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Simple Summary: The Iberian lynx is an iconic feline species endemic to the Iberian Peninsula. Since
the second half of the past century, its global population has decreased dramatically to the brink
of extinction as a consequence of human-driven activities (habitat reduction and transformation,
illegal hunting, road kills, density decrease in natural preys) and infectious diseases. Fortunately,
the successful implementation of conservation programs has reversed this gloomy trend, allowing
for an increase in the Iberian lynx population to over 1600 free-ranging animals in 2022. Regarding
infectious diseases, very little is known on the epidemiology and health impact of the diarrhoea-
causing intestinal protozoan parasites Cryptosporidium and Giardia in the Iberian lynx. To tackle these
questions, we investigated the presence and molecular diversity of both pathogens in 256 collected
faecal samples from 251 free-ranging and captive Iberian lynxes in Spain during the period 2017–2023.
Our results demonstrate that Cryptosporidium (2.4%) and Giardia (27.9%) are present at different
frequencies in the surveyed individuals. Our molecular analyses also indicate that a significant
proportion of the Cryptosporidium infections detected are caused by strains that are typically found
in the preys the Iberian lynx feed on. Interestingly, we also found that the Iberian lynx can harbour
genetic variants of Cryptosporidium and Giardia with the potential to infect humans, although the
likelihood of such events is judged low due to the light infections detected in the investigated animals.

Abstract: Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in
humans and domestic animals globally. Comparatively, much less information is currently available
in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in
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particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger
sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes
from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were
detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals
to at least one of them were detected in each of the analysed population nuclei. The analysis of partial
ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus
(n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and
zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed
for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and
BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of
Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-
adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated
to the Iberian lynx’s diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of
Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of
human transmission is regarded as limited due to light parasite burdens and suspected low excretion
of infective (oo)cysts to the environment by infected animals. More research should be conducted
to ascertain the true impact of these protozoan parasites in the health status of the endangered
Iberian lynx.

Keywords: epidemiology; transmission; public health; zoonosis; PCR; genotyping; ssu rRNA; gdh;
bg; tpi

1. Introduction

Cryptosporidium spp. and Giardia duodenalis are major causative agents of diarrheal
diseases in humans and a wide diversity of animals with a worldwide distribution [1,2].
Human cryptosporidiosis is the leading protozoan cause of diarrheal mortality world-
wide [3]. In contrast, human giardiasis is rarely mortal but is associated with malabsorptive
diarrhoea and impaired childhood growth [4,5]. Both cryptosporidiosis and giardiasis also
cause diarrhoea in neonatal ruminants, leading to high morbidity and mortality rates in the
first three weeks [6–9] and significant economic losses for farmers [10,11]. Cryptosporidium
and Giardia infections are typically asymptomatic in free-living animals, raising concerns
about their true health impact in wildlife and the role of wildlife in the epidemiology of
these parasites [6,12].

To date, at least 44 recognised Cryptosporidium species and more than 120 genotypes
have been described. Of them, 19 species and four genotypes have been reported in humans
with anthroponotic C. hominis, zoonotic C. parvum, avian-adapted C. meleagridis, canine-
adapted C. canis, and feline-adapted C. felis being the most prevalent [13]. The epidemiology
of Cryptosporidium infections in free-living carnivore species is poorly understood. In
Europe, at least 11 Cryptosporidium species (C. alticolis, C. andersoni, C. bovis, C. canis,
C. ditrichi, C. erinacei, C. felis, C. hominis, C. parvum, C. suis, and C. ubiquitum) and four
genotypes (mink genotype, muskrat genotype, skunk genotype, and vole genotype) have
been identified in 18 free-living carnivore species belonging to 12 genera and six families in
the last 20 years (Table 1). The skunk genotype (24.2%, 32/132), C. canis (18.9%, 25/132),
and C. ditrichi (16.7%, 22/132) were the most prevalent Cryptosporidium genetic variants
found, whereas the red fox (n = 770) and the raccoon (n = 165) were the most investigated
carnivore host species (Table 1) [14–25].
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Table 1. Infection rates and molecular diversity of Cryptosporidium spp. in European wild carnivore
species, 2007–2023.

Family
Host

(Common
Name)

Host
(Scientific

Name)
Country Frequency

(%)
No.

pos./Total Genotype(s) (n) Reference

Canidae Arctic fox Vulpes
lagopus Norway 0.0 0/62 – [14]

Grey wolf Canis lupus Poland 35.7 5/14 C. parvum genotype 2 (5) [15]

Iberian wolf Canis lupus
signatus Portugal 2.5 3/121 C. canis (3) [16]

Raccoon dog Nyctereutes
procyonoides Poland 24.1 21/87 C. canis (dog genotype) (16) [17]

Red fox Vulpes vulpes Ireland 0.0 0/13 – [18]
Norway 0.0 0/269 – [19]

Poland 12.0 6/50
C. canis (fox genotype) (3),

C. alticolis (2),
C. vole genotype II (1)

[17]

Portugal 3.3 4/121 C. canis (4) [16]

