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Abstract: The inducible T cell co-stimulator ligand (ICOSL), expressed by antigen presenting cells,
binds to the inducible T cell co-stimulator (ICOS) on activated T cells. Improper function of the
ICOS/ICOSL pathway has been implicated in several autoimmune diseases, including multiple
sclerosis (MS). Previous studies showed that ICOS-knockout (KO) mice exhibit severe experimental
autoimmune encephalomyelitis (EAE), the animal model of MS, but data on ICOSL deficiency are not
available. In our study, we explored the impact of both ICOS and ICOSL deficiencies on MOG35–55

-induced EAE and its associated immune cell dynamics by employing ICOSL-KO and ICOS-KO
mice with a C57BL/6J background. During EAE resolution, MOG-driven cytokine levels and the
immunophenotype of splenocytes were evaluated by ELISA and multiparametric flow cytometry,
respectively. We found that both KO mice exhibited an overlapping and more severe EAE compared
to C57BL/6J mice, corroborated by a reduction in memory/regulatory T cell subsets and interleukin
(IL-)17 levels. It is noteworthy that an unsupervised analysis showed that ICOSL deficiency modifies
the immune response in an original way, by affecting T central and effector memory (TCM, TEM),
long-lived CD4+ TEM cells, and macrophages, compared to ICOS-KO and C57BL/6J mice, suggesting
a role for other binding partners to ICOSL in EAE development, which deserves further study.

Keywords: ICOSL; experimental autoimmune encephalomyelitis; memory cells; regulatory T cells;
multiple sclerosis

1. Introduction

The inducible T cell co-stimulator (ICOS) molecule is a homodimeric type-I transmem-
brane receptor featuring an extracellular (Ig)V-like domain (characteristic shared with B7
family receptors) [1]. ICOS is primarily found on activated T cells but can be expressed
on dendritic cells (DCs) as well [2]. Its unique binding partner is the inducible T cell
co-stimulator ligand (ICOSL), a B7 homologous protein that is constitutively expressed
on professional antigen presenting cells (APCs) and, to a lesser degree, on some other
cell types, like endothelial cells (ECs), osteoclasts, and several tumor cell lines [3]. The
interaction between ICOS and ICOSL plays a crucial role in governing T-cell activation
within lymphoid organs and overseeing T-cell functionality at sites of inflammation. This
has been extensively explored by utilizing knockout (KO) mice and stimulating or block-
ing molecules [4–6]. ICOS/ICOSL interactions also have the potential to shape a distinct
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microenvironment, exerting an impact on various cellular type differentiation, such as
regulatory T cells (Tregs) or effector T cells, including T helper (Th)-17, follicular Th cells
(Tfh), and the development of germinal centers. It is noteworthy that ICOS/ICOSL in-
teractions trigger a process called reverse signaling, also influencing APCs. Indeed, this
interaction modulates cytokine secretion, inhibits the adhesiveness and migration of DCs,
ECs, and tumor cells, and inhibits osteoclast function [7–10]. This intricate crosstalk be-
tween ICOS/ICOSL becomes even more complex when considering recent findings from
our laboratory and others. This evidences shows that ICOSL can also bind to osteopontin
(OPN) [11] or other partners, such as ανβ3 integrin [12]. OPN is a matricellular protein that
regulates the immune response at multiple levels [11,13], while ανβ3 is a member of the
integrin superfamily of adhesion molecules involved in signal transduction and cell-to-cell
interactions [14].

Multiple sclerosis (MS) is an autoimmune disease that primarily affects the central
nervous system (CNS) and it is characterized by inflammation, demyelination, and axonal
damage [15]. Co-stimulatory pathways facilitate the activation of T cells that infiltrate
the CNS, significantly contributing to MS pathogenesis [16]. Activated CD4+ T cells with
reactivity to myelin components have been identified in the blood and cerebrospinal fluid
of individuals with MS. Furthermore, in acute and chronic MS lesions, CD4+ and CD8+

T cells were observed, respectively [17,18]. The most intensively studied animal model
of MS is experimental autoimmune encephalomyelitis (EAE), due to its similarities to
human disease in terms of both histopathology and immunological features. EAE is mainly
mediated by helper CD4+ T cells that, following the activation in the periphery, enter CNS,
where they trigger the activation of the resident microglia.

Dysregulation of the ICOS/ICOSL system has been implicated in several autoimmune
diseases, including MS [2,19–22]. ICOS-KO mice develop an exacerbated form of chronic
EAE but are relatively resistant to other autoimmune diseases, such as experimental au-
toimmune myasthenia gravis and collagen-induced arthritis [23,24]. The effect of ICOS
deficiency on EAE has been investigated in both chronic [4,25] and relapsing–remitting EAE
models [5]. Moreover, several studies have suggested the possibility that interfering with
the ICOS/ICOSL binding can lead to potential modulation of the autoimmune response in
EAE. In EAE induced by the transfer of CD4+ memory cells, inhibiting the ICOS/ICOSL
interaction has a beneficial effect, whereas in EAE induced by the transfer of CD4+ effector
cells, blockade of the ICOS/ICOSL pathway results in further deterioration [26]. Even
though a substantial number of studies have confirmed the exacerbation of EAE in the
case of a blockade or deficiency of ICOS, there are no data regarding the effect of ICOSL
deficiency on EAE course.

