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The Collins-Soper (CS) kernel is a nonperturbative function that characterizes the rapidity evolution of
transverse-momentum-dependent parton distribution functions (TMDPDFs) and wave functions. In this
paper, we calculate the CS kernel for pion and proton targets and for quasi-TMDPDFs of leading and next-
to-leading power. The calculations are carried out on the CLS ensemble H101 with dynamical Nf ¼ 2þ 1

clover-improved Wilson fermions. Our analyses demonstrate the consistency of different lattice extractions
of the CS kernel for mesons and baryons, as well as for twist-two and twist-three operators, even though
lattice artifacts could be significant. This consistency corroborates the universality of the lattice-determined
CS kernel and suggests that a high-precision determination of it is in reach.
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I. INTRODUCTION

The description of the internal structure of hadrons is a
fundamental problem of QCD. The present description of
high-energy processes is founded on factorization theo-
rems, which express the cross sections of reactions in
terms of calculable perturbative parts and universal non-
perturbative functions. In the modern era, the emphasis
of studies is shifting toward multidimensional observables
[1,2] and multidimensional parton distributions, such as
transverse momentum dependent parton distribution func-
tions (TMDPDFs) [3]. TMDPDFs encode information
about the 3D parton momenta inside a hadron. TMDPDFs
are assumed to be universal in the perturbative domain
[small b in Eq. (1)], i.e., to depend on the types of parton
and hadron but not on the process. This universality is the
cornerstone of the factorization approach. In the case of
TMDPDFs, it has been only indirectly confirmed by many

phenomenological extractions, which utilize multiple
processes [4–11].
The evolution of TMDPDFs with the rapidity scale ζ is

described by

2ζ
d
dζ

lnΦf=hðx; b; μ; ζÞ ¼ Kðb; μÞ; ð1Þ

which also provides the simplest way to access the CS
kernel Kðb; μÞ–the topic of this study. For large b, where
there exists only little experimental data, the status of the
universality of the CS kernel is questionable. It can at
present only be tested by lattice simulations like ours. Φf=h

is a TMDPDF of flavor f in hadron h with x being the
longitudinal momentum fraction, and b being the trans-
verse distance, at scale μ. The evolution equation (1) is
predicted to hold for TMDPDFs of any kind, including also
twist-3 TMDPDFs, as was derived recently in [12–14] and
is verified for the first time by lattice calculation in this
work. In fact, the CS kernel is one of the most fundamental
nonperturbative functions in QCD since it describes the
interaction of a parton with the QCD vacuum [15] and
appears in the description of many types of processes,
including inclusive ones [16], exclusive ones [17], and jet-
production [18]. Being a vacuum-determined function, the
CS kernel obeys a stronger universality—it is independent
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of any quantum numbers except the color representation
of the probe (quark or gluon). The confirmation of this
universality for the CS-kernel is of fundamental importance
for QCD.
Traditionally, the CS kernel is determined from fits of

scattering data, along with TMDPDFs; see Refs. [7,8,19]
for examples. However, this approach requires assumption
of a functional form and, thus, is biased. Recently a
number of more direct ways were proposed. All these
methods suggest to determine the CS kernel from the ratio
of properly constructed observables—cross sections [20]
or quasi-TMDPDFs [21–23]. The latter can be achieved
by lattice QCD simulations, which have been done in
Refs. [21,24–27]. So far, all simulations were done for
unpolarized quasi-TMDPDFs of the proton. The only
exception is [25], where also polarized quasi-TMDPDFs
are used.
In this paper, we present a new set of lattice computa-

tions of the CS kernel. We compare results for four
basically independent calculations, namely for proton
and pion targets, and twist-two and twist-three quasi-
TMDPDF operators. The agreement between the results
confirms universality of the CS kernel and further con-
strains its form. This is a proof of principle. The precision
of such tests will improve continuously in the future.

