
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

A Kotlin Multiplatform
implementation of Aggregate

Computing based on XC

Tesi di laurea in:
Laboratorio di Sistemi Software

Relatore
Prof. Pianini Danilo

Correlatore
Dott. Farabegoli Nicolas

Candidato
Cortecchia Angela

Quarta Sessione di Laurea

Anno Accademico 2022-2023



ii



Abstract

The integration of technology in everyday activities is rising, with objects being
increasingly equipped with computational capabilities and interconnected to form
the Internet of Things, leading to the need for innovative cyber-physical services
capable of creating a fast bridge between the real and virtual world.

The central idea of this thesis focuses on leveraging Kotlin Multiplatform to
enhance aggregate computing based on XC principles, addressing challenges in de-
veloping versatile solutions across different environments, with the need of efficient
and scalable applications operating from cloud to edge to mesh networks.

This thesis combines theoretical analysis, software development, and perfor-
mance evaluation to assess the effectiveness of the objective, demonstrating ver-
satility and efficiency. There is a notable improvement in performance, scalabil-
ity, and adaptability across different network environments. With the proposed
approach, the developed solution appears to be more efficient and effective in ad-
dressing complex challenges within systems rather than the current state of the
art. The results demonstrate the transformative potential of this technology, sug-
gesting that it can lead to more efficient and versatile service development.

In summary, this thesis shows the feasibility of using Kotlin Multiplatform to
implement aggregate computing based on XC, demonstrating that the proposed
approach is more efficient and scalable than the state of the art. Improved perfor-
mance and scalability are emphasised through this approach, which opens doors
for more efficient and adaptable solutions. This study sets the stage for future
developments that could improve service efficiency and effectiveness.

iii



iv



To my family, a constant source of support,
who has always allowed me to choose
my own path with freedom and trust.

v



vi



Contents

Abstract iii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Computational Fields . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Aggregate Computing . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 XC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.4 Collektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Heterogeneity limitations . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 State of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 ScaFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Protelis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 FCPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Contributions 23
2.1 Collektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 XC in Collektive . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Plugin Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Collektive entrypoint . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Yielding Support . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Aggregate Context . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Aggregate Operators . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Alchemist Incarnation . . . . . . . . . . . . . . . . . . . . . . . . . 43

CONTENTS vii



CONTENTS

3 Validation 49
3.1 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Continuous Integration and Deployment . . . . . . . . . . . 50
3.2 Alchemist Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Conclusions 65
4.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

67

Bibliography 67

viii CONTENTS



List of Figures

1.1 The aggregrete programming stack [BPV15]. . . . . . . . . . . . . . 9
1.2 This image shows the devices’ behaviour in XC where each δn is a

device, ϵn is a computation round and the arrows represent the mes-
sages sent between devices. The device δ2 executes two computation
rounds ϵ1 and ϵ2. After the computation, δ2 sends a message to δ1
and δ3. It can occur that a device δ1 executes multiple rounds before
δ2 executes its own, in that case δ2 will only see the last-received
message from the device δ1; newly received messages will overwrite
the older ones. Grey arrows are messages lost never received. . . . 13

1.3 This figure shows the continuum of computing from the edge to the
cloud, highlighting the edge-cloud verticality and the heterogeneity
of devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Our world is increasingly populated with a wide range of computing
devices, embedded in our environment and with many opportuni-
ties for local and even location-independent interactions on fixed
network infrastructures [BPV15]. . . . . . . . . . . . . . . . . . . . 17

1.5 High-level architecture of the ScaFi toolkit. . . . . . . . . . . . . . . 19
1.6 The abstract architecture of Protelis. . . . . . . . . . . . . . . . . . 21
1.7 The Software architecture of FCPP represented as three main layers. 22

2.1 Packages diagram of the Collektive project. . . . . . . . . . . . . . . 24
2.2 Partial class diagram of the Domain Specific Language (DSL), high-

lighting the entrypoint. . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Partial class diagram of the DSL structure, highlighting the Aggre-

gate section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 This image shows how anisotropic communication works, exchang-

ing different information based on the neighbour. . . . . . . . . . . 27
2.5 This image shows how isotropic communication works, exchanging

the same information with all the neighbours. . . . . . . . . . . . . 28
2.6 Class diagram of the network and messages stucture. . . . . . . . . 31
2.7 Class diagram of the Alchemist Incarnation module. . . . . . . . . . 45

LIST OF FIGURES ix



LIST OF FIGURES

3.1 Neighbour counter simulation after some time ad after moving some
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Gradient simulation after some time ad after moving some nodes
including the root. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 The resultant simulation of the channel with obstacles. . . . . . . . 54
3.4 Graph of the results for the field evolution benchmark, showing that

on average Collektive is 4.51 times faster than Protelis and 20.30
times faster than ScaFi. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Graph of the results for the neighbour-counter benchmark, showing
that on average Collektive is 1.04 times faster than Protelis and
3.25 times faster than ScaFi. . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Graph of the results for the branching benchmark, showing that on
average Collektive is 3.08 times faster than Protelis and 12.45 times
faster than ScaFi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Graph of the results for the gradient benchmark, showing that on
average Collektive is 1.51 times faster than Protelis and 2.80 times
faster than ScaFi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Graph of the results for the channel with obstacles benchmark,
showing that on average Collektive is 6.91 times faster than Protelis
and 3.73 times faster than ScaFi. . . . . . . . . . . . . . . . . . . . 63

3.9 The speedup of the different incarnations with different network
densities on the different tests. The speedup is calculated as the
ratio between the average execution time of the other incarnations
and the average execution time of Collektive. . . . . . . . . . . . . . 64

x LIST OF FIGURES



List of Listings

1.1 The rep construct establishes an initial distance estimate d set to in-
finity, which then diminishes based on two conditions. If the source
variable is true, indicating that the device is presently a source,
its distance to itself is considered zero. Alternatively, if the device is
not a source, the distance estimate is determined using the triangle
inequality. This involves computing the minimum value obtained by
adding the distance to each neighbour (using the nbrRange built-in
function) to the neighbour field value (accessed via the nbr{d} no-
tation). The mux function ensures that all arguments are evaluated
prior to selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The share construct is used to calculate the distance from a source
node in a network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The signature of the exchange function. . . . . . . . . . . . . . . . 29
2.2 The signature of the share function. . . . . . . . . . . . . . . . . . 29
2.3 The signature of the neighboringViaExchange function. . . . . . . 30
2.4 The signature of the repeat function. . . . . . . . . . . . . . . . . . 30
2.5 Outbound message data class. . . . . . . . . . . . . . . . . . . . . . 32
2.6 Single outbound message data class. . . . . . . . . . . . . . . . . . . 32
2.7 Inbound message data class. . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Example of two unaligned functions. . . . . . . . . . . . . . . . . . 34
2.9 The signature of the Collektive class. . . . . . . . . . . . . . . . . 38
2.10 The signature of the aggregate program. . . . . . . . . . . . . . . 38
2.11 The signature of the aggregate result. . . . . . . . . . . . . . . . 39
2.12 The signature of the yielding context class. . . . . . . . . . . . . 39
2.13 The implementation of the exchange function. . . . . . . . . . . . . 40
2.14 The implementation of the exchanging function. . . . . . . . . . . 41
2.15 The implementation of the repeating function. . . . . . . . . . . . 42
2.16 The implementation of the sharing function. . . . . . . . . . . . . 42
2.17 The implementation of the neighboringViaExchange function. . . 43
2.18 The implementation of the read function of the Network. . . . . . . 46
2.19 The implementation of the distance function. . . . . . . . . . . . . 47

LIST OF LISTINGS xi



LIST OF LISTINGS

3.1 Neighbour counter code example . . . . . . . . . . . . . . . . . . . . 52
3.2 Gradient code example . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Channel with Obstacles code example . . . . . . . . . . . . . . . . . 55
3.4 Branching code example . . . . . . . . . . . . . . . . . . . . . . . . 60

xii LIST OF LISTINGS



Chapter 1

Introduction

1.1 Context

Computing devices are becoming cheaper and ubiquitous, with objects being in-

creasingly equipped with computational capabilities and interconnected to form

the Internet of Thing (IoT), increasing the complexity of distributed systems. It is

now common for individuals to own multiple computing devices of different types,

resulting in technology becoming more integrated into daily activities. Inside those

kinds of systems, different software components, and not necessarily one for each

device, interact with each others building innovative services of cyber-physical

nature, capable of creating a fast bridge between the real and the digital world.

Managing a single device in a distributed system can be challenging for several

reasons, including: i) scalability, as the number of devices increases, managing

each device individually becomes increasingly complex; ii) resource constraints,

individual devices may have limited computational power, memory, and energy

resources, making it challenging to perform complex tasks efficiently; iii) hetero-

geneity, devices in IoT systems often vary in terms of hardware capabilities, com-

munication protocols, and software configurations, resulting in challenging man-

agement; iv) context awareness, single devices may have limited awareness of

the broader context or environment in which they operate, leading to suboptimal

decision-making and interactions.

Transitioning from a device-centric to an aggregate-centric approach can lead

CHAPTER 1. INTRODUCTION 1



1.1. CONTEXT

to several advantages: i) distributed intelligence, leveraging the collective capa-

bilities of multiple devices enables distributed intelligence, where the system’s in-

telligence emerges from interactions and collaboration among devices; ii) resource

pooling, across multiple devices results in more efficient use of resources, such as

computational power, memory, and energy; iii) adaptability, collective-centric

approaches enable systems to adapt dynamically to changes in the environment

or system requirements; devices can collaborate to self-organise, self-adapt, and

self-optimise based on contextual information; iv) robustness, distributing com-

putation and decision-making across multiple devices enhances system robustness

and resilience to individual device failures or disruptions.

From an engineering perspective, the construction of IoT applications differs

substantially from that of traditional software, especially when a particular service,

to be realised, requires the coordination of devices of different nature. Hence, the

need to engineer and coordinate the operations in such systems, one way is to

program and operate in terms of aggregates of devices, or Collective Adaptive

Systems (CAS), rather than manage each single device. In fact, the coordination

of macroscopic behaviour in collective systems through a single program is a form

of macroprogramming. However, this approach presents some primary challenges

such as ensuring resilience, efficiency and privacy.

Collective Adaptive Systems CAS are systems composed of multiple au-

tonomous entities, such as devices, sensors, and actuators, that interact to achieve

a common goal [Fer15]. These systems are known for their ability to adjust to

changes in their environment, system requirements, or operational conditions.

CAS are frequently used in IoT and Cyber-Physical Systems (CPS) applica-

tions, where devices collaborate to achieve a common goal, such as monitoring and

controlling a physical environment or providing a service to users. The coordina-

tion of devices in CAS can be challenging due to device heterogeneity, resource

constraints, and the dynamic environment.

Macroprogramming is used to promote collective behaviours, leveraging high-

level abstractions and constructs to facilitate global coordination, decentralised

control, and adaptability in complex systems.

2 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

Macroprogramming The term macroprogramming [Cas23] refers to the con-

cept of expressing the macroscopic behaviour of a system through a single program,

usually leveraging macro-level abstractions. This paradigm is driven by the need

to capture system-level behaviour while abstracting the behaviour and interaction

of the individual components involved. Macroprogramming approaches have been

suggested to simplify the development of systems involving numerous intercon-

nected sensors, actuators, and smart devices; they can be applied in contexts like

IoT and CPS.

Macroprogramming abstractions can promote collective behaviour properties,

such as self-organising or self-configuring in the context of CAS. By declaring

tasks within a specific spatio-temporal region, systems can self-organise and effec-

tively perform the task at hand, allowing for dynamic adaptation to the current

deployment and spatial positions of the components involved.

Self-Organisation Coordination models are based on the notion that interac-

tions among multiple independent and autonomous software systems can be de-

signed as a space orthogonal to pure computation. This idea can be reified into a

concept of shared data space, enabling so-called generative communication.

Over the course of time, different approaches have been created, such as Linda

[Gel85] and Mars [CLZ00], suggesting innovative techniques for programming

systems with devices of different nature focusing on the coordination of centralised

local components, but not on the distribution of the systems. The main problems

that can be encountered in distributed systems are dealing with (i) openness,

as unexpected environment changes, (ii) large scale of agents and coordination

abstractions to be managed, (iii) intrinsic adaptiveness, such as the ability to

intercept relevant events and react to them, guaranteeing the resilience of the

system.

The challenges necessitate a self-organising coordination approach, wherein

coordination abstractions solely manage logical interactions. This ensures the

emergence of global and robust patterns of correct coordination behaviour.

CHAPTER 1. INTRODUCTION 3



1.1. CONTEXT

1.1.1 Computational Fields

Field-Based Coordination To facilitate self-organisation patterns of agents in

complex environments, the concept of coordination field has been introduced. This

abstraction serves as a navigational tool for agents over the actual environment.

In this context, the tuple-based middleware TOTA (Tuples On The Air) [MZ09]

has been suggested to support field-based coordination for pervasive-computing

applications. Initially, each field of the tuple in the system was assigned a name,

along with a formula that supports the if-then-else construct and includes arith-

metic and boolean operators to specify the field’s behaviour over time. Secondly,

it was introduced an operator in the tuple space responsible for applying formulas

using contextual information.

Somewhat independently of the challenge of identifying appropriate coordi-

nation models for distributed and situated systems, several studies have tackled

analogous issues in the broader endeavour of constructing distributed intelligent

systems. This involves promoting higher abstractions of spatial collective adaptive

systems.

Field Calculus Among the studies such as for managing space-time computing

models for the manipulation of distributed data structures, the notion of compu-

tational fields were proposed [VBD+19]. Consequently, the Field Calculus (FC)

has been proposed as a foundational model for the coordination of computational

devices spread in physical environments, also known as aggregate computing.

FC was introduced as minimal core calculus with the aim of capturing the

fundaments that make use of computational fields: functions over and with fields,

their evolution over time and the construction of field of values from neighbours.

The main concept of FC is to specify the aggregate system behaviour of a

network of devices, where devices that can directly communicate with each other

are indicated through a dynamic network relation. An example of its application

is within a sensor network with a range of a broadcast communication.