Our study aimed to compare both ICOS and ICOSL deficiencies on EAE course and in
the shaping of immunological response during the resolution phase of EAE. We thus in-
duced EAE in ICOSL-KO, ICOS-KO, and C57BL/6J mice, followed the disease course until
remission, and then performed a deep flow cytometry evaluation of splenocytes, which
was subsequently analyzed by both classic and unsupervised analyses pipelines [27]. The
enhanced capabilities of modern flow cytometers enable the utilization of multiparametric
flow cytometry (up to 30 markers in the same tube), along with an unbiased analysis, that
simultaneously incorporates all included markers to assess cell similarity. Clustering, as an
unsupervised learning technique, categorizes unlabeled instances into meaningful groups
based on their shared characteristics. The advantage of employing unsupervised clustering
analysis lies in its ability to partition data in a more refined manner, thereby facilitating
the discovery of novel and unexpected cell populations that may hold significance in the
context of a specific disease.

The obtained results showed that ICOSL deficiency worsens the course of disease
compared to C57BL/6J mice, paralleling that of ICOS-KO mice. Interestingly, ICOSL
deficiency modifies the immune response in an original way, by affecting T central and
effector memory (TCM, TEM), the long-lived CD4+ TEM cells, and macrophages, compared
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to ICOS-KO and C57BL/6J mice. These results suggest that the ICOSL signaling pathway
may contribute to their maintenance through a mechanism independent of ICOS.

2. Results
2.1. ICOSL Deficiency Exacerbates EAE and Impacts Recovery during Remission

In order to investigate the impact of ICOSL deficiency on EAE course, we induced
chronic EAE in ICOSL-KO and compared the results with both C57BL/6J and ICOS-KO
mice. EAE was significantly more severe in both KO mice in comparison with C57BL/6J
mice, but no differences were found in the average disease scores, calculated using the
cumulative data, between ICOS-KO and ICOSL-KO mice (Figure 1A).
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levels (pg/µg) in brain and spinal cord homogenates from C57BL/6J, ICOSL-KO and ICOSK-KO 
mice. Data are shown as mean ± SEM (n = 5 mice/group). For statistical analysis, Kruskal–Wallis test 
with Dunnett multiple comparisons was used as a post-hoc test. The asterisks (*) or pound signs (#) 
depicted in the vertical line correspond to the statistical significance of the average daily disease 
score, which was computed from cumulative data across experiments. * p < 0.05; ** p < 0.01 C57BL/6J 
vs. ICOS-KO; # p < 0.05; ## p < 0.01; ### p < 0.001 C57BL/6J vs. ICOSL-KO. 

  

Figure 1. Clinical disease course of MOG35–55-induced EAE in C57BL/6J, ICOSL-KO and ICOS-KO
mice. (A) EAE was induced using the established protocol in the laboratory (31). Results from
three independent experiments are shown. Data are shown as mean ± SEM (n = 2830 mice/group).
(B) Antigen-recall assay to MOG of splenic cells isolated from the three groups (n = 4–5) and cultured
for 72 h in the presence/absence (no stimuli) of MOG35–55 peptide (10 µg/mL). (C) IL-17A protein
levels (pg/µg) in brain and spinal cord homogenates from C57BL/6J, ICOSL-KO and ICOSK-KO
mice. Data are shown as mean ± SEM (n = 5 mice/group). For statistical analysis, Kruskal–Wallis
test with Dunnett multiple comparisons was used as a post-hoc test. The asterisks (*) or pound signs
(#) depicted in the vertical line correspond to the statistical significance of the average daily disease
score, which was computed from cumulative data across experiments. * p < 0.05; ** p < 0.01 C57BL/6J
vs. ICOS-KO; # p < 0.05; ## p < 0.01; ### p < 0.001 C57BL/6J vs. ICOSL-KO.

During the remission phase, at the endpoint of the EAE experiment, we investigated
whether the absence of either ICOS or ICOSL molecules would affect the production of
MOG-driven specific cytokines. To achieve this, we performed an MOG-specific recall
response of splenocytes harvested from both KO mice at the remission phase of the disease.
No discernible differences regarding IFN-γ, IL-10, and IL-17A levels in both KO mice were
found in the supernatant of MOG-stimulated splenocytes. However, the IL-17A cytokine
was decreased in both KO mice when compared with C57BL/6J mice (Figure 1B). To rule
out the possibility that this reduction reflected a real decrease in IL-17A-secreting cells in
the spleen or was a consequence of their persistence in the brain and/or spinal cord, we
examined IL-17A levels in the aforementioned target tissues. Interestingly, IL-17A protein
expression was also significantly reduced in both the brains and spinal cords of ICOS-KO
and ICOSL-KO mice (Figure 1C).
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2.2. Deep Multiparametric Flow Cytometry Analysis with Classical Gating Strategy Reveals a
Reduction in CD8+ TCM Cells and Tregs and an Increase in CD4+ TEM and Myeloid Cells in
ICOSL-KO Mice

Since both KO mice cohorts exerted the same degree of disease severity, which could
not be ascribed to differences in the cytokine production, we performed multiparametric
flow cytometry analysis. The aim was to assess if the severity of EAE can be attributed to a
specific immune cell subset.

