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A B S T R A C T

Identifying the most relevant variables or features in massive datasets for dimensionality reduction can lead to
improved and more informative display, faster computation times, and more explainable models of complex
systems. Despite significant advances and available algorithms, this task generally remains challenging,
especially in unsupervised settings. In this work, we propose a method that constructs correlation networks
using all intervening variables and then selects the most informative ones based on network bootstrapping.
The method can be applied in both supervised and unsupervised scenarios. We demonstrate its functionality
by applying Uniform Manifold Approximation and Projection for dimensionality reduction to several high-
dimensional biological datasets, derived from 4D live imaging recordings of hundreds of morpho-kinetic
variables, describing the dynamics of thousands of individual leukocytes at sites of prominent inflammation.
We compare our method with other standard ones in the field, such as Principal Component Analysis and
Elastic Net, showing that it outperforms them. The proposed method can be employed in a wide range of
applications, encompassing data analysis and machine learning.
1. Introduction

Dimensionality reduction (DR) is a fundamental task in data analy-
sis and machine learning, aimed at extracting meaningful and concise
representations from high-dimensional data. DR transforms a given
dataset from an original high-dimensional space into a new low-
dimensional one so that the new representation retains meaningful
properties of interest. This can be done for various reasons, such
as reducing noise, decreasing computational complexity, improving
accuracy, enhancing interpretability, facilitating data visualization, and
supporting cluster analysis [1–3]. The popularity of DR has grown in
parallel with the wider availability of large datasets in multiple fields,
particularly in biomedicine [4–7].

DR methods can be linear and nonlinear. Linear methods, such as
Principal Components Analysis (PCA) [8], offer the advantage of lower
computational complexity. However, they also possess limitations, as
they can only capture linear relationships between variables. As a
result, nonlinear patterns in the original data may remain hidden when
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applying these types of methods [3]. To circumvent this issue, a variety
of nonlinear DR methods have been developed, which can handle the
complex nonlinear patterns commonly found in real-world data [9].
Among these, t -distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) have gained
significant popularity in recent years [2]. t-SNE is based on minimizing
the Kullback–Leibler divergence between probability distributions [10,
11], while UMAP operates by minimizing the cross-entropy between
weighted graphs [9]. Although they share visual similarities, UMAP
provides several advantages over t-SNE, notably, higher computational
efficiency [12].

Ultimately, when comparing linear and nonlinear DR methods,
two crucial factors emerge: efficiency and interpretability. Contrary to
linear methods, nonlinear techniques tend to be computationally more
demanding. Techniques like PCA have computational complexity that
scales linearly with the number of features, whereas nonlinear methods,
such as t-SNE, are more computationally expensive, with complexity
vailable online 10 December 2023
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Fig. 1. Flow chart of the proposed method.
that can scale quadratically or even worse. Furthermore, nonlinear
methods yield results that are less readily interpretable. The lower-
dimensional representation obtained from these methods does not have
a direct correspondence to the original variables. While they can still
provide valuable insights into the structure of the data, understanding
the precise contribution of each variable can be challenging.

Despite the usefulness of DR methods, they should be applied with
caution due to two main factors: (i) the risk of overfitting, particularly
for datasets with a large number of variables relative to the number
of observations [13]; and (ii) the presence of hyperparameters, the
values of which must be manually defined and can strongly affect the
projection results [2]. One partial solution to the first limitation is
to use PCA as a preliminary step, applying nonlinear DR to the first
principal components of the dataset. This technique effectively reduces
the number of variables, although they are no longer the original ones;
instead, they become linear combinations of the original variables,
which can hinder the interpretability of results.

The risk of overfitting can also be mitigated by identifying a subset
of the most informative variables from the original dataset [14]. The
fundamental premise is that the original data may contain irrelevant or
redundant variables that can be omitted from the model [15]. However,
an exhaustive search is typically computationally infeasible. Given 𝑝 ≫
1 initial variables, a brute-force inspection of all possible combinations
would involve analyzing approximately 2𝑝 non-empty variable subsets.
To address this issue, both supervised and unsupervised approaches
can be utilized [16,17]. While supervised approaches are often more
suitable and have been studied more extensively, they require addi-
tional knowledge that is not always available in practice [18]. This
has spurred significant interest in unsupervised methods in recent
years [19]. In this context, network theory approaches can be power-
ful tools for revealing hidden relationships among variables. Patterns
rarely appear based on a single variable, but rather emerge from inter-
actions among multiple ones [20–22]. Within this framework, variable
selection is analogous to selecting the nodes of a network [15].

The challenge of identifying the most informative variables for char-
acterizing cell states is pervasive in many high-dimensional biological
datasets [23–26]. These datasets contain thousands of observations and
a large number of variables, making it difficult to extract meaningful
insights. Popular software packages like Seurat [27] are widely used
for unsupervised cluster analysis but often lack the capability to select
variables within the original space. This limitation poses a significant
hurdle when accurately characterizing different cell states [28–31].
Addressing this challenge is crucial for advancing our understanding
of complex biological systems.

In this work, we propose a method based on bootstrapping of
nonlinear correlation networks and quadratic optimization, that can be
applied in both supervised and unsupervised settings. Our method not
2

only reduces the number of original variables; it does so by identifying
the relevant ones to improve the performance of nonlinear DR tech-
niques. We have tested the performance of our method and compared
it with other standard procedures, particularly PCA and Elastic Net
(EN), using four distinct experimental high-dimensional datasets. These
datasets were collected from 4D imaging in living mice capturing
over one hundred morpho-kinetic variables. These variables portray
the dynamics of thousands of individual leukocytes at sites of active
inflammation [32]. Our goal is to pinpoint the most informative vari-
ables that facilitate cell type/state identification, while simultaneously
mitigating the risk of overfitting. While our study primarily used UMAP
for DR, our approach can be easily adapted to other DR methods. Fig. 1
summarizes our framework.

2. Materials and methods

In this section, we present the experimental data and the math-
ematical methods used in our research. The main steps we follow
are: (a) first, we estimate the importance of individual variables in
an unsupervised way by bootstrapping nonlinear correlation networks;
(b) we then use quadratic optimization to select a subset of variables
with minimum correlations and maximum relevance; (c) subsequently,
we apply Bayesian optimization to identify the hyperparameters for
UMAP, the DR technique we adopted and (d) finally, we compare the
results obtained from our approach with those from standard methods
(PCA and EN), and also with our own procedure, using supervised
information instead of bootstrapping of correlation networks to infer
the relevance of each variable.

2.1. Experimental datasets

In this work, we have employed intravital imaging datasets from
four different experimental settings previously published in [32,33]
(see Fig. 2): (i) Influenza infection in the trachea; (ii) Inflammation of
the cremaster muscle; (iii) Laser injury in the skin; and (iv) Ischemia-
reperfusion in skin. In brief, we have used two imaging modalities in
4D, using either a two-photon microscopy system (TrimScope, LaVi-
sion BioTec, Bielefeld, Germany) or a spinning-disk intravital system
(VIVO, from Intelligent Imaging Innovations, Denver, USA). We used
timelapse capture in up to four fluorescence channels to record the mor-
phology and movement of leukocytes (neutrophils, dendritic cells and
macrophages) in their native inflamed environment in the trachea, skin,
tumors and vasculature of the cremasteric vasculature. We processed
and corrected the newly generated and existing datasets (trachea, skin,
bone marrow and tumors), by performing drift correction and channel
unmixing using custom scripts (Python 3.5) and FIJI. 4D captures
were further analyzed with the Imaris software (Oxford intruments,
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Fig. 2. Intravital imaging of immune cells (neutrophils, dendritic cells and macrophages) and tissues that generated the datasets analyzed in this study: (A) Influenza infection
in the trachea; (B) Inflammation in the cremaster muscle; (C) Laser-induced injury in the skin; and (D) Ischemia-reperfusion in skin. The imaging not only facilitated dataset
generation but also aided in identifying cell types and their behaviors.
9.5.1) for all tissues, except for the cremaster muscle for which we
use our recently generated analytical method Automated Cell Migration
Examination (ACME; available at [34]) (PMID 35066392). ACME was
designed to perform automatic feature extraction for migrating cells, in-
cluding automatic detection, segmentation and tracking of cells within
vessels. Additional information can be found in Appendix A.

2.2. Nonlinear correlation networks

The initial stage of our procedure requires the construction of
nonlinear correlation networks derived from different datasets. These
networks are useful in unraveling relationships amongst variables that
are not necessarily linear. Either parametric or non-parametric correla-
tion coefficients can be used for building these networks, based on the
assumptions made regarding the underlying probability distributions.
In this context, we introduce a correlation matrix 𝐏, comprising entries
denoted as 𝜌𝑖𝑗 , having the following structure:

𝜌𝑖𝑗 = 𝐀𝑖 ⋅ 𝐀𝑗 , (1)

which involve a dot product between two unit vectors 𝐀𝑖 and 𝐀𝑗
(i.e., satisfying ‖𝐀‖2 = 1), corresponding to variables 𝑖 and 𝑗, re-
spectively. Here, 𝑖, 𝑗 = 1, 2,… , 𝑝, where 𝑝 is the total number of
3

variables measured, and each unit vector has a dimension of 𝑛, denoting
the total number of observations. This correlation matrix provides an
approximation of the redundancy between each pair of variables, with
correlation coefficients 𝜌𝑖𝑗 ranging from −1 to 1.