The behaviour is applied through a functional composition of operators that

manipulate the computational fields, called specification, that can be interpreted

locally or globally. A local specification can describe a computation on an indi-

4 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

vidual device executed in asynchronous “computation rounds”, including sending

or receiving messages from neighbours, getting information from sensors and com-

puting the local value of the field. Each round is divided in three phases: i) context

building, where the device collects information from the environment and from the

messages received from neighbours, and aggregates them to build a local context;

ii) program execution, each device executes a local program on the context; iii)

export sharing, the device sends messages to its neighbours, containing the results

of the computation.

In the global view, a field calculus expression specifies a mapping associating

each computation round of each device to the value that it assumes at that space-

time event.

This dual nature inherently facilitates the alignment of individual device be-

haviour with the overarching global behaviour of the entire network of devices.

Syntax of field calculus The field calculus is based on a minimal set of oper-

ators:

• Stateful field evolution: the expression rep(e1){(x) → e2} describes a field

evolving in time. e1 represents the initial field value, the function (x) → e2

declares how the field changes at each execution;

• Neighbour interaction: the expression nbr{e} builds a neighbouring field, a

view of the field values in the surroundings of each device where neighbours

are mapped to their evaluations of e;

• Domain partitioning : the expression if(e0) {e1} {e2} splits the computa-

tional field into two non-communicating zones hosting isolated computations:

e1 where the condition e0 is true and e2 where the condition e0 is false.

CHAPTER 1. INTRODUCTION 5



1.1. CONTEXT

Listing 1.1: The rep construct establishes an initial distance estimate d set to

infinity, which then diminishes based on two conditions. If the source variable

is true, indicating that the device is presently a source, its distance to itself is

considered zero. Alternatively, if the device is not a source, the distance estimate

is determined using the triangle inequality. This involves computing the minimum

value obtained by adding the distance to each neighbour (using the nbrRange

built-in function) to the neighbour field value (accessed via the nbr{d} notation).

The mux function ensures that all arguments are evaluated prior to selection.�
1 def mux(b, x, y) { if (b) {x} {y} }

2 def distanceTo(source) {

3 rep(infinity){ (d) =>

4 mux(source, 0, minHood(nbr{d} + nbrRange())

5 }

6 }� �
In Listing 1.1 is shown a simple example of a field calculus program; it calculates

the distance from a source node in a network. To implement more elaborated

computations, it becomes necessary to combine the rep and nbr constructs. Their

combination allows recreating a behaviour that evolves both in time and space:

with nbr information is exchanged with neighbours, while rep takes care of the

evolution of its own field. However, the joint use turned out that contained a

hidden delay, identified and explained in [ABDV18].

To overcome the problem in the interaction between the two constructs, it has

been proposed a new one: share(e1){(x) → e2}. This construct differs from rep

and nbr combination in the way that the variable x is interpreted ad each round,

that is identified as a neighbouring field rather than a value. In this case, e2 is

responsible for processing the neighbouring field into a local value shared with

the neighbours at the end of the evaluation. Therefore, the share improves the

communication speed.

The example proposed in Listing 1.1 can be rewritten using the share construct

as in Listing 1.2.

6 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

Listing 1.2: The share construct is used to calculate the distance from a source

node in a network.�
1 def distanceTo(source) {

2 share(infinity){ (d) =>

3 mux(source, 0, minHood(d + nbrRange())

4 }

5 }� �
Alignment The semantics of this language is defined as compositional and mes-

sages are exchanged thanks to nbr, with each message from a neighbour being

automatically matched to a specific nbr construct, determined by a process called

alignment. Each construct generates an “export”, a data value intended to be sent

to the neighbours, labelled with the coordinates of the node in the evaluation tree

up to that construct. These exports are gathered into a message to broadcast to

the neighbours that can be modelled as a value tree: an ordered tree of values

obtained during the evaluation of each sub-expression of the program.

The alignment mechanism ensures that each construct of a device is matched

with the corresponding construct of the neighbours, following an identical path in

the evaluation tree.

1.1.2 Aggregate Computing

Aggregate programming elaborates a layered architecture that aims to simplify

the design, creation and maintenance of distributed systems [CFP+19].

Through this methodology, the fundamental unit of computation shifts from

an individual device to a collaborative ensemble of devices. It elaborates a layered

architecture that aims to simplify the design, creation and maintenance of complex

distributed systems.

Moreover, aggregate programming provides mechanisms for robust and adap-

tive coordination through simple programming APIs that implicitly guarantee

safety and resilience. This framework is useful in large-scale scenarios, where

there is insufficient fixed network infrastructure, as seen in situations like crowd

management during large public events.

In various environments, interactions between wearable devices such as smart-

CHAPTER 1. INTRODUCTION 7



1.1. CONTEXT

phones can support different kinds of services, including crowd detection, crowd-

aware navigation or dispersal advice.

Aggregate Computing (AC) is a paradigm and engineering approach for the

compositional development of self-adaptive IoT services from a global perspective

[Cas23].

It has been developed with the core idea of functionality composing collective

behaviours to achieve effective and resilient complex behaviours in dynamic net-

works. It views a given environment as a whole programmable entity whose parts

collaboratively produce and consume services across space and time. AC is based

on the principles of FC that is a functional programming model used to specify

and compose collective behaviours with formally equivalent local and aggregate

semantics.

The concept of computational fields can be viewed as a distributed data struc-

ture, with the aim of conceptually mapping each device to a value produced in a

program, considering both space and time. Therefore, its structure supports the

specification, analysis, simulation and runtime execution of collective or aggregate

services, independently of the specific IoT architecture.

This paradigm has three key traits that characterise it: (i) global stance with

global-to-local mapping, where the target of system design is the entire distributed

IoT ecosystem, (ii) behaviour compositionality, whereby a rich collective service can

be described in terms of the functional composition of simpler collective services,

and (iii) abstraction, by which aggregate services enable adaptivity at different

levels by abstracting from low-level issues and details. These attributes are crucial

both in the design phase, where intricate solutions can frequently be articulated

concisely and declaratively, and in the operational phase, where considerable flex-

ibility is granted to the developers team and the platform regarding execution

specifics and deployment strategies. The overall stack of the aggregate computing

is shown in Figure 1.1.

Software platforms AC is designed to address many application scenarios,

typically characterised by inherent distribution, heterogeneity, mobility and a lack

of stable infrastructure. There are various strategies by which an AC system can

run, contingent upon the selected and implemented communication methodologies.

8 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

Figure 1.1: The aggregrete programming stack [BPV15].

CHAPTER 1. INTRODUCTION 9



1.1. CONTEXT

Programs can be executed within a fully distributed peer-to-peer environment,

where end-devices communicate directly with peer neighbours, and each indepen-

dently runs its fragment of aggregate logic.

On the opposite side, there are entirely centralised solutions, where end-devices

function solely as manager for sensors and actuators, forwarding perceptions up-

stream to one or more servers. These servers perform computations on behalf of

the devices and subsequently transmit actuation data downstream. Thanks to the

flexibility of its applications, AC has the potential to facilitate the creation of a

more systematic spectrum for transitioning between cloud and distributed systems.

This approach also embraces the emerging domains of Edge Computing [CV19] and

Fog Computing [AWW18].

Aggregate computing in adaptive IoT Services Thanks to its features, ag-

gregate computing is well suited for the development of Opportunistic IoT Services,

supporting the properties:

• Dynamicity : the direct support for opportunistic service activation and evo-

lution is achieved through code mobility and constructs that define dynamic

domains of computations dependent on space and time;

• Context-awareness : aggregate programs utilise sensors, communication driven

by neighborhood interactions, and iterative execution to consistently evolve

the set of local contexts. This evolution forms the basis for the unfolding of

computation and coordination logic;

• Co-location: as a natural method to define the concept of neighbourhood,

relies on a physical space basis. AC inherently incorporates locality (both in

space/time and purpose) to organise interactions and activities;

• Transience: AC provides constructs that directly supports the execution of

distributed services based on time and context awareness.

Computational model There are some concepts and relationships included in

the aggregate computing context:

10 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

• Aggregate program: an executable representation of specific aggregate logic

that defines a collective behaviour;

• Aggregate system: a set of interconnected nodes or devices that support the

collective execution of aggregate programs;

• Aggregate application: a specific aggregate logic operating on a designated

aggregate system, aimed at solving particular problems in a specific context;

• Node: also referred to as device, it represents an individual AC-enabled

entity, potentially equipped with sensors and actuators;

• Neighbourhood : the logical or physical set of nodes that can be directly

contacted by a given node;

• Global or local sensor : a source for global or local information;

• Global or local actuator : a global or local actionable device for environment-

directed actions;

• Global or local computational environment : anything that is detectable and

subject to action through the use of global (or local) sensors and actuators

This also includes the shared functionalities offered by the platform.

The networked devices inside an aggregate system compute and communicate

at asynchronous rounds of execution. Each round, each device executes the global

aggregate program according to the local semantics; then it updates its internal

state and lastly generates the data for the external communication.

The round is performed by taking into account the computational context cre-

ated by the previous state, sensor data and messages from neighbouring devices.

After the execution of the round, result data are made available to neighbours

and eventually instructed actuations are locally executed. The system can contin-

uously react to changes by repeatedly executing rounds, allowing self-adaptation

to contextual changes.

CHAPTER 1. INTRODUCTION 11



1.1. CONTEXT

Models alignment Due to the high-level and platform-independent metamod-

els of IoT and AC systems, each with different goals or abstraction levels, it is

necessary to align the two metamodels. This ensures that their unique focus is

taken into account.

There are some main differences between the two metamodels:

• the concept of device is different, for AC is logical and is not the same as a

device component of a Smart Object;

• although ensembles of Smart Objects are conceptualised as firs-class concept

in AC, they are not explicitly represented in the IoT system metamodel;

• the concept of neighbourhood in AC regulates local, contextual communica-

tion among its devices. However, this concept cannot be explicitly mapped

to IoT system concepts because device-to-device relationships are abstracted

away from the metamodel.

1.1.3 XC

XC is an experimental programming language design to develop homogeneous

distributed systems. Those kinds of systems consist of similar devices that com-

municate to neighbours and execute the same program. The aim of this experi-

mental language is to push the abstraction boundaries further than actual existing

approaches.

Many issues can arise in distributed systems, like concurrency, remote commu-

nication, asynchronous execution, message loss, and device failures. These kinds

of problems must be taken into account when designing a programming language

for such systems. Some of the possible applications of this approach may be crowd

management by handled devices [BPV15], gossip-based data aggregation [JMB05],

task allocation in robot swarms [BPP+14, VDPBMS05], and coordination of en-

terprise servers [CBP15].

The homogeneity in large-scale systems also arises when each device executes

a program from a predefined set, reflecting a homogeneous configuration featuring

a single program with an initial branch.

12 CHAPTER 1. INTRODUCTION



1.1. CONTEXT

δ4

ε2
δ3

δ2

δ1

ε1

Figure 1.2: This image shows the devices’ behaviour in XC where each δn is a
device, ϵn is a computation round and the arrows represent the messages sent
between devices. The device δ2 executes two computation rounds ϵ1 and ϵ2. After
the computation, δ2 sends a message to δ1 and δ3. It can occur that a device δ1
executes multiple rounds before δ2 executes its own, in that case δ2 will only see the
last-received message from the device δ1; newly received messages will overwrite
the older ones. Grey arrows are messages lost never received.

System model Devices that can send or receive messages are called neighbours,

and they can change dynamically to model network delays, failures or spatial

movements.

Based on existing homogeneous systems, the device behaviour has been ab-

stracted through a notion of execution round, in which a device independently

executes an XC program and sends the resulting messages to its neighbours. Re-

ferring to macroprogramming, each device’s behaviour in the network is developed

as a single program, with no assumption of when an execution round will occur,

meaning that they are entirely asynchronous.

Messages are handled queueing up in a buffer; when a device executes its XC

program, it processes the received messages producing others to send to neigh-

bours, that in turn will process their messages.

It can occur that a device executes multiple rounds before a neighbour executes

its own, in that case the neighbour will only see the last received message from the

first device; newly received messages will overwrite the older ones. Messages can

persist across rounds; they are not removed from the buffer after they have been

read unless they expire. The devices for which a message is available in a certain

CHAPTER 1. INTRODUCTION 13



1.1. CONTEXT

round are considered the neighbours for that round.

Data types XC features two kinds of values: (i) local values (l), that include

traditional types, and (ii) neighbouring values (nvalues), a map from the device

identifier to their local values, used to describe the set of values received from and

sent to neighbours. In highly decoupled networks, it can occur that not all devices

will produce a value, for this reason it will be used a default value.

Different types of operations can be applied to nvalues, where the function

passed is repeatedly applied to neighbour’s values in a field w, excluding the self-

value. A local value can be also converted to a nvalue using the default value for

every device.

Communication in XC XC is based on a key communication primitive:

exchange(ei, (n) → return er send es) which is evaluated as follows: (i) the

device computes the local value from the initial value ei; (ii) the variable n gets

substituted with the computed nvalues w of the received messages, eventually using

the local value as default, the exchange returns the computed value vr from er;

(iii) es evaluates to a nvalue ws consisting of local values to be sent to neighbours,

that will take their corresponding value from ws and use it for the execution of

their next round.

A common pattern that can be used is to access neighbour’s values through

the use of the exchange function, as follows.

nbr(ei, es) = exchange(ei, (n) → return n send es), which means that the

value of expression es is sent to neighbours and returns the received values gath-

ered as n with its default, thus providing a view on neighbours’ values es. Of-

ten the expressions er and es coincide, in this case, the exchange function is

exchange(ei, (n) → retsend e).

The crucial aspect of the XC expressivity is that exchange can send a different

value to each neighbour, allowing custom interaction through them.

Conditionals XC supports conditional expressions, like if (cond) {e1} else {e2}.
An exchange aligns only across the devices that take the same branch; thus, it eval-

uates only aligned sub-expressions. This means that a network can be split by a

14 CHAPTER 1. INTRODUCTION



1.2. MOTIVATIONS

conditional expression into two non-communicating subnetworks, each evaluating

a different branch without cross-communication.

Fault tolerance XC programs are resilient to failures: in case a node gets dis-

connected or messages get lost, the failed node won’t show up among the neigh-

bours of a given node in the next alignment. The logic of exchange is set to let

neighbours’ messages collectively operate, in order to make no assumptions on

their number or identity. It is crucial to highlight that XC does not inherently

offer assurances regarding fault tolerance. As a Turing-complete language, the

capability to program non-resilient behaviour is inevitably present.