Spain 8.0 7/87 C. canis (2), C. felis (1),
C. parvum (3), C. ubiquitum (1) [20]

6.1% 12/197
C. hominis (4), C. canis (3),

C. parvum (2),
C. ubiquitum (1), C. suis (1)

[21]

UK 8.0 10/124 C. parvum (2) [22]

UK 13.3 4/30 C. bovis (1), C. parvum (1),
C. muskrat genotype II (1) [23]

Felidae Eurasian
lynx Lynx lynx Germany 4.2 1/24 C. felis (1) [24]

Iberian lynx Lynx pardinus Portugal 3.3 1/30 C. felis (1) [16]
Spain 0.0 0/6 – [20]

Wildcat Felis silvestris Spain 0.0 0/2 – [20]

Herpestidae Mongoose Herpestes
ichneumon Spain 50.0 1/2 C. canis (1) [20]

Mustelidae American
mink Mustela vison Ireland 6.2 5/81

C. mink genotype (1),
C. andersoni (3),

Cryptosporidium spp. (1)
[18]

Beech marten Martes foina Poland 29.4 15/51 C. ditrichi (15) [17]
Spain 0.0 0/8 – [20]

Eurasian
badger Meles meles Ireland 0.0 0/7 – [18]

Poland 20.0 9/45 C. skunk genotype (5),
C. erinacei (4) [17]

Spain 2.8 2/70 C. hominis (1),
Cryptosporidium spp. (1) [20]

Eurasian
otter Lutra lutra Ireland 4.0 1/25 Cryptosporidium spp. (1) [18]

Spain 0.0 0/2 – [20]

Ferret Mustela patois
furo Spain 0.0 0/2 – [20]

Genet Genetta
genetta Spain 16.6 1/6 Cryptosporidium spp. (1) [20]

Irish stoats
Mustela
ermine

hibernica
Ireland 0.0 0/30 – [18]

Pine marten Martes martes Poland 29.2 7/24 C. ditrichi (7) [17]
Ireland 0.0 0/7 – [18]

Polecat Mustela
putorius Spain 0.0 0/2 – [20]
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Table 1. Cont.

Family
Host

(Common
Name)

Host
(Scientific

Name)
Country Frequency

(%)
No.

pos./Total Genotype(s) (n) Reference

Procyonidae Raccoon Procyon lotor Poland 24.6 16/65 C. skunk genotype (16) [17]

Poland 43.7 14/32 C. skunk genotype (9),
Cryptosporidium spp. (5) [25]

Germany 3.9 2/51 C. skunk genotype (2) [26]

Germany 17.6 3/17 Cryptosporidium spp. (3),
C. erinacei (3), C. suis (2) [25]

There are nine validated Giardia species in various vertebrates, namely G. agilis in
amphibians; G. ardeae and G. psittaci in birds; G. cricetidarum, G. microti, G. muris, and
G. paramelis in rodents; G varani in reptiles; and G. duodenalis in mammals including
humans [13]. Giardia duodenalis is now regarded as a multispecies complex comprising
eight established genotypes, known as assemblages A to H, that likely represent different
species [27]. Five distinct G. duodenalis assemblages, zoonotic A and B, canine-adapted C
and D, and ungulate-adapted E, have been identified in 20 European carnivore species
belonging to 13 genera and seven families in the last two decades (Table 2) [27–38].

Table 2. Infection rates and molecular diversity of Giardia duodenalis in European wild carnivore
species, 2007–2023.

Family
Host

(Common
Name)

Host
(Scientific

Name)
Country Frequency

(%)
No.

pos./Total Genotype(s) (n) Reference

Canidae Apennine
wolf

Canis lupus
italicus Italy 5.0 1/20 C (1) [28]

100 1/1 D (1) [29]

Grey wolf Canis lupus Croatia 10.2 13/127

A (1), A1 (5), C (2), D
(1),

AI+B+D (1), A+C+D
(1), C+D (1)

[30]

Poland 28.6 2/7 D (2) [31]
Romania 100 3/3 D (3) [32]

Iberian wolf Canis lupus
signatus Portugal 25.6 31/121 D (4), C+D (2) [16]

Spain 15.9 1/6 Unknown [20]
Jackal Canis aureus Croatia 12.5 1/8 A+B (1) [30]

Raccoon dog Nyctereutes
procyonoides Romania 100 1/1 D (1) [32]

Red fox Vulpes vulpes Croatia 4.6 3/66 A (1) [30]
Italy 7.0 5/71 Unknown [33]

Norway 2.2 6/269 A (3), AI (2), B3 (1) [19]
Portugal 18.6 22/118 C+D (1) [16]
Romania 4.6 10/217 A (2), B (1) [34]

Spain 8.1 7/87 Unknown [20]
9.6 19/197 Unknown [21]

Sweden 44.2 46/104 B (4) [35]

Felidae Eurasian
lynx Lynx lynx Germany 16.7 4/24 Unknown [24]

Iberian lynx Lynx pardinus Portugal 26.7 8/30 Unknown [16]
Spain 0.0 0/6 – [20]

Wildcat Felis silvestris Luxembourg 10.0 1/10 B (1) [36]
0.0 0/2 – [20]
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Table 2. Cont.