In the case of Pearson correlation coefficients, values equal to −1 or
1 indicate perfect negative or positive linear correlation, respectively,
while 0 signifies no linear correlation. Alternatively, Spearman’s rank
correlation coefficient provides a non-parametric measure of a mono-
tonic relationship between two datasets. Unlike the Pearson coefficient,
Spearman’s does not assume normal distribution for both datasets. Sim-
ilar to Pearson’s, Spearman’s coefficient can range from −1 to 1, with
extreme values indicating a perfect non-increasing or non-decreasing
monotonic relationship between each variable, respectively. Values
near 0 suggest a weak monotonic relationship between the variables.
Other correlation coefficients, whether parametric (e.g., Point-Biserial,
Phi) or non-parametric (e.g. Kendall’s Tau), can similarly be expressed
in the form (1), thereby offering alternatives to Pearson’s or Spearman’s
correlation measures.

To build a correlation network, we transformed (1) into a dissimi-
larity 𝑝×𝑝 matrix. This allows for a more interpretable depiction of the
relationships among variables. The chosen transformation is defined as
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(other possible forms are detailed in Appendix B):

𝑑𝑖𝑗 =

√

1 − 𝜌𝑖𝑗
2

. (2)

his expression results in a pseudo-metric, as it fulfills the following
onditions:

1. The dissimilarity between a variable and itself is zero: 𝑑𝑖𝑖 = 0.
2. The dissimilarity between different variables is within the inter-

val: 𝑑𝑖𝑗 ∈ [0, 1].
3. Dissimilarities are symmetric: 𝑑𝑖𝑗 = 𝑑𝑗𝑖.
4. Dissimilarities satisfy the triangle inequality: 𝑑𝑖𝑘 ≤ 𝑑𝑖𝑗 + 𝑑𝑗𝑘. A

proof of this is presented in Appendix B.

It is important to note that property 2 leads to an interesting
bservation: when two different variables are perfectly redundant, their
issimilarity is zero (𝑑𝑖𝑗 = 0). This feature renders 𝑑𝑖𝑗 as a pseudo-
etric. Moreover, due to properties 1 and 3, 𝑑𝑖𝑗 also satisfies the
efinition of an undirected weighted adjacency matrix.

In order to analyze the constructed network in a 2D Euclidean space,
e employed Torgerson-Gower inner-product multidimensional scal-

ng. In this method, the variables (or nodes) of the original network are
rojected onto a 2D plane, striving to preserve the distances between
airs as closely as possible to those in the original space. This was
ccomplished by minimizing the following function:

min
𝑿∈R𝑝×2

(

‖𝑩‖−1𝐹
‖

‖

‖

𝑩 −𝑿𝑇 ⋅𝑿‖

‖

‖𝐹

)

, (3)

here 𝑿 denotes the positions of the variables in the 2D Euclidean
pace, ‖∗‖𝐹 represents the 𝐿2,2 norm (or the Frobenius norm), and 𝑩 is
matrix obtained after centering the dissimilarity matrix given by (2).

t is worth noting that this function is convex, which facilitates efficient
umerical optimization. More details on the multidimensional scaling
rocess can be found in Appendix C.

To estimate the importance of each variable in an unsupervised
ay, we have applied bootstrapping, which is random sampling with

eplacement. The goal was to analyze how stable each variable was
nder perturbations of the data, as an indirect measure for assessing
he central tendency and dispersion of the positions of variables after
ultidimensional scaling. The density function of displacements for

ach variable after bootstrapping was estimated by means of kernel
ensity estimation. This is a non-parametric method based on a finite
ample and a kernel function:

�̂� (𝛥) =
1
𝑚

𝑚
∑

𝑘=1
𝜙𝜈 (𝛥 − 𝛥𝑘) =

1
𝑚𝜈

𝑚
∑

𝑘=1
𝜙
(

𝛥 − 𝛥𝑘
𝜈

)

, (4)

here 𝑓𝜈 denotes the estimation of the density function, 𝑚 is the
resampling size, 𝜙 the kernel function used, 𝛥 the displacement from
the position when employing the full dataset, 𝛥𝑘 the displacement when
considering resample 𝑘, and 𝜈 the corresponding bandwidth for the
estimation. We employed a standard Gaussian density function as a
kernel, while the bandwidth was determined by minimizing the mean
integrated squared error.

2.3. Quadratic optimization

To take into account both the correlations between pairs of variables
and their relevance, we formulated a quadratic optimization problem:

min
𝜷∈R𝑝

[ 1 − 𝛼
2

𝜷 ⋅ (𝑷 ⊙ 𝑷 ) ⋅ 𝜷 − 𝛼 𝒄 ⋅ 𝜷
]

, (5)

subject to ‖𝜷‖1 = 1 and 𝜷 ≥ 𝟎, where 𝜷 is a vector containing the
normalized weight assigned to each variable. Here, 𝑷 is the chosen cor-
relation matrix whose components are given by (1), and ⊙ denotes the
Hadamard-Schur product. In this study, we employed Spearman’s rank
correlation matrix, but other forms could also be used. Furthermore,
∗ represents the 𝐿 norm (also known as the Manhattan norm), and
4

‖ ‖1 1
𝛼 ∈ [0, 1] is a parameter that determines the relative weight assigned
to the relevance of the variables compared to correlations. Lastly, 𝒄
is a vector containing the estimated relevance of each variable. It is
calculated as follows:

𝒄 = 𝟏 − 𝜟 − min(𝜟)
max(𝜟) − min(𝜟)

, (6)

where 𝜟 is a vector containing the sample mean displacement for
each variable. This displacement is computed based on the change
in position of the variable after bootstrapping in multidimensional
scaling. Notice that 𝒄 ∈ [0, 1]𝑝, with higher values indicating a lower
average displacement from the position of the variable (node) in the
full network. These are precisely the variables that are considered
more relevant in the unsupervised approach. Thus, our method ensures
that the more stable a variable is under data perturbations, the more
relevant or informative it becomes.

To solve numerically the optimization problem given in (5), we have
employed an operator splitting method that does not impose strict con-
vexity on the objective function [35]. Operator splitting methods allow
for the division of the original problem into smaller, more manageable
subproblems. This is particularly advantageous when handling com-
plex, high-dimensional optimization tasks. Indeed, correlation matrices,
when calculated numerically, can lead to small negative eigenvalues,
violating the property that makes them positive semidefinite. This is
important because a positive semidefinite matrix ensures the strict
convexity of the objective function. Therefore, employing an operator
splitting method that does not impose strict convexity becomes crucial.
Moreover, this method is computationally less expensive than others
such as the interior-point and active-set methods, proving useful when
dealing with a large number of variables. We refer the reader to Ap-
pendix D for further details on first-order conditions of optimality in
the quadratic optimization formulation employed here.

2.4. Bayesian optimization

One of the main limitations of nonlinear DR methods is their depen-
dence on hyperparameters, whose values must be manually defined.
In UMAP [12], the DR technique employed here, one parameter that
strongly affects the outcome is the number of neighbors used in the
network construction stage. Moreover, the variable selection process,
based on quadratic optimization, requires an extra hyperparameter (𝛼
in (5)) to be defined. To address these issues, we employed Bayesian op-
timization [36], a sequential design strategy aimed at finding the global
optimum of black-box functions via probabilistic surrogate models. This
choice was motivated by the high computational costs associated with
performing multiple DR (see Appendix E).

We initiated the process by formulating a suitable objective function
that would allow us to assess the performance of DR in terms of
quantifying community structure [15]. To achieve this, we resorted
to the network theory concept of modularity [37,38], defined by the
following expression:

𝑄(𝑿) = 1
2𝑠

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1

(

‖

‖

‖

𝑿𝒊 −𝑿𝒋
‖

‖

‖2
−
𝑘𝑖 𝑘𝑗
2𝑠

𝛿𝑖𝑗

)

, (7)

where 𝛿𝑖𝑗 is a community membership indicator function (equal to 1 if
observations 𝑖 and 𝑗 belong to the same community and 0 otherwise),
𝑘𝑖 is the weighted degree of node 𝑖, ‖∗‖2 represents the 𝐿2 norm
(Euclidean norm) as a distance between observations after DR, and 𝑠 is
the total sum of distances. We note that (7) depends on a membership
function (𝛿𝑖𝑗) and thus, we need a community detection method able to
extract this information in an unsupervised manner. For this, we opted
for the Leiden method, which is grounded on a greedy optimization of
the modularity and provides computational efficiency [39].