II. THEORETICAL FRAMEWORK

We consider the following matrix element (quasi-
TMDPDF)

W½Γ�
f=hðb;l; L; v; P; S; μÞ
¼ hhðP; SÞjq̄fðbþ lvÞΓU½Cðl; v; b; LÞ�qfð0ÞjhðP; SÞi;

ð2Þ

where jhðP; SÞi is a single-hadron state with momentum P
(Pμ ¼ ðEP; Px; 0; 0Þ in this study) and spin S (which is
suppressed in the following for brevity). Γ is a Dirac matrix
and f indicates the flavor of the quark field. The staple-
shaped Wilson link U is of length L stretching in the
direction vμ ¼ ð0;�1; 0; 0Þ and of width b⃗ pointing in a
transverse spatial direction. The quark-antiquark pair con-
nected by the Wilson link is positioned in the same
imaginary time slice. The offset of the quark-antiquark
pair along v is denoted by l. The structure of the matrix
element is sketched in Fig. 1.
At large L and hadron momentum, it is assumed that the

matrix element (2) can be factorized [21–23,28,29] after
having been transformed to momentum space. The struc-
ture of the factorization theorem crucially depends on Γ.
In particular, for Γ ¼ fγ0; =v;…g (the complete set can be
found in Ref. [30]) one has the so-called leading power
(LP) expression

W½Γ�
f=hðx; b;P; μÞ ¼

�
2jxjðPþÞ2

ζ

�
Kðb;μÞ=2

× CHðxPþ; μÞΦ½Γ�
f=hðx; b; μ; ζÞ þOðλ2Þ;

ð3Þ
where Pþ ¼ ðEP þ PxÞ=

ffiffiffi
2

p
and Φ is the physical

TMDPDF and CH is the coefficient function. The coef-
ficient functions CH are known at next-to-leading order
(NLO) in the QCD coupling constant [21–23]. The variable
x is the momentum fraction, Fourier-conjugate to lPx, and
M is the mass of the hadron.Oðλ2Þ contains various power-
suppressed terms,

Oðλ2Þ ¼ O
�

M2

ðxPþÞ2 ;
1

ðbPþÞ2 ;
b
L
;
1

ML

�
: ð4Þ

The left-hand side of Eq. (3) is independent of ζ. Thus,
the ratio of quasi-TMDPDFs which differ only in their
momenta is simply

R½Γ�ðx;b;μ;P1;P2Þ ¼
W½Γ�

f=hðx;b;P1; S;μÞ
W½Γ�

f=hðx;b;P2; S;μÞ

¼
�
Pþ
1

Pþ
2

�
Kðb;μÞCHðxPþ

1 ;μÞ
CHðxPþ

2 ;μÞ
þOðλ2Þ:

ð5Þ

Inverting this relation one determines the CS-kernel.
One should note that for this procedure, a Fourier

transformation of the quasi-TMDPDF from coordinate
space (lPx) to momentum-fraction space (x) is required.
Such a transformation requires model assumptions
concerning the tail of the quasi-TMDPDF [27], which
introduces additional systematic uncertainty. Furthermore,

FIG. 1. Illustration of the pion matrix element, see Eq. (2). The
two external pion states are shown as gray ovals. The nonlocal
quark current is shown in red, made up of a quark-antiquark pair
(the red points) connected by a staple-shaped gauge link C. The
matrix element is calculated on the lattice using the sequential
source method. The sequential source is constructed using
propagators S1 and S3. For the proton an additional direct
propagator from source to sink is needed.
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in [31] it is shown that the CS kernel extracted in this
way can be sensitive to x-dependent higher-twist effects,
which are much stronger than those in the TMD wave
function case. This complication is avoided when the
ratio of the first Mellin moments (l ¼ 0, accordingly x
is suppressed in the following) of the two quasi-TMDPDFs
is considered [23]. It reads

