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Abstract: Postexercise cold water immersion has been advocated to

athletes as a means of accelerating recovery and improving perform-

ance. Given the effects of cold water immersion on blood flow,

evaluating in vivo changes in tissue oxygenation during cold water

immersion may help further our understanding of this recovery

modality. This study aimed to investigate the effects of cold water

immersion on muscle oxygenation and performance during repeated

bouts of fatiguing exercise in a group of healthy young adults.

Twenty healthy subjects performed 2 fatiguing bouts of maximal

dynamic knee extension and flexion contractions both concentrically on

an isokinetic dynamometer with a 10-min recovery period in between.

Subjects were randomly assigned to either a cold water immersion

(treatment) or passive recovery (control) group. Changes in muscle

oxygenation were monitored continuously using near-infrared spec-

troscopy. Muscle performance was measured with isokinetic dynamo-

metry during each fatiguing bout. Skin temperature, heart rate, blood

pressure, and muscle soreness ratings were also assessed. Repeated

measures ANOVA analysis was used to evaluate treatment effects.

The treatment group had a significantly lower mean heart rate and

lower skin temperature compared to the control group (P< 0.05). Cold

water immersion attenuated a reduction in tissue oxygenation in the

second fatiguing bout by 4% when compared with control. Muscle

soreness was rated lower 1 day post-testing (P< 0.05). However, cold

water immersion had no significant effect on muscle performance in

subsequent exercise.

As the results show that cold water immersion attenuated decreased

tissue oxygenation in subsequent exercise performance, the metabolic

response to exercise after cold water immersion is worthy of further
aurice Hon, MSc ng, BSc,
, BSc, and Ella W. Yeung, PhD
HHb = deoxyhaemoglobin, TOI = tissue oxygenation index.

INTRODUCTION

V arious passive and active recovery techniques have been
developed to reduce fatigue and enhance performance in

athletes. The use of cold water immersion in temperatures
<158C is an increasingly popular recovery strategy. It has been
proposed that the hydrostatic pressure exerted on the body when
immersed in cold water causes intracellular fluid shifts, redu-
cing inflammation and edema, and thereby preserving muscle
function and maintaining muscle performance.1–3 In particular,
it is well documented that eccentric-biased exercises are associ-
ated with muscle damage, swelling, stiffness, and pain.4 Team
sports such as rugby, football have a high component of high-
intensity eccentric muscle contractions, which lead to muscle
damage. Thus, cold water immersion may be considered as a
modality to reduce inflammatory response as well as decrease
associated swelling and pain.

There is an emerging body of evidence supporting the use
of cold water immersion between repeated bouts of high-
intensity exercise occurring over several days. In a study
investigating the effects of postmatch cold water immersion
during a 4-day soccer tournament, cold water immersion atte-
nuated decrements in running performance and moderated heart
rate during a subsequent match.5 In another study on basketball
players, postmatch cold water immersion improved jump per-
formance 24 h after the match.6 In both studies, cold water
immersion led to lower perceptions of overall fatigue and leg
soreness the next day compared to other recovery interventions.
Additionally, cold water immersion immediately after a high-
intensity training session results in better next-day run perform-
ance when compared with delayed cold water immersion
performed 3 h postexercise.7 In contrast, other studies show
no obvious beneficial effect of cold water immersion on
repeated performance.8,9

Cold water immersion causes peripheral vasoconstriction
that results in a central pooling of blood, followed by peripheral
vasodilation immediately after emerging from the cold
water.10,11 This mechanism may improve the rate at which
muscles become reoxygenated. Near-infrared spectroscopy is a
noninvasive and direct method to study local tissue oxygenation
and hemodynamic by monitoring changes in oxy- and deox-
yhemoglobin. This technique can determine local information
about muscle oxygen consumption and blood flow. Several
pecifically at the effects of cold water
xygenation.12–15 Tseng et al12 reported