Upon defining the objective function, we implemented the Bayesian

optimization procedure. We selected Gaussian stochastic processes as
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priors due to their flexibility and capability to efficiently use informa-
tion from sequentially sampled hyperparameters. These hyperparame-
ters included: (i) The number of neighbors (𝑁) in the UMAP method,
which strongly influences the DR outcomes; and (ii) the parameter 𝛼,

hich affects the selection of the variables subset for DR in accor-
ance with the quadratic optimization problem given in (5). Then, the
ayesian optimization problem reads as follows:

max
𝑁∈N, 𝛼∈R

𝑄(𝑿) . (8)

his Bayesian optimization problem is subject to 𝑁 ∈ [𝑁𝑙 , 𝑁𝑢] and
∈ [0, 1], where the number of neighbors considered in the UMAP
ethod was constrained with a minimum value of 𝑁𝑙 = 5 and a
aximum value of 𝑁𝑢 = 𝑛∕3.

The modularity function 𝑄(𝑿) is computationally expensive to eval-
ate. For each pair of 𝑁 and 𝛼, one needs to: (i) Solve the quadratic
ptimization problem given in (5); (ii) apply UMAP to reduce data
imensionality, which requires the minimization of the cross-entropy
iven by (E.1) (see Appendix E); and (iii) calculate the modularity
f the network using (7). To reduce the number of evaluations, we
onstructed a probabilistic model for the modularity, allowing for an
terative determination of the next point to evaluate in the search space.
his was accomplished by maximizing the upper confidence bound of
he Gaussian process at each step:

𝑎([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃) = 𝜇([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃)

+ 𝜅 𝜎([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃) , (9)

here 𝑓𝑎 is the acquisition function, 𝑟 the number of iterations per-
ormed in the Bayesian optimization, 𝜃 denotes the hyperparameters
f the Gaussian process, 𝜅 is a constant to balance exploitation against
xploration of new solutions, 𝜇 the mean of the Gaussian stochastic
rocess, and 𝜎 the standard deviation. Further details are provided
n Appendix F.

.5. Comparison with PCA and supervised approaches

To evaluate the performance of our proposed unsupervised variable
election method for DR, we compared it to two other well-established
ethods. The first was PCA, which, while not strictly a variable se-

ection method, serves to reduce the initial number of variables by
enerating new ones in the eigenspace of the Pearson linear correlation
atrix. The second was EN, a supervised regularization method that

perates based on a linear combination of penalties. In addition to
hese comparisons, we also adapted our method into a supervised
ariable selection version, utilizing classification models to assess the
erformance of each variable. This revised method not only provides
useful contrast, but also highlights the impact of incorporating su-

ervised information. When such information is available, it presents a
iable alternative capable of potentially enhancing the precision of the
ariable selection.

We started our comparison with PCA, a widely used preprocessing
tep in many UMAP implementations, including the popular package
eurat for single-cell RNA sequencing data analysis [27,40–42]. PCA
eturns an orthogonal basis where the new variables are uncorrelated.
n our calculations, we retained the first 50 principal components and
isregarded the rest. To achieve this, we computed the covariance
atrix of the data using:

= 1
𝑛 − 1

(𝒙− 𝟏⊗ 𝒙)𝑻 ⋅ (𝒙− 𝟏⊗ 𝒙) ,

here the factor (𝑛−1)−1 was included for the Bessel’s correction. Here,
is the matrix corresponding to the dataset analyzed (with rows being

bservations for each cell and columns being different variables), 𝟏 is
he all-ones vector, 𝒙 is a vector containing the mean of each variable,

and ⊗ denotes the outer product. The eigenvalues and eigenvectors of
𝑲 were calculated by employing the singular value decomposition for
improved numerical accuracy.
5

The second method we employed for comparison was EN, an embed-
ded method for variable selection that incorporates a regularizing term
with a linear combination of 𝐿1 (Lasso) and 𝐿2 (Ridge) penalties [43].
It is well-suited for tackling multicollinearity problems and selection of
grouped variables. The objective function for EN is given by:

min
𝜷∈R𝑝+1

[

−1
𝑛

𝑛
∑

𝑖=1
ln𝑖(𝜷) + 𝜆2

(

1 − 𝜆1
2

‖𝜷‖22 + 𝜆1 ‖𝜷‖1
)

]

, (10)

where 𝜷 is a vector of coefficients, 𝜆1 and 𝜆2 are parameters that control
the balance between the 𝐿1 and 𝐿2 penalties and the overall strength
of the penalties, respectively. Finally, 𝑖 represents the likelihood for
observation 𝑖. The optimization problem was solved using cyclical
coordinate descent over each parameter with the others fixed to find an
optimal combination of 𝜆1 and 𝜆2 parameters. The likelihood function
employed corresponds to either the binary or multinomial logistic
model, depending on the number of classes in the dataset analyzed.

The third method we employed for comparison follows the same
steps as our proposed unsupervised method, with a key difference:
instead of using bootstrapping of nonlinear correlation networks to
obtain a proxy for the relevance of each variable, we developed classi-
fication models for each one. For binary cases, we used logistic models
evaluated using the McFadden likelihood ratio index:

𝑅2
McF = 1 −

ln𝑀
ln0

, (11)

where 𝑀 is the likelihood of the model developed and 0 the likeli-
hood of the null model.

For ternary cases, in contrast, we developed non-parametric classi-
fication models based on decision trees, constructed using the CART
algorithm. We calculated the relevance of each variable using the
adjusted Rand index (ARI):

𝐴𝑅𝐼 =

∑

𝑖𝑗

(

𝑐𝑖𝑗
2

)

−

[

∑

𝑖

(

𝑐𝑖∗
2

)

∑

𝑗

(

𝑐∗𝑗
2

)]

∕

(

𝑛
2

)

1
2

[

∑

𝑖

(

𝑐𝑖∗
2

)

+
∑

𝑗

(

𝑐∗𝑗
2

)]

−

[

∑

𝑖

(

𝑐𝑖∗
2

)

∑

𝑗

(

𝑐∗𝑗
2

)]

∕

(

𝑛
2

) ,

(12)

where 𝑐𝑖𝑗 are the elements of the confusion matrix obtained from the
model developed, 𝑐𝑖∗ represents the sum of row 𝑖, and 𝑐∗𝑗 is the sum of
column 𝑗 of the same matrix.

3. Results and discussion

In this section, we present the main results obtained in the DR
analysis, using both unsupervised and supervised approaches, of the
four different datasets included in our study: (i) Influenza infection in
the trachea (referred to as ‘‘Trachea’’ dataset); (ii) Inflammation of the
cremaster muscle (the muscle of the spermatic cord, referred to as ‘‘Cre-
master’’ dataset); (iii) Laser injury in the skin (referred to as ‘‘Laser’’);
and (iv) Ischemia-reperfusion in skin (referred to as ‘‘Ischemia’’). These
datasets were generated in [32] from imaging experiments in specific
tissues and inflammatory contexts in which myeloid cells express cy-
toplasmatic fluorescent proteins allowing for precise spatiotemporal
measurement of their morphology and movement through spinning
disk or multiphoton in vivo microscopy.

3.1. Nonlinear correlation networks and bootstrapping

Firstly, in Fig. 3, we present the nonlinear correlation networks ob-
tained by employing multidimensional scaling for each of the datasets
analyzed. These projections were computed using the full datasets –
that is, we took into account all available observations and variables
prior to the process of bootstrapping and subset selection described
in the previous section. In these networks, variables with higher pos-
itive correlations are positioned closer together, whereas those with
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Fig. 3. Nonlinear correlation networks of different datasets analyzed from experiments with Imaris image analysis, together with the estimated relevance of each variable using
(6) after bootstrapping (bar plots insets): (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia. Variables are shown as nodes whose diameters are proportional to their 𝑅2

McF or
𝐴𝑅𝐼 , defined in (11) and (12), respectively. Edges connecting pairs of variables have been drawn with colors (red/blue) and thicknesses proportional to the absolute value of the
Spearman’s nonlinear correlation coefficient for each pair. Variable types have also been highlighted, using yellow for morphologic variables and magenta for kinetic variables.
higher negative correlations are positioned further apart. Notably, in
the Trachea dataset (Fig. 3.A), we observe two distinct clusters of
variables. On the right, there is a cluster dominated by morphological
variables (marked in yellow), which are deemed relevant according
to the available supervised information (represented by larger node
diameters proportional to the McFadden likelihood ratio index (11)).
On the left, there is a second cluster dominated by kinetic variables
(marked in magenta), which also contains some relevant variables.
The remaining variables in the dataset, which are weakly correlated
with these two clusters, exhibit less predictive capability between cell
6

classes. Alongside that network, the corresponding values 𝒄, calculated
from (6), yield the estimated relevance of each variable on a 0–1 scale,
where values closer to 1 indicate the most informative variables.