We observed intriguing changes in the absolute numbers of various immune cell
populations in both KO cohorts when compared to C57BL/6J mice. Notably, the ICOSL-
KO cohort exhibited a significant increase in CD4+ TEM compared to ICOS-KO; a similar
trend was observed in C57BL/6J mice compared to ICOS-KO mice. We also found a
downregulation in Tregs number and a trend in their activation status (detected through
the upregulation of Helios marker, p = 0.067) in comparison with C57BL/6J mice [28].

Regarding the CD8 compartment, both KOs showed a trend in the decrease in CD8+

TCM in comparison with C57BL/6J mice (Figure 2).
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Figure 2. Multiparametric-flow-cytometry-supervised analysis of splenocytes from MOG35–55-
induced EAE C57BL/6J, ICOSL-KO, and ICOS-KO mice. Each dot plot shows the absolute number
(expressed as a power of 106) of immune cell populations in the spleen (day 32 post-immunization)
harvested from C57BL/6J, ICOSL-KO, and ICOS-KO mice. The samples were acquired using
FACSymphonyTM A5 (Becton and Dickinson, San José, CA, USA) flow cytometer and data were
analyzed using FACSDIVA software (Version 9.1, Becton and Dickinson, San José, CA, USA). CM:
central memory; EM: effector memory; Tregs: regulatory T cells; MDSC: myeloid-derived suppressor
cells. Data are shown as mean ± SEM of three independent experiments (n = 19–24 mice/group). For
statistical analysis, Kruskal–Wallis test with Dunnett multiple comparisons as post-hoc test was used,
* p < 0.05, ** p < 0.01, *** p < 0.001.

Finally, ICOSL-KO mice showed an increase in the absolute number of macrophages
and DCs in comparison with C57BL/6J mice. Monocytic and granulocytic MDSC absolute
counts were also significantly increased in comparison with C57BL/6J and ICOS-KO mice
(Figure 2).
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2.3. Deep Flow Cytometry Unsupervised Analysis Reveals Distinct Cell Subsets and New Clusters
Differentially Associated with ICOSL-Driven Disease

To investigate whether specific cell subsets were associated with ICOSL-driven EAE,
we performed an unsupervised flow cytometry analysis. The unsupervised approach
in flow cytometry is motivated by the need to explore and analyze complex datasets
without predefined labels or classifications. In unsupervised methods, the algorithm
identifies patterns, structures, or clusters within the data on its own, without relying
on prior information/classification. This is particularly beneficial when dealing with
heterogeneous samples or when the nature of the data is not well understood.

The UMAP algorithm was used to reduce the multidimensionality of the flow cytom-
etry panel (Figure 3A) [29]. Subsequently, unsupervised clustering analysis employing
the X-shift algorithm identified 21 clusters in both KO mice (Figure 3B) [30]. The latter
algorithm efficiently analyzes datasets by rapidly estimating cell event density through
the k-nearest-neighbor methodology, categorizing populations based on marker-defined
classifications. This approach facilitates the automated clustering of cell subsets, reveal-
ing biological insights that might remain undiscovered when relying solely on “prior
knowledge”.
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Figure 3. Unsupervised flow cytometry analysis identified 21 cell clusters. (A) UMAP multidimen-
sionality reduction for C57BL/6J (left), ICOS-KO (center) and ICOSL-KO (right), concatenated and
analyzed simultaneously. Data are shown as density dot plots. (B) Heatmap derived from the total
median fluorescence intensity (MFI) (column-scaled z-scores) and comparison of the clusters among
the three groups (C57BL/6J, ICOS-KO and ICOSL-KO). For statistical analysis, Kruskal–Wallis test
with Dunnett multiple comparisons was used, ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001
and **** p < 0.0001.

Ten out of the twenty-one clusters were significantly expressed at different levels
among the genotypes, including C57BL/6J, as reported below (Figure 4).
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Figure 4. Unsupervised analysis reveals new cell subsets. Each dot plot shows the percentages of the
depicted cells in C57BL/6J, ICOSL-KO, and ICOS-KO mice. For statistical analysis, Kruskal–Wallis
test with Dunnett multiple comparisons was used. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Data are shown as mean ± SEM of three independent experiments (n = 19–24 mice/group).

To enhance clarity and facilitate understanding, the basic phenotypes and affiliations
of the defined clusters are summarized in Table 1.

Table 1. Basic phenotypes and affiliations of the defined clusters. The absence of ICOSL affects
predominantly cells from myeloid compartment. Unsupervised analysis revealed significant decrease
in macrophages (cluster 2) in ICOSL-KO in comparison to ICOS-KO group and a significant increase
in monocytic-DC cells (cluster 5), in inflammatory monocytes (cluster 10) and naïve CD8+ cells
(cluster 16) when compared to C57BL/6J mice. In addition, the absence of ICOSL had a negative
effect on the long-lived effector memory of CD4+ T cells (decreased in cluster 18) and activated
peripheral Tregs (cluster 8) when compared to wt mice. In comparison to ICOS-KO, the significant
decrease in short-lived effector cells, both CD4 and CD8 (cluster 3 and 4, respectively), as well as
immunosuppressive Tregs (cluster 14), was recorded.

Cluster Markers (Phenotype) Reference
ICOS-KO

vs.
C57BL/6J

ICOSL-KO
vs.

