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Abstract—Equivalence testing requires specific procedures usu-
ally provided by specialized statistical software. The proposed
package includes customized methods to assess biomedical equiv-
alence and focuses on translating the outcomes into visual reports.
The functions are coded in an object-oriented framework, contain
improved plots or novel graphs to facilitate interpretation of
the results, and are accompanied by console textual outputs
to support users with additional explanations. Special attention
has been devoted to verifying the preliminary assumptions of
the statistical tests with automatic routines. The current module
covers four aspects of biomedical statistics (equivalence, Bland-
Altman and ROC analyses, effect size, and confidence intervals
interpretation), offering these methodologies to the biomedical
community as accessible stand-alone functions. The manuscript
defines software’s functions and innovations with examples and
theoretical explanations.

I. INTRODUCTION

C
OMPARATIVE statistical tests could not address the in-

terchangeability of measurements obtained from different

laboratory devices or the similarity between two treatments.

For example, the output values returned by a new and an

old laboratory system require specific statistical analysis to

demonstrate that the outcomes from the two machines are

equivalent [1]. In comparative inference, the lack of a signifi-

cant effect does not necessarily mean equality. Analyzing the

equivalence means reversing the null hypothesis of standard

biostatistical testing by validating the alternative hypothesis

of no difference between measurements. The importance of

this topic is particularly relevant for the medical sector, espe-

cially for the biopharmaceutical industry, with guidelines for

therapeutic equivalence between drugs established by regula-

tory agencies like USA Food and Drug Administration (i.e.,

FDA) [2]. According to FDA, therapeutic equivalence implies

that the two drugs have the same clinical effect on patients

and follow the same safety profile. The FDA requires two one-

sided tests procedure (i.e., TOST) to prove that formulations of

two drugs are bioequivalent. The TOST approach determines,

for a certain significance level α, if the (1−α)×100 confidence

interval of the average difference between drugs falls inside
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the regulatory boundaries ±δ. The equivalence implies that the

efficacy of the new therapy is within δ units from the efficacy

of a drug taken as reference, usually already on the market.

FDA recommends a 90% confidence interval to determine

biosimilarity, even if recently scholars suggested raising the

interval range to 95% [3]. Thanks to the simplicity of TOST

to prove similarity, the methodology started to be applied in

other domains like medicine and chemistry [4].

The sensitivity (aka true positive fraction) and specificity

(aka true negative fraction) assessment is another kind of

equivalence analysis between diagnostic tests characterized

by dichotic outcomes. For their estimation, a cross table is

initially assembled containing the frequencies of a laboratory

outcome versus the truth “disease status” in a population of

subjects. Alternatively, the frequency table could be employed

to contrast one lab measurement versus a gold standard. The

continuous laboratory outcomes are categorized into “pos-

itives” or “negatives” based on a threshold: subjects with

lab values above the threshold (or below, depending on the

analysis) are labeled as positives, meaning the lab test detected

the disease. Conversely, all the others are the negatives from

the laboratory results. The same nomenclature is used to

distinguish subjects’ actual status: those carrying the illness

(positives) or not (negatives). The frequency table contains

the terms “false positives” (the lab procedure erroneously

identified the illness in certain samples) and “false negatives”

(the lab test incorrectly labeled a few samples as disease-free),

also known as type I and type II errors, respectively. The

sensitivity and specificity of a lab test can be deducted from

the frequency cross table and describe the validity of the diag-

nostic examination, and they are assumed to be independent

of the prior probability of having a disease [5]; however, they

depend on the threshold selected to categorize the laboratory

outcomes. A series of thresholds could be picked out to

circumvent this limitation, thus obtaining different sensitivity

and specificity pairs for each cut-off point. The receiver

operating characteristic (i.e., ROC) curve shows over a graph

the sensitivity and (1- specificity) values corresponding to each

threshold. The area under the ROC curve is a metric to judge

the efficacy of two laboratory tests in determining the same

disease or the inter-observer variability. This latter situation is
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critical in medical exams involving the interpretation of the

outcomes where diagnostic procedures are dependent on the

investigator’s skills and experience (for example, microscopic

examination of cytologic samples or radiographic imaging). In

addition, a certain degree of disparity between laboratory data

revolves around different protocols. Consequently, the same

test results might not be in perfect accordance if carried out

in different hospitals or inside the same hospital by different

operators.

