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ABSTRACT 

 

Long range ultrasonic testing is now a well established method for examining in-service 

degradation in pipelines.  In order to protect pipelines from the surrounding environment it is 

common for viscoelastic coatings to be applied to the outer surface.  These coatings are, however, 

known to impact on the ability of long range ultrasonic techniques to locate degradation, or 

defects, within a coated pipe.  The coating dissipates sound energy travelling along the pipe, 

attenuating both the incident and reflected signals making responses from defects difficult to 

detect.  This article aims to investigate the influence of a viscoelastic coating on the ability of 

long range ultrasonic testing to detect a defect in an axisymmetric pipe.  The article focuses on 

understanding the behaviour of the fundamental torsional mode and quantifying the effect of 

bitumen coatings on reflection coefficients generated by axisymmetric defects.  Reflection 

coefficients are measured experimentally for coated and uncoated pipes and compared to 

theoretical predictions generated using numerical mode matching and a hybrid finite element 

technique.  Good agreement between prediction and measurement is observed for uncoated pipes, 

and it is shown that the theoretical methods presented here are fast and efficient making them 

suitable for studying long pipe runs.  However, when studying coated pipes agreement between 

theory and prediction is observed to be poor for predictions based on those bulk acoustic 

properties currently reported in the literature for bitumen.  Good agreement is observed only after 

conducting a parametric study to identify more appropriate values for the bulk acoustic 

properties.  Furthermore, the reflection coefficients obtained for the fundamental torsional mode 

in a coated pipe show that significant sound attenuation is present over relatively short lengths of 

coating, thus quantifying those problems commonly encountered with the use of long range 

ultrasonic testing on coated pipes in the field. 
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1.  INTRODUCTION 

 

The use of sound waves in the non-destructive testing of oil and gas pipelines is relatively 

commonplace.  The method relies on successfully capturing the sound energy reflected by a 

remote defect after first launching an incident sound wave along the pipe wall.  It is, however, 

common for pipelines to be coated with a protective material such as bitumen and this is known 

to significantly affect the propagation of the sound wave.  The protective coating is normally 

viscoelastic and so as the sound wave travels along the pipe the coating acts to dissipate energy, 

with the effect of progressively lowering the amplitude of both the incident and reflected sound 

waves as they travel along the pipe.  This represents a significant problem in the non-destructive 

testing of pipelines and serves to restrict the length of pipelines that can be successfully tested 

using traditional techniques.  Here, the influence of a coating on the eigenmodes in a pipe has 

previously been studied both theoretically and experimentally; however, the experimental data is 

rather limited and it is generally restricted to modal attenuation over a frequency range much 

higher than that normally used in the non-destructive testing of pipelines; moreover, there is very 

little data in the literature that quantifies the influence of the coating on the scattering of sound by 

a defect.  Accordingly, this paper aims to quantify the influence of viscoelastic coatings on sound 

propagation in a finite section of pipe; both measurement and prediction are used to analyse the 

scattering of sound waves from defects in a coated pipe over a frequency range normally found in 

the long range ultrasonic testing of pipelines, which is approximately 20 -140 kHz. 

 

It is well known that a viscoelastic medium dissipates energy within a travelling elastic wave.  

For example, Chan and Cawley [1] studied the effect of viscoelasticity on the dispersion curves 

for a high density polyethylene pipe.  Energy dissipation was included by adding an imaginary 

component to the Lamé constants, although modal attenuation was studied only for Lamb modes 
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in a plate.  Barshinger and Rose [2] extended the work to the analysis of a number of viscoelastic 

layers and published dispersion curves for a steel pipe coated with epoxy.  Both Chan and Cawley 

[1] and Barshinger and Rose [2] use analytic techniques to derive the governing dispersion 

relation, and Barshinger and Rose later discuss the problems this presents when it comes to 

finding the roots of this equation.  Here, the addition of a viscoelastic layer means that the roots 

of the dispersion relation are complex and it is much harder to locate these roots in the complex 

plane (see also Simonetti and Cawley [3] for a discussion on coated plates).  In view of the 

problems with root finding, recent work has focussed on using numerical techniques such as the 

finite element method to locate the roots of the governing dispersion relation.  For example, 