C57BL/6J

ICOS-KO
vs.

ICOSL-KO

2 F4/80+ CD44+

(macrophages) [31] x x ↑

3
CD8+ CD44+ CD62L−

Ly6C+

(short-lived CD8+ TEM cells)
[32] ↑ x ↑

4
CD4+ CD44+ Ly6C+

(short-lived effector CD4+T
cells)

[33] ↑ x ↑

5 CD11b+ Ly6C+ CD44+

(monocytic-DC cells) [34] ↓ x ↓

8 Ly6C+ Helios+

(peripheral Ly6C+ Tregs) [35] x ↓ x

10
CD11b+ Ly6C+ CD62L+

CD44+

(inflammatory monocytes)
[36] x ↑ x
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Table 1. Cont.

Cluster Markers (Phenotype) Reference
ICOS-KO

vs.
C57BL/6J

ICOSL-KO
vs.

C57BL/6J

ICOS-KO
vs.

ICOSL-KO

14
CD11c+ CD8+ CD44+

(CD8+ immunosuppressive
Tregs)

[37] x x ↑

15
CD4+, CD11b+, CD11c+,

CD44+

(tolerogenic DCs)
[38] x ↑ x

16 CD3+ CD8+ Ly6C+ CD62L+

(naïve CD8+ T cells) [39] ↓ x x

18 CD3+ CD4+ CD44+ Ly6C−

(long-lived CD4+ TEM cells) [35] ↓ ↓ x

Unsupervised analysis revealed that the absence of either ICOS or ICOSL leads to
some very specific alterations in the diverse cell populations that were not recorded by
the conventional gating strategy analysis. The absence of ICOS leads to an increase in
the pool of short-lived effector cells, both CD4 and CD8 (clusters 3 and 4, respectively),
while the long-lived effector memory of CD4+ T cells is significantly impaired (decreased
in cluster 18) in comparison to wt mice. Additionally, ICOS-KO exhibited an increase in
tolerogenic-DCs (cluster 15).

Interestingly, the findings described above revealed differences between ICOS- and
ICOSL-deficient mice in shaping the immune system, particularly in the percentages of
macrophages, short-lived CD8+ TEM, short-lived CD4+ T cells, and CD8+ Tregs, with signif-
icant increases observed in ICOS-KO. These data may suggest that the ICOSL signaling
pathway may contribute to their maintenance through a mechanism independent of ICOS.

3. Discussion

In this study, our objective was to explore the impact of both ICOS and ICOSL defi-
ciencies on EAE (MOG35–55-induced) and its associated immune cell dynamics, employing
ICOSL-KO and ICOS-KO mice, compared with C57BL/6J wtmice, which served as the
control group.

Our results showed that both deficiencies are associated with the following: (i) the
exacerbation of EAE compared to C57BL/6J mice and an overlapping EAE course; (ii) a
significantly reduced recovery rate compared to C57BL/6J mice; (iii) a partially different
phenotype of immune cells compared to C57BL/6J mice.

The interplay between costimulatory signals, such as ICOS/ICOSL, plays a key role
in regulating T-cell activation and is believed to have a decisive influence in inciting and
perpetuating cellular effector mechanisms in autoimmune diseases, such as MS.

Based on these observations, one could expect a milder clinical presentation in the
case of ICOS-KO and ICOSL-KO mice compared to wt mice. However, Rottman et al. were
among the first to challenge and dispel this assumption. The authors used a proteolipid
protein (PLP) relapsing–remitting EAE model in which they blocked ICOS in wt mice by
using ICOS-Ig, a recombinant molecule that binds to ICOSL on APCs, and thus impeded
its binding to ICOS expressed on T cells. Surprisingly, this led to a different clinical course
depending on the timing of the ICOS-Ig injection: during the efferent immune response
(9–20 days after immunization), it led to the abrogation of EAE, while during the antigen
priming phase (1–10 days after immunization), it led to exacerbation of the disease [5].
The results obtained in our study showed a similar exacerbation of EAE in ICOS-KO and
ICOSL-KO mice when compared to C57BL/6J mice, thus highlighting the undoubted
importance of the ICOS/ICOSL interaction in protecting against the development and
progression of EAE.
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ICOS is found on both CD4+ and CD8+ T cells, but there is a notable difference in ICOS
mRNA expression between polarized Th2 and Th1 cells, with it being increased in polarized
Th2 cells [40]. Furthermore, ICOS triggering induces IL-10 expression [41], and it has been
shown that T cells from ICOS-deficient mice show deficiencies in IL-4 production [42,43].
Collectively, these data suggest that blockade of the ICOS–ICOSL pathway during antigen
priming, either by the genetic deletion of ICOS or by treatment with a specific mAb to ICOS,
results in polarization towards a Th1 response, thus offering a potential explanation for
the exacerbation of the disease in ICOS-KO animals. Specifically, the elimination of ICOS
from the overall scenario leads to a slowdown in the activation of anti-inflammatory Th2
cells, while the impact on the activation of pro-inflammatory Th1 cells is considerably less
pronounced, resulting in an increased ratio of Th1:Th2 cells and leading to the exacerbation
of symptoms in EAE, a prototype of Th1-mediated disease.