Another pillar in the investigation of the agreement between

measurements is the Bland-Altman analysis [6] (i.e., BA). The

approach verifies if the difference between observations is

contained inside acceptable agreement limits. In the original

method, the two limits correspond to the m±1.96×sdm, where

m is the mean difference, and sdm is its standard deviation.

They approximate the 2.5th and 97.5th percentiles of the

distribution of the differences, theoretically enclosing 95% of

the differential values. Given the differential measurements

obtained from a reference method and a new device (New−

Ref), approximately 95% of the time, the measurements from

the new machine should be (New −Ref) − 1.96× sd units

below the reference and (New −Ref)+1.96×sd units above

the reference. Before employing BA analysis, researchers

should check the assumptions that the differences are normally

distributed and exhibit constant variance. Moreover, studies

usually include the degree of uncertainty in estimating the

limits of agreement by reporting their confidence intervals.

The 95% confidence interval around the agreement limits

(New −Ref)± 1.96× sd can be computed as ±1.96× SE
where SE = sd ×

:

3/n is the standard error of the limits

and n the number of samples. Sampling errors might cause the

agreement limits fluctuations incorporated by the confidence

intervals; they restrict the initial agreement limits, but they

will scale down as the sample size increases. The decision to

accept the agreement intervals is taken according to clinical

and biological objectives because BA analysis does not provide

conclusions for statistical inference.

Confidence intervals (i.e., CI) play a fundamental role in

addressing bioequivalence but can also highlight situations

where a new treatment is non-inferior or superior to an

existing one. The non-inferiority test requires the identification

of a lower boundary −δ, needed to verify if the CI obtained

by the difference between treatments remains above it. A

treatment is considered “as good as” the reference method

if this happens. A drug’s superiority to an available one is

determined if the difference between treatments’ CI lies above

zero. In general, CIs express a certain level of probability

that by randomly sampling a population an infinite number of

times, one can obtain the true population parameter inside the

interval. Closely connected to CI is the concept of quantifying

the amount of difference between treatments to facilitate effi-

cacy comparisons (aka effect size [7]). Standardizing the size

of treatment effects produces unit-free measures that identify

analogies between biomarkers and allow meta-analysis.

A. Aim of the Proposed Software Tools

Python is a general-purpose programming language widely

adopted by the data science community. Its intuitive syntax

and universality allow scholars to deal with various aspects of

quantitative analysis. However, as for other non-commercial

software, it relies on the efforts of the users to create libraries

of functions able to solve specific data analysis tasks. Another

popular free program for data science, for certain aspects

complementary to python, is R, a statistically centered soft-

ware. R might be preferred for deep statistical analysis over

python, especially for creating visually interpretable statistical

graphs. Alternatively, commercial software provides valuable

statistical analysis tools. The present work presents a set of

statistical functions in an object-oriented python library to deal

with several aspects of equivalence testing. The importance is

two-fold: provide specialized or improved functions usually

found in other environments and share source code for future

reusability by the scientific community. This latter aspect has

been emphasized by the European Union’s efforts for the

“open science” paradigm [8].

II. PYTHON FUNCTIONS

This manuscript section explains the essential functions and

innovations included in the package referencing the relevant

theoretical parts but accompanied by textual descriptions rather

than formulas. This approach has been preferred to focus on

the graphical interpretation of the outcomes. However, only

a selected number of plots could be included in the current

document, and only a few console outputs were discussed.

The present library of visual functions has been coded in an

object-oriented fashion; for didactic purposes, code snippets

have been inserted throughout the document accompanied

by full-length imports so users can match functions to the

code organized in the Github folders. Code examples do not

incorporate all function inputs, accepting the tacit defaults.

Each function also provides textual outputs in the console to

strengthen the analysis’ conclusions. One of the key features is

the preference for probability density distributions to visualize

continuous data representations over a range of values rather

than histograms: this avoids the process of selecting bin

widths. Apart from standard python libraries, the module

requires a few external dependencies: Numpy, Scipy, Pandas,

Seaborn, and Matplotlib. Table I outlines the methodologies

subdividing the procedures into four macro-areas as described

in the “Introduction.”

A. Bland-Altman Analysis

The proposed implementation controls the preliminary as-

sumptions required to run this investigation. Indeed, calculat-

ing the limits of agreement depends on the prerequisite that

the measurements’ differences follow a normal homoscedastic

distribution [9]. The function’s code silently checks these

assumptions and forces the user to meet this specification.