1.1.4 Collektive

Collektive is a minimal DSL for aggregate programming, designed to simplify the

development of distributed systems by providing high-level abstractions for col-

lective coordination and communication. It provides the means to specify the

collective behaviour of a network of devices, where devices can directly commu-

nicate with each other and execute the same program. Collektive is based on

the principles of AC, and it is designed to be used in the context of IoT applica-

tions. The language is designed to be easy to use, and to provide a high-level of

expressiveness, while at the same time being efficient and scalable.

1.2 Motivations

In this section, the motivations for extending the existing DSL Collektive by apply-

ing the concepts of XC to aggregate programming constructs will be illustrated,

the objectives that are intended to be achieved and the benefits that are expected

to be obtained.

From an engineering perspective, the construction of IoT applications differs

substantially from that of traditional software, especially when a particular service,

to be realised, requires the coordination of devices of different nature.

CHAPTER 1. INTRODUCTION 15



1.2. MOTIVATIONS

Challenges and innovations Over the course of time, different approaches

have been proposed to program these systems, such as TOTA, SAPERE [ZCF+11],

Aggregate Computing [BV16], Linda [Gel85], MARS [CLZ00] and others.

The most successful solution at the moment involves the use of Cloud Comput-

ing (Figure 1.3), which provides virtualized resources on a large scale, but presents

limitations in terms of latency (due to the physical distance between machines) and

scalability (due to centralisation) despite the significant improvement compared to

traditional approaches. Cloud providers offer elastic scaling capabilities that allow

organizations to dynamically adjust resources based on demand, minimizing the

impact of scalability limitations and optimizing cost-efficiency.

Despite the scalability advantages of cloud computing, there are still scenarios

where it may not be sufficient to meet the requirements of certain applications and

workloads. For this reason, Edge Computing and Fog Computing have recently

emerged, aiming to bring resources closer to the outer edge of the network, where

interoperability problems between devices and complexity in managing distributed

resources increase.

The design of applications capable of operating indistinctly on the cloud, on

the edge, or even on a mesh network (in fact, on a computational continuum that

goes from the edge to the cloud) can benefit from unconventional approaches, such

as Aggregate Computing.

1.2.1 Heterogeneity limitations

One of the limitations of current collective programming approaches is the man-

agement of heterogeneity. In fact, the system assumes that there is a certain

uniformity of capabilities along the continuum, or that it is possible to abstract it

in some way (see, for example, the “pulverization” approach [CPP+20]).

However, when the system includes devices whose nature is profoundly differ-

ent (imagine, for example, a system where both well-equipped servers and tiny

wearable or implanted devices with very moderate computing capabilities partici-

pate, as shown in Figure 1.4), finer mechanisms are needed. Such mechanisms can

be the combination of adaptive strategies, resource management techniques, and

the use of programming languages that can abstract the heterogeneity of devices.

16 CHAPTER 1. INTRODUCTION



1.2. MOTIVATIONS

Figure 1.3: This figure shows the continuum of computing from the edge to the
cloud, highlighting the edge-cloud verticality and the heterogeneity of devices.

A somewhat analogous problem appears in functional programming when mod-

elling effects, and recent proposals aim to capture them in the form of capabilities.

Figure 1.4: Our world is increasingly populated with a wide range of computing
devices, embedded in our environment and with many opportunities for local and
even location-independent interactions on fixed network infrastructures [BPV15].

CHAPTER 1. INTRODUCTION 17



1.2. MOTIVATIONS

1.2.2 Goal

The goal of this thesis is to extend the existing DSL Collektive by applying the

concepts of XC to aggregate programming constructs, thus seeking to improve its

performance in order to make this DSL competitive against existing approaches.

Furthermore, the aim is to create an integration of this DSL for the Alchemist

simulator [Pia21], which serves as a meta-simulator primarily tailored for simulat-

ing intricate distributed systems across a diverse range of scenarios. These scenar-

ios can include swarm robotics [ACV24], large-scale sensor networks [ACPV22],

crowd simulation [BPV15], path planning, and even the morphogenesis of multi-

cellular systems.

With these goals in mind, it is intended to create a programming language that

can be executed on any device, regardless of its nature, and that can communicate

with other devices in the network, thus simplifying the development of complex

systems. To do this, it is necessary to rely on technologies and languages that can

run on any device. Kotlin Multiplatform (KMP) will be used, which allows devel-

opers to write code that can be compiled for multiple targets, including JVM (ideal

for server environments), Javascript (browser), Android, iOS (including watchOS

and tvOS), and native versions (for Windows, MacOS, and Linux, both for x86

and ARM CPUs).

Finally, a performance comparison will be made between the extended language

and existing solutions through benchmarking and simulations.

Impact The creation of a new programming language for aggregate computing is

expected to have a substantial impact on the development of distributed systems,

especially in the IoT and CPS domains. The new language will allow developers to

write programs that can be executed on any device, regardless of its nature, and

will be able to communicate with other devices in the network, thus simplifying

the development of complex systems.

18 CHAPTER 1. INTRODUCTION



1.3. STATE OF ART

Figure 1.5: High-level architecture of the ScaFi toolkit.

1.3 State of Art

In this section, it will be presented the state of the art in the field of aggregate

computing, focusing on the main existing frameworks and languages and their

limitations.

Still, in terms of portability to heterogeneous systems, there are currently sev-

eral software programs that implement the semantics of aggregate programming

derived from field calculus, but they are not interoperable with each other.

1.3.1 ScaFi

ScaFi (Scala Field) is a Scala-based framework for aggregate programming

[CVAP22]. It provides a DSL, libraries, a simulation environment with a GUI,

integrated with the Alchemist simulator, and an actor-based runtime for the de-

velopment of aggregate computing-based systems. ScaFi ’s core is based on a vari-

ant of the field calculus called FScaFi [CVAD20], which peculiarity is to handle

standard values to provide a simplified setting for DSL embedding.

This is achieved by introducing a notion of “computation against neighbours”,

meaning that is a computation whose output depends on the most recent values

received from neighbours.

The architecture of ScaFi consists of various modules, as seen in Figure 1.5.

CHAPTER 1. INTRODUCTION 19



1.3. STATE OF ART

The DSL and standard library of reusable functions are implemented in the scafi-

core module; meanwhile, the modules scafi-simulator and scafi-simulator-

gui provide a simulation environment of aggregate systems with a graphical user

interface.

The main applications of ScaFi are in the development of swarm systems

[CAPV23], crowd management, wireless sensor network (WSN) [ACV22] and

smart city applications.

ScaFi is capable of running aggregate programs on the Java Virtual Machine

(JVM) and also on web browser thanks to the ScaFi Web tool [ACM+21], which

allows the rapid prototyping of aggregate programs. On the other hand, it does

not provide an aggregate standard library in the public version, neither supports

to different advanced mechanisms. Furthermore, it is based on Scala 2, which

means that it needs a review to be updated to Scala 3.

Since ScaFi only supports JVM and web-based applications, it is not well-

suited for the development of complex distributed systems. devices and commu-

nication technologies, such as thin devices that do not support JVM, which limits

the heterogeneity of devices that can be used in the system.

1.3.2 Protelis

Protelis [PVB15] is a functional programming language that implements a higher-

order version of the field calculus, exposed through a C-like syntax, enabling the

construction of widely reusable components of aggregate systems. It also provides

various domain-specific APIs that are interoperable with Java, the Protelis-Lang

[FPBV17]. Protelis has been developed since no foundational API for resilient,

situated and distributed systems can be found in the Java ecosystem. It offers

an implementation for the interoperability with the Alchemist simulator, where it

can be seen its practical use in the development of aggregate systems.

As seen in the Protelis architecture (Figure 1.6), an interpreter executes a

pre-parsed program at regular intervals, that communicates with other devices

and draws contextual information from the environment. This is instantiated by

specifying when the executions occur, how the devices communicate and how the

environment is represented.

20 CHAPTER 1. INTRODUCTION



1.3. STATE OF ART

Protelis)Parser)

Protelis)Device)

Environment)
Variables)

Protelis)
Interpreter)

Protelis)Program)

Other&
Devices&

Figure 1.6: The abstract architecture of Protelis.

A key reason for this choice is that Java is highly portable across systems and

devices. Another important reason is that Java’s reflection mechanisms make it

easy to import a large number of useful libraries and APIs for use in Protelis.

It is based on Xtext, a framework for the development of domain-specific lan-

guages, which provides a set of tools and libraries for the development. For this

reason necessary requires a JVM to run, which limits the heterogeneity of devices

that can be used in the system.

1.3.3 FCPP

FCPP [Aud20] is an implementation of the Field Calculus as a C++ library, with

tools for simulations of distributed systems. This library is built as a component-

based system Figure 1.7, with the aim of being easily extensible and reusable in

different contexts.

It has a performance-oriented implementation based on compile-time optimi-

sations, and it is designed to support simulated systems executed in parallel or

self-organising cloud application.

CHAPTER 1. INTRODUCTION 21



1.3. STATE OF ART

Figure 1.7: The Software architecture of FCPP represented as three main layers.

Being implemented in C++, allows FCPP to be used in a wide range of devices,

including embedded systems and microcontrollers, for which a C++ compiler is

available. Although FCPP is designed as a flexible and easily extensible platform,

its currently supported range of features is more limited than Protelis ’ and ScaFi ’s.

It allows running aggregate programs on low computational capacity devices.

However, its syntax is less ergonomic compared to other languages, making it

unlikely to reach a mainstream developer audience.

Final considerations Those three illustrated frameworks have more or less the

same expressive power, with few notable differences. The main differences among

them are between ScaFi and FCPP, that are internal DSL implemented in Scala

and C++, and Protelis that is an external dsl, interpreted in the JVM.

Considering their syntax, ScaFi and Protelis partially imitate the abstraction

level of the field calculus, being bound by the specific syntactic constraints of their

host languages. Whereas, Protelis ’ syntax is more neat and specifically designed

for field computation.

However, the more complex syntax of ScaFi and FCPP may prove easier to

learn for programmers already familiar with Scala and C++.

22 CHAPTER 1. INTRODUCTION



Chapter 2

Contributions

2.1 Collektive

Collektive is a framework designed to simplify the definition of AC systems.

The main objective of this technology is to facilitate the development of ag-

gregate programs that can be executed on a variety of computing systems, such

as mobile and wearable devices, computers, and the cloud. This allows for in-

teroperability and communication between these systems, despite their different

nature.

To achieve this, Collektive uses the FC model to provide a straightforward and

intuitive method for defining an aggregate program, without the need for low-level

coding. In addition, Collektive has been developed to be multiplatform, so it can

be executed on different systems thanks to the use of KMP.

As for the feature solution of alignment for the correct functioning of aggre-

gate programming, it has been developed a compiler plugin with the purpose of

annotating the functions that are aligned; those paths will be used for the actual

alignment of the nodes.

Project Structure The project is subdivided into different submodules (as in

Figure 2.1), each with a specific purpose:

1. alchemist-incarnation-collektive: contains the pieces for the Alchemist

integration, in order to run the aggregate programs created with Collektive

CHAPTER 2. CONTRIBUTIONS 23



2.2. DSL

on the simulator.

2. dsl: is the core of the project, contains the actual implementation of the

logic and the AC operators and relative tests.

3. compiler-plugin: used to keep track of the stack at runtime, foreach ag-

gregate program.

alchemist-incarnation-

collektive

dsl

compiler-plugin gradle-plugin

Collektive

plugin

Figure 2.1: Packages diagram of the Collektive project.

Regarding the examples, there is a specific repository called collektive-examples

that contains some samples of aggregate programs to show how to use the Collek-

tive framework.

2.2 DSL

In this thesis, the original implementation of the DSL of Collektive will be modified

to allow the use of XC and to improve its performance. The resultant DSL is

available at a public GitHub repository1.

A DSL is a specialised programming language or language framework tailored

to address the requirements of a specific domain or problem area. In contrast

1https://github.com/Collektive/collektive

24 CHAPTER 2. CONTRIBUTIONS

https://github.com/Collektive/collektive


2.2. DSL

to general-purpose programming languages, which aim for versatility across var-

ious domains and problem categories, DSLs are crafted to cater precisely to the

demands of a particular application or system. Consequently, general-purpose

languages like Java typically exhibit greater complexity compared to DSLs.

Structure The Collektive’s DSL is composed of the following components:

• Path: represents a specific point in the Abstract Syntax Tree (AST) of an

aggregate program;

• State: is an association between a path and a value, it is used by the

compiler plugin to keep track of the computational state of the device in

order to provide the correct alignment of the nodes;

• Field: represents the computational field used by aggregate constructs. It is

a map of messages where the key is the identifier (ID) of the node, and the

value is the associated message;

• Message: is an interface that represents the message exchanged between

nodes, its concept will be explained in Section 2.2.2;

• Network: is the interface that represents the network used to manage the

communication between devices;

• Aggregate: the actual core of the DSL. It is also used to handle all the

data needed for the computation; for example, the localId and the state

of the device. It contains the primary functions on which the language is

extended, such as exchange, exchanging, repeat and repeating; To create

an aggregate program, a function must extend this interface, in this way it

will be possible to use the aggregate functions. It is also implemented the

mechanism to handle the alignment of the functions used within the compiler

plugin;

• AggregateOperators: contains the implementation of the functions cre-

ated using the exchange-exchanging functions, such as share, sharing and

neighboringViaExchange. Moreover, it contains the mechanism to manage

the alignment of the fields used within the compiler plugin;

CHAPTER 2. CONTRIBUTIONS 25



2.2. DSL

Network
ID

write(message: OutboundMessage<ID>)
read(): Collection<InboundMessage<ID>>

Collektive
ID, R

localId: ID

computeFunction: (Aggregate<ID>.() -> R)
cycle(): R
cycleWhile(condition: (AggregateResult<ID, R>) -> Boolean): R

AggregateResult
ID, R

localId: ID
result: R
toSend: Iterable<OutboundMessage<ID>>
newState: State

Aggregate

«aggregate constructs»

usesuses uses

Figure 2.2: Partial class diagram of the DSL, highlighting the entrypoint.

• YieldSupport: contains the Yielding Context and the Yielding Result for

the “yielding” operations, which means that the function operates on an

initial value but possibly returns a different value;

• Collektive: is the entrypoint for creating a “Collektive” device, it must have

a specific ID and a network to manage the communication between devices.