Bartoli et al. [4] use the finite element method to solve the dispersion relation for a waveguide of 

arbitrary cross-section, as well as for a viscoelastic plate.  Bartoli et al. also provide a detailed 

discussion on the background to this finite element based method, which is referred to in the 

elastic waveguide literature as the Semi Analytic Finite Element (SAFE) method.  Of course, this 

method is not limited to elastic waveguides and it has been present in the acoustic waveguide 

literature for many years, although here the SAFE nomenclature has not been adopted.  Relevant 

examples of the “SAFE” method in the acoustic waveguide literature include Astley and 

Cummings [5] and Kirby [6], since both articles show how energy dissipation is added to an 

acoustic waveguide through the use of complex material properties.  The SAFE method is 

popular because it solves the dispersion relation without recourse to root finding and it works 

equally well with complex roots, it is therefore ideally suited to the study of coated pipelines. 

 

The SAFE method has seen extensive use in the elastic waveguide literature in recent years (see 

for example [7-10]).  The use of this method to study energy dissipation is, however, less well 

reported and it is only recently that sound attenuation has been included in the SAFE method for 

elastic waveguides.  For example, Castaings and Lowe [11] calculate the eigenmodes for an 

elastic waveguide of arbitrary cross section surrounded by an absorbing region.  Energy 
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dissipation in coated pipes was studied by both Mu and Rose [12] and Marzani et al. [13], who 

both used the SAFE method.  Here, the SAFE method is applied in its most general form, that is, 

the problem is solved for all available symmetrical and non-symmetrical eigenmodes (the number 

of independent eigenmodes found being equal to the number of nodes in the finite element mesh).  

This general methodology is readily applied using generic finite element based software in which 

one enters the general mass and stiffness matrices for the problem.  However, a disadvantage with 

this approach is that the solution of the governing dispersion relation delivers an unordered list of 

modes and one cannot readily distinguish between each type of mode.  Mu and Rose [12] note 

this problem and derive an orthogonality relation in order to sort each mode type.  Their method 

relies on solving the dispersion relation at two frequencies that are sufficiently close to one 

another so that one can make use of the orthogonality relation, and Mu and Rose [12] show that 

this can be used successfully to sort eigenmodes for a coated pipe.  However, in general it is 

possible that very small frequency increments may be required in order to successfully sort 

modes, especially for a coated pipe, and so this method is potentially computationally expensive.  

. 

 

The SAFE method has been shown to be a reliable method for finding the eigenmodes of a coated 

pipe, but the method does not provide the amplitudes of each mode.  The computation of modal 

amplitudes implies the study of a finite length of pipe with an applied forcing.  One can, of 

course, use numerical methods to discretise the entire (finite) pipe length and this approach was 

used by Hua and Rose [14] in the study of coated pipes.  Hua and Rose used the commercial 

software package ABAQUS in order to compare modal attenuation using a full finite element 

discretisation of the pipe with predictions obtained using the SAFE method.  Hua and Rose 

demonstrate reasonably good agreement between the two predictions, although it is inevitable 

that for long pipes the ABAQUS model will be computationally expensive.  Moreover, in order to 

represent the pipe coating, Hua and Rose found it necessary to infer values for the “damping 
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coefficients” required by the commercial software and so it is possible that this is the reason for 

the discrepancy between the two models (which in principle should deliver identical attenuation 

predictions).  In order to try and reduce computational expenditure, Predoi et al. [15] used the 

SAFE method to find the modal characteristics for a viscoelastic plate and then coupled this to a 

modal projection method, based on modal orthogonality, in order to recover the amplitudes of the 

modes found using the SAFE method.  Essentially, the method couples a modal expansion to a 

full finite element discretisation of the problem close to a defect and here Predoi et al. studied a 

notch (or “trough”) in a rectangular viscoelastic plate.  This method has the potential to be much 

more computationally efficient than the method used by Hua and Rose [14], since it reduces the 

size of the region that needs to be meshed, although it is interesting to note that Predoi et al. still 

required 147,744 degrees of freedom at 200 kHz.   

 

Clearly it is sensible to develop computationally efficient ways of modelling long lengths of pipe, 

especially as the advantage of non-destructive testing is that one can, in principle, examine long 

lengths of pipe.  Here, the true power of the SAFE method lies not just in calculating the 

eigenmodes but in using these modes to model long uniform waveguides of arbitrary cross 

section.  Providing one uses an appropriate technique to analyse scattering from an area 

discontinuity (or defect), the modal amplitudes for long pipe lengths can readily be calculated.  