Normalcy is assessed by the Shapiro-Wilks test, while ho-

mogeneity of variance is by Levene statistics. A practical

example has been provided to illustrate the application of the
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TABLE I
OVERVIEW OF THE METHODOLOGIES IMPLEMENTED IN THE PYTHON FUNCTIONS

Macro-area Folder Operations Characteristics

Equivalence

EIS TOST Independent or paired two one-sided t-tests

EIS TOST Fixed margin δ = f × σRef equivalence test

EIS TOST Modified Wald with maximum likelihood estimator

EIS TOST Paired inputs, sample size and statistical power dedicated functions

EIS TOST Heteroscedastic inputs, sample size and statistical power dedicated functions

EIS Non-inferiority Measurement vs. parameter or two-sample statistics

EIS Superiority Measurement vs. parameter or two-sample statistics

EIS ROPE Region of practical equivalence by equally-tailed or highest density intervals

ROC

ROC 2× 2 freq. table Confusion matrix and derivation of 34 performance indexes

ROC Radar plots Circular graphs to compare cross-table’s indexes (single/paired/bars) between two treatments

ROC ROC visual interpr. ROC computation, Youden index, k-index, MID, non-parametric CI

ROC ROC Statistics DeLong and Venkatraman independent or dependent methods

ROC Ranking plots False positive rate vs. true positive rate with statistics and precision vs. recall with AUC

Effect size and CI

ES Cohen’s d Independent or paired inputs, non-overlapping indexes

ES Re-testing Repeated measurements’ minimal detectable change

ES Responsiveness Guyatt coeff., standardized response mean, effecct size, normalized ratio, reliable change index

ES Exploratory stats Equivalence estimation based on CI analysis between biomarkers

CI Margin value study Stacked CI representations to study the optimal equivalence margin

CI Paired Cat’s Eyes Biased or unbiased representation of two biomarkers

CI Car’s Eye vs. p value Single biomarker visual two-tailed analysis of CI vs. p significance

Bland-Altman
EQU BA analysis Revisited graphical interpretation, approximated and exact limits, min. detectable change

EQU Regress. diagnostics Residuals interpretation, spread-location plot with Cook distances, influential points graphs

EQU Inherent imprecision Graphical inherent imprecision with Chebyshev interval adjustment

Bland-Altman analysis. Two variables simulating the data of

two different treatments were generated randomly by sampling

two Gaussian distributions: the first variable represents a new

treatment (var1), while the second is the reference method

(var2). As summarized below, the initialization of eq_BA

with default parameters creates an object whose methods

incorporate the BA evaluation procedures:

from equiv_med .EQU import eq_BA

BA=eq_BA . BA_ana lys i s ( var1 , va r2 )

BA. r u n _ a n a l y s i s ( )

BA. m i n i m a l _ d e t e c t a b l e _ c h a n g e ( )

The output of run_analysis is a graph exhibiting a novel

interpretation of the Bland-Altman plot, as shown in Fig. 1.

The typical illustration produced by statistical programs con-

tains less information and is featured in Figure 12 of [9].

In the peculiar design supplied by the python function, each

differential value is shown as a gray bar at the bottom of

Fig. 1; the probability distribution overlays the graph, and the

data range is the dark green horizontal dashed line. The light

green dashed vertical line references the zero while the red

dashed vertical line is the mean difference between measure-

ments (aka the bias). Theoretically, if two measurements are

equivalent, their difference should be zero. At the bottom, the

standard deviation (i.e., SD) and standard error (i.e., SE) of

the mean difference are visualized as horizontal bars. The SD

line encloses 68% of the differences between measurements,

providing the spread of the central portion of differences. The

Fig. 1. Alternative design of the Bland-Altman plot as found in the
BA_analysis class, using function run_analysis.

blue dashed vertical lines are the default limits of agreement at

1.96, with shaded areas representing their confidence intervals.

The “BA Prop” rectangle at the top shows the effective

percentage of values encompassed by the approximated limits

of agreement (theoretically expected 95%, actual 94%); the

rectangle length is scaled to show the proportion of actual data

exceeding computed limits. Indeed, the “BA Prop” rectangle

does not overcome the computed limits of 1% in length, and

its horizontal boundaries are inside the blue vertical dashed

lines. The orange dashed vertical lines are the exact limits
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of agreement obtained by the procedure of [10]. The “Exact

prop” rectangle shows the proportion of values falling inside

the exact limits of agreement, with the rectangle length scaled

to highlight the actual data behavior compared to the computed

limits. The last information portrayed by the figure is the

residuals of the linear regression between measurement values.