The effective aggregate program is identified by the compute function, which

will be executed

• AggregateResult: is the result of one evaluation of the aggregate program,

it contains the localId of the node, the effective result of the computation,

the messages to send to other devices and the new state of the device;

In the class diagrams shown in Figure 2.3 and Figure 2.2, it is possible to see the

main classes of the DSL introduced above and their relationships. The Interface

Aggregate is implemented by the AggregateContext class, which is used to handle

the logic and the computation of the main constructs of the DSL. This interface

is then extended within AggregateOperators to handle the logic of the functions

created using the exchange-exchanging functions.

2.2.1 XC in Collektive

Thanks to the design of XC, it is possible to implement the methods proposed by

field calculus (Section 1.1.1) in terms of exchange (Section 1.1.3). The syntax of

26 CHAPTER 2. CONTRIBUTIONS



2.2. DSL

Aggregate
ID

exchange(initial: I, body: (Field<ID, I>) -> Field<ID, I>): Field<ID, I>
exchanging(initial: I, body: YieldingScope<Field<ID, I>, Field<ID, R>>): Field<ID, R>
repeat(initial: I, transform: (I) -> I): I
repeating(initial: I, transform: YieldingScope<I, R>): R

YieldingContext
I, R

yielding(transform: (Field<ID, I>) -> R): YieldingResult<I, R>

Collektive
ID, R

«program entrypoint»

AggregateContext
ID

localId: ID
messages: Iterable<InboundMessage<ID>>
previousState: State

AggregateOperators

«Aggregate extension functions»

neighboringViaExchange(local: Scalar): Field<ID, Scalar>
share(initial: I, transform: (Field<ID, I>) -> I): I
sharing(initial: I, transform: YieldingContext<I, R>.(Field<ID, I>) -> YieldingResult<I, R>): R

YieldingResult
I, R

toSend: I
toReturn: R

uses

implements

extends

Figure 2.3: Partial class diagram of the DSL structure, highlighting the Aggregate
section.

XC allows for sending messages to specific nodes, enabling the implementation of

field calculus operations through message exchange.

The exchange communication is based on anisotropic communications, mean-

ing that it does not send the same properties or characteristics in all directions

(Figure 2.4); therefore, messages have custom values sent to different neighbours.

Figure 2.4: This image shows how anisotropic communication works, exchanging
different information based on the neighbour.

This concept can be extended to the share function of field calculus, with the

CHAPTER 2. CONTRIBUTIONS 27



2.2. DSL

difference that the operation of share is based on isotropic communication, mean-

ing that the information sent is uniform in all directions (Figure 2.5); therefore,

messages have the same value sent to all neighbours.

Figure 2.5: This image shows how isotropic communication works, exchanging the
same information with all the neighbours.

All the DSL has been modified to use exchange for the implementation of the

other constructs such as share and nbr, which is called neighboring. Only the

rep construct has not been implemented in terms of exchange, as it is a function

that allows iterating over oneself, it’s better for neighbours not to receive messages

of any kind, also for security and privacy reasons. As the original implementation,

it supports the evaluation of fields.

Exchange The construct exchange provides i) access to neighbours’ values,

ii) persistence of information for subsequent executions, iii) communication with

neighbours, and iv) compositional behaviour.

As seen in Section 1.1.3, the exchange function can send and return the same

result, or it can send a message and return a different result; both cases have been

implemented.

The exchange takes an initial value to use as a default, and a body that defines

an aggregate function to be computed, as seen in the code snippet Listing 2.1,

returning a field. When executing the aggregate program, it checks which messages

have been received from the neighbours and applies the function, generating a

custom value for each neighbour.

28 CHAPTER 2. CONTRIBUTIONS



2.2. DSL

In the early stages of the design of this function, potential problems that could

arise during execution were evaluated, such as the management of initialisation,

i.e., the first round of message exchange. Consider a network consisting of n

devices, all of which are neighbours to each other. The first device (d1) to start

within the network will certainly have a moment when it performs its first iteration

ever.

The problem arises when the device d1 has not yet received any messages, so it

will not have neighbour values to perform the calculation, thus creating a deadlock

situation where it does not know the neighbourhood and does not know who to

actually send a message to. For this reason, it was necessary to implement a

mechanism such that the device performs a first iteration on its initial value, and

send the message to the network without a specific recipient, so that the future

“neighbourhood” can receive it and start a communication with d1. In this way,

the next devices to “wake up” in the network will know that d1 is present and will

be able to communicate with it.

Listing 2.1: The signature of the exchange function.�
1 fun <Initial> exchange(

2 initial: Initial,

3 body: (Field<ID, Initial>) -> Field<ID, Initial>,

4 ): Field<ID, Initial>� �
Share The share construct captures the space-time nature of field computation

through observation of neighbours’ values, starting from an initial value, it reduces

to a single local value given a transform function and updating and sharing to

neighbours of a local variable, then returns the punctual value evaluated from the

transformation (Listing 2.2).

Listing 2.2: The signature of the share function.�
1 fun <ID : Any, Initial> Aggregate<ID>.share(

2 initial: Initial,

3 transform: (Field<ID, Initial>) -> Initial,

4 ): Initial� �
As previously introduced, this construct can be expressed in terms of exchange.

The share differs from the exchange because share does not differentiate the

CHAPTER 2. CONTRIBUTIONS 29



2.2. DSL

result of the computation based on the neighbour that sent the message; it sends

it indiscriminately to all neighbours.

Neighboring The field calculus construct nbr is implemented as neighboring,

more precisely as neighboringViaExchange due to its effective implementation

based on the exchanging function. The neighboringViaExchange construct is

used to access the values of the neighbours. It takes as parameter local, which can

be an expression or a value, and returns a field of the same input type (Listing 2.3).

Listing 2.3: The signature of the neighboringViaExchange function.�
1 fun <ID : Any, Scalar> Aggregate<ID>.neighboringViaExchange(

2 local: Scalar,

3 ): Field<ID, Scalar>� �
Repeat The repeat function is the equivalent of the rep construct in field cal-

culus. It models the state evolution over time, the value of initial evolves at each

execution depending on the transform function, and it returns the final value of

the computation (Listing 2.4).

Listing 2.4: The signature of the repeat function.�
1 fun <Initial> repeat(

2 initial: Initial,

3 transform: (Initial) -> Initial,

4 ): Initial� �
As previously mentioned, this function is not implemented in terms of exchange,

because iterating over oneself it is better not to send messages to neighbours,

also for security and privacy reasons, its implementation will be explained in Sec-

tion 2.5.4.

2.2.2 Messages

The accurate modelling of message functionality is crucial for device communica-

tion. Due to the different nature of messages supported, that is anisotropic and

isotropic communication, it has been necessary to create specific classes for the

handling of relative messages.

30 CHAPTER 2. CONTRIBUTIONS



2.2. DSL

Network
ID : Any

write(message: OutboundMessage<ID>)
read(): Collection<InboundMessage<ID>>

Message

InboundMessage
ID : Any

senderId: ID
messages: Map<Path, *>

OutboundMessage
ID : Any

senderId: ID,
defaults: MutableMap<Path, Any?>

messagesFor(id: ID): Map<Path, *>
addMessage(path: Path, message: SingleOutboundMessage<ID, *>)

SingleOutboundMessage
ID : Any, Payload

default: Payload
overrides: Map<ID, Payload>

extends extends

Figure 2.6: Class diagram of the network and messages stucture.

Previously, messages were sent to the network without considering the recipi-

ent, and the network was responsible for delivering the message to all the neigh-

bours that were interconnected. Since the main feature of exchange is to send

messages to specific neighbours with custom values, it is important to ensure that

unintended recipients do not receive the message. Therefore, the old model of

messages has been modified.

The Figure 2.6 shows the class diagram of the messages used in the DSL,

highlighting their relationships and the inheritance of the Message interface. The

concept and implementation of the messages will be explained in the following

paragraphs.

OutboundMessage and SingleOutboundMessage It has been introduced

the concept of OutboundMessage (Listing 2.5). Its goal is to associate to the sender

of the message, the messages to send to the neighbours. With this implementation,

it is possible to manage the messages for isotropic and anisotropic communication.

In this way, a device sends to the network just one OutboundMessage that contains

all the messages to send to the neighbours, and also unburdens the payload of the

CHAPTER 2. CONTRIBUTIONS 31



2.2. DSL

network.

Listing 2.5: Outbound message data class.�
1 data class OutboundMessage<ID : Any>(

2 expectedSize: Int,

3 val senderId: ID,

4 ) : Message� �
For what it concerns the anisotropic communication, it is necessary to keep

track of the identifier of the recipient and the value associated with it, in order

for the network to deliver the message to the correct neighbour. This has been

implemented with a map of overrides, which associates to the recipient’s identifier

a specific value.

For the isotropic communication, it is just necessary to keep track of the default

value to send to all the neighbours at a certain path of the computation. This

is used when there are no overrides for the recipient that is reading the messages

received. The network will be in charge to deliver the message to all the neighbours,

so it is not necessary to keep track of the recipient’s identifier.

Listing 2.6: Single outbound message data class.�
1 data class SingleOutboundMessage<ID : Any, Payload>(

2 val default: Payload,

3 val overrides: Map<ID, Payload>,

4 )� �
In summary, when a program is executed and a device has computed its func-

tion, it has to generate the messages to send to the neighbours (so it’s done inside

the exchange function), it populates a SingleOutboundMessage (Listing 2.6), that

will be used to populate the overrides and the default maps of the Outbound-

Message. At the end it is added to a list of OutboundMessage and sent to the

network.

InboundMessage The InboundMessage is a data class (Listing 2.7) modelled

for the messages read from the network. When reading the OutboundMessage,

there are some fields that are not needed, such as the receiver of the message,

which is the device itself, and is necessary to keep the default value or the override

value. To handle this, the InboundMessage has been modelled to keep only the

identifier of the sender and a map of messages of Path and the associated value.

32 CHAPTER 2. CONTRIBUTIONS



2.3. PLUGIN EXTENSIONS

Listing 2.7: Inbound message data class.�
1 data class InboundMessage<ID : Any>(

2 val senderId: ID,

3 val messages: Map<Path, *>,

4 ) : Message� �
2.2.3 Network

The Network has the task of managing only the reading and writing of messages

in the network for a single device. The actual implementation of the network

is not managed by the Collektive DSL, but it is implemented in the alchemist-

incarnation-collektive (Section 2.6) module, which is used to run the aggregate

programs created with Collektive on the Alchemist simulator.

Inside the DSL, it is used at the beginning of each iteration of the aggregate

program to read the messages received from other devices present in the network,

and at the end of the iteration to write the messages to send to the other devices.

The network actually supports only the specific types of messages introduced in

Section 2.2.2, due to the concepts introduced by the study of XC and field calculus.

2.3 Plugin Extensions

In Kotlin, a plugin compiler extension refers to a mechanism that allows developers

to extend or customise the behaviour of the Kotlin compiler. These extensions

provide a way to hook into the compilation process and modify or enhance the

way Kotlin code is compiled.

Developers can create their own compiler extensions by implementing the neces-

sary interfaces or annotations defined by the Kotlin compiler API. These extensions

can then be applied to Kotlin projects either globally or selectively, depending on

the specific requirements of the project.

In KMP project development, the compiler undertakes a covert translation of

Kotlin code into platform-specific code. Prior to this translation, the Kotlin code

undergoes conversion into an Intermediate Representation (IR), creating an AST

that is then transformed into platform-specific code. Notably, this approach elim-

inates the necessity to develop separate plugins for each platform, thus optimising

CHAPTER 2. CONTRIBUTIONS 33



2.3. PLUGIN EXTENSIONS

the development process and fostering code reuse across varied environments.

Since the source code is fully accessible at compile time, it becomes feasible

to analyse it to determine when the alignment of the functions is necessary; con-

sequently, new code can be generated to ensure proper alignment. Furthermore,

because the generation process is based on the intermediate representation, it en-

ables interoperability across different project targets and devices running on the

same platform. Modifications to the plugin are applied during compile time, min-

imising any notable impact on execution time. Lastly, users are shielded from the

intricacies of alignment concerns, as the code generation process remains trans-

parent to them.

Alignment The alignment in Collektive was initially implemented inspecting

and annotating the body of the (ex)aggregate functions; none of the other func-

tions were aligned.

In Collektive, the alignment of the functions is made by the compiler plugin,

which keeps track of the sequence of functions called during the computation, us-

ing a custom stack. Since initially the entrypoint of the DSL was the aggregate

function, the alignment was made by assuring that a reference to the Aggregate-

Context was present, meaning that everything not related to the DSL did not

require alignment.

By changing the main architecture of the DSL to use XC, it has been necessary

to review the way the alignment was managed.

The alignment has been implemented in such a way that it also takes into

account the functions from which an aggregate program is called. For example

(Listing 2.8), we could have two different functions called foo() and bar() that

both call the same aggregate program, but in fact they are two different functions

and therefore must be aligned as two different programs.

Listing 2.8: Example of two unaligned functions.�
1 val x = 0

2 fun foo(aggregate: Aggregate<Int>) = aggregate.neighboringViaExchange(x)

3 fun bar(aggregate: Aggregate<Int>) = aggregate.neighboringViaExchange(x)

4 acProgram { foo(this) } shouldNot alignWith { bar(this) }� �
34 CHAPTER 2. CONTRIBUTIONS



2.4. TECHNOLOGIES

The alignment process follows a specific strategy. Firstly, all function defini-

tions are visited, and those involving aggregate computation are subject to align-

ment processing. Next, for each candidate function, the plugin visits all call sites

in the function’s body and checks if the call has an aggregate reference or is in-

volved in an aggregate computation; meaning that it must have the Aggregate type

as extensionReceiver, or dispatchReceiver, or one or more of the function’s

parameters. If so, the plugin aligns the expression call.

All the functions visited are so pushed into a stack. For each call to Aggregate

also push the name of the function in the stack, appending a value that represents

the occurrence of the function in the sequence of the computation. When the

control flow exits that function, the function name is popped from the stack. The

Path generated is a string that represents the sequence of the functions called

during the computation, with the prepended calls of the non-Aggregate functions.

The alignment is then made by comparing the Path of the two functions, and if

they are equal, the two functions are aligned.

In an aggregate program, there may be a branching condition that divides the

program into two non-communicating subprograms, each evaluating a different

branch without cross-communication. Consequently, it is important for a subpro-

gram to be aligned only with devices that follow the same sequence of computations

and functions.