sion elicited higher muscle oxygenation
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during immersion, whereas Ihsan et al13 extended the investi-
gation by examining the effect of cold water immersion on
muscle oxygenation and blood flow postexercise. More
recently, Roberts et al14 reported that muscle hemodynamics
was reduced during the hour after cold water immersion fol-
lowing resistance exercise. However, these studies did not
examine the effects of cold water immersion on subsequent
exercise. More recently, Stanley and colleagues15 reported that
cold water immersion following high-intensity interval training
reduced oxygen delivery and utilization by muscle, and this
response increased anaerobic metabolism during subsequent
high-intensity exercise. Many team sports (such as soccer, field
hockey, and rugby) use cold water immersion during halftime of
the competition as a strategy to enhance second-half perform-
ance16–18; it is therefore important to evaluate the impact of
cold water immersion on muscle oxygenation during sub-
sequent exercise performance. The aim of the present study
was to investigate the effects of cold water immersion compared

Yeung et al
to passive recovery on local muscle oxygenation and muscle
performance in a subsequent bout of resistance exercise on the
same day.

FIGURE 1. Subject selection and schematic flow diagram of the exp
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MATERIALS AND METHODS

Subjects
Twenty subjects (10 M:10F, 22.0� 0.52 years) were

recruited for the study (Figure 1). The study was approved
by the Human Ethics Committee of the Hong Kong Polytechnic
University (HSEARS20120716001) and complied with the
Declaration of Helsinki. All subjects gave their written
informed consent before participation. Subjects were excluded
from the study if they were unable to perform knee exercise
pain-free, had contraindications to the use of cold therapy, or
had adipose tissue thickness of >6 mm at the position of near-
infrared spectroscopy probe placement.19

Sample Size
Sample size calculations were based on near-infrared

spectroscopy-derived data from a previous cold water immer-
sion study.13 The mean percentage difference during cold water
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immersion compared with control for total hemoglobin was
20� 12% (mean�SD). Power analysis for independent
samples t test was used to determine the sample size. Assuming

erimental protocol.
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a type I error of 0.05 and power of 0.80, 7 subjects were needed
to show statistically significant differences in tissue oxygen-
ation between intervention and control (G�Power 3.1.9 soft-
ware). Ten subjects per group were recruited with consideration
of dropouts.

Randomization
Subjects were randomly allocated to either a passive

recovery (control, n¼ 10) or cold water immersion (treatment,
n¼ 10) group based on a computer-generated block random-
ization code. This method of randomization was used to ensure
that an equal number of subjects were allocated to each group.
Each subject was asked to choose the date/session of the testing
schedule, which would then determine the group assignment.
The subjects were blinded to the intervention when selecting the
testing schedule. There was no gender preference for the
allocation. The investigators had no influence on the group
allocation. The nature of the exercise protocol and intervention
made it impossible to conceal group allocation to the subjects or
the investigators.

Experimental Procedures
The experimental protocol is schematically illustrated in

Figure 1.

Fatiguing Protocols
The fatiguing protocols were performed using an isoki-

netic dynamometer (version 2.04, Cybex Humac Norm, Henly
Healthcare). The subject was comfortably seated with the hip
joint at �858 flexion. The distal shin pad of the dynamometer
was attached 2 to 3 cm proximal to the lateral malleolus by a
strap. Straps were applied across the chest, pelvis, and mid-
thigh to minimize extra body movements during the fatigue
protocol. The subject was asked to position his/her arms across
the chest with each hand clasping the opposite shoulder during
testing. To become familiarized with the testing procedure, the
subject performed 5 sub-maximal knee extension contractions
at an angular velocity of 60o s�1. After a 1 min rest, the first
fatigue protocol was performed (Fatigue 1). The subject was
asked to perform maximal knee extension and flexion contrac-
tions in the concentric-concentric mode. Fatigue was deter-
mined as the point at which the last 10 contractions decreased
<60% of peak torque. Peak torque is defined as the highest
torque obtained from the first 10 contractions at baseline.
Consistent verbal encouragements were given to the subjects
throughout the test. Each subject repeated a second fatigue
protocol (Fatigue 2) within 1 min following either cold water
immersion or passive recovery.