Family
Host

(Common
Name)

Host
(Scientific

Name)
Country Frequency

(%)
No.

pos./Total Genotype(s) (n) Reference

Herpestidae Mangoose Herpestes
ichneumon Spain 0.0 0/2 – [20]

Mustelidae Badger Meles meles Italy 25.6 11/43 AII (6) [39]
Poland 0.0 0/1 – [31]
Spain 0.0 0/70 – [20]
UK 100 1/1 E (1) [40]

Ferret Mustela
putorius furo Spain 0.0 0/2 – [20]

Marten Martes sp. Poland 0.0 0/1 – [31]
Eurasian

otter Lutra lutra Denmark 3.1 1/33 Unknown [37]

Poland 0.0 0/1 – [31]
Spain 6.8 30/437 Unknown [38]

0.0 0/2 – [20]

Polecat Mustela
putorius Spain 0.0 0/2 – [20]

Stone marten Martes foina Portugal 15.8 3/19 Unknown [32]
Spain 12.5 1/8 Unknown [20]

Weasel Mustela sp. Poland 0.0 0/1 – [31]
Procyonidae Racoon Procyon lotor Luxembourg 33.3 3/9 B (3) [41]

Germany 29.2 14/48 B (13) [41]
Ursidae Brown bear Ursus arctos Croatia 0.0 0/19 – [30]

Viverridae Genet Genetta
genetta Spain 0.0 0/6 – [20]

Assemblages B (34.8%, 23/66), A (30.3%, 20/66), and D (18.2%, 12/66) were the most
prevalent G. duodenalis genetic variants individually found, whereas the red fox (n = 1129)
and the wolf (n = 264) were the most investigated carnivore host species (Table 2).

The Iberian lynx (Lynx pardinus) is an emblematical felid species endemic to the
Iberian Peninsula. It is listed as “endangered” by the International Union for Conserva-
tion of Nature’s Red List of Threatened Species [42]. Since the second half of the twen-
tieth century, a sharp decrease in the number of Iberian lynxes brought the species to
the brink of extinction due to habitat loss/transformation, illegal hunting, road kills, re-
duction in the density of its primary prey, the European rabbit (Oryctolagus cuniculus),
and infectious diseases [43,44]. Among the latter, clinical cases and mortality reported
during the last two decades have been associated to bacterial (e.g., Mycobacterium bovis,
Streptococcus canis) [45,46], viral (e.g., feline leukaemia virus, feline herpes virus, feline
calicivirus, pseudorabies virus) [47,48], and parasitic (e.g., Neospora caninum, Toxoplasma
gondii, Cystoisospora spp.) [49–52] pathogens. Although the development of conservation
programs has reversed the trend, allowing for an increase in the Iberian lynx population
to over 1600 free-ranging animals in 2022 [53], the monitoring of pathogens that could
affect captive and free-ranging animals is still a key component of ongoing conservation
programs [54,55]. Following this line of action, this study aims to investigate the occur-
rence, genetic diversity, and zoonotic potential of the diarrhoea-causing enteric protozoan
Cryptosporidium spp. and G. duodenalis in the Iberian lynx, a host species for which this
information is currently lacking.

2. Materials and Methods
2.1. Study Area and Sampling

Faecal samples (n = 251) from Iberian lynxes were collected between 2017 and 2023.
These included a total of 223 free-ranging animals from the three major population nuclei
of this species in Spain (central, n = 63; south, n = 125; southwest, n = 33; unknown, 2),
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whereas 20 were lynxes maintained in captivity, including 14 animals from three captive
breeding centres (BC1–BC3) belonging to the Iberian lynx ex situ conservation program and
six from four zoo/conservation centres (ZC1–ZC4). The breeding and zoo/conservation
centres were located in southern (n = 9) and southwestern (n = 10) Spain, respectively
(Figure 1). Status information was not available for eight animals. In addition, five (three
free-living, two captive) animals were longitudinally sampled during the study period.
All faecal samples were taken from biological banks or animals subjected to medical
check-ups, health programs, or surgical interventions during the study period. Faecal
samples were obtained from the ground or the intestinal content of examined animals.
Epidemiological information, including habitat status (free-living vs. captivity), sampling
date, age (yearlings: <1 year old; subadults: 1 to 3 years old; adults: 3 to 10 years old;
senile: >10 years old), sex, and sampling georeferenced location, was collected from each
animal, whenever possible. All faecal samples studied were formed. This survey expands
and complements those previously conducted on the very same Iberian lynx population
that investigated the presence of other intestinal protists, including Microsporidia [56] and
Blastocystis sp. (Caballero-Gómez et al., under preparation).
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Figure 1. Spatial distribution and molecular results of Iberian lynx samples. Total number of faecal
samples analysed (n = 256) and frequency of positivity of Giardia duodenalis (*) and Cryptosporidium
spp. (**) in each sampling area and captivity centre are shown in brackets.

