0.2% to 0.3%, depending on the ensemble.
Finite-volume corrections are also applied before the
continuum extrapolation. These corrections amount up to
0.4% for the smaller-volume ensembles. To this end, the
Hansen-Patella Eq. (27) is used for finite-volume correc-
tions with nominal parameters m, = 727 MeV and errors
estimated from the variation to m, = 770 MeV. An addi-
tional ad hoc 20% uncertainty is added to the finite-volume
corrections to account for the limitations discussed in
Sec. I F. The finite-volume uncertainties are treated as
correlated between ensembles. Combinations of the fit
Ansiitze,

fa(a?) = ¢y + c1a®, (28)
f24(a®) = ¢ + c1@® + cra*, (29)
fra(@®) = co + cia’a,(u =1/a), (30)

fraa(@®) = co+ c1a*a,(u = 1/a) + c,a*,  (31)

are then considered with four-loop running coupling «; in
the MS scheme [67].
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For a:l’", the central value is chosen as the average of the 2. Group B

f» fits to the (w,C*, Z}), (w,C",Z}), (w,C", Zy)
trajectories with * = 1 fm. These trajectories had the
smallest a* contributions. For aﬁv, the effect of w, compared
to @, is negligible. The continuum extrapolation error is
estimated by varying f, to f,, and by considering the
spread of the mean to the individual (w,,C",Zy) and
(w,, C", Z%) fits. These variations estimate the impact of
the choice of currents as well as renormalization procedure.

For aED, the fit form f, 4 is used for all trajectories and
the average of (&,, C'°, Zy) and (&,, C'°, Z}) is used for the
central value since they exhibit the smallest a* coefficients.
The variation from f,4 to f5,4 as well as the maximal
variation to (@, C",Zy), (w,,C* Zy), (&, C* Zy),
(@, C", Z%), (w,,C', Z}), and (&,, C'¢, Z}) is then used
for the continuum extrapolation error.

The effects of the residual mass and the sea-charm quark
are studied separately and found to be small compared to
the quoted uncertainties.

|

Analysis group B provides results for a)’ as well as a3P.
The strategy is to employ a global fit to all of the
measurements on the ensembles listed in Table I
Statistical errors for each measurement, including lattice
spacings, pion masses, and so on, are incorporated through
a superjackknife method.

Several terms comprise the global fit function for the
intermediate window. A second-order polynomial in a® is
used to extrapolate nonzero lattice spacing to the con-
tinuum limit. Finite-volume effects are treated explicitly
through a term exponential in m, L and are mainly con-
strained by the two Iwasaki-DSDR ensembles in Table I.
Small light-quark-mass mistunings are treated linearly in
the appropriate meson-mass squared and a simple linear
Ansatz for the residual mass is applied. Charm-quark
mistunings are corrected with inverse mass-squared
of the D, meson. All together, the fit function takes the
form,

a/l("') = a;l(l + Cla2 + 62614)(1 + c3e—m,,L)(1 + C4(m72r - mzzr.phys))(l + c5(m%( - m%(.phys))

1
X (1 + C6amres) (1 + Cc7 (—2

The coefficients ¢; and ¢, take on different values for the
Iwasaki-DSDR ensembles, and the residual mass term is
treated as an O(a) artifact. Analysis group B only uses Zy,
for the current renormalization.
For aﬁv, only w; is used. In order to study the effect of
combining the lattice correlator C(¢) with the continuum
weights w,, the (log of) C(¢) is first cubically interpolated
between time slices and then integrated with the continuum
form of the one-loop QED kernel, Eq. (3). The effect of this
interpolation is small compared to the quoted uncertainties.
The central value for a:f" is determined from the average of
conserved-local and local-local correlation functions for the
HVP. The main part of the systematic error arises from the
difference of these two results in the continuum limit.
For the short-distance window, the procedure is similar
except that the discrete version of the one-loop kernel @, is
also used [approximated as w,(1 — a?/#*)] and an a” log a?
term is considered. The systematic error is computed from
differences between pairwise combinations of a*, a*, and
a’ log a? terms, using both w, and W, weights, all added in
quadrature. The central value is taken as the w, version with
the conserved-local correlation function since empirically it
has the smallest a* contamination.