While visiting the function definition, the plugin only aligns branch conditions

that involve aggregate computation. If a branch body does not involve aggre-

gate computation, it will not be aligned. This default alignment ensures that all

branches follow the branch semantics of AC. The alignment is then made by com-

paring the Path of the two functions, and if they are equal, the two functions are

aligned.

2.4 Technologies

Kotlin Multiplatform Kotlin is a cross-platform, statically typed, general-

purpose programming language with type inference. It is designed to interoper-

ate fully with Java, and the JVM version of its standard library depends on the

Java Class Library. However, Kotlin is also used to target JavaScript, and native

CHAPTER 2. CONTRIBUTIONS 35



2.4. TECHNOLOGIES

code (via LLVM). The purpose of KMP is to streamline the development process

of cross-platform projects by minimising the effort required to write and upkeep

identical code for various platforms, such as Android, iOS, full-stack web applica-

tions, multiplatform libraries and its platform-specific implementations for JVM,

JavaScript (JS), and native code.

KMP enables significant code reuse across multiple platforms, leading to faster

development cycles, reduced maintenance efforts, and improved code consistency.

KMP supports compilation targets for various platforms, including Kotlin/JVM

for backend and desktop applications, Kotlin/JS for web applications, and Kotlin/-

Native for Android, iOS, and other native platforms. Developers specify the com-

pilation targets in the Gradle configuration to generate platform-specific binaries.

Kotest Kotest is a powerful testing framework for Kotlin that provides a flexible

and expressive way to write tests for Kotlin projects. It offers a rich set of features

and utilities to make testing easier, more concise, and more effective.

Kotest provides a wide range of built-in matchers and assertion functions for

common test scenarios, such as equality checks, collection assertions, exception

handling, and more. These utilities make it easy to write expressive and accu-

rate assertions without boilerplate code. Some test examples will be shown in

Section 3.1.

Gradle Gradle is a powerful build automation tool and dependency management

system used primarily for Java, Kotlin, and Groovy projects. It is designed to be

highly flexible, scalable, and efficient, making it a popular choice among developers

and organisations for building and managing software projects.

Gradle uses a declarative DSL based on Groovy or Kotlin to define build scripts.

This DSL allows developers to express build configurations, tasks, dependencies,

and plugins in a concise and readable format. Gradle build scripts are typically

named build.gradle and are written in Groovy or Kotlin.

Gradle organises the build process around tasks, which are units of work that

perform specific actions, such as compiling source code, running tests, or generat-

ing documentation. Developers can define custom tasks and dependencies between

tasks in the build script, allowing for fine-grained control over the build process.

36 CHAPTER 2. CONTRIBUTIONS



2.5. IMPLEMENTATION

Gradle executes tasks in parallel when possible, leveraging multi-threading to im-

prove build performance.

2.5 Implementation

In this section, the actual implementation of the DSL’s functionalities will be

examined, with code examples and explanations regarding the implementation

choices and the problems encountered during development.

2.5.1 Fields

About the manipulation of the neighbouring values introduced in Section 1.1.3, it

has been implemented the concept of Field to handle the data structure to send

between neighbours, and relatives functions to manipulate it.

The Field keeps track of the identifier of the device (localId) and the value

associated with it (localValues) and eventually a map that associates the iden-

tifiers of the neighbours to their exchanged local values. In order to improve the

performance of the system, a version of the Field has been implemented, called

ConstantField. This is used to implement the mechanism of isotropic message,

which is often used in the communications. The ConstantField keeps track of the

identifiers of the neighbours with which to communicate in a list and the value to

send only once, whilst the Field keeps track of the value to send for each neighbour

as a map, which is more expensive in terms of performance.

2.5.2 Collektive entrypoint

The public entrypoint of the DSL is the Collektive class, which can be interpreted

as a device that can execute an aggregate program.

As seen in the code snippet Listing 2.9, the Collektive class takes as parameters

the localId of the device, the network used to manage the communication between

devices, and the computeFunction that will be executed when the device is ready

to compute the aggregate program.

CHAPTER 2. CONTRIBUTIONS 37



2.5. IMPLEMENTATION

Listing 2.9: The signature of the Collektive class.�
1 class Collektive<ID : Any, R>(

2 val localId: ID,

3 private val network: Network<ID>,

4 private val computeFunction: Aggregate<ID>.() -> R,

5 )� �
The aim of this class is to manage the logic and the effective execution of the

rounds of the aggregate program passed as a parameter.

It provides two main functions that will be called in the incarnation to execute

the program:

• cycle: applies once the computeFunction and returns the result of the com-

putation;

• cycleWhile: applies the computeFunction while the condition passed as

parameter is satisfied, and returns the result of the computation.

Both functions are implemented through a private function executeRound,

which effectively calls the aggregate program, managing the result obtained and

updating the internal state of the device.

There are two types of aggregate programs: one that uses the Network and

one that does not, but directly takes a set of InboundMessage.

Listing 2.10: The signature of the aggregate program.�
1 fun <ID : Any, R> aggregate(

2 localId: ID,

3 network: Network<ID>,

4 previousState: State = emptyMap(),

5 compute: Aggregate<ID>.() -> R,

6 ): AggregateResult<ID, R> = with(AggregateContext(localId, network.read(), previousState)) {

7 AggregateResult(localId, compute(), messagesToSend(), newState()).also {

8 network.write(it.toSend)

9 }

10 }� �
The code seen in Listing 2.10 is the implementation of the aggregate func-

tion that relies on the Network. Taking the AggregateContext as context with the

messages read from the network and the previous state of the device, it applies

the compute function. The result of the computation is then returned as an Ag-

gregateResult (Listing 2.11), which contains the localId of the device, the effective

38 CHAPTER 2. CONTRIBUTIONS



2.5. IMPLEMENTATION

result of the computation, the messages to send to other devices and the new state

of the device. Finally, the messages to send are written to the network. This is

the function called from the executeRound function.

Listing 2.11: The signature of the aggregate result.�
1 data class AggregateResult<ID : Any, R>(

2 val localId: ID,

3 val result: R,

4 val toSend: OutboundMessage<ID>,

5 val newState: State,

6 )� �
2.5.3 Yielding Support

To operate on an initial value but possibly return a different value, it has been

introduced the concept of yielding. The operations of yielding are used to op-

erate on an initial value, which is usually exchanged with the neighbours, but

possibly return a different value to the caller. This operation is executable on

the exchanging, sharing and repeating methods, or it can be omitted in case

the value obtained from the operation is to be returned. Those constructs will be

explained in detail in the Section 2.5.4 and Section 2.5.5.

Listing 2.12: The signature of the yielding context class.�
1 class YieldingContext<Initial, Return> {

2 fun Initial.yielding(toReturn: () -> Return): YieldingResult<Initial, Return> =

3 YieldingResult(this, toReturn())

4 }� �
2.5.4 Aggregate Context

The AggregateContext class is the class that effectively has the implementation of

the basic constructs inside the DSL. Internally, it keeps track of the stack, the

state, and the messages that need to be sent by that device.

Exchange There are two versions of this construct: one that has the same type

of value of the field in output as the one in input (Listing 2.13), and one in which

they differ (Listing 2.14). The exchange construct is the one that represents the

CHAPTER 2. CONTRIBUTIONS 39



2.5. IMPLEMENTATION

communication in which er (the value to return) and es (the value to send) coincide,

as illustrated in Section 1.1.3.

Listing 2.13: The implementation of the exchange function.�
1 override fun <X> exchange(initial: X, body: (Field<ID, X>) -> Field<ID, X>): Field<ID, X> =

2 exchanging(initial) { field -> body(field).run { yielding { this } } }� �
The exchange therefore simply calls the exchanging, but as the context of the

yielding it passes the field on which the computation has been executed.

The real functioning of XC relies in the exchanging implementation, which

is the one that effectively manages the actual logic of the computation and the

messages to send to the neighbours.

In the Listing 2.14 snippet is shown how the exchanging function is imple-

mented. First, it takes the current path from the stack kept inside the context and

the messages received whose path is the same, so that it is possible to evaluate

only aligned messages. Then it takes the state of the device at the current path,

using the initial value passed as a parameter in case there is no previous state.

A new field is then created on which to perform the computation, starting from

the value of the state and the messages received at the current path. If there are

no messages received at the current path, simply there will be an empty map of

messages. The new field is then passed to the body passed in input, along with a

new yielding context, on which the computation is effectively executed. The result

obtained from the computation is then returned and, depending on what has been

passed as a yielding context in the body, the value is sent to the neighbours, which

can be either the result of the computation (in the retsend case) or a value of a

different type.

A message of type SingleOutboundMessage is created, populated with the value

obtained from the application to the field of the aggregate function put as the de-

fault value, while as an override it is evaluated what type of field has been obtained

from the computation, and based on this the value is sent to the neighbours. If

the field is of a constant type, the map of overrides will be empty, otherwise the

value obtained from the computation is sent, excluding the value of the device

itself. A check is made to verify that there are no messages aligned with the same

path, as this could cause an alignment conflict. Finally, the message is added to

40 CHAPTER 2. CONTRIBUTIONS



2.5. IMPLEMENTATION

the map of messages to be sent, and the state of the device is updated with the

value obtained from the computation.

Listing 2.14: The implementation of the exchanging function.�
1 override fun <Init, Ret> exchanging(

2 initial: Init,

3 body: YieldingScope<Field<ID, Init>, Field<ID, Ret>>,

4 ): Field<ID, Ret> {

5 val path = stack.currentPath()

6 val messages = messagesAt<Init>(path)

7 val previous = stateAt(path, initial)

8 val subject = newField(previous, messages)

9 val context = YieldingContext<Field<ID, Init>, Field<ID, Ret>>()

10 return body(context, subject).also {

11 val message = SingleOutboundMessage(

12 it.toSend.localValue,

13 when (it.toSend) {

14 is ConstantField<ID, Init> -> emptyMap()

15 else -> it.toSend.excludeSelf()

16 },

17 )

18 check(!toBeSent.messages.containsKey(path)) {

19 """

20 Aggregate alignment clash by multiple aligned calls with the same path: $path.
21 The most likely cause is an aggregate function call within a loop

22 """.trimIndent()

23 }

24 toBeSent = toBeSent.copy(messages = toBeSent.messages + (path to message))

25 state += path to it.toSend.localValue

26 }.toReturn

27 }� �

Repeat The repeat construct is the one that models the state evolution over

time. It is not implemented in terms of exchange, as it is a function that allows

iterating over oneself, it can directly update its internal state without sending

messages to neighbours.

The repeat construct takes as parameters the initial value and the transform

function, and returns the final value of the computation of the same type as the

initial. To return a different type, it has been implemented the repeating function,

as for the exchange construct, using the yielding support (Listing 2.15).

CHAPTER 2. CONTRIBUTIONS 41



2.5. IMPLEMENTATION

Listing 2.15: The implementation of the repeating function.�
1 override fun <Initial, Return> repeating(

2 initial: Initial,

3 transform: YieldingScope<Initial, Return>,

4 ): Return =

5 transform(YieldingContext(), stateAt(stack.currentPath(), initial))

6 .also { state += stack.currentPath() to it.toReturn }

7 .toReturn� �
The transform function is applied to the state of the device, checking whether

there are already values to use on the stack, or using the initial value passed as

a parameter. After the computation, the stack is updated with the new value

obtained from the computation, and the result is returned, depending on the

yielding context passed in the body of the function.

2.5.5 Aggregate Operators

The functions implemented using the exchange mechanism are situated in a sep-

arate class called AggregateOperators.

Share The share is also implemented with the yielding support mechanism,

using the same base concept as in the exchange and repeat functions. This means

that it is possible to operate on an initial value, but possibly return a different

value, as seen in the code snippet Listing 2.16.

Listing 2.16: The implementation of the sharing function.�
1 fun <ID : Any, Initial, Return> Aggregate<ID>.sharing(

2 initial: Initial,

3 transform: YieldingContext<Initial, Return>.(Field<ID, Initial>) -> YieldingResult<Initial,

Return>,

4 ): Return = exchanging(initial) { field: Field<ID, Initial> ->

5 with(YieldingContext<Initial, Return>()) {

6 val result: YieldingResult<Initial, Return> = transform(field)

7 field.map { result.toSend }.yielding {

8 field.map { result.toReturn }

9 }

10 }

11 }.localValue� �
Given the isotropic nature of communication through share, the implementa-

tion via exchange is done in such a way as to send the same value to all neighbours,

42 CHAPTER 2. CONTRIBUTIONS



2.6. ALCHEMIST INCARNATION

so there is no need to keep track of who sent the message, but only to send it to all

neighbours. The value sent to the neighbours can be the value expressed thanks to

the yielding function, or the value obtained from the computation, if the share

function is used.

NeighboringViaExchange The neighboringViaExchange construct is used

to access the values of the neighbours. It takes as parameter local, which can be

an expression or a value, and returns a field of the same type (Listing 2.17).

Listing 2.17: The implementation of the neighboringViaExchange function.�
1 fun <ID : Any, Scalar> Aggregate<ID>.neighboringViaExchange(local: Scalar): Field<ID, Scalar> =

2 exchanging(local) { toYield ->

3 toYield.mapToConstantField(local).yielding { toYield }

4 }� �
As said in Section 1.1.3, the nbr construct is a peculiar case of exchange, in

which the value of the expression evaluated is sent to neighbours and the values

received from them are returned as a field. In this way, it provides a view of the

values computed by the neighbours. Thus, its implementation consists of a call to

the exchanging function, made in such a way as to send the value evaluated to

the neighbours and return the values received from them as a field.

2.6 Alchemist Incarnation

Alchemist is a meta-simulator for pervasive computing and distributed systems,

it is based on general abstractions that can be mapped to specific use cases. The

meta-model consists of a set of entities (the nodes) that exist in an environment

and interact with each other with relationship rules. The nodes contain a set of

molecules, representing the variables, and reactions that represent the events that

occur based on a set of conditions, then producing an effect described as an action.

Thanks to this abstraction, the simulator is adaptable and flexible to different use

cases and quantity of nodes, maintaining a consistent structure.