R½Γ�ðP1; P2; bÞ ¼
�
Pþ
1

Pþ
2

�
Kðb;μÞ

r½Γ�ðb; μ;P1; P2Þ; ð6Þ

where r is [23]

r½Γ�ðb; μ;P1; P2Þ ¼ 1þ 4CF
αsðμÞ
4π

ln

�
Pþ
1

Pþ
2

�

×

�
1 − ln

�
2Pþ

1 P
þ
2

μ2

�
− 2M½Γ�ðb; μÞ

�
:

ð7Þ

The function M contains the residual terms of the pertur-
bative expansion, and depends on the quantum numbers
of the quasi-TMDPDF. A key argument underlying this
method is that the function M½Γ�ðb; μÞ is almost indepen-
dent of b. This assumption is based on the weak correlation
of b and x dependencies of TMDPDFs, which has been
verified by fitting experimental data with the unpolarized
TMDPDFs of proton and pion [6,7]. The value ofM can be
found by comparing Eq. (7) and its value in perturbation
theory at b ∼ 1 GeV−1 and μ0 ¼ 2 GeV (where both
perturbation theory and the factorization theorem should
be valid). For details see Ref. [25]. This method is much
simpler than evaluating Eq. (5) but cannot be improved
beyond NLO.
The description of the cases Γ ¼ f1; γ5;…g requires the

next-to-leading power (NLP) factorization theorem [30].
NLP factorization has a much more involved form and
expresses a single quasi-TMDPDF by a sum of various
physical TMDPDFs and new lattice-related nonperturba-
tive functions Ψ21ðbÞ and Ψ12ðbÞ [30]. For particular
combinations of Γ and polarization, the NLP factorization
simplifies to the form of Eq. (3) (with a different coefficient
function). In these cases, one can use Eq. (6) to determine
the CS-kernel (note that Eq. (5) is not helpful due to the
x-dependence of CH at NLP). These simple cases include
Γ ¼ 1 for the TMDPDF eðx; bÞ.

III. LATTICE CALCULATION

The matrix element Eq. (2) can be calculated as the ratio
of a three-point and a two-point function on the lattice,

W½Γ� ¼ 2EP lim
0≪τ≪t

CΓ
3ptðP⃗; C; t; τ;ΓÞ
C2ptðP⃗; tÞ

; ð8Þ

where EP is the energy of the hadron extracted from the
two-point function. In the continuum limit, the lattice
definition Eq. (8) reproduces the continuum definition,
see, e.g., Ref. [32]. The parameters t and τ are the source-
sink separation and the temporal distance between the
source and the inserted nonlocal quark current. The three-
point function is defined as

CΓ
3ptðP⃗; C; t; τ;ΓÞ≡ htrfΓSOðP⃗; tÞJΓðC; τÞŌðP⃗; 0Þgi ð9Þ

and calculated using the sequential source method [33]
with hadron interpolator OðP⃗; tÞ. The nonlocal quark
current reads

JΓðC; τÞ≡ q̄ðb; τÞΓU½Cðv; b; LÞ�qð0; τÞ; ð10Þ

where q can be either up or down quark, and U½Cðv; b; LÞ�
is the staple-shaped Wilson link in Fig. 1. The two-point
function is

C2ptðP⃗; tÞ≡ htrfΓSOðP⃗; tÞŌðP⃗; 0Þgi; ð11Þ

where ΓS ¼ ð1þ γ4Þð1 − iγ2γ1Þ=2 is needed for the proton
to project out the desired parity and spin. For the pion ΓS is
not necessary and is set to unity. We adopt HYP smearing
for the gauge links [34] and use momentum smearing [35]
to improve the signal. We analyse the CLS ensemble
H101 generated using Nf ¼ 2þ 1 flavors of clover-
improved Wilson fermions [36]. The lattice setup is
summarized in Table I.
The analysis for the proton reuses the data generated

in [25], where the source-sink separation is tsnk− tsrc¼11a
and the valence quark is the same as the sea quark. In the
pion case, the simulation with the same setup is much
noisier. To reduce the noise, we use a heavier valence quark
corresponding to mval