The culprit players in the development of EAE are activated Th1 and Th17 cells. ICOS
is required for the differentiation of Th17 cells that secrete IL-17 [44] and the differentiation
of Th1 cells, which are responsible for secretion of IFN-γ [45].

In our investigation, we noticed that MOG-restimulated splenocytes from both ICOS-
KO and ICOSL-KO mice displayed reduced expression levels of IL-17A, with no discernible
differences in the production of INF-γ. The unchanged production of INF-γ in ICOS-KO
mice aligns with previous reports [1]. Regarding the production of IL-17A, the available
literature presents contrasting results, with some studies asserting that the production of
IL-17A is reduced [46], while others reported an increase in IL-17A production using the
splenocytes of ICOS-KO animals [4]. Our data align with the data consistently emphasizing
the importance of ICOS and ICOSL molecules in the differentiation and maintenance of
Th17 cells [44,46].

In order to gain a more comprehensive understanding of the pathogenetic mecha-
nisms underlying ICOS/ICOSL interactions in EAE pathology, we conducted an in-depth
characterization of the differential immune responses through the use of deep immunophe-
notyping via multiparametric flow cytometry. The generated data were subject to analysis
using both classical gating strategy (supervised) and unsupervised (multidimensionality
reduction and clustering) approaches. This was carried out to achieve two main objectives:
(i) gain an overview of the immune response, with a focus on T cells and myeloid subsets
known to play pivotal roles in the pathogenesis of EAE; (ii) identify, through an unsuper-
vised approach, immune cell subsets that may serve as undescribed players in EAE. This
analysis could provide insights into the molecular mechanisms of action specific to each
KO mouse group.

Conventional flow cytometric analysis in the spleen revealed that the most affected
subset within the pool of CD8+ T cells was the TCM cells in both cohorts of KO, with a
reduction trend in their absolute counts. A lower number of these cells in the spleen may
reflect their migration to CNS, where they intensify inflammation and contribute to the
destruction of myelin sheets. This phenomenon may be a contributing factor to the severe
EAE observed in ICOSL-KO mice [47]. On the other hand, the CD4+ compartment was
seemingly unaltered, at least at the level of total CD4+ cells. Nevertheless, the fluctuations
regarding the absolute counts of TEM cells in both KO groups resulted in a significant
increase in ICOSL-KO and C57BL/6J mice in comparison with ICOS-KO mice. The major
characteristic of CD4+ TCM cells is their homing to secondary lymphoid organs, whereas
TEM cells are mainly located in nonlymphoid tissues and acquire effector functions, such as
cytokine production and killing, more rapidly than TCM cells [48]. However, both T cell
subsets are present in the blood and spleen [26].

The obtained results revealed the reduction in the CD4+ TEM cells in the spleen of
ICOS-KO mice, which was not surprising since the available literature findings have already
indicated that ICOS is an important factor specifically for the generation or survival of TEM
cells [49–51]. Burmeister et al. have shown that ICOS critically controls the pool size of
TEM and Tregs (Foxp3+) in the steady state, as well as in Ag-specific immune reactions, by
regulating the survival of T cells [49].
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In addition, Mahajan et al. examined endogenous CD4+ memory T cells in ICOS-KO
mice by employing MHC class II tetramers. Their analysis unveiled regular primary clonal
expansion, the generation of memory clones, and a prolonged survival (up to 10 weeks)
of memory cells. However, these memory cells did not expand upon reactivation in vitro.
These findings suggest that ICOS likely plays a role in bolstering secondary, memory, and
effector T-cell responses, potentially by affecting cell survival [52]. Nevertheless, this still
leaves open the question of the EAE severity that we observed in ICOS-KO mice.

In an MOG-induced EAE model, recovery is mediated by the expansion of Tregs [53].
It is well known that Tregs depletion results in increased incidence and accelerated disease
onset in EAE model [53]. The absence of ICOS, under steady-state conditions, was shown
to lead to a reduced number of Foxp3+ Tregs [54]. In our experiments, we found that
both ICOSL-KO and ICOS-KO mice significantly reduced the recovery of symptoms in
the remission phase, accompanied by a decline in CD4+Foxp3+ T cells, in comparison
to C57BL/6J mice; this reduction is more prominent in ICOSL-KO mice. Our results
coincide with several reports showing that the reduction or ablation of Tregs exacerbates
EAE [55,56]. Interestingly, we found that Tregs in both ICOS-KO and ICOSL-KO mice
co-express Foxp3 and Helios, identifying the activated phenotype [57]. Indeed, Helios, by
directly binding to the promoter of Foxp3, increases its levels, contributing to the stability
of Tregs [58]. ICOSL-KO mice, but not ICOS-KO mice, showed a trend in the reduction of
activated Tregs, which could explain the severity of EAE seen in ICOSL-KO mice. However,
Foxp3+Helios+ Tregs did not protect ICOS-KO mice from EAE. This is in line with a study
from Golding and colleagues that showed that Helios-expressing Foxp3+ Tregs in systemic
lupus erythematosus patients did not produce effector cytokines, and they still failed to
fully protect the host from intense self-reactive B- and T-cell responses [59].