2.2. DNA Extraction and Purification of Faecal and Tissue Samples

Genomic DNA was isolated from approximately 100 mg of each faecal sample by
using the IndiSpin Pathogen Kit (Indical Bioscience, Leipzig, Germany) according to the
manufacturer’s instructions. Extracted and purified DNA samples were eluted in 90 µL of
PCR-grade water and kept at 4 ◦C until further molecular analysis.
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2.3. Molecular Detection and Characterisation of Cryptosporidium spp.

Cryptosporidium spp. presence was investigated using a nested PCR protocol, amplify-
ing a 587 bp fragment of the small subunit of the rRNA (ssu RNA) gene of the parasite [57].
A subtyping tool based on the amplification of partial sequences of the 60 kDa glycoprotein
(gp60) [58] gene was used to ascertain intra-species genetic diversity in the samples that
tested positive for C. parvum and C. cuniculus with ssu-PCR.

2.4. Molecular Detection and Characterisation of Giardia duodenalis

For the identification of G. duodenalis, a real-time PCR (qPCR) method was set-up to
amplify a 62 bp fragment of the ssu RNA gene of the parasite [59]. Samples that yielded
cycle threshold (CT) values < 35 in qPCR were then analysed through a nested PCR,
used to amplify a 300 bp fragment of the ssu RNA gene [60,61] to assess G. duodenalis
molecular diversity at the assemblage level. Samples that yielded qPCR CT values < 32
were additionally assessed using a sequence-based multilocus genotyping (MLST) scheme
targeting the genes encoding for the glutamate dehydrogenase (gdh), β-giardin (bg), and
triose phosphate isomerase (tpi) proteins to assess G. duodenalis molecular diversity at the
sub-assemblage level. A 432 bp fragment of the gdh gene was amplified using a semi-
nested PCR [62], while 511 and 530 bp fragments of the bg and tpi genes, respectively, were
amplified through nested PCRs [63,64].

2.5. General Procedures

Detailed information on the PCR cycling conditions and oligonucleotides used for
molecular identification and/or characterisation of the abovementioned parasites can
be found in Tables S1 and S2, respectively. The previously described PCR protocols
were conducted on a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA).
The reaction mixes included 2.5 units of MyTAQTM DNA polymerase (Bioline GmbH,
Luckenwalde, Germany) and 5–10 µL 5× MyTAQTM Reaction Buffer containing five mM
deoxynucleotide triphosphates and 15 mM MgCl2. Negative and positive controls were
included in all PCR runs. The PCR amplicons obtained were examined on a 1.5% D5
agarose gel stained with Pronasafe (Conda, Madrid, Spain) and sized using a 100 bp DNA
ladder (Boehringer Mannheim GmbH, Mannheim, Germany).

2.6. Sequence and Phylogenetic Analysis

All amplicons of the expected size were directly sequenced in both directions with
the internal primer pair in 10 µL reactions using Big DyeTM chemistries and an ABI
3730xl sequencer analyser (Applied Biosystems). The raw sequencing data were examined
with Chromas Lite version 2.1 software ( http://chromaslite.software.informer.com/2.1,
accessed on 18 January 2023) to generate consensus sequences. These sequences were
compared with reference sequences deposited at the National Center for Biotechnology In-
formation (NCBI) using the BLAST tool ( http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed
on 18 January 2023).

To analyse the phylogenetic relationship among Cryptosporidium species and genotypes
at the ssu rRNA locus, a maximum-likelihood tree was constructed using MEGA version
10 [65], based on substitution rates calculated with the general time reversible model
and gamma distribution with invariant sites (G+I). Bootstrapping with 1000 replicates
was used to determine support for the clades. The representative nucleotide sequences
obtained in the present study were deposited in the GenBank public repository database
under accession numbers OR916202-OR916206 and OR921171 (Cryptosporidium spp.) and
OR916207-OR916209 and OR921172-OR921177 (G. duodenalis).

2.7. Statistics Analysis

Prevalence rates were estimated by dividing the number of positive animals by the
total number of animals tested using two-sided exact binomial 95% confidence intervals
(95% CI). Pearson’s chi-squared test or Fisher’s exact test was used to assess differences

http://chromaslite.software.informer.com/2.1
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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in the Cryptosporidium spp. and G. duodenalis infection rates, according to habitat, sex,
age, sampling areas, and sampling period (categorised by terciles), using the R Statistical
Package version 2.15.3 [66]. A p-value < 0.05 was considered as statistically significant.

3. Results

The full dataset of this study, showing sampling, epidemiological, diagnostic, and
molecular data, can be found in Table S3.

3.1. Occurrence of Cryptosporidium spp. and Giardia duodenalis

Table 3 summarises the occurrence of Cryptosporidium spp. and G. duodenalis in the
Iberian lynx population (n = 251) under investigation according to the main epidemiological
variables considered in this study. All faecal samples analysed (n = 256) had a formed
consistency, suggestive of an apparent absence of gastrointestinal manifestations.