Recovery Interventions
At the end of the first fatigue protocol, subjects were seated

for 3 min for near-infrared spectroscopy recording before the
intervention. The intervention for both groups was 10 min
duration. For the treatment group, subjects were rested in a
semireclined position in a cold water pool (12–158C) with both
legs extended and water up to the level of the iliac crest. The
water temperature was monitored continuously with a mercury-
in-glass thermometer and adjusted by addition of crushed ice.
Subjects in the control group rested on a mat in the same posture

Medicine � Volume 95, Number 1, January 2016
as the treatment group. Physiological data and near-infrared
spectroscopy data were collected 5 to 7 min into the interven-
tion. For the intervention group, the leg for probe placement was

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.
taken out of water for muscle oxygenation measurements. All
testing and recovery sessions were performed in a temperature-
controlled laboratory (258C, relative humidity 75%).

Outcomes
The primary outcomes were physiological responses,

muscle oxygenation, and muscle performance. The secondary
outcome was muscle soreness ratings.

Physiological Responses
Blood pressure, heart rate, and skin temperature were

measured: (i) at rest (Baseline 1); (ii) after the first fatigue
protocol (Fatigue 1); (iii) at 5 to 7 min into intervention of either
passive recovery or cold water immersion (intervention);
(iv) before the second fatigue protocol (Baseline 2); and (v)
after the second fatigue protocol (Fatigue 2). Blood pressure and
heart rate were measured with an automatic device (Press-Mate
BP-8800, Colin Electronics Co. Ltd, San Antonio, TX ). A
copper temperature sensor was used (Jockey Club Rehabilita-
tion Engineering Centre, Hong Kong) to monitor skin surface
temperature.

Muscle Oxygenation
Muscle oxygenation was assessed with ISS Imagent (ISS,

Champaign, IL) using a frequency-domain near-infrared spec-
troscopy technique with 2 wavelengths of near-infrared light
(690 and 830 nm) at a sampling rate of 25 Hz. A multidistance
optical probe, configured with 1 optical detector and 8 optical
source fibers, was attached to muscle. The fibers were posi-
tioned on the probe such that there are 4 source and detector
separation distances (2.0, 2.5, 3.0, 3.5 cm) for each wavelength.
Before the testing procedure, skinfold thickness at the site of
near-infrared spectroscopy optode placement was measured by
a skinfold calliper (Harpenden, Baty International, West Sussex,
UK) to determine adipose tissue thickness, defined as skinfold
thickness/2.19 The probe was positioned on the belly of the right
vastus lateralis muscle (�10 cm from the centre of the patella
and 258 lateral to the midline of the thigh).20 Pen-marks were
made around the margins of the probe to enable reproduction of
the placement position in the subsequent procedure. The probe
was secured with tape and black elastic bandages were wrapped
around the leg to block background light.

Before data acquisition, the system was calibrated with a
factory-manufactured calibration block with known optical
properties (absorption and scattering coefficients). Changes
in oxyhemoglobin (HbO), deoxyhemoglobin (HHb), and total
hemoglobin (Hbtotal) concentration in the muscle were mon-
itored continuously through the testing procedure. The tissue
oxygenation index (TOI¼ (HbO/Hbtotal)� 100) was calculated
based on these data.21 All signals were recorded and stored for
subsequent analysis. The near-infrared spectroscopy derived
data were time-aligned and averaged over a 2-min period to
obtain a single response for each subject. Data was extracted
(i) at baseline (Baseline 1); (ii) at the end of first fatigue protocol
(Fatigue 1); (iii) during midintervention period (intervention);
(iv) before the second fatigue protocol (Baseline 2); and (vi) at
the end of second fatigue protocol (Fatigue 2). Values are
presented as mean change from the baseline value (DHbOmean,
DHHbmean, DHbtotal, and DTOI). To examine the rate of recovery
of muscle oxygenation after the cessation of exercise, half-

Cold Water Immersion and Fatigue
recovery time was calculated by extracting the first 2 min of
HbO data immediately after the fatigue protocol and fitting it to
a mono-exponential curve. This variable is defined as the time
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beats min–1, P< 0.05; d¼ –0.28). The cold water immersion
maneuver reduced skin surface temperature by� 4 8C (control:
28.2� 0.318C; treatment: 24.3� 0.328C; d¼ 3.91) before the
required for half recovery of HbO from maximal deoxygenation
to maximal reoxygenation.22