ICOSL is a costimulatory molecule expressed by APCs such as macrophages, DCs, and
B cells. Our data showed that its deficiency results in an increase in the absolute numbers
of macrophages and DCs during EAE remission. The number of macrophages is reported
to be decreased during the resolution and recovery phases of EAE [60], as we observed in
C57BL/6J mice, in which EAE was less severe compared to ICOSL-KO mice. Activated DCs
could prime autoreactive T cells in secondary lymphatic organs, which then can become
mobile, pass the endothelial barrier, and migrate to CNS, leading to inflammation [61,62].
Monocytic and granulocytic MDSC resulted in an increase in ICOSL-KO mice. One reason
for this could be that, since, in these mice, OPN is unable to bind to ICOSL, it is instead
free to bind to integrins, facilitating the expansion of MDSCs, and therefore leading to a
more severe EAE. In line with this, it has been shown that depletion of MDSCs resulted in
a marked reduction in EAE severity in the lymphoid tissues and spinal cords [63].

Conventional supervised flow cytometry analyses are limited to pre-defined cell
populations and do not exploit the full potential of the data, especially when the panel
includes several markers (>8). The increasing capacities of novel flow cytometers allows for
the application of multiparametric flow cytometry and an unbiased analysis that uses all
the included markers simultaneously to assess the similarity between cells. Clustering is an
unsupervised learning technique since it categorizes unlabeled instances into meaningful
groups using their similar properties. The advantage of using unsupervised clustering
analysis is that it opens up the possibility to partition the data more finely by facilitating
the finding of novel and unexpected populations that could be relevant in that specific
disease. In our study, through unsupervised analysis, we identified a total of 10 clusters
that exhibited differential expression between ICOS-KO and ICOSL-KO mice, as well as
each KO group, compared to C57BL/6J ones.

ICOSL-KO mice showed a reduction in the macrophage subset (cluster 2), short-lived
CD8+ TEM cells (cluster 3), short-lived CD4+ T cells (cluster 4), and CD8+ Tregs (cluster
14) in comparison with ICOS-KO, suggesting that other mechanisms (i.e., the binding of
ICOSL to OPN or ανβ3) may possibly support their expansion or maintenance. OPN is
involved in the modulation of the generation of CD8+ memory T cells [64] and is still
upregulated within the remission phase [65]. However, ICOSL binding to its new partners
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could inhibit the expansion of the monocytic-DC (cluster 5), resulting in a decrease in ICOS-
KO mice: cells expressing the Ly6C marker migrate into the CNS and further differentiate
into APCs during disease progression by promoting inflammation and tissue damage
during EAE [66].

Moreover, we identified a novel cluster that encompasses Helios and Ly6C markers,
which was reduced in ICOSL-KO mice when compared to the C57BL/6J mice cohort.
This particular cluster is indicative of peripheral Tregs. The presence of Ly6C on Tregs
is associated with a lower activation, proliferation, and differentiation status, as well as
functional incompetence [35]. In summary, the decreased expression of this cluster in
ICOSL-KO mice suggests potential alterations in the peripheral Treg population, pointing
towards a nuanced impact on their activation and functional characteristics in the absence
of ICOSL signaling. Conversely, we can speculate that the ICOS/ICOSL interaction could
be responsible for long-lived CD4+ TEM cells (cluster 18) in C57BL/6J mice, where these
cells are at their highest levels compared to the KO mice. This cell population has already
been described by MacLeod et al. [67–69].

Even though the supervised analysis did not reveal any significant difference in the
myeloid compartment of the three examined groups of mice, we found that all cell clusters
expressed the CD44 molecule. CD44 is a cell-surface glycoprotein involved in various
cell-to-cell interactions such as cell adhesion and migration. Notably, CD44 is not exclusive
to T and B cells, but is also expressed in natural killer cells, macrophages, DCs, and other
cells [70].

The newly identified clusters in myeloid compartments exhibited differential modula-
tion in both ICOS-KO and ICOSL-KO mice compared to C57BL/6J mice. Specifically, in
ICOS-KO mice, we observed a significant increase in a cell subset expressing F4/80 but
lacking CD11b, as well as a decrease in the cell population expressing CD11b and Ly6C
markers but lacking the F4/80 marker. The former subset has been described by Tacke et al.
as a novel tissue-resident macrophage population expressing only F4/80 in the thymus,
where it engages in phagocytic activity by engulfing apoptotic thymocytes [71].

Lastly, ICOS-KO mice showed a significant increase in a cell population co-expressing
CD11b, CD11c, and CD4 markers: this subset has been described as subpopulation of
tolerogenic DCs, playing an important role in intravenous tolerance-induced EAE suppres-
sion [38].

In summary, although an unsupervised analysis could not fully explain the exacer-
bation of EAE seen in ICOSL and ICOS-KO mice, it provided valuable insights into the
modulation of specific immune cell subsets in both KO mice.

Our study has two minor limitations. The first depends on the lack of non-MOG
injected mice. Indeed, the EAE model that was used is driven by an encephalitogenic emul-
sion composed of the MOG antigen dissolved in CFA, supplemented with M. tuberculosis
(4 mg/mL) as adjuvants. This is a well-established method to trigger a specific autoimmune
response, mimicking certain aspects of MS in a controlled experimental setting [72–74],
but the ability of CFA to induce a severe immune response against non-CNS antigens on
its own [75], or to skew the immune response towards Th1-driven response [76], raised
several concerns. As of today, most of the concerns raised regarding CFA refer to the rat
model of EAE [77]. Efforts have been made to remove CFA from the immunization regimen
in EAE studies. However, replacing CFA with an incomplete Freund’s adjuvant, which
lacks Mycobacterium, which is believed to be accountable for the mentioned effects, has
proven impractical in mice, as it induced tolerance instead [74]. Even though it is highly
recommended to have no MOG35–55, Hasselmann et al. have shown that mice without
MOG35–55 do not develop clinical symptoms of EAE [78].