The Cremaster dataset, depicted in Fig. 3.B, differs from the Trachea
dataset in that the variables are generally less clustered. Two small clus-
ters can be seen, one in the top-right and another in the bottom-right
section, both dominated by morphologic-type variables. In contrast
to the Trachea case, most variables in the Cremaster dataset exhibit
significant predictive power, as measured by their 𝐴𝑅𝐼 , which was
computed from (12). Lastly, the Laser and Ischemia datasets, shown
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in Figs. 3.C and 3.D, display a similar pattern characterized by a large
cluster of highly-correlated variables. Interestingly, irrespective of their
cluster membership, most of these variables demonstrate low predictive
power. This suggests that a larger subset of variables may need to be
selected to distinguish meaningfully between classes upon applying DR.
For additional information regarding the capability of each variable
to differentiate between classes, we refer the reader to Appendix G
and Appendix H. More in depth correlation analyses between variables
are presented in Appendix I and Appendix J.

3.2. Variables selected

In Fig. 4, we display the variables selected for each of the analyzed
datasets using both supervised and unsupervised methods. Unsuper-
vised approaches are highlighted in light yellow, while supervised
approaches are in light pink. The first row illustrates the variables
selected with PCA. Even though we applied a cut-off of 50 variables,
notice that they are linear combinations of all the original variables.
Consequently, all variables have been used and the complete network
is illustrated. In this case, we have employed a grayscale to depict the
links, as correlations between variables have been removed due to the
linear transformation executed by PCA.

The second row in Fig. 4 presents the variables selected using
the EN method. Compared to the previous approach (PCA), several
differences are apparent. Primarily, this method is supervised, therefore
it requires prior knowledge of the classes present in the data (cell types
and neutrophil behaviors). Unlike PCA, the selection of variables here
involves selecting directly a subset of the original ones; hence, they
are not transformed, which potentially improves the interpretability of
results. However, the selected variables are not uncorrelated. In the
Trachea dataset, we achieved the best results in terms of reducing the
number of variables, from the original 118 to 27. For more details on
EN results, we refer the reader to Appendix K.

The third row of Fig. 4 showcases the variables selected by the
unsupervised method proposed in this study. It is evident that the
number of selected variables is significantly reduced compared to
PCA (which used all the original variables) and EN, across all ana-
lyzed datasets. The subgraphs corresponding to the subset of selected
variables demonstrate that this method identified variables with high
predictive power and low correlations. This is consistent with the logic
underlying the algorithm’s development, in which mean displacements
from bootstrapping served as an indicator of variable relevance.

Lastly, the fourth row in Fig. 4 depicts the subgraphs corresponding
to a supervised selection of variables. The process mirrored the one
in the unsupervised case, except the displacements calculated from
bootstrapping were substituted by the 𝑅2

McF or 𝐴𝑅𝐼 of each variable.
his case is useful in order to assess the performance of the proposed
ethod with supervised information. It is noticeable that the number of

elected variables has been further reduced, having now only between
and 6 variables needed to describe the differences between classes

cross all datasets. These selected variables are among those with
he highest individual predictive power, while maintaining very low
orrelations.

To summarize the outcomes concerning variable reduction, Table 1
as been compiled to detail the obtained results. This table illustrates
he percentage reduction relative to the original variable count, with
he actual number of retained variables indicated within parentheses,
s determined by the 𝐿0 norm (or sparse norm) of the vector weights
‖𝜷‖0). It can be seen that PCA, while involving a transformation of
ariables, does not reduce their original count. In contrast, EN exhibits
large reduction in the variable count for the Trachea and Laser

atasets. However, its effectiveness is comparatively reduced in the
remaster and Ischemia datasets. The unsupervised method developed

n this study achieves a notable reduction in variables, averaging an
7

4.3% decrease across different datasets. Furthermore, the integration a
Table 1
Summary of variable reduction with the different methods utilized. The percentage of
reduction achieved from the original dataset is shown, along with the total number of
variables retained by each method (in parentheses).

(A) Trachea (B) Cremaster (C) Laser (D) Ischemia Mean

PCA 0.0% (118) 0.0% (73) 0.0% (118) 0.0% (118) 0.0%
EN 77.1% (27) 1.4% (72) 30.5% (82) 5.1% (112) 28.5%
UNS 86.4% (16) 89.0% (8) 74.6% (30) 87.3% (15) 84.3%
SUP 95.8% (5) 93.2% (5) 94.9% (6) 96.6% (4) 95.1%

of supervised information, as shown in the last row, leads to a re-
markable reduction of 95.1% in variable count, consistent across the
analyzed datasets. For more comprehensive results, please refer to
Appendix L.

The advantages of having a compact subset of variables are multi-
faceted. Firstly, this reduction substantially mitigates the risk of overfit-
ting, thereby enabling a more accurate distinction between signal and
noise. Another advantage lies in the simplicity of such a reduced subset.
With fewer but crucial variables, subsequent models become simpler
and more interpretable, which is of great use in many applications [44].
Furthermore, by concentrating on the most pertinent variables, cluster
distinctions are sharpened, leading to more defined and discernible
cluster boundaries after DR, thereby enhancing the precision of data
analysis.

3.3. Evaluation of dimensionality reduction

In Fig. 5, we display the results obtained through different methods
employed to improve the performance of nonlinear DR. This setup
offers a visual evaluation, preceding the more rigorous quantitative
performance measures. The structure of the plots mirrors that in Fig. 4.
The first row presents the outcomes obtained for various datasets
using PCA as a pre-processing step. The class separation is somewhat
indistinct, particularly for Trachea and Cremaster, while Laser and
Ischemia demonstrate better results in this respect.

The second row in Fig. 5 represents results after variable selection
using EN. For Trachea and Cremaster, the outcomes are less impressive
than those using PCA. This is due to the significant number of variables
retained in the variable selection process. While this might be highly
accurate for classification purposes (the primary objective for which
EN methods were developed), it does not prove as effective for DR.
However, the results for Laser and Ischemia outperform those of PCA.
In these instances, the distinction between classes is visually more
evident.

The third row in Fig. 5 presents the outcomes following the applica-
tion of our proposed unsupervised selection method. Visually, the group
distinctions outperform the two standard methods previously discussed.
The results are notably good for the Trachea case, where the visual
separation between clusters mirrors the true classes with impressive
accuracy.

The fourth row in Fig. 5 shows the results obtained through a
supervised selection of variables using our proposed method. The visual
separation between groups is striking, especially for Trachea and Laser
(binary cases). Results for Cremaster and Ischemia (ternary cases) are
less remarkable but are still superior to any of the other previous
methods employed.

We have employed various measures for a quantitative assessment
of the aforementioned results, as seen in Figs. 5.E and 5.F. Fig. 5.E
provides an evaluation of the selected variable subsets, using a kernel
density estimation based on the 𝑅2

McF or 𝐴𝑅𝐼 of each variable within
he subset. Generally, the median values for our proposed method
ignificantly exceeded those of PCA or EN, particularly when using
upervised information. The supervised variant of our method clearly
emonstrated the best results in terms of selected variable subsets

cross all analyzed datasets.
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Fig. 4. Selected variables for the different datasets analyzed, organized in columns: (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia. Rows correspond to the various
methods employed: (1st) PCA; (2nd) EN; (3rd) Unsupervised selection; and (4th) Supervised selection. Methods marked in light yellow represent unsupervised approaches, while
those in light pink signify supervised ones. Each plot displays the subset of variables selected for each case, indicated in green, along with the associated subgraph derived from
the original correlation network.
Fig. 5.F depicts global measures, assessing overall performance
rather than individual variables. We illustrate the classification capa-
bility of each selected subset for all evaluated datasets, in terms of
𝑅2

McF (binary cases) or 𝐴𝑅𝐼 (ternary ones) in blue. In all instances,
we achieved measures close to 1, indicative of perfect classification
capability for the subset. The silhouette score (𝑐𝑠), shown in orange,
evaluates the clustering capacity of the reduced dimensionality pro-
duced. Our proposed method, whether supervised or unsupervised,
consistently outperformed standard methods (PCA and EN). The eval-
uations based on modularity (displayed in red) followed a similar
pattern, with our proposed approach yielding higher values than the
considered standard methods. See Table 2 for detailed results and
Appendix M for an stability analysis.

3.4. Comparison with other approaches and limitations

To conclude this section, we elaborate on the distinctive nature
of our proposed method for variable selection. Our approach, rooted
8

Table 2
Detailed evaluation of results presented in Fig. 5.F.