Table 3. Infection rates by Cryptosporidium spp. and Giardia duodenalis in Iberian lynxes (n = 251)
according to distribution area, sex, age, status, and sampling year of the animals. 95% confidence
intervals (95% CI) are indicated.

Cryptosporidium spp. (n = 6) Giardia duodenalis (n = 70)

Variable Animals (n) Positive (n) % (95% CI) p-Value Positive (n) % (95% CI) p-Value

Sampling area (6) a

Central 66 1 1.5 (0.04–8.2) 0.101 22 33.3
(22.2–46.0) 0.307

South 138 2 1.5 (0.2–5.1) 33 23.9
(17.1–31.9)

Southwest 41 3 7.3 (1.5–19.9) 13 31.7
(18.1–48.1)

Sex (87) a

Male 95 2 2.1 (0.3–7.4) 0.619 21 22.1
(14.2–31.8) 0.424

Female 69 1 1.5 (0.04–7.8) 19 27.5
(17.5–39.6)

Age (67) a.b

Yearling 54 2 3.7 (0.5–12.8) 0.624 13 24.1
(13.5–37.6) 0.856

Sub-adult 77 1 1.3 (0.03–7.0) 21 27.3
(17.7–38.6)

Adult 42 2 4.8 (0.6–16.2) 12 28.6
(15.7–44.6)

Senile 11 0 0.0 (0.0–0.0) 4 36.4
(10.9–69.2)

Status (8) a

Free-living 223 4 1.8 (0.5–4.5) 0.079 64 28.7
(22.9–35.1) 0.476

Captive 20 2 10.0
(1.2–31.7) 5 25.0

(8.7–49.1)
Sampling year (14) a

2017–2020 59 4 6.8 (1.9–16.5) 0.042 17 28.8
(17.8–42.1) 0.777

2021 69 0 0.0 (0.0–0.0) 17 24.6
(15.1–36.5)

2022–2023 109 2 1.8 (0.2–6.5) 32 29.4
(21.0–38.9)

a Missing values (number of samples with unknown data). b yearlings: <1 year old; sub-adults: 1 to 3 years old;
adults: 3 to 10 years old; senile: >10 years old.

Cryptosporidium spp. DNA was detected in 2.4% (6/251; 95% CI: 0.9–5.1) of the
individuals tested. On the other hand, G. duodenalis DNA was detected in 27.9% (70/251;
95% CI: 22.4–33.9) of the individuals tested. Giardia infections were observed in animals of
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all age groups, whereas no Cryptosporidium infections were detected in senile individuals.
Three Iberian lynxes (two free-living, one captive) were co-infected with Cryptosporidium
spp. and G. duodenalis.

None of the epidemiological variables considered were significantly associated with
a higher likelihood of Giardia or Cryptosporidium infection except the sampling period
for the latter (p = 0.042). The highest prevalence was detected in individuals sampled
during the 2017–2020 period (6.8%), followed by 2022–2023 (1.8%) and 2021 (0.0%). Both
Cryptosporidium spp. and G. duodenalis were detected in the three free-ranging areas sampled
with frequencies varying from 1.5 to 7.3% and 23.9 to 33.3%, respectively.

3.2. Molecular Characterisation of Cryptosporidium spp.

The sequence analyses of the ssu rRNA region revealed the presence of four distinct
Cryptosporidium species (C. alticolis, C. cuniculus, C. occultus, and C. parvum) in the Iberian
lynx populations under study (Table 4). Cryptosporidium alticolis was identified in a free-
living animal from south Spain. The sequences generated at the ssu rRNA locus differed
by five single nucleotide polymorphisms (SNPs, including three indels) from reference
sequence MH145330 originally isolated from a common vole in the Czech Republic. Cryp-
tosporidium cuniculus was identified in a free-living and a captive Iberian lynx, both in
south Spain (Table 4 and Figure 1). Ssu rRNA sequences had 100% identity with reference
sequence AY120901. One of the two isolates was successfully genotyped at the gp60 locus,
revealing the presence of genotype VaA19. Cryptosporidium occultus was identified in a
free-living animal in southwest Spain. Two additional isolates were assigned to C. parvum at
the ssu rRNA marker: one belonged to a captive Iberian lynx in central Spain and the other
to a free-living animal in southwest Spain. Both ssu rRNA sequences differed by 6–7 SNPs
from the reference sequence AF112571 (Table 4). These include a hallmark deletion of
3–4 nucleotides at positions 686 to 689 of AF112571. Attempts to amplify these sequences
at the gp60 marker failed.

Table 4. Diversity, frequency, and molecular features of Cryptosporidium spp. isolates identified in the
Iberian lynx population investigated in the present study.