There are two ways in which to do this: (i) if the defect has a uniform cross section then one can 

use a modal expansion for the defect as well; or (ii) if the defect is non uniform then one may use 

a finite element discretisation for the region surrounding the defect, adopting an approach similar 

to that described by Predoi et al. [15] when studying plates.  Both approaches seek to use only 

modal expansions for uniform regions, one then applies a finite element discretisation only when 

absolutely necessary in order to minimise computational expenditure.  After application of the 

appropriate continuity conditions over each area discontinuity (defect) one may then readily 

recover the modal amplitudes.  This approach has been used by the first author in the study of 
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sound dissipation in acoustic waveguides; for example, Kirby used point collocation [6] and 

mode matching [16] to enforce acoustic pressure and velocity matching conditions over two area 

discontinuities, after first finding the eigenmodes using a SAFE method.  For non uniform 

regions, Kirby [16, 17] adopts a hybrid method in which a full finite element discretisation of a 

non uniform section is matched to the surrounding (uniform) duct using either point collocation 

or mode matching.  It is shown in these papers that these methods are potentially very 

computationally efficient and can be used to study relatively large systems and/or high 

frequencies. 

 

Of course, mode matching and hybrid methods are not limited to the acoustic waveguide 

literature and these have been applied to many problems in elastic waveguides.  For example, 

Engan [18] used mode matching to study elastic wave propagation in a rod, Hayashi [10] and 

Demma et al. [19] studied steps and notches in a plate, and mode matching was applied to a pipe 

by Ditri and Rose [20] and Vogt et al. [21].  For the hybrid method, relevant examples include 

Predoi et al. [15] and Imhof [22], who studied elastic wave propagation in plates; the scattering 

from non uniform defects in pipes is examined by Hayashi [10], Zhuang et al., [23], Bai et al. 

[24] and Zhou et al. [25].  However, it is only relatively recently that the SAFE method has been 

used as the basis for these numerical techniques, see for example Hayashi [10] and Zhou et al. 

[25], and there are no studies which use the SAFE method to analyse scattering from defects in 

coated pipes.  Accordingly, this paper uses the SAFE method to find the eigenmodes for the 

uniform regions of a pipe, and then applies either a mode matching or hybrid method to analyse 

scattering from a defect in a coated pipe.  Since this method has not been applied before to coated 

pipes, the method is first validated for the relatively straightforward problem of axisymmetric 

sound propagation in a coated pipe with an axisymmetric defect.  Moreover, the analysis is 

limited here to the propagation of the fundamental torsional mode - the so called T(0,1) mode.  

The advantage of limiting this study to the scattering of the T(0,1) mode from an axisymmetric 
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defect is that one may then readily compare predictions against theoretical and experimental data 

reported in the literature for an uncoated pipe (see for example [26-29]).  Furthermore, this also 

facilitates comparison with experimental measurements since it is relatively straightforward to 

generate and measure the T(0,1) mode and at the same time to minimise coherent noise. 

 

A further reason for restricting experimental measurements to the T(0,1) mode is that there is a 

lack of experimental data in the literature for the bulk acoustic properties of typical coating 

materials.  Those papers published on the SAFE method for bitumen coated pipes draw on the 

data measured by Barshinger and Rose [2]; however, there is a question mark over the accuracy 

of this data since these properties are inherently difficult to measure over the entire frequency 

range of interest.  This has necessitated the extrapolation of data measured at frequencies above 1 

MHz to those lower frequencies normally of interest in long range ultrasonic testing.  Barshinger 

and Rose did investigate this by measuring modal attenuation in a coated pipe and comparing this 

to predictions of attenuation using their measured bulk acoustic properties; however, agreement 

between prediction and measurement is limited and there is very little data reported below 1 

MHz.  Moreover, the bulk shear properties are known to be especially difficult to measure 

accurately and so it appears sensible first to isolate this parameter and to investigate the 

comparison between measurement and prediction for the fundamental torsional mode.  

Accordingly, this article will focus on measuring and predicting elastic wave propagation at 

lower ultrasonic frequencies, in the range 20 - 120 kHz.  The study of axisymmetric defects will 

also enable the use of well established experimental methods previously reported for measuring 

the reflection coefficients in uncoated pipes [29]. 