An “incarnation” serves as the interpreter enabling the Alchemist Simulator to

comprehend and accurately execute a language. The incarnation models molecules

CHAPTER 2. CONTRIBUTIONS 43



2.6. ALCHEMIST INCARNATION

and actions. Specifically designed for Collektive, this incarnation employs reflec-

tions to locate the aggregate entry point and dictates the methodology for each

iteration of the aggregate program. Similar to other Alchemist incarnations like

alchemist-incarnation-scafi and alchemist-incarnation-protelis, it has

been implemented to launch simulations through Gradle tasks.

The goal is to ensure that the new implementation is still compatible with the

simulator and that it can be used to run simulations without any issues.

To achieve this, it was necessary to modify the Collektive Device previously

implemented, to make it compatible with the new implementation of the network

and the related message exchange. Furthermore, the functioning of the Distance

Sensor has been updated, and a new sensor has been added to detect the properties

of the molecule of interest (Local Sensing). To run simulations starting from

a YAML file with the appropriate Alchemist configuration, it was necessary to

create a class that reads the configuration and sets up the simulation.

The Alchemist simulator is based on a system of actions and reactions, so to

run an incarnation, it is necessary to define an action that represents the behaviour

of the nodes. In this case, it is RunCollektiveProgram (Section 2.6).

The incarnation is therefore provided to manage the behaviour of the molecules

or nodes, so overriding the methods provided by the Alchemist library.

In the Figure 2.7 is shown the structure of the Alchemist Incarnation module.

It highlights the fact that the CollektiveDevice has to manage the specific sensors

and actuators and implement the network from the device’s perspective to manage

messages sent and received from neighbours.

CollektiveDevice The CollektiveDevice is a representation of the device in the

Alchemist Simulator. Its purpose is to manage specific sensors and actuators and

implement the network from the device’s perspective to manage messages sent and

received from neighbours.

A device must have the environment in which it is located, the node property

to be represented in the environment, a specific ID that is the same of the node, a

retention time for messages which can be null if it is necessary to keep all messages.

It must extend the eventual sensors and the network to manage the communication

with the neighbours.

44 CHAPTER 2. CONTRIBUTIONS



2.6. ALCHEMIST INCARNATION

Network
LocalSensing

sense<T>(name: String): T
senseOrElse<T>(name: String, default: T): T

DistanceSensor

distances<ID : Any>(): Field<ID, Double>

CollektiveDevice
P

environment: Environment<Any?, P>
node: Node<Any?>
id: ID
validMessages: MutableList<TimedMessage>

distances<ID : Any>(): Field<ID, Double>
sense<T>(name: String): T
senseOrElse<T>(name: String, default: T): T
read(): Collection<InboundMessage<Int>>
write(message: OutboundMessage<Int>): void

RunCollektiveProgram
P : Position<P>

«Alchemist's entrypoint»
node: Node<Any?>
time: TimeDistribution<Any?>
additionalParameters: String
localDevice: CollektiveDevice<P>

execute(): void

CollektiveIncarnation

«Alchemist's interpreter»

Incarnation
T, P

AbstractAction

implements implements implements

uses

implementsuses

implements

uses

Figure 2.7: Class diagram of the Alchemist Incarnation module.

CHAPTER 2. CONTRIBUTIONS 45



2.6. ALCHEMIST INCARNATION

To keep track of the time when the messages arrived and thus to be able

to discard them after a certain time, a private data class TimedMessage has been

created that associates the time when each message arrived with the message itself.

In this way, in the effective implementation of the read function of the network,

it is possible to discard the messages that arrived before a certain time, and thus

are no longer valid.

Listing 2.18: The implementation of the read function of the Network.�
1 override fun read(): Collection<InboundMessage<Int>> =

2 when {

3 validMessages.isEmpty() -> emptySet()

4 retainMessagesFor == null ->

5 validMessages.map { it.payload }.also { validMessages.clear() }

6 else -> {

7 validMessages.retainAll { it.receivedAt + retainMessagesFor >= currentTime }

8 validMessages.map { it.payload }

9 }

10 }� �
In the Listing 2.18 snippet is shown how the read function of the network is

implemented. It checks if the retainMessagesFor property is null, meaning that it

is necessary to keep all the messages, and in this case it returns the valid messages

and clears the set, otherwise it retains only the messages that arrived after a certain

time and returns them converted to a set of InboundMessage.

The write function is the one that effectively sends the messages to the net-

work, it has to manage the messages taken as input from the aggregate con-

text. It gets the neighbours of the device, and for each of them it creates an

InboundMessage that the neighbour will read. It has been noticed that the im-

plementation of the network’s functions affects the performance of the aggregate

programs, so it has been necessary to optimise the code to improve the perfor-

mance.

If present, sensors and actuators are implemented within the CollektiveDevice

class. For instance, in this particular implementation, the CollektiveDevice in-

corporates a DistanceSensor responsible for measuring the distance between the

device and its neighbouring entities and a LocalSensing sensor for detecting the

value of the molecule of interest. The method of the DistanceSensor is realised

as an aggregate extension function, utilised for gauging the spatial separation be-

46 CHAPTER 2. CONTRIBUTIONS



2.6. ALCHEMIST INCARNATION

tween the device and its neighbours via the neighboringViaExchange construct.

This method acquires the positions of neighbouring devices and computes the dis-

tances between them, as exemplified in code snippet Listing 2.19. The utility

of this function extends to other aggregate programs by virtue of employing the

DistanceSensor interface as a contextual receiver.

Listing 2.19: The implementation of the distance function.�
1 override fun <ID : Any> Aggregate<ID>.distances(): Field<ID, Double> =

2 environment.getPosition(node).let { nodePosition ->

3 neighboringViaExchange(nodePosition).map { position -> nodePosition.distanceTo(position) }

4 }� �

RunCollektiveProgram The RunCollektiveProgram is an action for the Al-

chemist Simulator that runs a Collektive program. An action in Alchemist models

a change in the environment. It takes the node on which executes the action, the

time distribution of the events and the additional parameters which is the path

where the aggregate program to execute is located.

This action is designed to accept the program to be executed as a parameter

of the YAML and instantiate it via reflection. Reflection stands as a potent fea-

ture within Kotlin, facilitating developers in the examination and manipulation of

a program’s structure during runtime. This capability enables access and modi-

fication of properties, methods, and types within a program, alongside dynamic

invocation of functions and constructors. The reflection mechanism facilitates the

retrieval of contexts passed to the aggregate program.

To instantiate the program, it is necessary to obtain any contexts passed

through the context receivers or as parameters, instantiate them, and pass them to

the program, along with the aggregated context required for its execution. This is

where the behavior of the node is effectively defined when the action is executed,

which calls the cycle method of Collektive.

Additionally, the implementation of a private cache has been essential for stor-

ing associated parameters of the aggregate program. This measure aims to cir-

cumvent the recurrent utilisation of the reflection mechanism during program ex-

ecution, a practice known to substantially impact performance.

CHAPTER 2. CONTRIBUTIONS 47



2.6. ALCHEMIST INCARNATION

CollektiveIncarnation The Collektive Incarnation is an interpreter that en-

ables the Alchemist Simulator to understand and execute the aggregate program

written in the DSL. The incarnation is therefore provided to manage the behaviour

of the molecules or nodes, so overriding the methods provided by the Alchemist

library. It can evaluate runtime properties passed through the simulator, which

are lambda functions. A cache system has been put in place to prevent the need

for re-evaluating molecule’s properties each time, activating only during system

updates. This was necessary due to performance issues.

Running the simulations To execute the simulations outlined in the subse-

quent chapter (Section 3.2), the creation of a configuration file in YAML format,

adhering to Alchemist ’s YAML specifications, becomes imperative. Within the

YAML configuration file, parameters defining the simulation are delineated, en-

compassing variables such as the node count, environmental characteristics, net-

work model, and the pathway of the aggregate program slated for execution. Fol-

lowing the creation of the configuration file, simulation execution becomes feasible

through Gradle tasks.

In the yaml configuration file, it is possible to specify the parameters of the

simulation, such as the number of nodes, the type of environment, the network

model, and the path of the aggregate program to run. Once the configuration file

has been created, it is possible to run the simulation through Gradle tasks.

There are two types of Gradle tasks for each simulation: one is for test-

ing purposes (runTaskNameBatch), and the other one is to run the simulation

with the Alchemist GUI (runTaskNameGraphic). Tasks are configured in the

build.gradle.kts file, and the parameters in which the two types of tasks differ

are passed as arguments to the task.

48 CHAPTER 2. CONTRIBUTIONS



Chapter 3

Validation

This chapter describes the validation process of the new DSL implementation

and incarnation. Validating the hypotheses is a fundamental step for the correct

evaluation of the work done. It is divided into testing and performance comparison,

which are the two main aspects of this validation process. By comparing the

performance of the new implementation with the original one, it is possible to

understand if the introduction of the new features has led to an improvement in

the performance of the system.

3.1 Tests

The testing phase is instrumental in affirming the integrity and functionality of

the DSL codebase developed for this thesis. Tests serve as a critical mechanism

for verifying the behaviour of the DSL across various scenarios, detecting potential

bugs, and validating adherence to specifications.

Since the DSL is designed to be multiplatform, tests are written to ensure

that the codebase is compatible with different platforms and the results across

platforms must be consistent.

To achieve this, Kotlin offersMultiplatform Extensions, which allows the testing

of the same codebase across different platforms, such as JVM, JS, and Native, just

by adding needed extensions in the build.gradle.kts file.

For the testing phase, all the targets suppored by KMP have been used and

CHAPTER 3. VALIDATION 49



3.1. TESTS

are the following:

• Linux x64 and ARM64;

• Windows x64(MinGW);

• MacOS x64 and ARM64;

• IOS x64 and (simulator) ARM64;

• WatchOS x64 and (simulator) ARM64;

• TvOS x64 and (simulator) ARM64;

They cover the most common platforms and to ensure that the DSL is compat-

ible with the most common devices, such as smartphones, tablets, and wearables.

Test have been implemented using the Kotest framework, which is a flexible and

comprehensive testing framework for Kotlin with multiplatform support.

Unit Tests Focused on individual units or components within a software system,

unit testing serves to validate their functionality according to requirements. Typ-

ically conducted by developers as the initial testing phase, it involves automation

and occurs each time modifications are made to the source code to prevent dis-

ruption of existing features. These tests are engineered to verify the smallest units

of code, such as individual functions or methods, in isolation from the broader

system context.

Integration Tests Integration testing is a software testing methodology used to

evaluate the functionality of combined units of code. It serves to expose faults in

the interaction between integrated units, ensuring that they function as expected.

This type of testing is particularly useful in the context of the DSL as it allows

the verification of the correct interactions of the different parts of the system.

3.1.1 Continuous Integration and Deployment

Continuous Integration (CI) and Continuous Deployment (CD) (CI/CD) are soft-

ware development practices that aim to automate and streamline the process of

50 CHAPTER 3. VALIDATION



3.2. ALCHEMIST SIMULATIONS

delivering high-quality software. CI is a development practice where developers

frequently integrate their code changes into a shared repository. Each integration

triggers an automated build process, during which the code is compiled, tested,

and verified against a set of predefined criteria.

The primary goals of CI are to detect integration errors early, ensure that the

codebase remains functional, and promote collaboration among team members. CI

key features include: i) automated builds, automatically triggered by committed

code changes; ii) automated testing, run automatically during the build process;

iii) immediate feedback, provided to developers regarding the status of their code

changes, allowing to address issues promptly; iv) version control integration, en-

abling seamless integration with code repositories.

CD extends the principles of CI by automating the deployment process after

successful integration and testing. It involves automatically deploying validated

code changes to production or staging environments, eliminating manual interven-

tion and reducing the time between code changes and their availability to users.

CD helps streamline the release process, reduce deployment errors, and enable

rapid and reliable software delivery. CD key features include: i) automated de-

ployment, Deployments to production or staging environments are automated,

ensuring consistency and reliability; ii) continuous monitoring, integrated into CD

pipelines to track application performance and detect issues in real-time; iii) roll-

back mechanisms, in case of deployment failures; iv) environment provisioning,

pipelines often include steps for provisioning and configuring target environments

as part of the deployment process.

3.2 Alchemist Simulations

Another validation process regards the effective functioning of Collektive Incar-

nation for the Alchemist simulator. To see if the new incarnation is working as

expected, examples of simulations have been implemented and run 1.

Using the Alchemist Simulator for validation showcases the capability of Collek-

tive: implementing algorithms to specify system behavior is straightforward, and

1https://github.com/Collektive/collektive-examples

CHAPTER 3. VALIDATION 51

https://github.com/Collektive/collektive-examples


3.2. ALCHEMIST SIMULATIONS

execution is both swift and dependable.

Neighbour Counter The first example is a simple aggregate program in which

the devices count the number of neighbours they have (Listing 3.1). The result is

a map of the space in which each node has a value that represents the number of

neighbours it has.

Listing 3.1: Neighbour counter code example�
1 fun Aggregate<Int>.neighborCounter(): Int = neighboringViaExchange(0)

2 .hood(0) { acc, _ -> acc + 1 }� �
The resultant simulation appears at first empty, because the nodes are coloured

with a gradient that goes from white to blue based on the number of neighbours

they have. Once the simulation starts and the nodes communicate with each other,

the space is filled with colours, and the number of neighbours and connections is

visible, as shown in Figure 3.1. The simulator also gives the opportunity to move

the nodes around the environment, and the number of neighbours is updated in

real-time.

Figure 3.1: Neighbour counter simulation after some time ad after moving some
nodes.

Gradient The second example is a simple gradient program in which the devices

calculate the distance from a source node and communicate it to the other nodes

52 CHAPTER 3. VALIDATION



3.2. ALCHEMIST SIMULATIONS

(Listing 3.2). The result is a map of the space in which each node has a value that

represents the distance from the source node, changing the colour of the nodes

based on the distance from the source (seen as a square in Figure 3.2). Also

in this case, the simulator gives the opportunity to move the nodes around the

environment, and the distance from the source is updated in real-time.

Listing 3.2: Gradient code example�
1 context(LocalSensing,DistanceSensor)

2 fun Aggregate<Int>.gradientEntrypoint(): Double = gradient(sense("source"))

3

4 context(DistanceSensor)

5 fun Aggregate<Int>.gradient(source: Boolean): Double =

6 share(POSITIVE_INFINITY) {

7 val dist = distances()

8 when {

9 source -> 0.0

10 else -> (it + dist).min(POSITIVE_INFINITY)

11 }

12 }� �

Figure 3.2: Gradient simulation after some time ad after moving some nodes
including the root.