Species Genotype Isolates (n) Locus Reference
Sequence Stretch Single Nucleotide

Polymorphisms
GenBank

ID

C. alticolis – 1 ssu rRNA MH145330 311–781
A411T, 425_426DelTA,

Ins464_467TAAT,
569DelT, 782InsG

OR916202

C. cuniculus – 2 ssu rRNA AY120901 319–784 None OR916203
VaA19 1 gp60 KU852733 5–750 None OR921171

C. occultus – 1 ssu rRNA MG699176 482–695 None OR916204

C. parvum – 1 ssu rRNA AF112571 528–1025
A646G, T649G,

686_689DelTAAT,
A691T, A854R, A892G

OR916205

– 1 ssu rRNA AF112571 528–1030
646G, T649G,

686_688DelTAA, A691T,
C795T, A891G, A933G

OR916206

Del: base deletion; gp60: 60 kDa glycoprotein; R: A/G; ssu rRNA: small subunit ribosomal RNA; Y: C/T.

Phylogenetic analysis of ssu rRNA sequences revealed that all sequences generated in
the present study belonging to C. alticolis, C. cuniculus, and C. parvum grouped together
with appropriate reference sequences in well-defined clusters (Figure 2).
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Figure 2. Phylogenetic relationship among Cryptosporidium species and genotypes revealed with a
maximum likelihood analysis of the partial ssu rDNA gene. Substitution rates were calculated by
using the general time reversible model. Numbers on branches are percent bootstrapping values over
50% using 1000 replicates. The filled red circle indicates the nucleotide sequence generated in the
present study. The filled green triangle indicates selected nucleotide sequences previously reported
in wild carnivore species globally used for comparative purposes.
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3.3. Molecular Characterisation of Giardia duodenalis

Giardia-positive samples with qPCR yielded CT values ranging from 20.0 to 39.7
(median: 34.5; standard deviation: 3.5). Approximately half of them (53.0%, 35/66) had
CT values > 34 and were not further investigated for genotyping purposes. All 31 Giardia-
positive samples with qPCR CT values ≤ 34 were subjected to nested ssu-PCR to ascertain
the assemblage of the parasite involved. Of them, 25.8% (8/31) were successfully genotyped
at this locus (Table 5). Sequence analyses revealed that assemblage A (62.5%, 5/8) was
more prevalent than assemblage B (37.5%, 3/8). Overall, MLST data at the four assessed
loci were available for 3.0% (2/66) of samples, whereas subtyping data at a single locus (ssu
rRNA) were available for 9.1% (6/66) of samples. No mixed infections nor host-adapted
assemblages of canine (C, D), feline (F), or livestock (E) origin were detected.

Table 5. Multilocus sequence typing results of the eight G. duodenalis-positive samples successfully
genotyped at any of the four loci investigated in the present survey. The age and gender of the
infected Iberian lynxes are also shown.

Sample ID Age (yrs.) Sex CT Value
in qPCR ssu rRNA gdh bg tpi Assigned

Genotype

1091 Sub-adult Female 33.1 B – – – B
962 Unknown Unknown 20.0 B BIV B BIII BIII/BIV
1034 Sub-adult Female 32.7 A – – – A
1079 Yearling Unknown 24.2 B – – – B
486D Adult Female 24.2 A – – – A
1004 Sub-adult Unknown 30.1 A – – – A
948 Unknown Unknown 24.7 A – – – A
83H Sub-adult Female 20.3 A AI AI AI AI

bg: β-giardin; gdh: glutamate dehydrogenase; ssu rRNA: small subunit ribosomal RNA; tpi: triose phosphate
isomerase.

Out of the three assemblage A sequences at the ssu rRNA locus, two showed
100% identity with reference sequence M54878 with the remaining one differing from
it by three SNPs in the form of ambiguous (double peak) positions. A single assemblage A
sequence was confirmed as sub-assemblage AI at the gdh, bg, and tpi loci. The sequences
generated at the three markers were identical to their respective reference sequences
(Table 6).

Table 6. Diversity, frequency, and molecular features of G. duodenalis isolates identified in the Iberian
lynx population investigated in the present study.

Assemblage Sub-
Assemblage

Isolates
(n) Locus Reference

Sequence Stretch Single Nucleotide
Polymorphisms

GenBank
ID

A – 4 ssu rRNA M54878 1–289 None OR916207
– 1 ssu rRNA M54878 1–289 A87W, G153R, C207Y OR916208

AI 1 gdh L40509 73–491 None OR921172
AI 1 bg AY655702 27–521 None OR921173
AI 1 tpi L02120 559–1072 None OR921174

B – 3 ssu rRNA AF113898 1–275 None OR916209
BIV gdh L40508 89–490 T183C, C252T OR921175

– bg AY072727 98–593 None OR921176
BIII tpi AF069560 1–479 T134C, A176G, A395G OR921177

bg: β-giardin; gdh: glutamate dehydrogenase; ssu rRNA: small subunit ribosomal RNA; tpi: triose phosphate
isomerase.