(A) Trachea (B) Cremaster (C) Laser (D) Ischemia

PCA
𝑅2

McF/𝐴𝑅𝐼 1.0000 0.9550 1.0000 0.9753
𝑐𝑠 0.3005 0.2067 0.2779 0.2157
𝑄 0.1029 0.0732 0.0893 0.1044

EN
𝑅2

McF/𝐴𝑅𝐼 1.0000 0.9382 0.9929 0.9748
𝑐𝑠 0.2537 0.1366 0.3736 0.2225
𝑄 0.0988 0.0794 0.1186 0.1091

UNS
𝑅2

McF/𝐴𝑅𝐼 1.0000 0.9290 0.9666 0.9465
𝑐𝑠 0.5201 0.3120 0.5007 0.4262
𝑄 0.1447 0.0891 0.1315 0.1716

SUP
𝑅2

McF/𝐴𝑅𝐼 1.0000 0.9329 0.8529 0.9676
𝑐𝑠 0.6521 0.2966 0.7039 0.4297
𝑄 0.1830 0.0932 0.2148 0.1475

in the bootstrapping of correlation networks, marks a significant de-
parture from the prevalent techniques, primarily based on supervised
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Fig. 5. UMAPs for the different datasets analyzed, arranged in columns: (A) Trachea, with neutrophils marked in orange and dendritic cells in violet; (B) Cremaster, exhibiting
three different behaviors colored in shades of orange; (C) Laser, featuring neutrophils in orange and dendritic cells in violet; and (D) Ischemia, with neutrophils in orange, dentritic
cells in violet, and macrophages in red. The rows correspond to the different methods employed: (1st) PCA; (2nd) EN; (3rd) Unsupervised selection; and (4th) Supervised selection.
Unsupervised and supervised methods have been framed in light yellow and light pink, respectively. Row (E) shows the evaluation of the selected variable subsets using kernel
density estimations of the 𝑅2

McF (for binary cases) or 𝐴𝑅𝐼 (for ternary cases) of the variables, with colors varying from light yellow to dark purple to indicate value differences.
Medians have been compared pairwise by means of Mann–Whitney-Wilcoxon tests, employing the Benjamini–Hochberg method to account for multiple testing. Resulting 𝑝-values
are indicated using the code: (*) 𝑝 < 0.05, (**) 𝑝 < 0.01, and (***) 𝑝 < 0.001. Row (F) depicts global evaluations (in a logarithmic scale) based on the classification performance of
the full subset (in blue), the silhouette score (in orange), and the network modularity (in red).
metaheuristic algorithms [45–47]. Our methodology distinguishes itself
by its ability to unveil intricate relationships within datasets, thereby
facilitating the discovery of intrinsic patterns. One of the key aspects
is the reliance on a computationally intensive objective function (7),
crucial for assessing the performance of DR. Unlike the exhaustive
search paradigm employed by metaheuristic algorithms, our use of
Bayesian optimization substantially reduces the need for numerous
function evaluations. This optimization not only reflects computational
9

efficiency but also brings to light the subtle interplay of variables within
the data. It goes beyond the scope of metaheuristic algorithms, which
typically overlook the inter-variable relationships, and instead reveals
hidden associations and dependencies within correlation networks.
This deepened exploration is pivotal for addressing complex biological
problems with real-world applications.

Moreover, our research integrates a versatile technique applica-
ble in both supervised and unsupervised scenarios, thus offering a
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broader scope compared to most existing studies. While recent research
has ventured into unsupervised techniques primarily as variable fil-
ters [48], our method can identify variable subsets based on relevance
and redundancy in an entirely unsupervised manner. Some studies,
such as those employing network-based methods similar to ours [49],
focus on variable subset identification using regularization techniques.
However, these predominantly operate within supervised frameworks,
whereas our approach encompasses a more comprehensive spectrum,
accommodating both supervised and unsupervised settings.

Despite the promising results, our method is not without limitations.
The applicability and robustness across varied datasets require further
empirical validation. While our method has shown efficacy in the cases
analyzed, more extensive studies across a broader range of datasets
are essential to validate its robustness and generalizability. We plan
to extend the application of our method to new datasets in future
investigations, aiming to thoroughly assess its robustness and versatility
under diverse conditions. Additionally, while we have primarily uti-
lized modularity as our evaluation metric, future studies will explore a
variety of evaluation functions to obtain a more holistic understanding
of the capabilities and constraints of our method. Another important
aspect is the computational cost, which is higher than PCA in terms of
both runtime and memory usage (refer to Appendix N). This presents
a challenge in scenarios where computational efficiency is paramount.
Optimizing these computational aspects is essential to widen the prac-
tical applications of our method, making it a more viable option in a
vast array of research contexts.

4. Conclusions

In this study, we introduce an approach for variable/feature selec-
tion in nonlinear Dimensionality Reduction (DR) based on the boot-
strapping of correlation networks, which is applicable to both super-
vised and unsupervised settings. This method utilizes correlation net-
works constructed using a dissimilarity function that satisfies pseudo-
metric conditions, thereby allowing for diverse function choices de-
pending on the specific data analysis scenario. Our methodology in-
volves a quadratic optimization algorithm that identifies the most
relevant variables based on their mean displacements upon random
sampling (bootstrapping) of the original datasets. This procedure places
particular emphasis on distinguishing between groups or classes. To
generate the nonlinear DR visualization, we then employ a Bayesian
optimization strategy for hyperparameter tuning in both the quadratic
optimization and the DR method.

We have applied our proposed method in both unsupervised and
supervised settings to datasets of thousands of leukocytes (myeloid
cells) recorded using 4D live imaging at inflammation sites. Compar-
isons were made with standard Principal Component Analysis (PCA)
and Elastic Net (EN), enabling us to identify key features and behavioral
states of these cells. Our results demonstrate the superior performance
of our proposed method over the former standard approaches. Specifi-
cally, it excels in reducing the number of variables (84% of reduction
on average for the unsupervised approach and 95% on average for the
supervised one, on the datasets we analyzed) and extracting valuable
information from DR for more effective cluster distinction in the orig-
inal data, particularly, the subset of variables capable of producing
the grouping into classes. Importantly, our methodology preserves
the original variables without transforming them, thereby improving
interpretability for subsequent analyses. Moreover, our approach, or
similar analytical pipelines, could be employed to generate comparable
behavioral landscapes across various tissues and physiological contexts.
This enables the effective characterization of cell identities or states
based on their morpho-dynamic traits. Our findings highlight the utility
of measuring a wide range of variables to accurately define cell be-
haviors and underscore the discriminative power of specific behavioral
10

traits in differentiating between cell types and states.
The approach we introduce in this work holds the potential to
offer significant benefits not only in the current analytical context but
also in future studies involving high-dimensional biological data. Our
method not only addresses existing challenges but also lays a robust
foundation for more accurate interpretations in the evolving realm
of biological data analysis. In this field, technologies such as single-
cell RNA sequencing have revolutionized our understanding of cellular
heterogeneity and function [50]. Our method provides a versatile
framework that could be easily extended in the context of single-cell
RNA sequencing. In addition, it can be readily adapted to explore other
cutting-edge biological data sources, ranging from proteomic profiles
to epigenetic markers. The versatility of our approach thus paves
the way for its application in diverse biological contexts, promising
more refined insights into cellular processes, disease mechanisms, and
potential therapeutic targets.

In conclusion, we posit that our proposed variable selection ap-
proach is a promising method with potential utility across a broad array
of applications, especially within the fields of biology and biomedicine.
As its strengths lie in preserving key variables and facilitating in-
terpretability of complex data, it could be particularly beneficial in
scenarios where understanding specific feature contributions is crucial.
Future research might consider applying this method to an expanded
range of datasets, such as genetic sequencing data, medical imaging
data, or multivariate time-series data, to fully explore its versatility.
Additionally, our approach can be integrated with different DR methods
beyond PCA and EN, which could potentially yield even more insightful
results and expand its applicability in the context of unsupervised
and supervised learning. We hope that ongoing advancements in data
science will lead to further refinements and novel applications of this
framework.

CRediT authorship contribution statement

David G. Aragones: Conceptualization, Methodology, Software,
ormal analysis, Writing – original draft, Visualization. Miguel
Palomino-Segura: Capture and analysis of images. Jon Sicilia:
Computational analysis for dimensionality analysis of the original
imaging datasets. Georgiana Crainiciuc: Capture and analysis of
images. Iván Ballesteros: Animal generation, Sample analyses.
Fátima Sánchez-Cabo: Computational analysis for dimensionality
analysis of the original imaging datasets. Andrés Hidalgo:
Design of experimental work, Image analyses. Gabriel F. Calvo:
Conceptualization, Methodology, Resources, Writing – original
draft, Visualization, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors wish to thank Forrest C. Koch for helpful discussions
about the evaluation of clustering after DR. We also thank José Antonio
Palma and Diana González for additional help regarding graph styling.
This research has been supported by grants awarded to G.F.C. by the
Spanish Ministerio de Ciencia e Innovación and the European Union
NextGenerationEU/PRTR, MCIN/AEI/10.13039/501100011033 (grant
numbers TED2021-132296B-C55, PDC2022-133520-I00 and PID2022-
142341OB-I00). D.G.A., Spain is supported by a research contract with
reference 2023-CDT-11616 (from project with grant number TED2021-
132296B-C55). A.H. was supported by RTI2018-095497-B-I00 from
Ministerio de Ciencia e Innovación (MCIN), Spain, HR17_00527 from

Fundación La Caixa, Spain, Transatlantic Network of Excellence, Spain



Computers in Biology and Medicine 168 (2024) 107827D.G. Aragones et al.