The residuals histogram is expected to gather values around

zero, and dispersion around it may emphasize the incomplete

agreement between treatment measurements. The graph is

accompanied by textual statistical information:

• Identification of a systematic difference between treat-

ments (also called a fixed bias) or not by one-sample

t-test

• The proportion of values in the two measurements that

fall outside the approximated or exact limits of agreement

The second function in the code above allows users to detect

the minimal_detectable_change parameter from the

width of the approximated and exact limits of agreement.

The minimal detectable change is the most negligible mod-

ification not attributed to an instruments measurement error.

If the parameter values are less than a “minimal clinically

important change” deduced from literature or clinical practice,

the methods are in accordance with each other.

The sample size is a critical element in BA analysis for

biomarker compliance: the class eq_BA offers two features

to help researchers study this aspect for the exact limits

of agreement (methods exact_Bound_sample_size and

exact_Bound_assurance). The first function establishes

the sample size by building the two-sided equal-tailed interval,

given a certain CI width around the limits and significance

level (i.e., α = 0.05). Users may vary the width input

parameter to adjust the required sample size. The second

function supports the users in setting up the sample size,

relating the theoretical to the actual probability of getting the

desired CI width.

B. Visual Representations of Confidence Intervals

Interval estimation is directly related to p-values of null

hypothesis statistical significance testing and helps interpret

the precision of effect size [11]. CIs are advantageous in

meta-analysis to compare data from previous studies, or in the

case of longitudinal studies, they provide quickly interpretable

insights. The proposed python function computes CI visual

analysis creating a Cat’s-Eye plot accompanied by statistical

information. The function call eq_CatEyes is summarized

below, keeping the same random variable characteristics to

simulate two measurements as in the previous example:

from equiv_med . CI import e q _ C a t e y e s

ce= e q _ C a t e y e s . Ca t_Eye_2var ( var1 , v a r2 )

ce . r u n _ c e _ u n b i a s e d ( 9 5 )

ce . s i n g l e _ c a t _ e y e ( var1 , 9 5 )

The line of code with run_ce_unbiased verifies if the

95% CI of the first measurement is contained in the second

one and vice-versa at default α = 0.05. The console output

is “At 5.0% probability: The first variable C.I. is entirely

Fig. 2. Comparison between Cat’s-Eye plots in run_ce_unbiased func-
tion.

Fig. 3. Stacked CI representations of decision_margin function.

inside the C.I. of the second variable (open interval)”. If

the two CI match, the function inspects the interval type by

checking the inclusion of the endpoints (open interval) or

not (close interval). Calling run_ce_unbiased, users can

plot the Cat’s-Eyes of the two measurements, with eye shape

depicting the probability density function of the data mirrored

vertically (Fig. 2). The pupil of the eye, marked as a dot, is the

mean, with horizontal lines providing references to evaluate

the CI range and vertical dashed lines to feature the differ-

ence between averages. Alternatively, function run_ce shows

the eyes with standard gaussian density estimation. Another

function, single_cat_eye, allows users to investigate the

plausibility of confidence intervals at different α values.

A different class, Id_margin, contains a method

decision_margin that illustrates the positioning of a

series of simulated CIs by bootstrap statistics built knowing

the average and coefficient of variation of a biomarker (Fig. 3).

The CIs are sorted and plotted together with a value acting as

an equivalence margin: it might help examine the behavior of

a specific regulatory boundary during equivalence testing.
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Fig. 4. Residuals vs. leverage with superimposed Cook distances of
run_diagnostic function in eq_Regr.