All three assemblage B sequences at the ssu rRNA locus showed 100% identity with
reference AF113898. One of them was successfully genotyped at the three markers used,
being identified as sub-assemblage BIV at the gdh marker and as sub-assemblage BIII at
the tpi marker. This sample was, therefore, considered as an ambiguous BIII/BIV isolate
(Table 6).
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4. Discussion

This study shows that Cryptosporidium spp. and G. duodenalis are present at very
different rates (2.4% vs. 27.9%) in faecal samples from Iberian lynxes without apparent
gastrointestinal manifestations. The strengths of this study include (i) the use of molecular
(PCR and Sanger sequencing) methods for accurate detection and genotyping of the two
pathogens under investigation, (ii) a large sample size that includes a significant proportion
(15–20%) of the estimated total population of free-living Iberian lynxes, (iii) representa-
tiveness of all three major distribution areas where the Iberian lynx is naturally present in
Spain, (iv) the first report describing the molecular diversity of Cryptosporidium spp. and
G. duodenalis in this carnivore host species, and (v) molecular evidence suggesting that a
significant proportion of the positive samples might correspond to spurious infections as a
direct consequence of predation on infected preys.

Cryptosporidiosis is regarded as a high-risk and often fatal opportunistic infection
for undernourished young children and immunocompromised individuals as well as a
major cause of neonatal diarrhoea in livestock [1–3]. Comparatively, much less information
is available on the epidemiology of Cryptosporidium spp. in wildlife with most studies
conducted globally indicating low-to-medium infection rates and an apparent absence of
gastrointestinal manifestations [2]. This trend is particularly manifest in wild carnivore
species. In the European scenario, Cryptosporidium infections have been reported in badgers
(2.8–20.0%), foxes (6.1–13.3%), genets (16.6%), Eurasian lynxes (4.2%), martens (29.2–29.4%),
minks (6.2%), otters (4.0%), raccoons (3.9–43.7%), raccoon dogs (24.1%), and wolves (35.7%),
mostly with PCR (Table 1). Only two previous studies conducted in the Iberian Peninsula
attempted to identify the presence of Cryptosporidium spp. in Iberian lynxes, but the limited
number of samples analysed did not allow for the detection of the protozoa [20,32]. In the
present survey, Cryptosporidium spp. was detected in 2.4% (6/251) of the faecal samples
from the Iberian lynxes examined, a figure in the lower range of those reported for other
free-living carnivore species in Spain, Portugal, and other European countries. Despite
the limited prevalence, positive animals were detected in the three sampling areas. These
findings, together with the statistically significant differences among sampling periods,
denote a wide but temporally heterogeneous circulation of Cryptosporidium in the Iberian
lynx populations.

Molecular analyses of the six Cryptosporidium-positive isolates successfully genotyped
revealed interesting data. First, four of the six infections detected were caused by Cryp-
tosporidium species (C. alticolis, C. cuniculus, and C. occultus) with a strong preference for
hosts that are common preys of the Iberian lynx. In this regard, although the Iberian
lynx diet is mainly based on European rabbit, they can sporadically consume birds, wild
ungulates, and also small mammals [67]. Rodent-adapted Cryptosporidium alticolis and
C. occultus were initially described in common voles and rats [68,69], whereas leporids,
including rabbits and hares, are the preferred host species for C. cuniculus [70]. Interestingly,
C. alticolis has been previously reported in two red foxes in Poland [17]. To our knowledge,
this is the first report of C. cuniculus and C. occultus in free-living carnivores (including
the Iberian lynx) globally. Taken together, these data seem to indicate that the presence
of C. alticolis, C. cuniculus, and C. occultus in faecal samples from Iberian lynxes might be
the consequence of spurious (mechanical carriage) rather than true infections. Second, the
identification of generalist C. parvum allows for a wider interpretation. This Cryptosporidium
species is characterised by a loose host specificity and great cross-species potential [71],
making difficult the distinction between spurious and true infections. Regardless the case,
the failure to amplify the two C. parvum isolates at the gp60 marker might be indicative of a
low number of oocysts in faeces, compatible with a subclinical infection. Cryptosporidium
parvum infections have been described in other European free-living carnivores, including
wolves in Poland [15] and red foxes in Spain [20,21] and the UK [22]. Third, we managed
to characterise one of our two C. cuniculus isolates as genotype VaA19. Of note, previous
studies conducted in Spain reported the presence of VaA16 (n = 1), VaA18 (n = 2), VbA24
(n = 1), VbA26 (n = 1), and VbA31 (n = 1) in wild populations of European rabbits and
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Iberian hares [72,73]. These data expand our knowledge on the epidemiology of C. cu-
niculus in the country and support the spurious nature of our findings in Iberian lynxes.
And fourth, the assignment of one of our Cryptosporidium-positive isolates as C. occultus
should be interpreted with caution, as the generated ssu sequence was relatively short
(214 bp) and this species is closely related to C. suis [69]. We based our decision on two facts:
(i) Our C. occultus sequence differed by two SNPs (688DelA, and T692A) with C. suis refer-
ence sequence AF115377, and (ii) the predator–prey relationship makes more likely that
Iberian lynxes fed on small rodents than on suids, including domestic pigs and wild boars
(the natural host species for C. suis).