CHAPTER 3. VALIDATION 53



3.2. ALCHEMIST SIMULATIONS

Figure 3.3: The resultant simulation of the channel with obstacles.

Channel with Obstacles The third example is a program a bit more complex,

recreating a communication pathway (channel) within a distributed system where

data transmission is impeded or affected by various obstacles. These obstacles

could include network congestion, latency, limited bandwidth, or even physical

barriers in certain distributed computing environments. In the context of aggre-

gate computing, where computations are performed collectively by a network of

interconnected devices or nodes, such obstacles can significantly impact the effi-

ciency and effectiveness of communication and data exchange among the nodes.

From a source node to a target node, the goal is to find a minimum path that

avoids obstacles and is the most efficient in terms of communication letting the

information flow through the network (Listing 3.3).

As shown in Figure 3.3, the channel (in green) is gradually created from the

source (in yellow) towards the target (in blue), and the obstacles (red) influence

the trajectory of the channel, as expected.

54 CHAPTER 3. VALIDATION



3.2. ALCHEMIST SIMULATIONS

Listing 3.3: Channel with Obstacles code example�
1 context(LocalSensing, DistanceSensor)

2 fun Aggregate<Int>.channelWithObstacles(): Boolean =

3 if (sense("obstacle")) {

4 false

5 } else {

6 channel(sense("source"), sense("target"), channelWidth = 0.5)

7 }

8

9 context(DistanceSensor)

10 fun Aggregate<Int>.channel(source: Boolean, target: Boolean, channelWidth: Double): Boolean {

11 val sourceDist = gradient(source)

12 val targetDist = gradient(target)

13 val distBetween = distanceBetween(source, target)

14 return !((sourceDist + targetDist).isInfinite() && distBetween.isInfinite()) &&

15 sourceDist + targetDist <= distBetween + channelWidth

16 }

17

18 context(DistanceSensor)

19 fun Aggregate<Int>.distanceBetween(source: Boolean, target: Boolean): Double = broadcast(

source, gradient(target))

20

21 context(DistanceSensor)

22 fun Aggregate<Int>.broadcast(source: Boolean, value: Double): Double = gradientCast(source,

value) { it }

23

24 context(DistanceSensor)

25 fun Aggregate<Int>.gradientCast(source: Boolean, initial: Double, accumulate: (Double) ->

Double): Double =

26 share(POSITIVE_INFINITY to initial) { field ->

27 val dist = distances()

28 when {

29 source -> 0.0 to initial

30 else -> {

31 val resultField = dist.alignedMap(field) { distField, (currentDist, value) ->

32 distField + currentDist to accumulate(value)

33 }

34 resultField.fold(POSITIVE_INFINITY to POSITIVE_INFINITY) { acc, value ->

35 if (value.first < acc.first) value else acc

36 }

37 }

38 }

39 }.second� �

CHAPTER 3. VALIDATION 55



3.3. PERFORMANCE EVALUATION

3.3 Performance evaluation

To have a clear understanding of the performances of the new implementation, it

is necessary to compare it with the ScaFi and Protelis ’ incarnations.

It is important to note that the performance discussed evaluates the execution

speed of the language together with the relative incarnation. It is therefore possible

that the competitors may have more performant results with a better implemen-

tation of the incarnation. In more complex experiments, the real effort falls on the

language and the management of the fields, and not only on the incarnation.

The comparison is made by running the same simulations on each incarnation

and comparing the results. The simulations 2 are run on the same machine to

ensure that the comparison is fair, and that the differences are due to the imple-

mentation and not to the hardware.

The choice of scenarios for evaluating the performance of the new language

in aggregate computing was based on several factors, each addressing different

aspects of the language’s capabilities and potential use cases. Here’s a breakdown

of the scenarios and the reasons for their selection:

1. Simple state change, involves simulating the dynamic evolution of device

states over time intervals using the repeat construct. It was chosen to

evaluate the language’s efficiency in handling basic state changes, which are

fundamental operations in aggregate computing systems;

2. A counter of the neighbours, implemented using the neighbouring con-

struct, it allows for the effective calculation of spatial structures. This sce-

nario was chosen to evaluate the language’s ability to handle computations

influenced by the density of the network, which affects the number of values

present in a field and consequently the number of computations that a device

has to perform. Assessing the language’s performance in handling computa-

tions based on network density provides valuable insights into its efficiency

in dynamically changing environments.

3. Simple branching operations, included to evaluate the language’s perfor-

mance in handling conditional execution paths. Since branching can be

2https://github.com/angelacorte/collektive-benchmark

56 CHAPTER 3. VALIDATION

https://github.com/angelacorte/collektive-benchmark


3.3. PERFORMANCE EVALUATION

resource-intensive, this scenario helps assess the efficiency of the language

in managing multiple execution paths.

4. A gradient, which is a particular case of space-time variation implemented

using the share construct, to associate each device in the system with its

shortest distance to the nearest source. This algorithm is important because

it is a fundamental building block for many other algorithms;

5. A channel with obstacles, involving computing a path between two points

in a network, in this case a source and a target, avoiding obstacles and

adapting to changes in network topology. It was chosen to evaluate the

language’s ability to handle dynamic network conditions and robustly adapt

to changes, reflecting real-world scenarios where resilience and adaptability

are crucial.

Overall, these scenarios collectively provide a comprehensive assessment of the

new language’s performance in various aspects relevant to aggregate computing,

including state management, spatial computations, conditional branching, algo-

rithmic building blocks, and adaptability to dynamic environments.

The first type of test is not influenced by the network density, as each node

performs the operation on itself, independently of the number of neighbours, and

there is no exchange of information between the nodes. In the other types of tests,

the density of the network influences the computation, as the number of neighbours

of a node affects the number of values present in a field and consequently the

amount of computations that a device has to perform. Assessing the language’s

performance in handling computations based on network density provides valuable

insights into its efficiency in dynamically changing environments.

Benchmark set up To evaluate the performance of the new language, a set of

benchmarks has been designed to compare the performance of the new language

with the existing ones. The tests have been run with the same parameters in the

three different incarnations Collektive, Protelis, and ScaFi, within the Alchemist

simulator. Each pair test-incarnation has been run ten times. The simulations

have been performed on a network of medium density (around 30–40 neighbours

CHAPTER 3. VALIDATION 57



3.3. PERFORMANCE EVALUATION

per node), with a number of nodes equal to 200 and a communication radius of 7

for the first four types of tests, while for the channel test, the number of nodes has

been increased to 800 and the communication radius to 10, lowering the density

of the network to 10 neighbours per node. The termination condition of the

simulation has been set to 1000 simulated seconds.

The results collected evaluate the execution time of the simulations in millisec-

onds, and the average execution time of the ten runs has been calculated. The

results have been analysed and will be further discussed in this section.

Machine Specifications The results that will be presented have been obtained

by running the simulations on a machine with the following specifications:

• Processor: Intel(R) Core(TM) i9-14900KF;

• RAM: 64GB 4800mhz;

• OS: Linux Manjaro;

Additionally, other test runs have been made on a different machine to ensure

that the results are consistent across different hardware.

Field Evolution The first test has been implemented using the repeat con-

struct, the results of the comparison are shown in Figure 3.4.

This construct entails a straightforward iteration over its respective field, in-

crementing the field value with each iteration for every node within the network.

The repeat construct is used to manage the state of a system by performing state

updates or transformations iteratively. This can be particularly useful in simula-

tions, numerical computations, and real-time systems where state changes occur

over time. Notably, in Collektive, this construct operates independently of neigh-

bouring nodes, thereby ensuring enhanced performance by avoiding information

exchange with neighbours.

The program simply increments the value of the field at each iteration; there-

fore, the results highlight that the difference of performance may be in the imple-

mentation of the field management inside the construct, showing that Collektive

is faster than the other languages.

58 CHAPTER 3. VALIDATION



3.3. PERFORMANCE EVALUATION

Figure 3.4: Graph of the results for the field evolution benchmark, showing that
on average Collektive is 4.51 times faster than Protelis and 20.30 times faster than
ScaFi.

Neighbour Counter The neighbour counter has been implemented using the

neighbouringViaExchange construct, which is used to manage spatial structures

and perform computations based on the information exchanged between the neigh-

bours. The program is made in such a way to count the number of neighbours

each node has, communicating with their neighbours to exchange information and

increment the local value for each neighbour they have.

The network density influences this kind of operation, as the number node’s

neighbours affects the number of values present in a field and consequently the

number of computations that a device has to perform. This means that the per-

formances evaluated in this test are affected by the way the language manages the

fields and the messages received from the neighbours.

From the results (Figure 3.5), it can be noticed that the difference with Protelis

is minimal, while with ScaFi it is significant. This happens because Protelis, being

an interpreted language, has advantages in the execution of less complex programs.

Branching “Branching” happens when a node has to make different evaluations

based on a condition (as explained in Section 1.1.3). Comparison for this type of

CHAPTER 3. VALIDATION 59



3.3. PERFORMANCE EVALUATION

Figure 3.5: Graph of the results for the neighbour-counter benchmark, showing
that on average Collektive is 1.04 times faster than Protelis and 3.25 times faster
than ScaFi.

test is essential due to the observation that branching operations can be among the

most resource-intensive tasks in terms of execution time, given that they create

multiple subprograms and consequently multiple execution paths to be checked

and managed. In ScaFi, branching is handled in a distinct manner, where excep-

tions are thrown to perform checks on the function to call, while in Protelis and

Collektive, they follow a more conventional approach, aligning when a function is

called.

Listing 3.4: Branching code example�
1 fun Aggregate<Int>.branching() =

2 if (sense("source")) {

3 neighboringViaExchange(0).hood(0) { acc, _ -> acc + 1 }

4 } else {

5 0

6 }� �
As shown in Listing 3.4, the program is made in such a way that if a condition

is met, the node performs a simple neighbouring computation, that is the same as

the one in the neighbour counter-test, otherwise it returns a value.

60 CHAPTER 3. VALIDATION



3.3. PERFORMANCE EVALUATION

Figure 3.6: Graph of the results for the branching benchmark, showing that on
average Collektive is 3.08 times faster than Protelis and 12.45 times faster than
ScaFi.

The results depicted in Figure 3.6 illustrate the disparity in performance for

this type of operation, underscoring the benefits of adopting a more traditional

alignment approach, rather than the exception-based approach employed by ScaFi.

Note that, being the same implementation as the neighbour counter, the results

are influenced in the same way.

Gradient The gradient implemented with Collektive uses the share construct

(based on the exchange construct) to calculate the distance from a source node

and communicate it to the other nodes. For Collektive and Protelis, the appar-

ent implementation is the same, while for ScaFi is different. This is because in

ScaFi the gradient it is not implemented through the share construct, but it

combines rep and nbr to achieve the same result. Apparently the implementa-

tion for Collektive and Protelis can be the same, but the execution is different, as

Collektive leverage on the exchange construct, which manages the fields and the

message exchange in a more efficient way.

The results in Figure 3.7 show that even with an increase in the amount of

communication between nodes, Collektive does not lose performance compared to

CHAPTER 3. VALIDATION 61



3.3. PERFORMANCE EVALUATION

Figure 3.7: Graph of the results for the gradient benchmark, showing that on
average Collektive is 1.51 times faster than Protelis and 2.80 times faster than
ScaFi.

the other languages. This demonstrates how the management of the fields and the

message exchange are the strength of Collektive.

Channel with Obstacles Among all the tests, the channel with obstacles is the

most complex and the closest to a real-world scenario, because it simulates chal-

lenges encountered in actual deployments. It involves computing paths while con-

sidering obstacles, dynamically adapting to network changes, managing resources

efficiently, and ensuring reliability despite obstacles. This scenario closely mirrors

the complexities of real-world networks, making it a valuable test for evaluating

aggregate computing systems in practical situations.

The program is implemented as in Listing 3.3, so it calculates many times the

distances between nodes, using a bit more complex gradient implementation. This

means that the performance of this test is influenced by the same factors that

influence the gradient test.

The results in Figure 3.8 show that in complex programs, Protelis has a sig-

nificant disadvantage compared to Collektive, while in the other examples they

were closer. This is due to the fact that Protelis is an interpreted language and

62 CHAPTER 3. VALIDATION



3.3. PERFORMANCE EVALUATION

Figure 3.8: Graph of the results for the channel with obstacles benchmark, showing
that on average Collektive is 6.91 times faster than Protelis and 3.73 times faster
than ScaFi.

its execution of programs that need to go deeper in the execution tree is slower.

This test emphasises the strength of Collektive in managing fields and message

exchange, as the difference in performance is significant.

Changing the neighbourhood Performances may be related to the amount

of communication between nodes, meaning that the more communication between

nodes, the more time is spent in the execution of the program. For this reason,

the experiments have been repeated with different network densities to see if the

performance changes with the amount of communication, as the density increases,

the number of neighbours a node has increases. Tests have been performed with

low, medium, and high densities.

In the Figure 3.9, the speedup of the different incarnations with different net-

work densities on the different tests is shown. The speedup is calculated as the

ratio between the average execution time of the other incarnations and the av-

erage execution time of Collektive. The results show that Collektive, even with

an increase in the amount of communication between nodes, is still faster than

Protelis and ScaFi, with a significant difference in the most complex tests. This is

CHAPTER 3. VALIDATION 63



3.3. PERFORMANCE EVALUATION

a significant result, as it shows that the language is implemented in such way that

can easily handle the increasing of the fields’ size. This is a fundamental aspect,

as the language is designed to be used in real-world scenarios, where the network

density can change over time and can be high.

3 8 13

Simulation's linking listance
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
lle

kt
iv

e 
sp

ee
du

p

Scafi vs Collektive and Protelis vs Collektive in neighborCounter
incarnation

Scafi
Protelis

3 8 13

Simulation's linking listance
0.0

0.5

1.0

1.5

2.0

2.5

Co
lle

kt
iv

e 
sp

ee
du

p

Scafi vs Collektive and Protelis vs Collektive in gradient
incarnation

Scafi
Protelis

3 8 13

Simulation's linking listance
0

2

4

6

8

10

12

14

16

Co
lle

kt
iv

e 
sp

ee
du

p

Scafi vs Collektive and Protelis vs Collektive in branching
incarnation

Scafi
Protelis

3 8 13

Simulation's linking listance
0

1

2

3

4

5

6

Co
lle

kt
iv

e 
sp

ee
du

p

Scafi vs Collektive and Protelis vs Collektive in channelWithObstacles
incarnation

Scafi
Protelis

Figure 3.9: The speedup of the different incarnations with different network den-
sities on the different tests. The speedup is calculated as the ratio between the
average execution time of the other incarnations and the average execution time
of Collektive.