C. Regression Diagnostics

The correlation between two treatments could be examined

through linear regression using eq_Regr. Despite not being

an equivalence assessment methodology, linear regression in

the presence of correlation might expose a relationship be-

tween measurements.

from equiv_med .EQU import eq_Regr

r e g r =eq_Regr . Regr_d iagn ( var1 , v a r2 )

r e g r . r u n _ d i a g n o s t i c ( [ 0 . 0 5 , 0 . 1 , 0 . 2 ] )

Among the plots produced by run_diagnostic, there is

a visual determination of Cook’s distances over the residuals

versus leverage graph. Users input a list of possible distances

plotted as dashed orange lines: points that overcome a certain

distance might be considered “highly influential” on regression

outcomes. This investigation of scattered values far from zero

on the y-axis and with high leverage provides an understanding

of which points have a high impact on the linear model. In

addition, if the graph returns stable residuals as a function of

leverage, it might be perceived as an indicator of homoscedas-

ticity. In automatic, the run_diagnostic method also

apprises the user if the residuals are normally distributed by

performing Jarque-Bera statistics: this test evaluates skewness

and kurtosis to classify gaussianity or not. Another prerequisite

is the independence of the errors, and the function displays

the Durbin-Watson test result. Further method users can apply

to study influential values is influential_points which

shows DIFITS and DFBETAS in relation to empirical thresh-

olds.

D. Acceptance Limits based on Inherent Imprecision

A method measuring values on a continuous scale might

be characterized by a certain degree of variability in quanti-

fying an underlying unknown true amount. The imprecision

in defining the ground truth is associated with the “random

error,” usually measured by the coefficient of variation (i.e.,

CV). The CV may catch uncertainty in the repeatability or

reproducibility of results. In such situations, estimating the

Fig. 5. Plot comparing imprecision of two measurement methods by eq_ICI
function.

random error (and consequently the imprecision) could be

possible with the ICI_bounds class’s method run_ICI:

from equiv_med .EQU import eq_ICI

i c i = eq_ICI . ICI_bounds ( var1 , v a r2 )

i c i . r u n _ I C I ( 2 , 4 )

The python code produces the graph in Fig. 5: the number of

observations by both methods has been reduced to 40 for a less

crowded and more readable plot. The mean of both measure-

ments is shown over the x-axis, while on the y-axis the differ-

ence between them. The two dashed lines in red are the accep-

tance limits computed as bias±z×CVmean, with bias = 0 and

z = 1.96. The CVmean =
:

CV 2
procedure1 + CV 2

procedure2

requires knowledge of the CVs related to each procedure or in-

strument. It is a number available after carrying out laboratory

experiments or from previous literature. In the example, it has

been set CVprocedure1 = 2 and CVprocedure2 = 4. The python

routine checks if the differences between measurements are

normally distributed, and if not, adjusts the σ value according

to the Chebyshev interval 1− 1

z2 . If the Chebyshev adjustment

is performed, the limits of agreement are in red otherwise,

if normality is found the limits are in orange. The title also

reports the number of inliers inside bounds as a percentage.

On the right side of Fig. 5, users can observe the frequency

distribution of the differences between measurements as grey

horizontal lines. Further lines detail the median (in green), and

the mean (in blue) plotted together with one standard deviation

extension from the mean difference as a vertical bar (in violet).

The function also produces textual outputs that explain the

operations executed on the data in detail.

E. Standardized Mean Difference and Indexes of Non-

overlapping

The standardized mean difference (aka Cohen’s d) exposes

effect size about two normally distributed measurements.

Cohen d computation undertakes different formulas depending
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Fig. 6. Overlapping of two measurement methods by plotting function
of Cohen_es. The Cohen’s d CI are plotted as green dotted vertical lines.

on input values, whether they are paired or not, and whether

variances are homogeneous. In two groups designs with equal

variances, it is method1−method2

sdpooled
, and it summarizes the num-

ber of standard deviations the means of two groups differ.

However, when the sample size is small, Cohen d is corrected

to obtain an unbiased version, called Hedges g. During the

initialization of the class Cohen_family, the user can de-

cide the experimental design of the two input variables (paired

or not, default is not). The function Cohen_es automatically

checks the prerequisites and selects the proper formulation,

possibly applying the small sample size correction factor using

the Gamma function [12].

from equiv_med . ES import Cohen_fami ly

D_meas= Cohen_fami ly . Cohen_es ( var1 , v a r2 )

D_meas . n o n o v e r l a p _ m e a s u r e s ( )

D_meas . p l o t t i n g ( )

The literature on Cohen’s d computation in case of unequal

variances reports different approaches for determining the

right effect size. In the default implementation with equal-

ity of variances, computations follow [12], with results in

the case of heteroskedasticity personalizable using formu-

las suggested by [13], [14], [15]. Among the methods of

class Cohen_family, the nonoverlap_measures re-

turns three indexes upon verifying that input data are normally

distributed and with equal variability:

• Cohen’s U3, also called “percentile standing.” Indeed,

effect size might be interpreted as the average percentile

standing of the average experimental measurement rela-

tive to the average control.

