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These are exciting times to be involved in biomedical research. The transition from a scientific hypothesis

to a testable therapy is now faster than ever, and new technologies that facilitate drug development are

constantly emerging. The rapid development of COVID-19 vaccines provides a clear example of the

current pace of drug discovery and its clinical implementation. Importantly, the wide availability of

technologies that speed up drug development has also reached oncology, and investigators can now

consider several independent strategies when looking to develop a new therapy. This thematic issue

provides an overview of recent advances in cancer drug discovery, in areas such as fragment-based drug

development, targeting the DNA damage response or the MYC oncogene, senolytic therapies and compu-

tational tools that facilitate drug discovery and the selection of treatments in personalized medicine. We

are confident that reading these reviews will help those interested in the development of cancer therapies

get a broader and updated view of available opportunities and challenges.

Research performed primarily over the last century

has dramatically improved cancer prognosis. As an

example, cancer survival in the UK has doubled in the

last 40 years and, today, half of the cancer patients

survive for 10 or more years from diagnosis [1]. Due

to the impressive success of immunotherapy based on

immune checkpoint blockade [2] or CAR-T cells [3] in

tumors of poor prognosis, there is a growing interest

in biological therapies. Accordingly, the percentage of

biologics license applications (BLAs) granted approval

by the Food and Drug Administration (FDA) has

increased during the last decade, reaching 28% in 2021

[4]. Despite this recent surge of BLAs, the toolbox for

developing chemical therapies is also expanding.

One of the areas of drug discovery that is currently

going through a ‘renaissance’ period is that of frag-

ment-based drug discovery (FBDD). In contrast to

large and unbiased high-throughput screens (HTS),

which have dominated the drug discovery landscape

over the recent decades, FBDDs use smaller libraries

to discover low-molecular weight (≤ 300 Da) molecules

with high affinity for a given target, which can then be

grown into efficient drugs through medicinal chem-

istry. Importantly, FBDD has notorious examples of

success such as the development of venetoclax as the

first drug targeting a protein–protein interaction [5], or

the recent approval of sotorasib as the first inhibitor

targeting a mutant version of the KRAS oncogene

(KRAS G12C) [6]. While RAS oncoproteins were

often considered ‘undruggable’, the key development

that enabled the development of sotorasib was the dis-

covery of an actionable pocket on the KRAS-G12C

variant by the group of Kevan Shokat in 2013 [7].

These exciting examples have revitalized the interest

on FBDD. In this context, the review by Marta Bon

and colleagues [8] defines key aspects that must be

considered when approaching FBDD. Particular detail

is placed on the importance of defining a chemical

library with sufficient diversity and properties that

facilitate the subsequent development of the initial

hits. As in many other fields, this is now substantially

facilitated by computational methods, which are also

summarized. The review also covers other important

advances in the field such as in the technologies avail-

able for hit-to-lead development, or on the various

approaches for identifying covalent binders.

The next three reviews of this thematic issue focus

on cancer therapies that target the DNA damage

response (DDR). Genotoxic chemotherapies were the

first chemical cancer therapies to be developed, and

are still one of the most widely used strategies for the

treatment of patients in oncology. An evolution to this

approach was the development of inhibitors targeting

enzymes that participate in the repair or signaling of

DNA damage. Such approaches could be particularly

efficacious in tumors with defects in DNA repair.
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Arguably, the most exciting discovery in this regard

came in 2005 with the independent observation by two

groups that poly(ADP-ribose) polymerase (PARP)

inhibitors were preferentially toxic to cancer cells car-

rying BRCA1 or BRCA2 mutations [9,10]. Today,

PARP inhibitors are a clinical reality and their use has

been extended to tumors with deficiencies in homolo-

gous recombination (HR) [11]. This story of success

triggered an intense effort oriented to optimize the use

of PARP inhibitors, as well as to discover new syn-

thetic lethal interactions that could be exploited for

cancer treatment. Other examples now include ATR

kinase inhibitors for the treatment of tumors with high

levels of replication stress (RS) [12], already being

explored in clinical trials, or the essentiality of the

WRN helicase in tumors with microsatellite instability

(MSI) [13], which has triggered a race for the discov-

ery of WRN inhibitors.

Along this theme, Jordan Wilson and Joanna Loi-

zou review all available approaches that exploit varia-

tions of CRISPR-based genetic screens [14], and how

these can be used for the discovery of new genetic

interactions that can be pharmacologically targeted. In

addition, they summarize recent developments on the

discovery of chemical DNA repair inhibitors including

proteolysis-targeting chimeras (PROTACs) [15]. Next,

Rudd and Helleday review their efforts in targeting

enzymes involved in dNTP metabolism, particularly

on the enzymes MTH1, MTHFD2 and SAMHD1 [16].