π ¼ 686 MeV. We do not expect a
substantial mass dependence of the resulting CS kernel.
In fact, in the physical limit, at large boost factors, the
CS kernel depends only weakly on the quark mass, see,
e.g., Ref. [26]. Besides, we use a smaller source-sink
separation (9a) to further increase the signal for the three-
and two-point functions.
For the pion, we fit the ratio to a constant in the interval

τ∈ ½4a; 6a�, where the excited states are suppressed. The
simulation has been done for six momenta P1 ∈ f0; 1;
2; 3; 4; 5g 2π

aNσ
, but only the first three nonzero momenta

have good enough signal/noise ratio to be processed
further. We have confirmed that the extracted energies

TABLE I. Lattice setup used in this study.

Ensemble a ½fm� N3
σ × Nτ msea

π #Configuration

H101 0.0854 323 × 96 422 MeV 2016
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respect the dispersion relation EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

1

p
within

statistical errors. We have also confirmed that our results

respect the charge conservation condition C½γ0�
3pt ðt; τ; γ0Þ=

C2ptðtÞ ¼ 1=ZV , where ZV is the renormalization constant
for the quark current in the vector channel [37] and

C½γ0�
3pt ðt; τ; γ0Þ is the local three-point function. For nonlocal

correlations, we consider transverse separations in the
y- or z-direction (or a combination of both), with lengths
f1; ffiffiffi

2
p

; 2;…; 8; 6
ffiffiffi
2

p
; 9ga. The size of the staple-link L

is taken as large as possible under the conditions that
Eq. (4) is small and the signal for the three-point function is
acceptable.
As detailed in Refs. [32,38–40], the hadron matrix

elements Eq. (8) in different channels (for different Γ)
can be parameterized using invariant amplitudes Ãi and B̃i.
For the pion this parametrization is [39]

W½γ0� ¼ EPÃ2;

W½γ1� ¼ PxÃ2 þM2
v½1�

ðv · PÞ B̃1;

W½1� ¼ MÃ1: ð12Þ

Thus the relevant amplitudes can be obtained from a
combination of matrix elements in the three channels γ0,
γ1 and 1. Combining the available amplitudes which satisfy
the LP (f1) and NLP (e) factorization theorem [30], we
obtain

f1ðb2; PþÞ ¼ Pþ
�
Ã2ðb2Þ þM2

vþ

ðv · PÞPþ B̃1ðb2Þ
�
;

eðb2; PþÞ ¼ PþÃ1ðb2Þ: ð13Þ

IV. NUMERICAL RESULTS

The momentum pair Px ¼ f2; 3g × 2π
aNσ

, used for both
pion and proton, corresponds to P−=Pþ ¼ f0.13; 0.07g for
the pion and P−=Pþ ¼ f0.25; 0.14g for the proton, such
thatM2=ðxPþÞ2 is not large in Eq. (4). We also analyzed the
momentum pair Px ¼ f1; 2g × 2π

aNσ
for the pion. This case

has larger systematic uncertainties due to the power correc-
tions in Eq. (4) which we cannot reliably quantify. On the
other hand, it has much smaller statistical uncertainties
and we do not know for which combination the total
uncertainty is larger. We present, therefore, our final results
in Fig. 3 for the momenta P1=P2 ¼ 3=2, i.e., with the larger
statistical errors, and give the analog for P1=P2 ¼ 2=1
in Appendix A. 1=ðbPþÞ2 ≪ 1 for Eq. (4) is fulfilled if
b ≫ f1.8a; 1.1ag, implying that our extracted CS kernel is
valid at b > 0.15 fm. Finally, to make b=L and 1=ðMLÞ
small, L is chosen as large as possible. We observed plateaus
in the interval ½4a; 7a� for both f1 and e at all values of b for
the pion, see Fig. 2. The analogous figures for the proton are
presented in Appendix B. Still larger values of L can also be
included into the fit, but have negligible impact on the fit’s
quality. To increase the statistics and reduce systematic
uncertainties, we have combined the data with L pointing
into the positive and negative v directions.
The value of the constant M is determined following