N

𝑑

t

w
a
o
o
t
u
S
a
t
r
r

(

𝐏

p
p
m

T

c

𝛺

T
o

𝛺

F
c
f

(TNE-18CVD04) from the Leducq Foundation, and FET-OPEN (no.
861878) from the European Comission. M.P.-S. is supported by a Fed-
eration of European Biochemical Societies, Spain, the EMBO ALTF (no.
1142–2020) long-term fellowship and from MICINN, Spain (RYC2021-
033511-I). J.S. is supported by a fellowship (PRE2019-089130) from
MICINN, Spain. The CNIC is supported by the MCIN and the Pro-CNIC
Foundation, Spain.

Appendix A. Characteristics of the experimental data

In this appendix, we provide additional details about the experimen-
tal data used in the analyses. The information has been summarized in
Table A.3.

Appendix B. Conditions on the dissimilarity to be a pseudo-metric

In this appendix, we prove that the dissimilarity function given
in (2) is a pseudo-metric and provide additional conditions that must
be fulfilled in a general case.

To show that dissimilarity (2) satisfies the triangle inequality 𝑑𝑖𝑙 +
𝑑𝑗𝑙 ≥ 𝑑𝑖𝑗 , we first write it using (1). Thus it reads as:

𝑑𝑖𝑗 =

√

1 − 𝐀𝑖 ⋅ 𝐀𝑗
2

. (B.1)

ext, notice that from (B.1) it follows that:

𝑖𝑗 =

√

2 − 2𝐀𝑖 ⋅ 𝐀𝑗
4

= 1
2

√

‖𝐀𝑖‖2 + ‖𝐀𝑗‖2 − 2𝐀𝑖 ⋅ 𝐀𝑗

= 1
2

√

‖𝐀𝑖 − 𝐀𝑗‖2 =
1
2
‖𝐀𝑖 − 𝐀𝑗‖ .

Likewise, we have 𝑑𝑖𝑙 = 1
2‖𝐀𝑖 − 𝐀𝑙‖ and 𝑑𝑗𝑙 = 1

2‖𝐀𝑗 − 𝐀𝑙‖. We now
recall the triangle inequality. For any two vectors 𝐗 and 𝐘, it holds that
‖𝐗‖+ ‖𝐘‖ ≥ ‖𝐗+𝐘‖. Defining 𝐗 = 1

2

(

𝐀𝑖 − 𝐀𝑙
)

and 𝐘 = 1
2

(

𝐀𝑙 − 𝐀𝑗
)

in
he triangle inequality we find that:
1
2
‖𝐀𝑖 − 𝐀𝑙‖ +

1
2
‖𝐀𝑙 − 𝐀𝑗‖ ≥ 1

2
‖𝐀𝑖 − 𝐀𝑗‖ ,

which is equivalent to 𝑑𝑖𝑙 + 𝑑𝑗𝑙 ≥ 𝑑𝑖𝑗 , since 𝑑𝑙𝑗 = 𝑑𝑗𝑙. Therefore,
dissimilarity (2) satisfies the triangle inequality and, together with
properties 1–3 indicated after (2), guarantees that it is a pseudo-metric.

As pointed out in the main text, the entries 𝜌𝑖𝑗 can be chosen in
many ways. For example, they can be of the form:

𝜌𝑖𝑗 =

∑𝑛
𝑘=1

[

𝑅
(

𝑥(𝑘)𝑖
)

− 𝑅
(

𝑥(𝑘)𝑖
)][

𝑅
(

𝑥(𝑘)𝑗
)

− 𝑅
(

𝑥(𝑘)𝑗
)]

√

∑𝑛
𝑘=1

[

𝑅
(

𝑥(𝑘)𝑖
)

− 𝑅
(

𝑥(𝑘)𝑖
)]2

√

∑𝑛
𝑘=1

[

𝑅
(

𝑥(𝑘)𝑗
)

− 𝑅
(

𝑥(𝑘)𝑗
)]2

,

(B.2)

here 𝜌𝑖𝑗 is the Spearman’s rank correlation coefficient between vari-
bles 𝑖 and 𝑗, with 𝑖, 𝑗 = 1, 2,… , 𝑝 and 𝑝 representing the total number
f variables, 𝑅

(

𝑥(𝑘)𝑖
)

is the rank of value 𝑥(𝑘)𝑖 , the 𝑘th observation
f variable 𝑖, and 𝑅 denotes the sample mean rank. Recall that 𝑛 is
he total number of observations. This correlation matrix provides a
seful approximation of the redundancy between each pair of variables.
pearman’s rank correlation coefficients range from −1 to 1: coefficients
pproaching 1 indicate a non-decreasing monotonic relationship be-
ween variables, coefficients near −1 imply a non-increasing monotonic
elationship, and coefficients close to 0 suggest a weak monotonic
elationship between variables.

In general, any correlation matrix involving three different variables
denoted by 𝑖, 𝑗 and 𝑘) can be expressed as:

=
⎡

⎢

⎢

1 𝜌𝑖𝑗 𝜌𝑖𝑘
𝜌𝑖𝑗 1 𝜌𝑗𝑘

⎤

⎥

⎥

. (B.3)
11

⎣ 𝜌𝑖𝑘 𝜌𝑗𝑘 1 ⎦
Table A.3
Characteristics of the experimental data analyzed in this study.

(A) Trachea (B) Cremaster (C) Laser (D) Ischemia

Variables 118 73 118 118
Observations 7,008 7,098 32,323 49,436
Videos 2 212 1 1
Slides (Z) 18 13 10 36
Time points 60 42 154 21
Images processed 2,160 115,752 1,540 756
Microns per pixel (μm) 0.854 0.667 0.870 0.990
Step size (Z) (μm) 3 2 4 4
Total Z (μm) 54 26 44 84
Scan frequency (s) 30.0 8.8 60.0 300.0
Total time (hh:mm) 00:30 00:06 02:33 02:55

Notice that this is a square matrix, symmetric, with diag(𝐏) = 𝟏, and
ositive semidefinite. As a result of this last property, all its leading
rincipal minors must be non-negative. In particular, the following
ust hold:

det(𝐏) = −𝜌2𝑖𝑗 − 𝜌
2
𝑖𝑘 − 𝜌

2
𝑗𝑘 + 2 𝜌𝑖𝑗 𝜌𝑖𝑘 𝜌𝑗𝑘 + 1 ≥ 0 . (B.4)

his condition must be satisfied by any correlation measure used.
Now, we can define two regions. The first one is given by imposing

ondition (B.4):

1 ≡
{

(𝜌𝑖𝑗 , 𝜌𝑖𝑘, 𝜌𝑗𝑘) ∈ [−1, 1]3 ∣ det(𝐏) ≥ 0
}

.

he second region is defined by the triangle inequality, and depends
n the dissimilarity function used:

2 ≡
{

(𝜌𝑖𝑗 , 𝜌𝑖𝑘, 𝜌𝑗𝑘) ∈ [−1, 1]3 ∣ 𝑑𝑖𝑘(𝜌𝑖𝑘) ≤ 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) + 𝑑𝑗𝑘(𝜌𝑗𝑘)
}

.

or the dissimilarity function employed to be a pseudo-metric, the
ondition 𝛺1 ⊆ 𝛺2 must hold or, equivalently, 𝛺1 = 𝛺1 ∩𝛺2. As such,
or any correlation measure used, we need to verify:

∫𝛺1∩𝛺2

𝑑𝜌𝑖𝑗 𝑑𝜌𝑖𝑘 𝑑𝜌𝑗𝑘 = ∫𝛺1

𝑑𝜌𝑖𝑗 𝑑𝜌𝑖𝑘 𝑑𝜌𝑗𝑘 =
𝜋2

2
. (B.5)

This condition is fulfilled in our case, which proves that the dissimilar-
ity function defined in (2) is a pseudo-metric. In addition, it provides
a general criterium that must be satisfied for any dissimilarity function
proposed to be a pseudo-metric.

In fact, condition (B.5) can be checked with different typical dissim-
ilarity measures used in the scientific literature [51]:

1. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
1−𝜌𝑖𝑗
2 .

2. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) = 1 − |𝜌𝑖𝑗 | .

3. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1−𝜌𝑖𝑗
2 .

4. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1 − |𝜌𝑖𝑗 | .
5. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =

√

1 − 𝜌2𝑖𝑗 .

6. 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1 − 𝜌4𝑖𝑗 .

Dissimilarity functions 3–6 obey the triangle inequality, while functions
1 and 2 do not. This is illustrated in Fig. B.6, where regions 𝛺1 and
𝛺2 have been represented. Notice that, in cases where the triangle
inequality is violated, the region 𝛺1 ⊄ 𝛺2.

Satisfying the triangle inequality is important because it has been
observed that the performance of different machine learning algorithms
improves when the measure used is a pseudo-metric, as this condition
can be exploited for faster and better performance [51].