3. Group C

Analysis group C provides results for aﬁv. The strategy is
divided in a few steps. First, using the ensembles listed in

] (32)
Mps ml%s,phys))

Table I the derivatives of the intermediate window with
respect to the quark masses are calculated. Additional
cutoff or finite-volume effects on the derivatives are
neglected. The derivatives are then used to shift the three
reference ensembles, 481, 641, and 961, to the LCP. The size
of the corrections is consistent with what was found by
group A. Additionally, all windows are shifted to m,L = 4
using NNLO chiral perturbation theory [31], and additional
systematic effects are not considered since they are well
below the statistical uncertainty. Only the continuum
weights w, were used.

After multiplying by the normalization factors Zy or Z7,
the intermediate windows from the three ensembles and
two discretizations (C' and C'°) are extrapolated to the
continuum limit with a constrained fit. Note that also a® /1,
used in the extrapolation is shifted to the proper LCP. The
following three types of fits are considered: linear and
quadratic in a® with all six data points and linear in a> with
the finest four data points (961, 64I). A systematic error
from the spread of the central values of the fitted continuum
windows is included in the error budget. Both correlated
and uncorrelated fits are used, and for the latter their quality
is assessed using the method developed in Ref. [68]. The
three fits described above are performed separately using
Zy and a variant of Zj;. For the former it is observed that the
linear fit in a? is not acceptable and that a quadratic term is
necessary to describe the data. Hence, the preferred strategy
1s based on Z"ﬁ, and the preferred fit is the constrained linear

054507-10



UPDATE OF EUCLIDEAN WINDOWS OF THE HADRONIC ...

PHYS. REV. D 108, 054507 (2023)

fit to all six data points. For the variant of Z3;, a slight
modification of the definition provided in Sec. III A is
considered; i.e., the ratio of C'® over C'" is used individually
integrated using the smearing function O(z,* —
A/2,A)B(t* + A/2,1,A) with A = 0.15 fm. Several val-
ues of t* are explored and for the final analysis t* = 1 fm
is adopted. No particular difference is observed with
respect to the interpolation described in Sec. IIT A, as
one can easily infer from the long plateau in Fig. 2.

The statistical analysis is carried out by propagating
all fluctuations of observables using both the Jackknife
method and the I" method [69]. No large autocorrelations in
the extrapolated continuum window are observed. Finite-
volume effects to correct from m,L = 4 to oo are obtained
from an independent implementation of Eq. (27). Final
shifts for residual mass effects and dynamical charm effects
are applied in the same manner as also done by group B.

4. Group D

Analysis group D provides results for a:f" from the
physical pion-mass ensembles 481, 641, and 961, which
are computed with a binned superjackknife analysis with
weight function w, and vector current normalizations Zy,
and Z7. In addition, a version of Zy is used, where the pion
state is replaced by a kaon state. The mass extrapolation to
the physical point is done by assuming linear dependence
on the quark masses taken from ensemble 1 with 4 and
ensemble 1 with 3, respectively. Finite-L, effects are
corrected by assuming linearity in m,, using ensembles
1, 2, 4, and A. The values of a,’ on the 481 and 641
ensembles are corrected by an exponential dependence to
the lattice extent, exp(—m,L), whose coefficient is taken
from the 24ID and 32ID ensembles, to match for the
volume of 96I. A 50% systematic uncertainty for these
finite-volume corrections is added. The uncertainty is
treated as correlated between different ensembles. It is
noted that within the statistical noise of the 241D and 32ID
ensembles, their difference is reproduced by the Hansen-
Patella finite-volume formula as well as the Meyer-
Lellouch-Liischer-Gounaris-Sakurai [70-72] approach.