Muscle Performance
Muscle performance during the fatiguing protocol was

evaluated by peak torque adjusted to body weight (peak tor-
que(BW)), fatigue rate, and total work done. Fatigue rate,
expressed as a percentage, was defined as the difference
between the mean force production of the first 10 and last 10
contractions divided by the mean of the first 10 contractions.
Total work, quantified as the area under the torque curve� an-
angular displacement over the contraction period, was recorded
and analyzed by the custom script software (LabView version
8.6, National Instruments Corporation, Austin) and data acqui-
sition device (NI-USB6211, National Instruments Corporation,
TX) at a sampling rate of 1000 Hz.

Muscle Soreness Ratings
Self-ratings of muscle soreness were evaluated using a 10-

point numerical rating scale with ‘‘0’’ as no soreness and ‘‘10’’
as extremely intense soreness. The ratings were taken after each
fatigue protocol, and on the following day through follow-up
phone calls.

Statistical Analysis
Subjects’ baseline characteristics were analyzed using

independent samples t tests. Comparisons for the dependent
variables between and within groups were analyzed using 2-way
repeated ANOVA. Post-hoc Bonferonni correction analyses
were used to compare pairs of means. Where appropriate,
Cohen’s d effect size was calculated to quantify differences
between groups. Data was analyzed using the Graphpad Prism
software (version 5.0, GraphPad, La Jolla, CA). Values are
presented as mean� standard error (SE). Statistical significance
was set at P< 0.05.

RESULTS

Baseline Characteristics
Table 1 shows the characteristics of the subjects. The 2

groups did not differ at baseline. None of the subjects reported
any adverse reactions or side effects within 48 h after testing.

Physiological Responses
Both fatiguing protocols resulted in a significantly higher

systolic (P< 0.01) and diastolic blood pressure (P< 0.01), but
there was no significant difference between groups. The heart

Yeung et al
rate was significantly changed during fatiguing exercise
(P< 0.01). Post-hoc analysis revealed that cold water immer-
sion led to a lower heart rate (88.80� 5.52 beats min–1) after the

TABLE 1. Descriptive Characteristics of the Subjects

Characteristics Control Treatment P

Subjects n¼ 10 (5M:5F) n¼ 10 (5M:5F) �
Age, y 21.6� 0.5 22.4� 0.9 0.45

Weight, kg 54.5� 2.4 57.9� 3.0 0.39

Height, cm 163.8� 2.6 167.2� 2.9 0.39

Body mass index, kg m–2 20.3� 0.5 20.8� 0.6 0.53

Adipose tissue thickness, mm 4.8� 0.4 4.5� 0.5 0.65

4 | www.md-journal.com
second fatigue protocol than passive recovery (105.20� 5.96
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FIGURE 2. Changes in (A) blood pressure, (B) heart rate, and
(C) skin temperature before and after the first fatigue protocol, in
the middle of intervention, and before and after the second
fatigue protocol. Asterisks (

�
) indicates significant differences

between control (passive recovery) and treatment (cold water
immersion) groups. Values are mean�SE. SE¼ standard error.

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.



second fatigue protocol (ie Baseline 2) and skin temperature
remained significantly lower after the second fatigue protocol
when compared to control treatment (P< 0.01; d¼ 2.58).
Changes in blood pressure, heart rate, and skin temperature
over stages of the experiment are shown in Figure 2.

Muscle Oxygenation
The mean changes in DTOI, DHbOmean, and DHHbmean at

the end of the 2 fatiguing protocols normalized to its corre-
sponding baseline. There was a significant change over time for
DTOI, DHbOmean, and DHHbmean (P< 0.01 for all, Figure 3). In
both groups, DTOI and DHbOmean significantly decreased
during the first fatigue protocol, and this was accompanied
by a rise in DHHbmean. However the decrease in DTOI (control:
73.1� 3.07%; treatment: 83.5� 2.91%, P< 0.05; d¼ –1.11)
and DHbO (control: 73.9� 4.77%; treatment: 87.6