 

In Section 2, this article begins by using the SAFE method to obtain only the torsional modes for 

a coated pipe.  This will deliver a reduced system of equations for the torsional modes and avoids 

the need to sort torsional modes from other modes such as longitudinal and flexural.  The SAFE 
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method is then utilised in a mode matching algorithm, which is reported in Section 2.1, and a 

hybrid formulation reported in Section 2.2.  In Section 4 predictions are compared against 

experimental data obtained using the methodology described in Section 3.  Here, the theoretical 

predictions are validated first by comparison against a simple “plane wave” analytic formulation 

for an uncoated pipe, as well as against data published in the literature.  After validation of the 

experimental and theoretical method for an uncoated pipe, the same techniques are then used to 

analyse a coated pipe. 

 

2.  THEORY 

 

The propagation of elastic waves in a pipe is governed by Navier’s equation [30], 
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where µ  and λ  are the Lamé constants, u′  is the displacement vector, ρ  is the density of the 

pipe wall and t is time.  It is assumed here that the pipe consists of a steel substrate in which 

sound attenuation may be neglected, coated externally by a material in which sound attenuation is 

assumed to take place.  Here, the steel substrate is denoted by subscript s, and the external coating 

by subscript c.  It is convenient here to use using a cylindrical co-ordinate system (say, r, θ  and 

z), and for an axisymmetric problem this delivers three equations, only two of which are coupled.  

Thus, for an axisymmetric problem only, the two coupled equations (displacements in the r and z 

direction) govern the propagation of the so-called longitudinal pipe modes, whereas the third 

equation (displacement in the θ  direction) governs the propagation of the so-called torsional 

modes.  This article will focus only on the torsional modes, and so Navier’s equation simply 

reduces to a scalar equation of the form: 

 



 10

 0
1 2

2

2

2

cs,

=′∇−
∂

′∂
v

t

v

c
, (2) 

 

where v′  is the wall displacement in the θ  direction, and sc  and cc  are the torsional bulk wave 

velocities in the pipe wall (substrate) and the pipe coating, respectively. 

 

2.1 Eigenvalue Analysis 

 

An eigenvalue problem is obtained by first expanding the displacement v′  over the pipe 

eigenmodes to give 
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where v  is a modal eigenvector, ss ck ω= , so that λ  is a dimensionless wavenumber, t is time, 

ω  is the radian frequency, and 1−=i .  For a steel substrate of inner radius 1a  and outer radius 

1b  (this is region s, with a substrate wall thickness 11 abts −= ), and a pipe coating of inner radius 

1b  and outer radius 2b  (this is region c, with a coating thickness 12 bbtc −= ), the substitution of 

Eq. (3) into Eq. (2) yields the Helmholtz equation 
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The appropriate radial boundary conditions on the inner and outer walls are 
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where 
cs,θrT  is the shear stress in the r, θ  plane, with 
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At the interface between the pipe substrate and coating, continuity of shear stress and 

displacement is enforced, so that 

 

 cs cp
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where n  is the (outward) unit normal in each region.  A standard finite element analysis is 

adopted here so that 
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where jN  is a global trial (or shape) function for the (transverse) one dimensional finite element 

mesh, jv  is the value of )(rv  at node j, and n  is the number of nodes (or degrees of freedom) 

lying on the pipe cross section 21 bra ≤≤ .  Expressing Eq. (8) in vector form yields 
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Following Kirby [6], the governing eigenequation for torsional modes may be written as 
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with sc µρµρβ sc= .  In addition, 
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Equation (10) is solved using a standard eigenvalue solver (in this case the eig function in 

MATLAB).  This routine delivers n  unique (complex) eigenmodes and here the imaginary 

component is sorted in ascending order.  The analysis in this section delivers a version of the 

SAFE method but for torsional modes only.  However, the real power of the SAFE method lies in 

the use of the computed eigensolutions to study finite axial area discontinuities, or defects, with a 

computational cost that does not depend on the length of the (normally) uniform pipe sections 

either side of the defect.  The following sections describe two different approaches for utilising 

the SAFE method: (i) mode matching for a uniform defect, and (ii) a hybrid numerical method for 

non-uniform defects. 