After these corrections for 18 data points from three
ensembles, two vector currents Cl! and C*, and three vector
current normalizations, the continuum extrapolation is
performed by combinations of the fit formulas f,(a?),
f24(a%), fra(a?®), and fy,4(a*) by requiring a universal
continuum limit for all 18 data points. f,(a?) poorly fits
C"(t) with the coarsest ensemble 481, and it is decided to
drop this combination from the final results. In analysis
group D, the central value for the continuum extrapolation
is chosen from fit f,(a?) to C'(¢) and f,,(a?) to C'().
The error of the continuum extrapolation is determined to
cover all central values of the considered fit forms. The
continuum extrapolation for each of the six individual
combination of currents and normalizations is also

performed. The results are consistent with that of the
universal fit except, again, the f,(a?) fit for C"(z).
Finally, a small volume correction from the 961 volume
to infinity is carried out using the Meyer-Lellouch-Liischer-
Gounaris-Sakurai approach. For each of the isospin-
symmetric worlds, RBC/UKQCD18 and BMW?20, the
lattice spacing is determined in two different scaling
trajectories (either keeping wy or mgq fixed). The fit results
are consistent between the two scaling trajectories, provid-
ing an additional check for the continuum extrapolation
of ay .

5. Group E

Analysis group E provides results for aﬁv. The strategy is
entirely data driven. Statistical uncertainties are determined
from a bootstrap analysis with measurements within 20
MD units binned into an effective measurement. The input
uncertainties are propagated via resampling (Gaussian error
propagation). Both @, and @, kernels are used. In addition
to Zy a variant of Z} is used that for a given window is
defined as

alc,bare
c_ 9u
ZV ~ _llbare ’ (33)
"
ab,bare . : .
where ay, is obtained without vector-current normali-

zation factors from the bare correlators C*. When referring
to a;X below, ay ™ is normalized using two powers of Z
or two powers of Z$. The chiral, strange-quark, discretiza-
tion, and finite-volume effects are fitted to all ensembles for
a given choice of renormalization procedure and kernel to

the Ansatz,

2 _ 2\phys
m m
aZk = M x (1 +C, (= ()PP ”( g)pﬁy)s ))

(X, — X?hys))

X <1 + C-" Xphys (34)

X (14 Cye™L) x (1+ Cgf,o(a/\y + Cg‘f,l (aA)4)
x (1+CE%am). (35)

In this formula, A represents a hadronic scale. The precise
value is immaterial since different choices are related by a
redefinition of the coefficients of the correction terms. In
this formula X, stands for mg for the RBC/UKQCDI18
world and for m, for the BMW?20 world. The ratios Ré,’ﬁ/

on the three physical point Iwasaki ensembles are simulta-
neously fitted to the model fg,

RZK — ap® _ 1+ CEfo(an)? + CEf (an)?
1K= ) R = T ! T Rl 5
L+ CZS(ahP + CE (an

(36)
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and the ratio R for the ensembles 32ID and 241D to the
model gy,

q321b B 1+ Cve—(m,,L)321D
AID ° gV = 1 + Cve_(m”L)ZMD *

(37)

All correlations between data points on the same ensembles
are included in this fit. Systematic uncertainties are
estimated by variations on the data that enters the fit
and/or the terms included in the model(s).

B. Comparison of results

After the analysis groups had individually converged on
their respective methodology described above, we started
the process of relative unblinding. The relative unblinding
of groups X and Y was conducted by sharing the indi-
vidually blinded datasets of group X with group Y and vice
versa. One of the groups then reran their analysis without
modifications on the other dataset. This allowed for a direct
comparison of groups X to Y while still keeping the
absolute blinding intact.

In Fig. 6, we show the final result of the relative
unblinding procedure for aﬁv, for which all five groups
participated. The inner error bars give the statistical
uncertainty; the outer error bars give statistical and sys-
tematic uncertainties added in quadrature. We first note that
the statistical uncertainties quoted by the separate analysis
groups are consistent. In addition, the different systematic
approaches described in Sec. [V A yield different systematic
uncertainties; however, all results are consistent within total
uncertainties.

The blinding procedure described in Sec. I D allows the
a* term to affect the comparison at the level of £0.0025 if
the a* terms are not included in the fits. This effect is small

compared to the quoted uncertainties and is completely
eliminated in Sec. V, where we show the results of all
groups after they repeated their unmodified analysis with
the fully unblinded datasets.