The second limitation regards the lack of data investigating immune cell profile infil-
trate in brains or spinal cords. Thus, we cannot rule out that the immune cell distribution
in the spleen may be different to that in target organs. Murphy et al. have examined the
brain infiltrates of CD4+ T cells secreting IL-17 and IFN-γ at 7, 10, 14, and 21 days post
immunization, and demonstrated that the percentage of infiltrated CD4+ T cells secreting
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IL-17 in the brain was significantly diminished 21 days post-immunization, underscoring
the resolution of the inflammatory process with the persistence of a memory response
moving to the secondary lymphatic tissues, such as the spleen [79].

4. Materials and Methods
4.1. Induction and Clinical Evaluation of Experimental Autoimmune Encephalomyelitis (EAE)

Eight-to-ten-week-old adult female mice of the following three standard inbred strains
were used: C57BL/6J, B6.129S6(Cg)-Spp1tm1Blh/J, also known as ICOS-KO, and B6.129P2-
Icosltm1Mak/J, also known as ICOSL-KO (The Jackson Laboratory, Harbor, ME, USA).
All mice were bred in our animal facility. EAE was induced by subcutaneous (s.c.) injec-
tion of 200 µg of MOG35–55 in CFA at the final concentration of 4 mg/mL, as previously
described [80]. Pertussis toxin (500 ng) was injected intraperitoneally (i.p.) on days 0 and
2. Mice were observed from day 0, and the score of EAE clinical symptoms was recorded
for 32 days according to the following classification: 0, no clinical signs; 1, loss of tail
tone; 2, wobbly gait; 3, hind limb paralysis; 4, hind and fore limb paralysis; and 5, death.
The animals were housed in a pathogen-free environment within the animal facility of
Università del Piemonte Orientale. They had unrestricted access to rodent chow and water
in their home cages, and the ambient temperature was consistently maintained at 21 ± 1 ◦C.
All experimental procedures were carried out during the light phase of a 12:12 h light:dark
cycle. At 7 days post-immunization, we observed two deceased mice. At the end point
(day 32), mice were sacrificed by cervical dislocation and spleen were harvested for flow
cytometry and enzyme-linked immunosorbent assay (ELISA), respectively.

4.2. MOG35–55-Induced Cytokine Release

Spleens were collected during the remission phase on day 32. Single-cell suspensions
were obtained by passing through a 100 µM cell strainer (Becton and Dickinson, San
José, CA, USA). Splenocytes (2 × 105) were then cultured in complete RPMI 1640 media
(GIBCO, Thermofisher, Waltham, MA, USA) containing 10% fetal bovine serum, in the
absence or presence of MOG35–55 peptide (Espikem, Prato, Italy) (10 µg/mL). Supernatants
were collected after 72 h of culture and kept at −20 ◦C until use. IFN-γ, IL-17A and
IL-10 cytokines were quantified by ELISA MAX™ Standard Set Mouse according to the
manufacturer’s instructions (Biolegend, San Diego, CA, USA).

4.3. Analysis of IL-17 Expression in Brain and Spinal Cord Tissues

Harvested brains and spinal cords were weighed, flash-frozen in liquid nitrogen, and
stored at −80 ◦C until processing. Lysates of soluble proteins were prepared according
to Bennett et al.’s protocol [81]. In brief, brain tissue was homogenized using a mortar
and pestle and immediately transferred into 1.5 mL microcentrifuge tubes in RIPA buffer
(PBS 1x, 1% nonylphenoxy polyethoxy ethanol, 0.5% sodium deoxycholate, 0.1% sodium
doedecyl sulfate). Samples were centrifuged twice at 12,000 rpm for 20 min at 4 ◦C. The
supernatant representing the total cell lysate was used in the ELISA protocol. Protein
concentration was determined by Bradford Assay (Thermo Fisher Scientific, Waltham,
MA, USA). A total of 5 (brain) and 20 (spinal cord) µg of protein lysate were used per
well. IL-17A was quantified by ELISA according to the manufacturer’s instructions (R&D
Systems, Minneapolis, MN, USA).