Medicine � Volume 95, Number 1, January 2016
mean

� 4.84%; P< 0.05; d¼ –0.90) during the second fatigue pro-
tocol was significantly attenuated following cold water immer-
sion intervention reflecting greater reperfusion and an increase

FIGURE 3. Mean changes in (A) tissue oxygenation index (DTOI
(DHHbmean) during the first and second fatigue protocols compar
>2 min before the onset of each fatigue protocol. Representative
fatigue protocol 2 (Fatigue 2) in 1 subject from the control group a
the monoexponential model fits of reoxygenation recovery. Asterisk (
immersion) and control (passive recovery) groups. Values are mean�

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.
in oxygen delivery to the muscle. There was a trend for lower
muscle deoxygenation (as reflected by DHHbmean) in the second
bout of exercise after cold water immersion, but it did not reach
statistical significance (control: 167� 11.4%; treatment:
142� 6.42%; P¼ 0.07; d¼ 0.89). Though the half-recovery
time for HbO was not significantly different between the 2
groups, the cold water immersion group also showed a trend of
improvement (P¼ 0.07; d¼ 0.61) in reoxygenation recovery
after the second fatigue protocol (control: Fatigue 1:
36.5� 5.73 s, Fatigue 2: 35.8� 4.97 s; intervention: Fatigue 1:
36.7� 6.20 s, Fatigue 2: 27.9� 3.77 s). Figure 3D shows the raw
tracings of HbO for the first 2 min of recovery following fatigue
protocol 1 and 2.

Force
No significant interaction effect between groups (cold

Cold Water Immersion and Fatigue
water immersion and passive recovery) and conditions (Fatigue
1 and Fatigue 2) was found for peak torque(BW) (P¼ 0.81), work
done (P¼ 0.37) and fatigue rate (P¼ 0.54). There was no

), (B) oxyhemoglobin (DHbOmean), and (C) deoxyhemoglobin
ed with baseline. Baseline was determined as the mean value
tracings (D) of the first 2 min of HbO data immediately after

nd a subject from the treatment group. The solid lines represent�
) indicates significant differences between treatment (cold water
SE. a.u.¼ arbitrary units, SE¼ standard error.
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significant main effects between groups for peak torque(BW)

(P¼ 0.96), work done (P¼ 0.68), and fatigue rate (P¼ 0.98)
(Figure 4).

Muscle Soreness Rating
Muscle soreness was significantly increased after each

fatigue protocol (P< 0.01). The treatment group had a lower

Yeung et al
muscle soreness rating compared to the control group 1 day

FIGURE 4. Changes in (A) peak torque adjusted by body weight,
post-testing (control: 3.10� 0.64; treatment: 2.20� 0.64,
P< 0.05; d¼ 0.44).

DISCUSSION
The aim of this study was to investigate the effects of

cold water immersion as compared to passive recovery on
physiological measures, muscle oxygenation, force pro-
duction, and muscle soreness in 2 subsequent bouts of exer-
cise on the same day. We showed a decrease in heart rate and
skin temperature, and an increase in muscle oxygenation in
the cold water immersion group. Cold water immersion also
decreased the perception of muscle soreness the day following
exercise. However, there was no significant effect on muscle
performance.

We observed a significant decrease in heart rate and skin
temperature after cold water immersion as reported in other
studies.11,23,24 It has been suggested that cold water immersion
leads to cutaneous vasoconstriction, resulting in a decrease in
peripheral blood flow. This redistribution of blood from the
periphery to the core augments venous return and increases
stroke volume. The net effect of these changes is to enhance
blood and oxygen delivery to working muscles, and possibly to
enhance exercise performance.1,25 However, this explanation
assumes that muscle blood flow is the main limiting factor
during exercise.