C. Important findings

After the relative unblinding process, the analysis groups
exchanged their most important findings for our datasets.
We discuss these findings in this subsection. They form the
basis, determined entirely on blinded data, of formulating
the preferred prescription to produce the combined col-
laboration result described in Sec. IV D.

(i) Finding 1: The correlator C" has significantly larger
a® /1> and a*/t* errors compared to C'°. These errors
also noticeably affect a\'. In Fig. 7, we plot the
dimensionless #*C(#) to highlight this effect.

(ii) Finding 2: Mean-field improved lattice perturbation
theory finds the discretization errors of C' to be
approximately double the discretization errors of C'°.

(ili) Finding 3: When analyzing a;°, where both a? and
a* coefficients were determined, the size of the a*
coefficient is substantially larger for C"' compared
to C',

(iv) Finding 4: The continuum extrapolation is sensitive
to how finite-volume corrections are applied to the
individual ensembles. This is an important effect in
our analyses since the new finest 961 ensemble has a
larger physical volume compared to the 641 and 481
ensembles.

D. Preferred prescription

Based on the findings outlined in Sec. IV C, the
Collaboration decided on the following principles for the

1.015 W ‘ \ w T 1.04 SD,, _| ‘
a, (tp=0.4fm, t; =1.0fm, A=0.15fm) —o— a, (t0:70.4fm,A:0.15fm) —e—
1.03 B
1.01F — T
1.02 B
1.005 - E
1.01} 1 ] .
1F B 1+ B
0.99 1 1 B
0.995 - B
0.98 B
0.99 ] |
0.97| s
0.985 ‘ ‘ ‘ ‘ ‘ 0.96 ‘ ‘

v & o o N

\

FIG. 6. Result of the relative unblinding procedure for ay

v &

(left) and aﬁD (right). The results are normalized to the preferred

prescription described in Sec. IV D. The inner error bars show the statistical uncertainty; the outer error bars show the statistical and

systematic uncertainties added in quadrature.
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FIG. 7.
obtained from Ref. [73].

combined analysis that will be used for the full unblinding.
First, when using C!, we always add a a* term to the fits.
Second, we use the Hansen-Patella finite-volume correc-
tions instead of the data-driven fits to e+ since we expect
the Hansen-Patella formalism to more precisely map out
the volume dependence.

These principles are then implemented in the following
prescription for a:f". For the vector current renormalization
factor, we use Zy as well as Zj; with r* =1 fm. For the
weight functions, we use W, as well as w,. For the
continuum extrapolation, we perform a simultaneous fit
to the C"" and C'° datasets using

Ju(a@®) = ¢y + c1a® + crat, (38)
1.015 W T T T T T
a, (to=0.4fm, t; = 1.0 fm, A = 0.15 fm) —e—
1.01 | g
1.005 B
1 L |
0.995 |- | .
0.99 i
0985 1 1 1 1 1 1
4 & Q O Q& ’9@
(6%
Y%,
Q
C
O
)
FIG. 8. Result of the relative unblinding procedure for a,

including the preferred prescription RBC/UKQCD 23 described
in Sec. IV D. The data are normalized to the RBC/UKQCD 23
prescription. The inner error bars show the statistical uncertainty;
the outer error bars show the statistical and systematic uncer-
tainties added in quadrature.
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The dimensionless correlation function combinations *C'(¢) (left) and 2C"(¢) (right) as well as the perturbative result

fie(@?) = ¢o + c3a? (39)

as well as

fua(@®) = co+c1@ay(u=1/a) + coa*, ~ (40)

flc,a(az) =co+ c3a2as(/" = l/a)‘ (41)

We therefore perform eight fits in total. We take the average
of the minimum and maximum result as the central value
for our prediction. We take the difference of the central
value to the maximum as our systematic error for the
continuum extrapolation. In Fig. 8, we show the final result
of the relative unblinding for each group as well as the
preferred prescription, labeled RBC/UKQCD 23. For a5”,
the results of groups A and B were close to identical, and
we adopt the prescription of group A as the preferred result.