 

2.2  Mode Matching 

Mode matching is a straightforward technique for studying scattering from uniform 

discontinuities and this approach is used here to analyse an axisymmetric uniform notch of length 
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NL  and radius 2a , located within a coated pipe section (see Fig. 1).  In Fig. 1, region 1 denotes 

an uncoated region within which the incident wave is generated, as this best replicates actual 

practice; the uniform notch is then located within a (semi-infinite) section of coated pipe.  The 

displacement in region q (where 4or  3, 2, ,1=q ) of the pipe is written as an infinite sum over the 

pipe eigenmodes, to give 
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Here, qA  and qB  are the modal amplitudes in region q, and 21 zz = .  Mode matching proceeds 

by enforcing axial continuity conditions over planes A, B and C in Fig. 1.  The appropriate 

continuity conditions over each plane are (i) continuity of displacement, and (ii) continuity of the 

shear stress ZTθ′ , where .zvT Z ∂′∂=′ µθ   In addition, the boundary condition 0=′
ZTθ  is enforced 

over 21 brb ≤<  on plane A, and over 22 bra ≤<  on planes B and C.  The continuity conditions 

yield 
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Here, the (normalised) shear stress is given as 
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where 1
~

=β  in an uncoated region, and ββ =
~

 in a coated region.  Following Kirby [16], the 

axial boundary conditions are enforced by choosing an appropriate weighting function and then 

integrating over the relevant cross section.  For torsional modes, the most straightforward 

weighting function to choose is the respective pipe eigenfunction and, after application to each 

matching condition, this gives 
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Here, the weighting functions are summed over m, from 0 to qn , where the summation has been 

omitted for clarity.  Substitution of Eqs. (20) and (27) into the matching conditions yields six 

coupled equations.  Solution of these equations requires a forcing term to be identified and the 

application of an axial boundary condition at ∞=4z .  Here, the pipe is assumed to be driven by 

a plane wave (the “fundamental” torsional mode), that is 10
1 =A , and 01 =nA  for 0>n ; in 

region 4 it is assumed that no reflections exist, so that 04 =n
B  for 0≥n .  Substituting these axial 

boundary conditions into the relevant matching conditions, and re-arranging so that the forcing 

terms lie on the right hand side, yields 
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Here, it is assumed that regions 2 and 4 are identical, C
n Liknn eBB 2s

22

~ λ−=  and N
n Liknn eBB 3s

33

~ λ−= .  The 

integrals are given as 
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The integrals in Eqs. (40) – (46) are carried out numerically after truncating each summation at 

qn .  Equations (34) – (39) are then solved simultaneously for the unknown modal amplitudes.  

 

2.3  Hybrid numerical method 

The mode matching method described in the previous section is applicable only to uniform area 

discontinuities.  For non-uniform discontinuities it is convenient to return to a full finite element 

discretisation of the defect in order to provide the flexibility to examine arbitrary (but 

axisymmetric) geometries.  Accordingly, a hybrid method is adopted here, which follows the 

method described by Kirby [17] for acoustic waveguides.  The advantage of this method is that it 

only requires a finite element discretisation of the non uniform defect and so retains the modal 

expansions within the uniform pipe sections.  In general, this method may be applied to any three 

dimensional geometry; however, it is sensible first to investigate the method’s effectiveness for 

simpler problems before moving on to examine fully three dimensional discontinuities.  

Accordingly, the hybrid method is applied here to an axisymmetric detect of arbitrary shape, thus 

restricting the problem to two dimensions and allowing the use of the one dimensional 

eigensolution discussed previously.  The hybrid method relies on matching a modal 

representation of the sound field before and after the defect onto a full finite element 

discretisation of the sound field surrounding the defect, see for example the tapered defect in Fig. 

2.  Thus, in regions 1, 2 and 4 the modal expansions in Eqs. (20) and (27) still apply, whereas in 

region 3 the finite element method is used to solve Eq. (2) directly.  Thus for region 3 a standard 

finite element discretisation is used, so that 
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vzrMzrv , (47) 

 

where jM  is a global trial (or shape) function for the (two dimensional) finite element mesh.  