Our molecular findings on the frequency and diversity of Cryptosporidium species
in the Iberian lynx could also have public health implications. Whereas C. alticolis is not
considered a zoonotic pathogen and only sporadic cases of human cryptosporidiosis by C.
occultus have been reported in China [74], both C. cuniculus and C. parvum are able to cause
significant morbidity in humans. Cryptosporidium cuniculus is typically identified at low
infection (<1.5%) rates in European countries, including Spain [75], Sweden [76], and the
UK [77,78]. However, because C. cuniculus is closely related to C. hominis, its potential to
cause human infections if the opportunity arises should not be underestimated [79]. The
finding of C. parvum has more relevance as this Cryptosporidium species causes one in four
human cryptosporidiosis cases in Spain [80–85].

In contrast with cryptosporidiosis, giardiasis is widely regarded as a debilitating
rather than a fatal condition in both human [5,86] and animal [9,10] hosts. Giardiasis in free-
ranging animals has only been investigated opportunistically, and relatively little is known
about the epidemiology and health impact of the infection in wildlife populations [87].
At the European level, Giardia infections have been reported in several wild carnivores,
including badgers (25.6%), jackals (12.5%), lynxes (16.7%), martens (12.5–15.8%), otters
(3.1–6.8%), raccoons (29.2–33.3%), red foxes (2.2–44.2%), wildcats (10.0%), and wolves
(5.0–28.6%), mostly with PCR (Table 2). An infection rate of 26.7% was reported in 30 Iberian
lynxes sampled from Portugal in a previous study [32], a figure very similar to that (27.9%)
found in the present study also with PCR. These data suggest a high circulation of this
parasite among the Iberian lynx populations and denote that the Iberian lynx could be a
suitable host for G. duodenalis. The fact that neither geographical origin, sex, age, status,
nor sampling year have an effect on the likelihood of having the parasite seems to support
this hypothesis.

In the present study, the effort to assess the genetic diversity of G. duodenalis was
hampered by the limited amount of parasitic DNA present in most positive samples, as
indicated by the median qPCR CT value (34.5). This fact compromised the performance of
our genotyping PCRs and explains why only a low proportion (25.8%, 8/31) of the tested G.
duodenalis-positive samples were successfully characterised at one or more of the four (ssu,
gdh, bg, and tpi) genetic markers used for this purpose. Our sequence analyses revealed the
presence of two assemblages with assemblage A being more prevalent than assemblage B
(62.5% vs. 37.5%, respectively). Remarkably, no feline-specific assemblage F was identified
in the surveyed Iberian lynx populations. Considering that both assemblages A and B have
zoonotic potential, these findings deserve attention. Out of the six assemblage A sequences,
only one could be resolved at the sub-assemblage level as AI. This sub-assemblage is the
most frequently found in animals [13], although it has also been reported at non-negligible
rates in some human communities, primarily in low-income countries [88]. The finding of
assemblage B is somehow more worrying as this genetic variant is the most predominantly
found circulating in the Spanish human population regardless of clinical status [89–92]. Of
note, in the only survey reporting molecular data on G. duodenalis infections in European
free-living felids, assemblage B was identified in a single wildcat in Luxembourg [36].
Taken together, these findings indicate that felids including the Iberian lynx can act as
suitable hosts and spreaders of zoonotic variants of G. duodenalis. However, the finding
that G. duodenalis infections are most likely associated with light parasite burdens (and,
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therefore, low cyst count in faeces) might limit the environmental contamination with
infective cysts and reduce human exposure to them.

This study has some limitations that should be considered when interpreting the
results obtained. First, it is possible that long-term storage of faecal samples has affected
the quality/quantity of parasitic DNA, reducing the sensitivity and compromising the
performance of the PCR protocols used for detection and genotyping purposes. Second,
light parasitic infections leading to low (oo)cyst counts in faecal samples together with
the limited sensibility of our genotyping PCRs have negatively impacted our ability to
determine intra-species molecular variability in some Cryptosporidium- and G. duodenalis-
positive samples. And third, low Cryptosporidium infection rates might have compromised
the accuracy of the statistical analyses conducted.

5. Conclusions

This study describes for the first time the occurrence and genetic diversity on Cryp-
tosporidium spp. and G. duodenalis in the endangered Iberian lynx. The large sample size
available, including animals from the main distribution areas, guarantee that the results
obtained are representative of the whole free-living Iberian lynx population in Spain. Our
results denote a limited but wide circulation of Cryptosporidium and a high wide and en-
demic distribution of Giardia among these individuals, which could be of animal health
concern. The generated molecular data suggest that most Cryptosporidium species found
correspond to rodent- or leporid-adapted strains that very likely cause spurious rather
than true infection in the surveyed Iberian lynxes. However, the finding of zoonotic C.
parvum and G. duodenalis assemblages A and B indicates that the Iberian lynx can act as a
suitable host and spreader of these pathogens. Although the role of the Iberian lynx as a
source of human cryptosporidiosis and giardiasis is regarded as low, this possibility should
not be underestimated. Individuals (researchers, veterinarians, hunters) in close contact
with infected animals or their faeces should be aware of the potential risk of zoonotic
transmission of these protozoan parasites. The information provided in this study expands
our knowledge on the epidemiology and public health relevance of Cryptosporidium spp.
and G. duodenalis in Spain.
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