V. ABSOLUTE UNBLINDING

After the Collaboration converged on the preferred pre-
scription described in Sec. IV D, the analysis was frozen, and
the absolute unblinding was performed. To this end, the
unblinded datasets were distributed to the analysis groups,
who then reran their analysis without modifications. The
results were presented by our Collaboration already at the
Edinburgh workshop of the g-2 Theory Initiative [74] in 2022
and are stated without modifications in the following.

A. Intermediate-distance window a,"

For the intermediate-distance window ai‘f" in the isospin-
symmetric limit with 7y =04 fm, # = 1.0 fm, and
A = 0.15 fm, we find the up and down quark-connected
contribution to be
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a0 = 206.36(44)5(42)c (01)py (00),,, py (08)5, ¢ (00)wroger (03),,, % 1071, (42)

in the BMW20 world and

a/\lw’iso'connm = 206-46(53)5(43)C(01)W(Ol)m,,Fv (09)amc(OO)WForder(O3)rnrcs x 10719, (43)

in the RBC/UKQCD18 world. We separately quote the
statistical uncertainties (S), the continuum limit uncertain-
ties (C), the finite-volume uncertainties for the vector
correlators (FV), the finite-volume uncertainties of the
measured pion masses (m, FV), the uncertainties associ-
ated with the linear corrections to the line of constant
physics (d,, C), the uncertainties from the discretization of
the Wilson flow equation (WF order), as well as the
uncertainties due to the nonzero chiral symmetry breaking
(my). The uncertainties from the ensemble-parameter and
renormalization-factor determinations are fully propagated
in the quoted uncertainties. In Fig. 9, we compare Eq. (42)
with previously published results. In this work, we con-
sistently use the BMW20 world for comparison plots of
isospin-symmetric contributions.

Compared to our earlier result presented in Ref. [29],
where aﬁv was defined and computed for the first time, we
increase the basis for our continuum extrapolation from two
data points over two lattice spacings to 24 data points over
three lattice spacings. Note that the eight variations studied
for each lattice spacing allow for additional scrutiny of
different sources of discretization errors. If we were to
repeat the continuum extrapolation through the two data

RBC/UKQCD 2018 b
Aubin et al. 2019 1
ETMC 2021 - b

BMW 2020

LM 2020
Aubin et al. 2022 -
ChiQCD 2022 OV/DWF [~
ChiQCD 2022 OV/HISQ
Mainz 2022 -

ETMC 2022
RBC/UKQCD 2023 -
Fermilab/HPQCD/MILC 2023 ‘ ‘ ‘

195 200 205 210 215

a,"150e0MU%0 4 fm, 1.0 fm, 0.15 fm) x 10"°

—+H—
H—+H

————

——
— B
—_—

——

HHH

——

FIG. 9. Comparison of the up and down quark, connected,
isospin-symmetric contribution to the intermediate window. For
historical completeness, we also show results that are superseded
by newer results of the same collaboration at the top in gray. The
inner error bars show the statistical uncertainty, the outer error
bars show the statistical and systematic uncertainties added in
quadrature. RBC/UKQCD 2018 [29], Aubin et al. 2019 [31],
ETMC 2021 [75], BMW 2020 [28], LM 2020 [33], Aubin ef al.
2022 [34], yQCD 2022 [76], Mainz 2022 [77], ETMC 2022 [78],
Fermilab/HPQCD/MILC 2023 [79].

points already available in Ref. [29] with lower statistical
precision, we obtain a result consistent with the earlier
work of a) 4 — 202.9(1.4) x 107'°, This is shown
in Fig. 10. The approximate 2¢ upward shift compared to
Ref. [29] can therefore dominantly be attributed to our
improved continuum extrapolation.

In Ref. [29], we also computed the QED, strong-isospin-
breaking, strange, charm, and quark-disconnected con-
tributions to the intermediate window quantity. These
contributions are much smaller in magnitude, and their
uncertainties due to the continuum extrapolation are much
smaller in absolute terms compared to ay “><"™" By
combining these contributions with our improved light
quark-connected, isospin-symmetric result of Eq. (43), we
obtain our prediction for the total intermediate window
contribution,

a¥ = 235.56(65)(50) x 10719, (44)

with statistical (left) and systematic (right) errors given
separately. This can be compared with other lattice results
as well as results based on the R ratio; see Fig. 11. Our result
isin 3.8¢ tension with the recently published dispersive result
of ay =229.4(1.4) x 107'% [30] and in agreement with
recent lattice results [28,77,78].