the procedure described in Ref. [25]. We use the reference
transverse separation b0 ¼ 3a ¼ 0.26 fm ¼ 1.3 GeV−1,
for which the value of the CS kernel is safely known from
perturbative computations [41,42,45,46] and from phenom-
enological extractions [7,9] (all agree with each other
up to small corrections). At the same time, the terms in
Eq. (4) are small. We normalize the value of the CS kernel
at this point (explicitly, we use the values of the

FIG. 2. Lattice results for the ratios R½f1� and R½e� in the pion case from the momentum pair fPþ
1 ; P

þ
2 g ¼ f2.07; 1.48gGeV at different

transverse separations b. The colored bands indicate the results of constant fits in the L-interval ½4a; 7a�.
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phenomenological extraction SV19 [7] at N3LO). Our
estimate for M is −0.83ð0.73Þ for f1ðpionÞ, −4.98ð0.61Þ
for eðpionÞ, −0.57ð0.34Þ for f1ðprotonÞ, and −1.04ð1.32Þ
for eðprotonÞ. A cross check on the determination of M
using other lattice CS kernel data can be found in
Appendix C. The uncertainty in the estimation ofM results
in a fully correlated uncertainty for the CS kernel δK. The
values of δK are f0.15; 0.10; 0.08; 0.27g for f1ðpionÞ,
eðpionÞ, f1ðprotonÞ, and eðprotonÞ, correspondingly.
Note that δK is not shown in Fig. 3 and the figures in
the appendices as it is dominated by the statistical uncer-
tainty at the normalization point and, thus, cannot be simply
added as an independent uncertainty.
The resulting values of the CS kernel are plotted in

Fig. 3. In the left plot, we compare our high momentum
results for the CS kernel with two phenomenological
extractions, SV19 [7] and MAP22 [9], one 3-loop pertur-
bative calculation [41,42] and a “Literature combined”
result shown as a yellow band that summarizes previous
lattice calculations [24,26,27,43,44] in a way described in
Appendix D. In the right plot we show the difference of the
other three extractions performed in this study to the most
accurate one, obtained at twist-3 in pion states.
All lattice results display qualitatively similar behavior.

The differences between them are probably mainly due to
systematic effects, since most calculations differ in important
aspects. For example, the computation [27] is based on
1-loop matching while the computation in [24] is based
on tree-level matching. This observation underlines the
relevance of our results: Various systematic effects should
differ markedly between pion and proton as well as between

twist-2 and twist-3. Therefore, the close agreement of our
four sets of data for the CS kernel does not only confirm its
universality and the results of [12–14], but it suggests also
that the uncertainties are still dominated by statistics.
Note also that, since pion states possess higher sym-

metry, fewer amplitudes are involved in the parametrization
for the pion than for the proton, leading to reduced
uncertainties when solving for the amplitudes. Therefore,
calculating the CS-kernel for a pion as we pioneered with
this paper should be especially reliable.
In Fig. 3, the data points with b > 7a are plotted with

light colors and gray error bars to indicate that the extracted
values suffer from uncontrolled systematic uncertainties.
In this region, plateaus of R are not reached even for the
largest values of L, as can be seen in Fig. 2. Additionally,
the points at small b < 0.8 GeV−1 are contaminated by
power corrections ∼b−2. Therefore, our main results are the
points in the intermediate region.