Conclusions Keeping in mind that the performance of the language may be in-

fluenced by the implementation of the incarnation, the results show that Collektive

actually is faster than ScaFi and Protelis overall, with a significant difference in

the most complex programs, emphasizing the strength of Collektive in managing

fields and message exchanges.

For the easier tests, the difference is minimal between Collektive and Protelis,

while it is significant between Collektive and ScaFi. With the growth in complexity

of the tests, and in the density of the network, the difference between Collektive

and the other languages becomes higher, showing the strength of the combination

of Collektive’s DSL and its incarnation.

64 CHAPTER 3. VALIDATION



Chapter 4

Conclusions

The primary objective of this thesis was to extend Collektive – a DSL for aggregate

computing – by applying the principles of XC to enhance usability and offer a more

expressive and flexible language for defining complex systems. For this purpose,

it was necessary to explore and deepen the concepts of aggregate computing and

XC, in such a way as to identify a solution able to guarantee the correctness of

the language and its features, maintaining a good result in terms of performance.

First, an expanded version of the DSL was implemented, changing the syntax

and the semantics of the language applying the principles of XC. By changing the

semantics, it has been necessary to expand the alignment mechanism, to ensure the

correct functioning of the language and its features. This was done maintaining the

goal of having a multiplatform implementation with KMP, allowing the execution

of the aggregate programs on different platforms.

Furthermore, an implementation of an incarnation for the Alchemist simula-

tor has been provided, enabling the execution of aggregate programs, using the

Collektive DSL, within its environment.

Finally, benchmarks have been implemented to compare the actual state of the

art for aggregate computing – ScaFi and Protelis – and Collektive. The results

showed that the combination of the DSL and incarnation developed in this thesis

has an overall good performance.

CHAPTER 4. CONCLUSIONS 65



4.1. FUTURE WORKS

4.1 Future Works

In the near future, the development of the DSL will continue, as it has been possible

to win a research grant from the GARR organization. It will therefore be possible

to further deepen the research and develop new features for the language.

As future works have been identified the followings:

• Further optimisations of the DSL: the DSL will be further optimised to

improve its performance;

• Alignment optimisation: to improve performances and security looking

forward to the execution of the aggregate program on different platforms and

environments;

• Development of a standard library: to provide modules and functionali-

ties to simplify the writing of the aggregate program. Such as self-stabilizing

functions that could encompass a range of strategies commonly employed to

attain adaptable and resilient decentralised behaviours; as the ones proposed

by the Protelis-Lang library [FPBV17], a Protelis ’ API for resilient system

design.

• Creation of demonstrations: to illustrate the possibility of running the

same aggregate program on different platforms simultaneously, including

server JVM, Android devices, iOS, and web browsers.

66 CHAPTER 4. CONCLUSIONS



Bibliography

[ABD+19] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini,

and Mirko Viroli. The share operator for field-based coordination.

In Hanne Riis Nielson and Emilio Tuosto, editors, Coordination

Models and Languages, pages 54–71, Cham, 2019. Springer Inter-

national Publishing.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Vi-

roli. Space-time universality of field calculus. In Giovanna

Di Marzo Serugendo and Michele Loreti, editors, Coordination Mod-

els and Languages, pages 1–20, Cham, 2018. Springer International

Publishing.

[ACM+21] Gianluca Aguzzi, Roberto Casadei, Niccolò Maltoni, Danilo Pianini,

and Mirko Viroli. Scafi-web: A web-based application for field-

based coordination programming. In Ferruccio Damiani and Ornela

Dardha, editors, Coordination Models and Languages, pages 285–

299, Cham, 2021. Springer International Publishing.

[ACPV22] Gianluca Aguzzi, Roberto Casadei, Danilo Pianini, and Mirko Vi-

roli. Dynamic decentralization domains for the internet of things.

IEEE Internet Computing, 26(6):16–23, 2022.

[ACV22] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. Addressing

collective computations efficiency: Towards a platform-level rein-

forcement learning approach. In 2022 IEEE International Confer-

ence on Autonomic Computing and Self-Organizing Systems (AC-

SOS), pages 11–20, 2022.

BIBLIOGRAPHY 67



BIBLIOGRAPHY

[ACV24] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. Macroswarm:

A field-based compositional framework for swarm programming,

2024.

[Aud20] Giorgio Audrito. Fcpp: an efficient and extensible field calculus

framework. In 2020 IEEE International Conference on Autonomic

Computing and Self-Organizing Systems (ACSOS), pages 153–159,

2020.

[AWW18] Hany F. Atlam, Robert J. Walters, and Gary B. Wills. Fog comput-

ing and the internet of things: A review. Big Data and Cognitive

Computing, 2(2), 2018.

[BPP+14] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and

Marco Dorigo. Self-organized task allocation to sequentially inter-

dependent tasks in swarm robotics. Autonomous Agents and Multi-

Agent Systems, 28(1):101–125, 2014.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate program-

ming for the internet of things. Computer, 48(9):22–30, 2015.

[BV16] Jacob Beal and Mirko Viroli. Aggregate Programming: From Foun-

dations to Applications, pages 233–260. Springer International Pub-

lishing, Cham, 2016.

[CAPV23] Roberto Casadei, Gianluca Aguzzi, Danilo Pianini, and Mirko Vi-

roli. Programming (and learning) self-adaptive e self-organising be-

haviour with scafi: for swarms, edge-cloud ecosystems, and more.

In 2023 IEEE International Conference on Autonomic Computing

and Self-Organizing Systems Companion (ACSOS-C), pages 33–34,

2023.

[Cas23] Roberto Casadei. Macroprogramming: Concepts, state of the art,

and opportunities of macroscopic behaviour modelling. ACM Com-

put. Surv., 55(13s), jul 2023.

68 BIBLIOGRAPHY



BIBLIOGRAPHY

[CBP15] Shane S. Clark, Jacob Beal, and Partha Pal. Distributed recovery

for enterprise services. In 2015 IEEE 9th International Conference

on Self-Adaptive and Self-Organizing Systems, pages 111–120, 2015.

[CFP+19] Roberto Casadei, Giancarlo Fortino, Danilo Pianini, Wilma Russo,

Claudio Savaglio, and Mirko Viroli. Modelling and simulation of

opportunistic iot services with aggregate computing. Future Gen-

eration Computer Systems, 91:252–262, 2019.

[CLZ00] G. Cabri, L. Leonardi, and F. Zambonelli. Mars: a programmable

coordination architecture for mobile agents. IEEE Internet Com-

puting, 4(4):26–35, 2000.

[CPP+20] Roberto Casadei, Danilo Pianini, Andrea Placuzzi, Mirko Viroli,

and Danny Weyns. Pulverization in cyber-physical systems: Engi-

neering the self-organizing logic separated from deployment. Future

Internet, 12(11), 2020.

[CV19] Roberto Casadei and Mirko Viroli. Coordinating computation at

the edge: a decentralized, self-organizing, spatial approach. In 2019

Fourth International Conference on Fog and Mobile Edge Comput-

ing (FMEC), pages 60–67, 2019.

[CVAD20] Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio

Damiani. Fscafi : A core calculus for collective adaptive systems

programming. In Tiziana Margaria and Bernhard Steffen, edi-

tors, Leveraging Applications of Formal Methods, Verification and

Validation: Engineering Principles, pages 344–360, Cham, 2020.

Springer International Publishing.

[CVAP22] Roberto Casadei, Mirko Viroli, Gianluca Aguzzi, and Danilo Pi-

anini. Scafi: A scala dsl and toolkit for aggregate programming.

SoftwareX, 20:101248, 2022.

[DPV13] S Montagna D Pianini and M Viroli. Chemical-oriented simulation

of computational systems with alchemist. Journal of Simulation,

7(3):202–215, 2013.

BIBLIOGRAPHY 69



BIBLIOGRAPHY

[Fer15] Alois Ferscha. Collective adaptive systems. In Adjunct Proceed-

ings of the 2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing and Proceedings of the 2015 ACM Inter-

national Symposium on Wearable Computers, UbiComp/ISWC’15

Adjunct, page 893–895, New York, NY, USA, 2015. Association for

Computing Machinery.

[FPBV17] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. To-

wards a foundational api for resilient distributed systems design.

In 2017 IEEE 2nd International Workshops on Foundations and

Applications of Self* Systems (FAS*W), pages 27–32, 2017.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans.

Program. Lang. Syst., 7(1):80–112, jan 1985.

[JMB05] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-

based aggregation in large dynamic networks. ACM Trans. Comput.

Syst., 23(3):219–252, aug 2005.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and

mobile computing applications: The tota approach. ACM Trans.

Softw. Eng. Methodol., 18(4), jul 2009.

[Pia21] Danilo Pianini. Simulation of large scale computational ecosystems

with alchemist: A tutorial. In Miguel Matos and Fab́ıola Greve,

editors, Distributed Applications and Interoperable Systems, pages

145–161, Cham, 2021. Springer International Publishing.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical

aggregate programming. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing, SAC ’15, page 1846–1853, 2015.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and

Danilo Pianini. Engineering resilient collective adaptive systems by

self-stabilisation. ACM Trans. Model. Comput. Simul., 28(2), mar

2018.

70 BIBLIOGRAPHY



BIBLIOGRAPHY

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito,

Roberto Casadei, and Danilo Pianini. From distributed coordina-

tion to field calculus and aggregate computing. Journal of Logical

and Algebraic Methods in Programming, 109:100486, 2019.

[VDPBMS05] H. Van Dyke Parunak, S.A. Brueckner, R. Matthews, and J. Sauter.

Pheromone learning for self-organizing agents. IEEE Transactions

on Systems, Man, and Cybernetics - Part A: Systems and Humans,

35(3):316–326, 2005.

[ZCF+11] Franco Zambonelli, Gabriella Castelli, Laura Ferrari, Marco Mamei,

Alberto Rosi, Giovanna Di Marzo, Matteo Risoldi, Akla-Esso

Tchao, Simon Dobson, Graeme Stevenson, Juan Ye, Elena Nar-

dini, Andrea Omicini, Sara Montagna, Mirko Viroli, Alois Ferscha,

Sascha Maschek, and Bernhard Wally. Self-aware pervasive service

ecosystems. Procedia Computer Science, 7:197–199, 2011. Pro-

ceedings of the 2nd European Future Technologies Conference and

Exhibition 2011 (FET 11).

BIBLIOGRAPHY 71



BIBLIOGRAPHY

72 BIBLIOGRAPHY



Acknowledgements

Benvenuti nell’unica sezione che molti di voi vorranno leggere, o per lo meno, in

quella più facile da capire. S̀ı, non c’è di che, questa parte è in italiano. Parto

chiedendo scudo perchè non sono molto sentimentale e faccio un po’ schifo a scri-

vere queste cose, figuratevi se avessi scritto in inglese pure sta parte. Ma, in ogni

caso, ci provo.

Vorrei innanzitutto ringraziare il mio relatore, il Prof. Danilo Pianini, per

avermi dato l’opportunità di lavorare a questo progetto e di unirmi al suo gruppo

di ricerca. Un grande grazie anche a Nico (aka dottor correlatore), che mi ha

sOpportata e aiutata durante tutto il percorso di tesi.

Scrivere queste tre righe è stato veramente impegnativo. Ma comunque sia, ci

tengo a ringraziare tutti i nuovi amichetti conosciuti durante quest’esperienza, dal

Lab4.0 con Marti, Nico, Ange (il gioco), Magnus, Ruslan, Giovanni2, al PsLab con

Gianlu, Dom e Samu, a tutti quelli di “Disagio in 4.0++”. Grazie anche per tutte

le risate fatte allo Shtop e alle varie serate assieme.

Grazie anche alle Ragatte e agli amiconi di una vita di Riolo: Arlessia, Smeo,

Bananna, Sarabb, Diego, Rava, Fronz, Cri, Dave, Maicolle, Pulti e Santa; perdo-

nate la mia trasformazione fantasma in questi ultimi mesi, rimedieremo asap.

Non ringrazio gli “Angeli” (*’s Angels) perchè sono loro che devono ringraziare

me per la mia presenza nella loro vita. Dai scherzo (ma se volete non scherzo),

grazie per i pranzi e le boiate (e le collab nei progetti) a Leo, Angelo, Spaolo,

Fosco, Eddie, Davide e Filo. Prego per gli stickers e per i photoshoppini, è stato

un piacere.

Grazie ai miei amiconi del Quesito scientifico di importanza fondante per la

compagnia, le sessioni di confessionale, motivazionali e di sclero.

Onorevol mention anche a tutti gli amici conosciuti durante gli anni dell’uni

BIBLIOGRAPHY 73



BIBLIOGRAPHY

da inform-erda a Notice me [...], e tutti gli altri, siete tanti e se vi nominassi tutti

questa tesi diventerebbe un libro. Altra onorevol mention a tutti i miei amiconi

cavallari del Delta e non.

Grazie a chi c’è sempre stato e a chi è stato solo di passaggio, siete stati tutti

importanti.

Ultimi ma non per importanza, ringrazio tutta la mia famiglia, che mi ha

sempre supportata e lasciata libera di scegliere il mio percorso con fiducia.

So che alcuni di voi si aspettavano qualche battuta “non convenzionale”, ma

penso sia stato più faticoso scrivere questi ringraziamenti che la tesi stessa (sono

in burnout totale scusate). Andate in pace.

74 BIBLIOGRAPHY


	Abstract
	Introduction
	Context
	Computational Fields
	Aggregate Computing
	XC
	Collektive

	Motivations
	Heterogeneity limitations
	Goal

	State of Art
	ScaFi
	Protelis
	FCPP


	Contributions
	Collektive
	DSL
	XC in Collektive
	Messages
	Network

	Plugin Extensions
	Technologies
	Implementation
	Fields
	Collektive entrypoint
	Yielding Support
	Aggregate Context
	Aggregate Operators

	Alchemist Incarnation

	Validation
	Tests
	Continuous Integration and Deployment

	Alchemist Simulations
	Performance evaluation

	Conclusions
	Future Works
	
	Bibliography