The efficacy of this approach is exemplified by the

long use of anti-folates, the oldest efficacious cancer

chemotherapy, discovered by Sidney Farber and col-

leagues back in 1948 [17]. Today, many clinically

approved therapies target nucleotide metabolism in

various tumors, yet toxicities, resistance mechanisms

and drug interactions ultimately limit their efficacy.

Rudd and Helleday propose that such barriers may be

overcome via multiple independent studies for a better

determination of the mechanism of action of metabolic

enzyme inhibitors. Finally, Baxter et al. [18] review the

mechanisms of resistance to DNA repair inhibitors, a

very active area of research which should help to

define better drug combinations and focus the use of

DNA repair inhibitors onto patients that are more

likely to respond. The manuscript mainly focused on

resistance to inhibitors of PARP, ATR, PolΘ or

WRN, summarizing the large number of mutations

that have been shown to modify the synthetic lethal

interactions involving these enzymes, as well as delin-

eating the strategies as to how these resistances could

be overcome. An important point raised by the

authors is that, since many of these interactions have

been found through genetic screens conducted in vitro,

the relevance in the clinic for most of them remains to

be seen.

Indirectly related to therapies targeting cells harbor-

ing DNA damage, are treatments aiming to eliminate

senescence cells, also known as senolytics, here

reviewed by Laura Bousset and Jesus Gil [19]. Senoly-

tic drugs have raised significant interest in the field of

cancer therapy, mainly for their potential to clear

senescent cells that accumulate upon a previous treat-

ment with a pro-senescent drug (known as the ‘one-

two-punch’ approach [20]). In addition, selective elimi-

nation of senescent cells in mouse models was associ-

ated with increased longevity and widespread

beneficial effects on age-related pathologies, raising

further excitement about the potential applications of

senolytic drugs [21–23]. Despite the growing interest in

this field, it is relatively new and many aspects need to

be further addressed: what is the contribution of non-

tumoral senescent cells to cancer progression? Can the

elimination of senescent cells favor tumor development

in some instances? Can we develop senomorphic drugs

to modulate the senescence-associated secretory pro-

gram (SASP)? Moreover, and while SA-b-galactosidase
activity is a useful hallmark of senescence in research

studies, a clinical biomarker for senescent cells is still

needed. Still, definitely an area to watch for in the

coming years.

Next, Giulio Donati and Bruno Amati review efforts

and challenges of targeting c-MYC (hereafter, MYC)

for cancer therapy [24]. The MYC transcription factor

governs most growth and survival pathways in cells,

and is overexpressed in multiple cancers. In addition,

recent studies have revealed that increased MYC activ-

ity correlates with drug resistance. Accordingly, target-

ing MYC has been an important aim for the cancer

research community for decades. However, given that

MYC is a transcription factor lacking catalytic activ-

ity, targeting MYC remains a challenge. Their article

describes the efforts that have been dedicated to gener-

ating MYC inhibitors such as chemicals targeting the

MYC–MAX interaction, drugs that reduce MYC-de-

pendent transcription such as BRD inhibitors, or

MYC-targeting peptides such as OMOMYC. In addi-

tion, the authors discuss the approach of targeting

specific vulnerabilities that emerge upon MYC overex-

pression, such as an increased dependence on the

DDR or on mitochondrial activity. Importantly, the

work also raises a word of caution on the potential

selectivity of currently available drugs targeting MYC,

and highlights the need for better and more specific

drugs.

Finally, one of the main scientific revolutions that is

inevitably transforming cancer research is the advance of
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computational approaches. Today, the development and

selection of treatments is greatly facilitated by a constella-

tion of bioinformatic tools, which are being developed at

an ever-increasing speed. Ourselves, we are increasingly

becoming attracted to integrating computational methods

for most of our own projects related to drug discovery,

and thus wanted to end this thematic issue with a dedi-

cated chapter. Mar�ıa Jimenez-Santos et al. provide a very

comprehensive overview of bioinformatic tools that can

be used to infer the mechanism of action of a drug, strat-

ify patients for personalized cancer medicine, or follow

the evolutionary trajectories of cancer cells in a given

tumor. The review also highlights the need for standard-

ized methods that can facilitate the integration of these

tools in clinical practice. Nevertheless, given the impres-

sive developments in this area, we are confident that the

future of cancer research will be progressively incorporat-

ing computational support.

Coordinating this thematic issue has been a pleasure.

Part of the research in our laboratory has been dedicated

to drug discovery, although we have favored phenotypic

HTS for our projects, such as for the development of

ATR inhibitors [12,25]. Having read these reviews has

given us a much broader view on opportunities in other

areas, which will likely influence our own choices in the

future. We want to end by wholeheartedly thanking

the authors of these reviews for their work, and hope the

readers find these reviews as useful as we did.
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