We observed a decrease in HbO concomitant with an
increase in HHb at the end of the fatigue protocol in both
groups. In addition, the TOI was significantly decreased. TOI
primarily reflects the dynamic balance between oxygen supply
and demand in muscle. These responses reflect tissue extraction
of oxygen to meet the increased metabolic demands during
exercise.13,26

Several studies have used near-infrared spectroscopy to
examine muscle oxygenation and hemodynamics after cold
water immersion.13–15 Using a single-leg cold water immer-
sion design with near-infrared spectroscopy-derived data,
Ihsan et al13 reported a decrease in Hbtotal (�20%) and an
increase in TOI (� 3%) during cold water immersion. Here we
have extended those findings to show that cold water immer-
sion attenuates the reduction in HbO and TOI at the end of the
subsequent fatigue bout. Specifically, the cold water immer-
sion group showed an attenuation of TOI of� 4% in the second
fatiguing protocol compared with the first fatigue bout, indi-
cating a possible increase in muscle oxygen availability and
enhancement of oxidative capacity after cold water immersion.
In contrast, Stanley et al15 showed a trend toward reduced
muscle blood flow in a subsequent high-intensity interval
cycling exercise. This is probably due to differences in the
fatigue protocols that may impose different metabolic
demands. Half recovery time measured by near-infrared spec-
troscopy is an interesting parameter for examining postexer-

cise muscle reoxygenation kinetics.22,27,28 This variable
includes recovery of both vascular and muscle oxygen desa-
turation. We noted a trend toward quicker recovery with cold

6 | www.md-journal.com
water immersion intervention post-fatigue, but the difference

(B) work done, and (C) fatigue rate between the 2 fatigue pro-
tocols. Values are mean� SE. SE¼ standard error.
was insignificant. In a similar experimental setup, Roberts and
colleagues14 showed that cold water immersion reduced rest-
ing muscle blood volume after unilateral knee extension

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.



exercise. However reoxygenation recovery time was not sig-
nificantly different from the pre-exercise baseline at 5, 20,
and 40 min postimmersion when subjects performed a single
bout of maximal isometric knee extension. Whether half-
recovery time is dependent on exercise intensity requires
further investigation.

Although we observed effects of cold water immersion on
heart rate, skin temperature, and muscle oxygenation, the effect
was not reflected in muscle performance. Studies that examine
the effect of cold water immersion on endurance exercises (up
to 40 min) show favorable results,29 whereas studies on inter-
mittent or short duration exercise are less consistent.26,30–32

Furthermore, the beneficial effect seems to be less obvious in
local muscular fatigue protocols.33,34 The perception of muscle
soreness was significantly lower in our cold water immersion
group 24 h postfatiguing exercise. This finding supports pre-
viously reports that cold water immersion improves perception
of recovery after exercise.35–38 The reduction in skin tempera-
ture after cold water immersion may be a plausible explanation
for a diminished perception of muscle soreness if cold water
immersion reduces an inflammatory response and minimizes
secondary muscle damage.39 Studies have examined the effect
of cold water immersion in reducing muscle damage produced
by the eccentric exercise. Based on the findings from several
meta-analyses, it appears that cold water immersion has
beneficial effects in reducing delayed-onset muscle soreness3

as well as on recovery of exercise performance.40 Furthermore,
studies reported that cold water immersion has some beneficial
effects in reducing indices of muscle damage such as plasma
creatine kinase activity39 or myoglobin37,41 after eccentric exer-
cises, although some controversy remains.12,42 Our study uses
concentric mode of contraction as the fatigue protocol. Further
studies on the effect of cold water immersion in aiding recovery
from eccentric-induced muscle damage are clearly needed.

There are several limitations to this study. Near-infrared
spectroscopy only monitors oxygenation changes in a small area
of the muscle, but perfusion heterogeneity may exist in different
regions within a muscle. Cold water immersion induces varied
physiological responses depending on the exercise mode,
duration, and intensity. The present study examines the effect
of cold water immersion on muscle oxygenation in the localized
muscle fatigue protocol, future studies using cold water immer-
sion recovery in actual athletic practice or competition should
be considered.

CONCLUSIONS
This study evaluated the effects of cold water immersion

on subsequent exercise performance. The results show that
cold water immersion reduces heart rate and skin temperature
and attenuates the decrease in tissue oxygenation during
subsequent exercise. The perceptual rating of muscle soreness
in subjects treated with cold water immersion was also lower
24 h postfatigue. It would be interesting to characterize the
effect of cold water immersion on muscle oxygenation for
high-intensity endurance exercises and to analyze its possible
influence on reoxygenation recovery times in the subsequent
performances.
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