B. Short-distance window a};”
For the short-distance window aED in the isospin-
symmetric limit with 75 = 0.4 fm and A = 0.15 fm, we

find the up and down quark-connected contribution to be
agPisocomud — 48 7(0.5)(1.6) x 10710, (45)
in the BMW20 world and
ap>oeom i = 49.0(0.6)(1.4) x 10710, (46)

in the RBC/UKQCDI18 world. We can substantially
improve this result by replacing the very shortest distances
with perturbative QCD. Such a hybrid result of perturbative
and nonperturbative QCD is still a first-principles deter-
mination but may combine the strength of both approaches.
In addition, the study of the consistency of lattice QCD and
perturbative QCD at short distances may play an important
role in understanding the origin of the tension for a?j’
described in Sec. VA.
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FIG. 10. Continuum extrapolation of a, “5*-<m4
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x 10'°, On the left, we show the eight fits of our preferred prescription. On the right,

we show the fit through the two data points already available in Ref. [29] with lower statistical precision.

RBC/UKQCD 2018} B
ETMC 2021 |- -

BMW 2020 |-

Mainz 2022 |-

ETMC 2022
RBC/UKQCD 2023} H——t -
RBC/UKQCD 2018/FJ |-
Aubin et al. 2019/CL/KNT |- —+ B
BMW 2020/KNT |-
Colangelo et al. 2022

| | | | | | |
224 226 228 230 232 234 236 238 240
a,"(0.4 fm, 1.0 fm, 0.15 fm) x 10"°

!

FIG. 11. Comparison of the total intermediate window con-
tribution. For historical completeness, we also show results that
are superseded by newer results of the same collaboration at the
top in gray. Dispersive results are shown in purple; lattice results
are shown in green. The inner error bars show the statistical
uncertainty; the outer error bars show the statistical and system-
atic uncertainties added in quadrature. RBC/UKQCD 2018 [29],
ETMC 2021 [75], BMW 2020 [28], Mainz 2022 [77], ETMC
2022 [78], RBC/UKQCD 2018/FJ [80], Aubin et al. 2019/CL/
KNT [81], BMW 2020/KNT [82], Colangelo et al. 2022 [30].

To establish a hybrid method, we use the additive
property of the windows, i.e.,

a’(tg. A) = azP(1,, A) + a) (t,. 1o, A). (47)

We can then evaluate the first term in perturbative QCD
at O(a*) [73] and the second term in lattice QCD; i.e.,
we write
SD,pQCD

asP(to, A) = ap PP (1, A) +al (1,, 19, A).  (48)
In Fig. 12, we study this separation as a function of 7,. To
the degree that perturbative QCD agrees with lattice QCD
at distance 7, the plot should exhibit a plateau. We find that

lattice QCD and perturbative QCD are consistent within
1.5 x 107'% up to 0.4 fm. For a related study of matching

90 T T T T
auSD’pQCD(tp,A) x 10'% (massless) —+—
80 w 10 . .
a, (tp,to,A) x 10~ (massive) ——<—
70 auW(tp,tO,A) x 10'° (massive minus massless) A
SD,pQCD w 10
60| (@, P (EA) + 3, (ttg,A)) X 10 i
50 = -
ES &
40 - * 1
30+ * . i
20} . i
+
10} -
.
0 + |
-0.1 0 0.1 0.2 0.3 0.4 0.5

tp/fm

FIG. 12. Stability plot of Eq. (48) for 7y =0.4 fm and
A = 0.15 fm. The massless perturbative QCD result is taken
from Ref. [73]. The correction from zero quark mass to nonzero
quark mass is obtained from a linear extrapolation in the quark
mass using ensembles 481, 1, and 4. The horizontal lines give the
result of lattice QCD without combination with perturbative
QCD. Only the quark-connected isospin-symmetric up and down
quark contribution is shown.