V. CONCLUSION

We have extracted the CS kernel from the first Mellin
moment of twist-2 and twist-3 pion and proton quasi-
TMDPDFs on the CLS ensemble H101. At present the CS
kernel for nonperturbative transverse distances can only
be obtained from lattice simulations. Therefore, this is a
prime example for combined analyses of experimental and
lattice data being needed to obtain relatively complex
observables such as TMDPDFs. The fact that we compare
for the first time four qualitatively different cases, namely
the TMDPDFs f1 and e of proton and pion, is the primary

FIG. 3. Left: comparison of the CS kernel obtained in this work to the 3-loop perturbative calculation [41,42], two phenomenological
extractions, SV19 [7] and MAP22 [9] and the “Literature combined” result that summarizes previous lattice extractions
[24,26,27,43,44]. The outer error bars denote the possible lattice artifacts estimated in a way described in Appendix E. They are
not shown in other figures. Right: the differences between the most accurate result, which is the twist-3 pion case and the other three
extractions. For details see the main text. The points are slightly shifted horizontally for better visibility in both panels.
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merit of our investigation. The fact that all four sets of
results agree confirms the universality of the CS kernel
and suggests that for intermediate transverse distances
0.8 GeV−1 ≲ b≲ 2.6 GeV−1 systematic errors are not
important. Our results are consistent with previous work
within uncertainties. The main challenge for future work
is to quantify all sources of systematic uncertainties. We
have demonstrated that combining twist-2 and twist-3
TMDPDFs for different hadrons is conducive to this end.
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APPENDIX A: COMPARISON OF THE CS
KERNEL EXTRACTED FROM DIFFERENT

MOMENTUM PAIRS

We compare the extracted CS kernel from different
momentum pairs in Fig. 4. Consistent (within errors)
values for the CS kernel can be observed for all b for
which the data is reliable. This indicates that the power
corrections may be strongly suppressed even at the smallest
momentum considered in this work. In addition, the
insensitivity of the CS kernel to M2=ðxPþÞ2 also supports
the rationale of using a large valence quark mass in our
calculation a posteriori.

APPENDIX B: MORE INSTANCES OF
CONSTANT FITS IN L OF R

We first show constant fits of the ratio R in L for the
proton in the top panels of Fig. 5. It can be seen that the
pattern of change is similar as in the pion case but the fit
interval needs to be adjusted. Next, we present the results
from the momentum pair P1=P2 ¼ 2=1 in the pion case in
the bottom panels of Fig. 5. Compared to the larger
momentum case, the plateau appears at larger L for small
momentum. We fit the ratio to a constant in the intervals
½6a; 9a� for f1 and ½8a; 11a� for e at all values of b. The
plateaus can be identified with much smaller statistical
uncertainties, as expected.

FIG. 4. Comparison of CS kernel extracted from different twists and momentum pairs. The points are slightly shifted horizontally for
better visibility.
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APPENDIX C: A CROSS CHECK OF THE
DETERMINATION OF M

M determined in the main text is based on the (phe-
nomenological) SV19 results. It is shown in Fig. 6 labeled
as “Phenomenological”. M can also be determined using
lattice results of the CS kernel. We take the state-of-the-art
lattice results from Ref. [31]. As for R we use the twist-3
pion case for a demonstration.M is determined in the same
way as described in the main text with b0 in the range
0.8 GeV−1 ≲ b0 ≲ 2.6 GeV−1. The error of the lattice
determined CS kernel enters via Gaussian bootstrap.

The resultant M is shown in Fig. 6 with label “Lattice.”
From the figure we can see that, though with large errors,
M is not sensitive to b0.

APPENDIX D: COMBINATION OF PREVIOUS
LATTICE RESULTS

In the left panel of Fig. 3 we compared our results with
the results of previous lattice calculations. Because having
all relevant data points in a single plot would not result in a
clear presentation of the available information, we sum-
marize all previous lattice results by just one yellow error