• Cohen’s U2, as U3 is quantified using the cumulative

density function, but of d/2 rather than d as in U3

• Cohen’s U1 = 2×U2

U2

is the non-overlap percentage

between the measurement areas subtended by the proba-

bility density functions.

These indexes complete the information supplied by d. With

plotting, a visual interpretation of the data is shown as in

Fig. 6. The two distributions’ overlapping area is colored in

yellow, with the overlap percentage added near the intersection

point. Vertical dashed lines are the means of the two groups,

while vertical dotted lines are the Cohen’s d and its CI

estimated via the “non-centrality” method.

Another class, called Retesting, calculates the minimal

detectable change for repeated measurements using the same

instrument on different occasions [16]. It tests the consistency

of the scores by automatically switching between Pearson

product-moment or Spearman correlation depending on the

gaussianity of the data. This peculiar function has been in-

serted in the same folder as the Cohen’s d, because there

is a relation between d and the coefficient of correlation

r = d√
d2+a

, with a = 4 if the two input measurements have

same length. So theoretically, the correlation could be inferred

from d, although the current implementation calculates the

correlation indexes directly. The class Responsiveness

contains other metrics to characterize devices’ properties in

case of repeated measurements recorded from two instruments

over time.

F. Equivalence, Non-inferiority and Superiority

Analytical biosimilarity testing by TOST (EIS folder) ex-

ecutes two one-sided t-tests to verify the positioning of the

mean difference between measurements in relation to the

regulatory boundaries ±δ. In statistical terms the equivalence

tests implemented in the python library aim to check:

H0 : m1 −m2 ≤ −δ or m1 −m2 ≥ δ

H1 : −δ < m1 −m2 < δ

In situations where measurements are independent, the func-

tion run_Tost_indep could be employed, while for paired

biomarkers run_Tost_dep. When biomarkers do not have

equal variances in these two functions, degrees of freedom

are computed by the Satterthwaite formula, and the t-test is

replaced by Welch’s t-test. Assumption of normally distributed

input data is checked automatically by Shapiro-Wilks statistic.

The python package also contains two equivalence tests that

tackle the biosimilarity problem from a slightly different point

of view. In Tost_Alt class, the method run_TOST_T

performs the similarity procedure of [17], fixing the margin

at δ = f ×σ2 where f is a multiplication factor, and σ2 is the

standard deviation of the reference method. The f multiplier

should be selected to accommodate statistical power based on

sample size. The authors of [17] suggested f = 1.5. Inside the

same Tost_Alt class, the method run_TOST_MW provides

the methodology studied in [18] to control the type I errors. In

standard TOST, the type I error rate is restrained by α = 0.05,

while the authors introduced a modified Wald test to assess the

standard error by the maximum likelihood estimator. This op-

eration should better control type I errors in repeated measure-

ments involving samples of small size. The section dedicated

to bioequivalence contains two additional procedures: paired
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Fig. 7. Plot showing equivalence region and the actual CI extension of the
difference between biomarkers, using Tost_paired.

measurements could be investigated with the methodology

of [19] (class Tost_paired, Fig. 7), while in the case of

heteroscedasticity, the TOST methods in WS_eq perform the

Welch-Satterthwaite as suggested in [20]. These classes also

include specialized function calls to calculate the minimal

desired sample size and related statistical power. In Fig. 7,

the red vertical dashed lines are the user-defined equivalence

margins (set to ±5.5). As remarked in the “Introduction,” this

value should be deducted from literature or clinical experience.