perturbative QCD to short-distance vector current correla-
tors, see Ref. [83]. If we choose 7, = 0.1 fm, we find

ap> oot — 48.51(43)(53) x 10719, (49)
in the BMW20 world and
ap>secomid — 48 70(52)(59) x 10710, (50)

in the RBC/UKQCDI8 world. This is our preferred
prescription for ayP ™ We compare Eq. (49) to
previous results in Fig. 13. The hybrid method reduces
the large discretization errors for the short-distance window
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ETMC 2021 - N

ETMC 2022 |- = N

RBC/UKQCD 2023 |- - ]
! ! ! !

| | |
45 46 47 48 49 50 51 52 53
a, S50 U9(0 4 fm, 0.15 fm) x 10'°

FIG. 13. Comparison of our preferred result with previous
determinations. For historical completeness, we also show results
that are superseded by newer results of the same collaboration at the
top in gray. The inner error bars show the statistical uncertainty; the
outer error bars show the statistical and systematic uncertainties
added in quadrature. ETMC 2021 [75], ETMC 2022 [78].

and specifically, also reduces the logarithmic discretization
errors described in Refs. [84,85].

Finally, we note that the short-distance correlator is
insensitive to the quark mass; see Fig. 14. This motivates a
new approach to study the continuum limit of the HVP.
Since discretization errors largely cancel in the difference
between vector currents evaluated at different quark
masses, we proposed a mass-splitting approach in
Ref. [86]. In this approach, we generate pairs of ensembles
with m, and M, with M, > m, to compute

aﬂ(mzr) = a,u(mﬂ) - au<M7z) + aM(Mﬂ>' (51)
N e’
=da,
This allows us to consider the continuum limit of éa,
and a,(M,) separately. The costly term Ja, can then be
calculated at coarser lattice spacings compared to a,(M,).

This method will be used in upcoming improvements to the
present calculation.

C. Isospin-symmetric scheme dependence

For comparisons of quantities defined in an isospin-
symmetric world, it is crucial to precisely match the

0.2

C(tm, = 140 MeV) t2 ——
C(tmy, = 280 MeV) 2 +——
(C(tm, =140 MeV) - C(t,m, = 280 MeV)) t
015F i
*
E
* * +
L * + ]
0.1 .
+
>
N
= -
0.05 - x o+ .
%+
x *
x - * . ‘.
x =
ok *xxx35E
1 1 1 1
0 5 10 15 20 25
t/a

FIG. 14. Mass dependence of the vector correlator on a lattice
with a~! = 1.73 GeV. At very short distances, the vector
correlator is effectively independent of the quark mass.

definitions of the isospin-symmetric point. In Sec. 11 C,
we defined two hadronic schemes to define the isospin-
symmetric world that match results previously presented by
the RBC/UKQCD and BMW Collaborations. In previous
sections, we presented our results separately for both
schemes. In this section, we provide results for the
correlated difference of the BMW20 minus the RBC/
UKQCDI18 world. For the intermediate window, we find

Agy oo = —0.10(24)(07) x 10710, (52)
and for the short-distance window, we find
AaiD.iso,conn,ud _ —033(36)(36) X 10—10’ (53)

using the lattice results of Egs. (45) and (46). We can
therefore not yet resolve the difference in isospin-
symmetric schemes, and they can be viewed as compatible
at the current precision.

D. Retrospective discussion of the blinding procedure

In the current paper, we performed a blinded analysis as
described in Sec. II D. The goal of this procedure was to
eliminate psychological bias that may have influenced
systematic decisions of the analysis groups to favor either
a larger value for a, confirming the lattice QCD result of
the BMW Collaboration for this window quantity, or a
smaller value, confirming the result based on the R ratio. To
this end, we added artificial discretization errors using both
a® and a* terms, such that it is impossible for those who had
access to our previous results for the coarser two lattice
spacings of Ref. [29] to completely unblind themselves by
comparing the new blinded correlators with the previously
shared data. This is the reason for the three parameters of
Eq. (16) exceeding the number of previously available
lattice spacings.