Appendix C. Multidimensional scaling

In this appendix, we provide additional details about how the
function given in (3) is minimized. This function can be expanded as:

min
𝑿∈R𝑝×2

⎡

⎢

⎢

( 𝑝
∑

𝑝
∑

𝑏𝑖𝑗 (𝑑𝑖𝑗 )2
)−1∕2 ( 𝑝

∑

𝑝
∑

[

𝑏𝑖𝑗 (𝑑𝑖𝑗 ) −𝑿𝒊 ⋅𝑿𝒋
]2
)1∕2

⎤

⎥

⎥

,

⎣

𝑖=1 𝑗=1 𝑖=1 𝑗=1
⎦
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Fig. B.6. Intersection of regions 𝛺1 and 𝛺2 for six different dissimilarity measures: (A) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) = (1−𝜌𝑖𝑗 )∕2, (B) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) = 1− |𝜌𝑖𝑗 |, (C) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

(1 − 𝜌𝑖𝑗 )∕2, (D) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1 − |𝜌𝑖𝑗 |,

(E) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1 − 𝜌2𝑖𝑗 , and (F) 𝑑𝑖𝑗 (𝜌𝑖𝑗 ) =
√

1 − 𝜌4𝑖𝑗 . It can be seen that dissimilarity measures (A) and (B) do not obey condition (B.5). Notice that (C) is precisely the one used in
this work.
where the dependence between matrix 𝑩 and dissimilarity matrix𝑫 has
been made explicit. In fact, matrix 𝑩 has been obtained after centering
𝑫 in the following form:

𝑩 = −1
2
(

𝑰 − 𝑝−1 𝟏
)

(𝑫 ⊙𝑫)
(

𝑰 − 𝑝−1 𝟏
)

,

where 𝑰 represents the identity matrix, 𝟏 represents the all-ones matrix,
and ⊙ represents the Hadamard-Schur product.

The solution can then be found in terms of the eigendecomposition
of 𝑩:

𝑿 = 𝑽 𝑩 ⋅𝜦1∕2
𝑩 ,

with 𝑽 𝑩 being a matrix containing the eigenvectors of 𝑩 and 𝜦𝑩
a diagonal matrix containing the eigenvalues of 𝑩. The numerical
solution was found by means of the Arnoldi method.

Appendix D. Necessary conditions in the quadratic optimization
problem

The operator splitting method used for solving the quadratic op-
timization problem is based on first-order necessary conditions [35],
known as Karush–Kuhn–Tucker conditions. The Lagrangian function,
remembering (5), can be formulated as:

𝐿(𝜷,𝝍𝟏, 𝜓2) =
1 − 𝛼
2

𝜷 ⋅ (𝑷 ⊙ 𝑷 ) ⋅ 𝜷 − (𝛼 𝒄 + 𝝍𝟏 − 𝜓2 𝟏) ⋅𝜷 −𝜓2 ,

where 𝝍𝟏 and 𝜓2 are Karush-Kuhn–Tucker multipliers. Then, the con-
dition of stationarity can be established as follows:
𝜕𝐿
𝜕𝜷

= (1 − 𝛼) (𝑷 ⊙ 𝑷 ) ⋅ 𝜷 − 𝛼 𝒄 − 𝝍𝟏 + 𝜓2 𝟏 = 𝟎 .

In addition, for primal feasibility the following must hold:

‖𝜷‖1 = 1

𝜷 ≥ 0 ,

while for dual feasibility:

𝝍 ≥ 𝟎 ,
12

𝟏

and finally for complementary slackness:

𝝍𝟏 ⊙ 𝜷 = 𝟎 .

If the empirical correlation matrix 𝑷 is positive definite, then these
conditions are also sufficient for optimality.

Appendix E. Nonlinear dimensionality reduction

Since our main goal is to improve the performance of nonlinear
DR techniques, we have employed UMAP because of its computational
efficiency and strong theoretical framework. The central idea of this
method is to generate a nonlinear manifold in low dimensions (in our
case and more commonly in 2D) from large datasets. This is achieved by
minimizing the cross-entropy function between two weighted networks,
one in the original high-dimensional space and the other in the reduced
new space [12]:

𝐻(𝑿) =
∑

𝑖≠𝑗

[

𝑣𝑖𝑗 ln
( 𝑣𝑖𝑗
𝑢𝑖𝑗 (𝑿)

)

+ (1 − 𝑣𝑖𝑗 ) ln
( 1 − 𝑣𝑖𝑗
1 − 𝑢𝑖𝑗 (𝑿)

)]

, (E.1)

where 𝑣𝑖𝑗 is the weight corresponding to the edge between observations
𝑖 and 𝑗 in the original space, and 𝑢𝑖𝑗 is the weight of the edge between
the same observations in the reduced space.

The first step is constructing a weighted graph in the original high-
dimensional space. This graph has observations as nodes and edges
based on 𝑁-nearest neighbors, with weights given by [12]:

𝑣𝑖𝑗 (𝒙𝒊,𝒙𝒋) = 𝑣𝑖𝑗 (𝒙𝒊,𝒙𝒋) + 𝑣𝑖𝑗 (𝒙𝒋 ,𝒙𝒊) − 𝑣𝑖𝑗 (𝒙𝒊,𝒙𝒋) 𝑣𝑖𝑗 (𝒙𝒋 ,𝒙𝒊) ,

where 𝑣𝑖𝑗 (𝒙𝒊,𝒙𝒋) is defined as:

𝑣𝑖𝑗 (𝒙𝒊,𝒙𝒋) = exp
(

−𝜎−1𝑖 max
{

0, ‖𝒙𝒊 − 𝒙𝒋‖2 − 𝜏𝑖
})

,

with 𝜏𝑖 being the minimal distance from observation 𝑖 to a neighbor,
and 𝜎𝑖 a parameter utilized to normalize distances between neighboring
observations, which can be calculated for each observation by solving
the following equation:

log2𝑁 =
𝑁
∑

exp
(

−𝜎−1𝑖 max
{

0, ‖𝒙𝒊 − 𝒙𝒋‖2 − 𝜏𝑖
})

.

𝑗=1
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Fig. G.7. Kernel density estimations by variables and groups for the Trachea case.
The second step is the construction of a weighted graph in the reduced
space. The nodes of this graph are again the observations, while the
weights are given by [12]:

𝑢𝑖𝑗 (𝑿𝒊,𝑿𝒋) =
(

1 + 𝑎 ‖𝑿𝒊 −𝑿𝒋‖
2𝑏
2
)−1 ,

where 𝑎 and 𝑏 are constants. At the end, the coordinates are determined
by means of numerical optimization, minimizing the cross-entropy
given by (E.1). For this, we have employed the adaptive moment
estimation method, a variant of the stochastic gradient descent that is
less prone to getting stuck in local minima and can converge faster. The
initial solution for the optimization process was set using the two first
principal components to provide both faster convergence and greater
stability in the optimization [52].

Appendix F. Bayesian optimization implementation

In this section, we provide more details on the Bayesian optimiza-
tion implementation, which relies on the construction of a Gaussian
process for the modularity, expressed as [53]:
13

𝑄([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃) = 𝜇([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃)
+ 𝐺𝑃 ([𝑁, 𝛼]; {𝑁𝑟, 𝛼𝑟, 𝑄𝑟} | 𝜃) ,

where 𝐺𝑃 denotes the Gaussian process that is updated at each step.
This stochastic process is defined mathematically by its mean function
and its covariance function. The mean function was assumed to be zero
(simple Gaussian process), while the covariance function was defined
using the squared exponential kernel:

cov(𝑑) = 𝜂21 exp

(

−𝑑
2

𝜂22

)

,

where 𝜂1 and 𝜂2 are parameters to be fitted, and 𝑑 represents the dis-
tance between values. The estimation was performed using simulated
annealing for maximum likelihood. Finally, the Broyden–Fletcher–
Goldfarb–Shanno numerical method has been employed for the max-
imization at each step of the acquisition function given by (9).

Appendix G. Kernel density estimations for each variable

We analyzed each variable by employing kernel density estimation.
The goal was to have an initial assessment of how each variable
could distinguish between classes. For the estimation, we used standard
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Fig. G.8. Kernel density estimations by variables and groups for the Cremaster case.

Fig. G.9. Kernel density estimations by variables and groups for the Laser case.
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Fig. G.10. Kernel density estimations by variables and groups for the Ischemia case.
Gaussian kernels. The bandwidths were calculated for each case by
means of the Silverman method. Results are collected in Figs. G.7,
Fig. G.8, Fig. G.9 and Fig. G.10. All variables were rescaled to the range
[0,1] for the different analyses performed.