FIG. 5. Top: lattice results for the ratios R½f1� and R½e� in the proton case from the momentum pair P1=P2 ¼ 3=2 at different transverse
separations b. The colored bands indicate the results of constant fits in the L-interval ½8a; 10a� for f1 and ½6a; 8a� for e. Bottom: Same as
above but in the pion case from the momentum pair P1=P2 ¼ 2=1 at different transverse separations b. The colored bands indicate the
results of constant fits in the L-interval ½6a; 9a� for f1 and ½8a; 11a� for e.
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band. We point out that there are two commonly used
methods in the literature to combine different datasets.
In the following we dwell on how they are implemented.
Note that we treat the error from individual extractions as
statistical error, although in some cases it is the sum of
the statistical and systematic ones. We have also linearly
interpolated between different b values. The first method is
the same as the one used in [50], which we call method 1:
we first generate Gaussian bootstrap samples for each
extraction based on its mean and error. Then the samples at
the same b from all extractions are combined. The expect-
ation value can be estimated as the median drawn from this
pool and the error can be estimated by the 68% confidence
interval. In the left panel of Fig. 7 we explicitly present all

the previous lattice results and the combined band from
method 1, which is also the one shown in Fig. 3.
In method 2 the mean and the statistical and systematic

uncertainties are calculated according to

hXi≡
�X

i

1

ðδXiÞ2
�

−1X
i

Xi

ðδXiÞ2
;

δhXistat ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X

i

1

δX2
i

�
−1

s
;

δhXisyst ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðX − hXiÞi2

q
; ðD1Þ

where δXi denotes statistical errors of individual extrac-
tions and Xi the mean value of the individual extraction.
The final error is the sum of the statistical and systematic
uncertainty. The results are given in the right panel
of Fig. 7.
We remark that in both methods systematic and stat-

istical uncertainties are included. Method 1 is the usual
average while method 2 provides weighted means. Note
that in some cases, if the errors of an individual dataset
are extraordinary small, in method 2 it will dominate the
estimation, for instance the Hermite and Bernstein results.
However, previous lattice results usually suffer from
various uncontrolled systematics, e.g. the Hermite and
Bernstein results are obtained in the quenched approxima-
tion and thus sizable systematics from dynamical quarks
can be foreseen. In such cases, method 2 is too aggressive
in estimating the uncertainty. For this reason we adopt
method 1 in this work, which gives a broader error band,
in the region 0.8 GeV−1 ≲ b≲ 2.6 GeV−1 to be on the
safe side.

FIG. 6. Comparison of M determined using phenomenological
results and lattice results of the CS kernel.

FIG. 7. Combination of previous lattice extractions of the CS kernel [24,26,27,43,44] using method 1 (left) and method 2 (right). See
main text for details of the two methods.

HAI-TAO SHU et al. PHYS. REV. D 108, 074519 (2023)

074519-8



APPENDIX E: A POSSIBLE ESTIMATE FOR
THE LATTICE ARTIFACTS

Even though it is hard to quantify the lattice spacing
effect without adding more simulations, we propose to
estimate it in the following, indirect way. It is known that
there is a range for b where perturbation theory and the
factorization formula are applicable: 1

Pþ ≪ b ≪ 1
ΛQCD

. For

our lattice calculation this is 0.67GeV−1≪b≪2.7GeV−1

for the pion and 0.57 GeV−1 ≪ b ≪ 2.7 GeV−1 for the
proton. In the manuscript we choose b ¼ 3a ¼ 1.3 GeV−1,
at which point we normalize our lattice extraction to the
phenomenological value from SV19. In principle one can

also choose b ¼ 2
ffiffiffi
2

p
a ¼ 1.2 GeV−1 (which is available in

this study) where we think we can still trust the phenom-
enological extraction. There will be an overall shift for the
CS kernel determined from these two options. Imagine that
now a simulation at a finer lattice spacing is added. We
hope that the CS kernel results for the two alternative
normalization points differ less for the finer lattice than
for the coarser one. Thus the latter can be used as a rough
estimate for the lattice spacing effect. Naturally, we also
hope that the continuum extrapolated result differs less
from the SV19 curve than the present one, based on just one
lattice spacing. The resultant systematic uncertainties are
shown as outer error bars in the left panel of Fig. 3.
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