Nevertheless, the possibility of an analysis group com-
puting unblinded correlators based on the used gauge fields
always remains. Given the reduced statistical noise of
short-distance time slices of C(¢), even our chosen blinding
procedure can in principle be circumvented with sufficient
effort. It therefore remains an important task to evaluate the
balance between the threshold preventing such unblinding
and the possible drawbacks introduced by the blinding
procedure. We suggest that a reasonable balance is found
when everybody acting in good faith is protected from
psychological bias.

For the current calculation, we believe the chosen
blinding procedure to be successful in that regard.
However, it came at the cost of a -0.0025 level uncertainty,
limiting the optimization of our preferred procedure. This
uncertainty is introduced by the a* terms in Eq. (16) that are
not always eliminated by the continuum extrapolation. The
analysis groups, however, had to make decisions and freeze
their analyses based on the blinded dataset. In Fig. 15,
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FIG. 15. 'We show the result of the relative unblinding for aﬁv including the preferred prescription. On the left side, each group used its
own blinded dataset including the a? and a* terms added in Eq. (16). On the right side, each group reran their unmodified analysis after
the absolute unblinding on the unblinded dataset. As anticipated, the artificial discretization errors in the blinded data can change central
values and error estimates at the +0.0025 level. The data are normalized to the RBC/UKQCD 23 prescription. The inner error bars show
the statistical uncertainty, the outer error bars show the statistical and systematic uncertainties added in quadrature.

we highlight this effect by contrasting the relative unblind-
ing as performed on the blinded datasets compared to the
case, where we rerun the unmodified analyses on the
unblinded datasets.

In future studies, we will have to reconsider our exact
approach since adding even higher-order terms (such as a®)
with sufficiently small coefficients to account for additional
finer datasets would have a diminishing effect. We may
therefore decide to use only lattice-spacing-independent
blinding factors in the future.

VI. CONCLUSIONS AND OUTLOOK

In this work, we compute the standard Euclidean
window of the hadronic vacuum polarization. We employ
a blinded setup to avoid a possible bias towards reproduc-
ing previously published results. We focus on the dominant
quark-connected light-quark isospin-symmetric contribu-
tion and significantly improve its continuum extrapolation
and address additional subleading systematic effects from
sea-charm quarks and residual chiral-symmetry breaking
from first principles. Our result for the total intermediate
window aﬁv is in 3.8¢ tension with the recently published
dispersive result of Ref. [30] and in agreement with other
lattice results [28,77,78]. For the isospin-symmetric con-
nected up and down quark contribution a) <™ more
lattice results are available [28,33,34,76-78] that are all in
agreement with the result presented in this work.

The tension for the intermediate window between lattice
QCD and the dispersive result needs to be addressed in
future work, and a systematic study of additional windows
may provide further insights. As it stands, this tension
may be interpreted as a yet to be understood new physics
contribution to hadronic e e~ decays. In the context of the
4.20 tension for a, [2],

a,(EXP) — a,(SM) = 25.1(5.9) x 10719, (54)
we note that the difference of the dispersive and lattice
results for a) (SM) is only 6 x 10717,

In addition, we provide a result for the short-distance
window for which our result is compatible with the recently
published result of the ETMC Collaboration [78]. At short
distances, we contrast lattice QCD and perturbative QCD
and find agreement up to 0.4 fm at the level of 1.5 x 10710,
We also provide results for a hybrid method in which we
use perturbative QCD below 0.1 fm and lattice QCD at
longer distances. The effective mass independence of the
vector correlators at short distances finally motivates us to
define a mass-splitting procedure to further improve the
continuum extrapolation of the HVP.

We are currently generating additional ensembles with
lattice spacings at a~! = 3.5 GeV and 4.7 GeV that will
support a five-lattice spacing continuum extrapolation
using the mass-splitting method.

Finally, we are also preparing an update for the long-
distance window using the improved bounding method [87]
and an update of our QED and strong-isospin-breaking
corrections reusing data from our hadronic light-by-light
program [24,88-90]. Upon completion of our HVP pro-
gram, we expect to be able to match the FNAL E989 target
precision.
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