The yellow rectangle represents the extent of the input data,

and it has a length that overcomes the limits, thus not allowing

to establish equivalence between the datasets. Inside the yellow

rectangle, the probability distribution is shown together with

a vertical dashed blue line depicting the mean difference of

biomarker values.

from equiv_med . EIS import S t a n d a r d _ T o s t a s ST
from equiv_med . EIS import Tost_NCP , Tost_WS
from equiv_med . EIS import T o s t _ A l t
r e s 1 =ST .EQU( var1 , var2 , − 5 . 5 , 5 . 5 )
r e s 1 . r u n _ T o s t _ i n d e p ( )
r e s 1 . r u n _ T o s t _ d e p ( )
r e s 2 = T o s t _ A l t . TOST_T ( var1 , va r2 )
r e s 2 . run_TOST_T ( )
r e s 2 . run_TOST_MW ( )
r e s 3 =Tost_NCP . T o s t _ p a i r e d ( var1 , var2 , 5 . 5 )
r e s 3 . r u n _ t o s t ( )
r e s 4 =Tost_WS . WS_eq ( var1 , var2 , 5 . 5 )
r e s 4 . run_TOST ( )

As a final remark, equivalence testing could be integrated into

standard inferential statistics analysis pipelines. Indeed, equiv-

alence assessment can clarify null-hypothesis significance

tests. When p > α, biomakers are classified as “not different”

in traditional inference, but only equivalence determines their

exchangeability. Conversely, it might be possible to find a

significant difference (p < α) during traditional inference and,

at the same time, equivalence inside certain boundaries.

Fig. 8. Region of practical equivalence as shown by plot_rope of class
ROPE. The right plot is visualized only if the sample size is larger than 50.

Non-inferiority analysis establishes that the efficacy of a

new therapy is not lower than δ units than the current one:

H0 : m1 −m2 ≤ −δ

H1 : m1 −m2 > −δ

Superiority evaluates if there is a difference between measure-

ments by usually fixing δ = 0:

H0 : m1 −m2 ≥ δ

H1 : m1 −m2 < δ

Non-inferiority (non_inferiority) and superiority

(superiority) tests were implemented following [21] as

methods of the class IoS.

from equiv_med . EIS import I n f _ o r _ S u p as IS

r e s 5 =IS . IoS ( var1 , v a r2 )

r e s 5 . n o n _ i n f e r i o r i t y ( n i_bound = 0 . 1 )

r e s 5 . s u p e r i o r i t y ( sup_bound =0)

The region of practical equivalence (i.e., ROPE, developed

inside ROPE class) has been introduced in [22] as a Bayesian

probabilistic framework that does not rely on statistical sig-

nificance. This approach considers the data sample as a

probabilistic representation of the underlying real population

of values. The user selects the region of practical equivalence,

and it corresponds to the “null” hypothesis. The functions

check the percentage of samples that fall inside the ROPE;

this proportion is called the credibility interval, and it could

be built using the highest density principle (rope_hdi) or as

an equal-tailed interval (rope_calc). The intervals obtained

from these two processes are the same when dealing with

symmetric distributions, but skewed distributions might show

different extensions; the python functions warn the user about

this possibility. The credibility interval conceptualizes the

idea that points comprehended inside it are more credible

representatives of the data than external points, and it could

be set to 95% or restricted to 89%. When the percentage of

credibility interval within the ROPE is sufficiently low, the

ROPE “null” hypothesis is rejected. Users can visualize the

test result using plot_rope, as shown in Fig. 8.
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Fig. 9. ROC with CI, Youden index and K-index as shown by
plot_roc_youden.

G. ROC Analysis

Diagnostic procedures can be evaluated in terms of ROC

curves without proving any distributional assumption. Using

the function plot_roc_youden of the class Roc_youden,

users can visualize a ROC curve as in Fig. 9. The curve

displays different threshold values determining the positivity

to a medical test and the trade-off between true positive

and false positive fractions. The more a ROC curve is close

to the upper-left corner of the box enclosing the plot, the

better the test’s diagnostic power. The function automatically

checks the side of the curve with the Mann-Whitney U rank

test and consequently adapts computations. In the following

examples, the results of a medical test are the first input

variable (test_res) while true_labels represent the

disease status of the subjects:

from equiv_med .ROC import Roc_youden as Ry

r o c =Ry . Youden_Roc ( t e s t _ r e s , t r u e _ l a b e l s )

r o c . p l o t _ r o c _ y o u d e n ( )