Appendix H. Relevance of each variable

The relevance of variables has been assessed in a supervised way
by means of classification models. For binary cases, we have calculated
the McFadden likelihood ratio index for each variable (𝑅2

McF), while for
ternary ones, we have calculated the Adjusted Rand Index (𝐴𝑅𝐼). Re-
sults are shown in Fig. H.11. Notice that, in general, variables measured
in Trachea and Cremaster experiments had a higher prediction power
than those in Laser and Ischemia datasets. In addition, in Fig. H.12,
we show the raw results obtained after bootstrapping of the nonlinear
correlation networks obtained for the four datasets analyzed.
15
Appendix I. Comparison between linear and nonlinear correlation

In this work, we have employed Spearman’s nonlinear correlation
coefficients instead of Pearson’s linear ones. Despite the fact that this
increases the computational cost, it shows a better agreement with the
relevance of variables in some cases, as measured by 𝑅2

McF and 𝐴𝑅𝐼
(see Fig. I.13). In the figure, each point represents a variable, whose
𝑅2

McF or 𝐴𝑅𝐼 is in the vertical axis. The linear (blue) or nonlinear (red)
correlation between the variable and the response is in the horizontal
axis. The curves used for the fitting follow the nonlinear equation:

𝑦 = 𝑎 𝜌𝑏 , (I.1)

where 𝑦 is the 𝑅2
McF or the 𝐴𝑅𝐼 , 𝜌 is the Pearson’s or Spearman’s

correlation coefficient and {𝑎, 𝑏} are fitting parameters. These param-
eters have been determined by means of the Levenberg–Marquardt
damped least squares method. Observe that the use of nonlinear cor-
relations improves the results over linear correlations in the Trachea
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Fig. H.11. Relevance for each variable in the 4 datasets analyzed: (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia. Notice that both 𝑅2
McF and 𝐴𝑅𝐼 are normalized

measures in the interval [0, 1], with higher values meaning a higher classification capability. Values of the estimated relevance of each variable by unsupervised means (6) are
shown in gray open circles for comparison.

Fig. H.12. Displacements obtained from bootstrapping of nonlinear correlation networks, for which we employed 100 iterations, in the 4 datasets analyzed: (A) Trachea;
(B) Cremaster; (C) Laser; and (D) Ischemia. Kernel density estimations have been performed using standard Gaussian kernels. The color scale highlights the mean value (from dark
purple for the lower displacements to light yellow for the higher), which is shown with white circles.
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Fig. I.13. Comparison between Pearson’s linear correlation (blue) and Spearman’s nonlinear correlation (red) as a proxy for relevance of variables in: (A) Trachea; (B) Cremaster;
(C) Laser; and (D) Ischemia. Dashed lines represent the nonlinear model fitted to the data, while mean confidence bands have been highlighted in shades at 95% confidence level.
�̄�2 denotes the adjusted coefficient of determination.
case (Fig. I.13.A). For the rest of the datasets, there were no significant
differences between both. Still, we preferred nonlinear correlations as
it provided improvements over linear ones in the Trachea experiment,
with a similar performance on the rest.

Appendix J. Nonlinear correlation matrices

In this appendix, we represent the Spearman’s nonlinear correlation
matrices for the four datasets analyzed (see Fig. J.14). Dependencies
between groups of variables have been highlighted by ordering them
following the first principal component of the dataset.

Appendix K. Elastic Net results

In this appendix, we show additional results from EN obtained for
variable selection (see Fig. K.15). First, we set the value of 𝜆1, which
is the parameter that weights the regularized model between Lasso
(𝜆1 = 1) and Ridge (𝜆1 = 0). This was done employing 10-fold cross-
validation. The best performance was found for Lasso regularization.
Still, we set 𝜆1 = 0.99 with the aim of improving numerical stability, as
the performance is very similar to Lasso, but removes any degeneracies
caused by very high correlations. Then, the value of 𝜆2 was set by calcu-
lating the full regularization path at a grid of values on the logarithmic
scale, evaluating their performance by means of their Cohen likelihood
ratio (𝑅2

𝐿):

𝑅2
𝐿 = 1 −

ln
(

𝑠∕𝑚
)

ln
(

𝑠∕0
) ,

where 𝑚 represents the likelihood of the model, 0 represents the
likelihood of the null model, and 𝑠 is the likelihood of the saturated
model. This is a measure of the improvement in model fit when adding
a predictor variable. We stopped either when 𝑅2 > 0.999 or when the
17

𝐿

relative change was below 10−5. Notice that, in all cases, we obtained
values of 𝑅2

𝐿 > 0.93, that is, we obtained a high degree of classification
power in the subsets selected.

Appendix L. Sparsity evaluation

To complement the results presented in the main text, we present
a comprehensive assessment of the sparsity achieved by our proposed
method compared to PCA and EN across the four datasets analyzed
in this study. Fig. L.16 displays a heatmap illustrating the variables
selected by each method, along with their corresponding 𝑅2

McF or
𝐴𝑅𝐼 values, indicating their relevance to the analysis. This heatmap
provides a visual representation of the effectiveness of our method
in reducing the number of variables, particularly in comparison to
PCA, which retains all original variables, and EN. A detailed exam-
ination reveals that our approach significantly bolsters sparsity by
selectively retaining only the most pertinent variables for analysis,
thereby achieving a more substantial reduction than both PCA and EN.

Appendix M. Stability evaluation

In this appendix, we present an assessment of the consistency in the
results obtained from our analysis of the four distinct datasets. Each
dataset was divided into ten separate folds, using a process akin to 10-
fold cross-validation. For each fold, while maintaining the same set of
variables identified in the main body of the manuscript, we computed
the silhouette score (𝑐𝑠). This evaluation aimed to gauge the stability
and consistency of our outcomes across different data segments. The
findings, as detailed in Table M.4, show a low level of variance
across the various methods used in our study. Moreover, these results
closely align with those in the main text, where the complete datasets

comprising all observations were analyzed.
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Fig. J.14. Nonlinear correlation matrices for the four datasets analyzed: (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia. Large clusters of highly correlated variables are
present, particularly in the Laser and Ischemia datasets.
Appendix N. Efficiency evaluation

We also investigated the computational efficiency of the employed
methods, focusing on runtime and memory usage for each approach.
Our analysis, detailed in Table N.5, reveals several key insights. No-
tably, the Laser and Ischemia datasets, which contain a larger number
of observations, exhibited higher runtimes and increased memory usage
18
(see Appendix A). Additionally, applying EN to the Cremaster and
Ischemia datasets was more resource-intensive, primarily due to the
response variable’s multinomial distribution, requiring a more com-
plex multiclass classification model. Furthermore, a third trend was
observed: our proposed method, in both its unsupervised and super-
vised formats, demonstrated significantly higher computational costs
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Fig. K.15. EN results in the four datasets analyzed: (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia. Dotted lines correspond to the 𝜆2 parameter and the 𝑅2
𝐿 of the subset

selected.

Fig. L.16. Heatmap showcasing the variables selected with the four methods utilized in the four distinct datasets analyzed: (A) Trachea; (B) Cremaster; (C) Laser; and (D) Ischemia.
The color gradient signifies the 𝑅2

McF or 𝐴𝑅𝐼 values of the selected variables, with unselected variables omitted from the display.
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Table M.4
Silhouette scores obtained from 10-fold cross-validation. We show the results obtained using the full datasets together with the mean and the
standard deviations derived from cross-validation.

(A) Trachea (B) Cremaster (C) Laser (D) Ischemia

PCA
Full 0.3005 0.2067 0.2779 0.2157
Mean 0.3000 0.2050 0.2805 0.2147
SD 0.0220 0.0048 0.0071 0.0043

EN
Full 0.2537 0.1366 0.3736 0.2225
Mean 0.2533 0.1354 0.3730 0.2225
SD 0.0188 0.0120 0.0084 0.0052

UNS
Full 0.5201 0.3120 0.5007 0.4262
Mean 0.5204 0.3113 0.5031 0.4221
SD 0.0104 0.0143 0.0080 0.0072

SUP
Full 0.6521 0.2966 0.7039 0.4297
Mean 0.6521 0.2961 0.7034 0.4267
SD 0.0107 0.0169 0.0097 0.0069
Table N.5
Runtimes and total memory usage for each of the methods and the datasets analyzed in this work. All calculations were done using a 28 × 2.5
GHz CPU.

(A) Trachea (B) Cremaster (C) Laser (D) Ischemia

PCA Runtime 8.4 s 6.4 s 5.2 min 8.1 min
Memory 4.1 GB 2.2 GB 11.8 GB 19.2 GB

EN Runtime 14.7 s 13.9 min 2.5 min 6.5 h
Memory 1.1 GB 2.4 GB 7.5 GB 23.6 GB

UNS Runtime 56.8 min 49.1 min 42.0 h 56.3 h
Memory 124.9 GB 151.4 GB 708.6 GB 1152.9 GB

SUP Runtime 49.1 min 41.3 min 35.3 h 47.3 h
Memory 105.1 GB 126.2 GB 590.0 GB 960.3 GB
compared to PCA and EN. This was particularly evident in scenarios
where supervised information was not utilized.
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