Following Eq. (9), 33 ),( Mv=′ zrv , and application of a weak formulation to Eq. (4) yields, 
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for the pipe substrate, and  
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for the coated region.  Here, c3s,n  is a unit normal pointing outwards from surface c3s,Γ ; XΓ  and 

YΓ  denote the surface of cs,3Ω  that lies on planes X and Y, respectively, and c3s,Γ  is the surface 

of cs,3Ω  that does not lie on XΓ  and YΓ  (see Fig. 2).  In addition 
T

c3s33 ][ vvv =  where s3v  

and c3v  are the displacements within the pipe and coating that lie in region 3, respectively. 

 

The analysis proceeds by enforcing appropriate boundary conditions over the surface of cs,3Ω . 

Equation (7) applies over the interface between the coated ( 3cΓ ) and uncoated ( 3sΓ ) regions; and 

for the outer surface of cs,3Ω  ( c3s,Γ ) that does not lie on this interface, 0=′θrT , which gives  
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n

n
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r

vv
. (50) 

 

Application of these boundary conditions to Eqs (48) and (49) allows the two equations to be 

combined to give 
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The hybrid method now requires the finite element discretisation of region 3 to be joined to 

regions 2 and 4 and this is accomplished here using mode matching.  Accordingly, over XΓ  

continuity of the (normalised) shear stress ZTθ′  yields 
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and over YΓ  
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Here, it is assumed that there are no reflections in region 4, so that 04 =n
B , ∞= ...0n , and region 

2 is identical to region 4.  Note that the hybrid method automatically removes the need to specify 

a perfectly matched layer (PML), which reduces computational expenditure, as well as enforcing 

the semi-infinite boundary condition exactly.  Substitution of Eqs. (52) and (53) into Eq. (51) 

allows the shear stress matching conditions to be enforced, which after some re-arranging yields 
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where D  is a diagonal matrix, with each diagonal element given by cs Lik ne
λ−

( 2,...,1,0 nn = ), and 

nn
BB 22

~
=D .  In addition 
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and 
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Continuity of displacement is matched separately, so that
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on XΓ , and 
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on YΓ .  Mode matching is used to enforce these matching conditions and this is implemented by 

multiplying Eqs. (57) and (58) by an appropriate weighting function.  Following the method 

described by Kirby [17], a weighting function of 
mm

vik 22sλ−  for XΓ is chosen, which, when 

multiplied by Eq. (57) yields, 
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Similarly, for YΓ  

 

 0Y34 =+− RvP
n

A . (61) 

 



 20

Here, vectors X3v  and Y3v hold values of the finite element solution in region 3 at the nodal 

locations on the surfaces XΓ  and YΓ , respectively.  Finally, mode matching is used to 

accommodate the discontinuity between regions 1 and 2 using the same method as that described 

in the previous section, see Eq. (34) and (35).  To combine Eqs. (54), (59), (61), (34) and (35), 

matrix G  is first decomposed in order to separate those elements that lie on planes B and C, 

which allows the final system of equations to be written as 
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Here, the matrix mnG  has order nm pp × , where 2p  and 4p  denote the number of nodes on XΓ  

and YΓ , respectively (where, 22 pn ≤ , and 44 pn ≤ ); 3p  is the number of nodes in region 3, and 

es  is the number of nodes that lie in region 3, but do not lie on XΓ  and YΓ  (so that 

423 ppppe −−= ).  The values for displacement at those nodes in region 3 that do not lie on XΓ  

and YΓ , are held in matrix e3v .  Equation (62) consists of )2( 4321 npnnpT +++=  simultaneous 

equations, which are solved to give the unknown modal amplitudes and displacements. 
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3.  EXPERIMENT 

 

Validation of the model reported in the previous section is accomplished here by comparing 

predictions to data available in the literature and data obtained experimentally.  The use of 

experimental data is particularly important for analysing the effects of a coating since very little 

measured data is present in the literature for coated pipes.  Accordingly, a set of experiments are 

undertaken here that seek to measure the reflection coefficient of uniform defects located in 

coated and uncoated steel pipes.  The steel pipe analysed here is a 3 inch Schedule 40 pipe with 

mm 391 =a  and mm 65.441 =b .  The test pipe has an overall length of 6 m and a defect is 

machined into the pipe at a distance of 0.8 m from the far end of the pipe; the geometry of each 

defect is reported in the next section.   