In ROC curves, it is fundamental to represent also the CIs:

for their computation reckoned by non-parametric technique,

plot_roc_youden exploits the algorithm in [23]. In addi-

tion, the plot contains the area under the curve (i.e., AUC), an

accuracy metric often applied to compare different method-

ologies, while the Gini index is shown as textual output on

the console. The orange triangle marks the Youden index,

the point of maximal effectiveness of a medical test. At the

Youden level, the sensitivity and specificity are balanced, thus

highlighting the optimum cut-off point for the procedure. The

Youden point might be close to the theoretical optimum, as

happens in Fig. 9. Another index included in the graph is

the K-index, represented as the pale red circle sector centered

on the upper-left corner. It is the distance between the best

result (the upper-left corner) and the optimum identified by the

Youden index. The smaller this quarter-circle is, and better the

medical test. Moreover, any ROC point that enters the K-index

space is preferable to the threshold selected to determine the

positives of the test. The black point “MID” is the minimal

important difference detected by the anchor method. The MID

value might also be called “minimally important change,” even

if it has been suggested to refer to MID only for between-

subjects differences [24]. The MID value could help examine

thresholds of treatments relating them to clinical improvements

in health patient status.

The python package also offers four classes to statistically

compare the ROC curves of two biomarkers, acquired as

independent or repeated experiments. These statistics require

two ROCs having the same direction:

• DeLong techniques in fast version [25], accomplished

relating the Heaviside function to the samples mid-ranks

– DeLong_dependent

– DeLong_independent

• Venkatraman methods, performing pointwise compari-

son [26], [27]. This procedure requires the exchangeabil-

ity assumption.

– Venkatraman_dependent

– Venkatraman_independent

During statistical equivalence, the ROC direction is detected

by Mann-Whitney U. Intriguingly, there is a direct relation

between ROC’s AUC and Mann-Whitney U being AUC =
U

n0×n1

, with n0 and n1 number of negative and positive cases.

The class Ranking_plots allows users to visualize the

precision vs. recall plot, including the calculation of area under

this curve, and the true positive vs. false positive rates graph,

containing the Kolmogorov-Smirnov statistic in the standard

and truncated forms. Both provide an interpretation of the

distance between true positive vs. false positive rate lines, but

the truncated formula is less sensitive to noise.

H. The 2x2 Frequency Table and Performance Indexes

Dichotomous outcomes of diagnostic tests are gener-

ally summarized by a two-by-two frequency table, also

known as two-class confusion matrix (displayed calling

frequency_plot). Multiple performance indexes could

be derived from the frequency table: these attributes are

computed on a single threshold rather than several thresh-

olds like for ROC. The python library contains the class

Frequency_table, which calculates 34 indexes. These

performance indexes support the validation of a new test

against a gold standard. The Radar class offers comparisons

of performance indexes from one or two instruments in two

types of charts: a radar plot with or without overlapping input

indexes or a circular paired bar graph.

from equiv_med .ROC import F r e q u e n c y _ t a b l e as f t
from equiv_med .ROC import Radars
t 1 = f t . F r e q _ t a b l e ( t e s t _ r e s 1 , t r u e _ l a b e l s )
ou t 1 = t 1 . p e r f o r m a n c e _ i n d e x e s ( )
t 2 = f t . F r e q _ t a b l e ( t e s t _ r e s 2 , t r u e _ l a b e l s )
ou t 2 = t 2 . p e r f o r m a n c e _ i n d e x e s ( )
rd = Radars . R a d a r _ p l o t s ( i n d e x e s _ l i s t )
rd . r a d a r _ p l o t s ( out1 , out2 , o v e r l a p p i n g =True )
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Fig. 10. Radar graphs comparing the indexes of two diagnostic tests using
radar_plots of Radars class.

In Fig. 10, the radar illustrates five indexes pre-selected by

the user passing the list of names during Radar_plots

initialization. The function automatically abbreviates indexes

names; in the example of Fig. 10, “Error Rate” is “ER,”

“Recall” as “Rec,” “G” is “G measure,” “Prevalence” as “PR,”

and “False Discovery Rate” is “FDR.”

III. CONCLUSIONS

A python library for visual understanding of medical-related

statistical tests targeting several aspects of bioequivalence has

been presented. It offers a free alternative to commercial soft-

ware. Functions are highly automated and produce enhanced

graphs to facilitate the interpretation of the output parameters.

Minimal working examples were included to aid in repro-

ducing the results. Future versions will expand and improve

the implemented methodologies maintaining the spotlight on

producing visual insights.

APPENDIX

The source code of the functions described in the document

(current version 0.11) has been uploaded to GitHub (https:

//github.com/m89p067/equiv_med) and archived on Zenodo

(https://zenodo.org/record/6504217). Installation of the pack-

age directly from GitHub through pip.
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