4.4. Flow Cytometry

Splenocytes were obtained by smashing the spleens through a cell strainer and red
blood cells were lysed by osmotic shock. A total of 1 × 106 of splenocytes were used
for FACS staining. To discriminate live cells, 200 µL of Fixable Viability Dye 780 (Becton
and Dickinson, San José, CA, USA) was added to each tube and cells were incubated
for 15 min at 4 ◦C. Following this, cells were washed in 1 mL of PBS EDTA 2 mM and
centrifuged for 5 min at 1500 rpm. After the centrifugation step, Fc receptor blocking
was performed by incubating splenocytes with 100 µL of Anti-Mo CD16/CD32 (clone:
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93) (eBioscience, Waltham, MA, USA) for 15 min at 4 ◦C, and then cells were washed
as described above. We designed a panel consisting of 14 markers, which allowed for
the phenotyping of lymphocytes (T cells and their respective subsets) and myeloid cells
(macrophages, monocytic–myeloid-derived suppressor cells (MDSC)), granulocytic-MDSC
and DCs. Splenocytes were subjected to surface staining using the following antibodies:
mouse anti-CD3 BB700 monoclonal antibody (mAb) (clone: 145-2C11); anti-CD25 BB515
mAb (clone: C61); anti-Ly6C BV450 mAb (clone: AL-21); anti-CD45 BUV395 mAb (clone:
30-F11); anti-CD8 BV605 mAb (clone: 53-6.7); anti-CD4 BUV496 mAb (clone: GK1.5); anti-
CD44 BV650 mAb (clone: IM7); anti-CD62L BUV737 mAb (clone: MEL-14); anti-CD11b
BUV661 mAb (clone: M1/70); anti-CD11c BV480 mAb (clone: HL3); anti-Ly6G BUV563
mAb (clone: 1A8); and anti-F4/80 APC-R700 mAb (clone: T45-2342) for 30 min at 4 ◦C.
All antibodies were purchased from BD Biosciences. Fluorescence minus one (FMOs)
served as the control for the gating strategy. After washing, splenocytes were fixed and
permeabilized using 100 µL of fixation and permeabilization solution (Cytofix/Cytoperm
BD) and incubated overnight at 4 ◦C. On the next day, splenocytes were washed with 1 mL
of permeabilization buffer and centrifuged. For intracellular staining, cells were incubated
with anti-HELIOS PE mAb (clone: 22F6) and anti-Foxp3 Alexa Fluor 647 mAb (clone: MF23)
and incubated for 20 min at 4 ◦C, after which the cells were washed and resuspended in
200 µL of PBS EDTA 2 mM. All the samples were acquired using FACSymphonyTM A5
(Becton and Dickinson, San José, CA, USA) flow cytometer and data were analyzed using
FACSDIVA software (Version 9.1, Becton and Dickinson, San José, CA, USA ). Absolute
cell numbers were calculated by multiplying the percentage of cells within designated
gates by the total splenocytes count, obtained through trypan blue exclusion [82]. The
entire dataset was analyzed following the conventional supervised gating strategy and
in parallel with unsupervised analysis to exploit the full potential of the data generated
by the co-expression of several markers, allowing for the identification of new clusters,
which were unknown before running the algorithm. First, we used the UMAP algorithm
for the multidimensionality reduction (FlowJo Version 10 software), and subsequently
we identified different immunological clusters (X-shift algorithm). Then, a heatmap was
generated and used to decipher all antigens of each cluster; the percentage of each cluster
was compared with C57BL/6J, ICOSL-KO, and ICOS-KO mice. The gating strategy and
FMOs are shown in Supplementary Figures S1–S3.

4.5. Statistical Analysis

EAE scores, flow cytometry and cytokine data were analyzed using ANOVA or
Kruskal–Wallis test with post hoc correction, according to the sample’s normality, cal-
culated using D’Agostino–Pearson test. A p value below 0.05 was considered statistically
significant. Statistical analyses were conducted using GraphPad Instat software (Prism 8
version 8.4.3) (San Diego, CA, USA).

5. Conclusions

In conclusion, we investigated the impact of ICOSL and ICOS deficiencies on MOG35–55-
induced EAE and associated immune cell dynamics in the resolution phase, using ICOSL-
KO and ICOS-KO mice and comparing the results to C57BL/6J mice.

ICOSL deficiency led to the exacerbation of EAE compared to C57BL/6J mice, an over-
lapping clinical course with that of ICOS-KO mice, and a reduced recovery rate compared
to C57BL/6J mice. ICOS and its ligand are deeply implicated in the differentiation and
maintenance of Th17 cells secreting IL-17A. MOG-restimulated splenocytes from ICOS-KO
and ICOSL-KO mice displayed reduced expression levels of IL-17A, which is also found
in the spinal cord. Conventional flow cytometric analysis revealed a decrease in central
memory CD8+ T cells in ICOSL-KO mice, while CD4+ TEM cell counts were increased.
Lastly, in addition to the absolute number of Tregs being lower in ICOSL-KO, they were
also found to be less activated.
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Unsupervised analysis identified 10 clusters with a differential expression between
ICOS-KO and ICOSL-KO mice and C57BL/6J mice. ICOSL-KO mice showed a reduction
in macrophage subsets, short-lived CD8+ T EM cells, short-lived CD4+ T cells, and CD8+

Tregs compared to ICOS-KO. In addition, modulation in myeloid cell subsets, including
changes in F4/80+CD11b- (cluster 2) and CD11b+ Ly6C+ CD44+ (cluster 5) populations,
were recorded.

In summary, the study provides comprehensive insights into the complex interplay
between ICOS and ICOSL in the context of EAE. We believe our findings help to shed
light on their roles in immune cell dynamics and the involvement of other ICOSL-driven
mechanisms independent of ICOS, thus opening avenues for research into alternative
pathways and potential therapeutic targets. Strategies aimed at modulating these pathways
could be investigated for their effectiveness in controlling autoimmune responses and
mitigating disease severity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25052509/s1.
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