 

In order to excite the fundamental T(0,1) torsional mode a commercial Teletest device [31] is 

used, with 16 transducers equally spaced around the pipe circumference.  These transducers are 

placed in region 1 of the pipe (see Fig. 1) at a distance of 5.1 m from the defect.  For all tests, an 

incident pulse consisting of 10 cycles of a Hann modulated tone burst signal is used, with a centre 

excitation frequency that may be varied from 20 kHz to 120 kHz.  The reflected pulse is captured 

by a separate Teletest unit with four transducers equally spaced around the pipe in region 1; this 

unit was placed 1 m from the defect for an uncoated pipe, and 1 m from the edge of the coating 

for a coated pipe.  The captured pulse was averaged 32 times in order to reduce levels of 

incoherent noise.  The reflection coefficient is then calculated in the frequency domain after the 

application of a rectangular window to the (time domain) pulse and the use of an FFT.  A large 

number of tests were undertaken over a small frequency range to enable the full frequency range 

to be covered, using a frequency step of approximately 125 Hz.  Up to ten repeat tests were 

conducted for each frequency range and an average taken.  The results obtained from these 
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experiments are reported in the following section, although it is noted that in order to provide 

clarity when viewing this data a frequency bandwidth of 1.25 kHz is used and intermediate data 

discarded. 

 

For a coated pipe, an identical set of experiments were carried out, but with a coating of length of 

m 995.0=cL  upstream of the defect, and with the 0.8 m length of pipe on the other side of the 

defect also coated.  The coating material used here was bitumen with a thickness of 1.5 mm.  The 

velocity of a bulk shear wave within a viscoelastic material may be written as [2] 
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where cc~  corresponds to the phase velocity of a bulk shear wave travelling in the viscoelastic 

coating, and cα  corresponds to the attenuation of the shear wave (in Nepers/m).  It is convenient 

here to write ωαα cc =~ , and Barshinger and Rose [2] measured values of s/m 10 24.0~ -3×=cα  

and m/s 770~ =cc  for a bitumen based “Bitumastic 50” coating; alternative values for bitumen 

are also reported by Hua and Rose [14], as well as Simonetti and Cawley [32], who measured 

values of s/m 10 122.0~ -3×=cα  and m/s 750~ =cc  for a solid bitumen rod.  These values are 

reviewed in the following section when comparing prediction and measurement, although the 

non-dimensional parameter β , defined before Eq. (15), also requires data for the density of 

bitumen and here values of 
3

kg/m 1500=cρ  and 
3

kg/m 1750=cρ  are specified by Barshinger 

and Rose, and Simonetti and Cawley, respectively. 
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4.  RESULTS AND DISCUSSION 

 

It is sensible first to validate the numerical model for an uncoated pipe since this allows for 

comparison against simple analytic models as well as experimental data available in the literature.  

Accordingly, an uncoated pipe is examined first for uniform and non-uniform defects. 

 

4.1 Uncoated pipe 

If one restricts wave propagation to the fundamental torsional mode only (otherwise called here a 

plane wave) then a simple analytic relationship is available for calculating the reflection 

coefficient of a uniform defect.  For a pipe of inner radius 1a  and outer radius 1b , and uniform 

defect of outer radius 2a , the plane wave reflection coefficient pwΛ  is given as 
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where )()( 4

1

4

1

4

1

4

2 abaa −−=σ . Note that this expression is analogous to that used for expansion 

chambers in acoustic waveguides [33] and is derived in an identical way.  Here, a comparison 

with the numerical models reported in Section 2 may readily be achieved by setting 0=β  in the 

relevant equations.  Accordingly, in Fig. 3 predictions obtained using the mode matching method 

of Section 2.1 are compared against the analytic expression given by Eq. (64) for a uniform 

defect with mm 85.412 =a  (a 50% area reduction) and mm 15=NL .  For a steel pipe, the 

torsional bulk wave velocity m/s. 3260=sc   The mode matching predictions shown in Fig. 3 

were obtained using only 6 quadratic finite elements, which is sufficient to deliver convergence to 

two decimal places for the reflection coefficient at a frequency of 150 kHz.  This corresponds to a 

final system of equations delivering a matrix with an order of 40, and so delivers virtually 

instantaneous predictions at each frequency.  In Fig. 3 it is evident that the analytic solution 
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correlates well with the mode matching method at very low frequencies, which is to be expected; 

however, at higher frequencies the two solutions begin to diverge from one another and this 

occurs within a frequency range where higher order modes do not propagate.  Here, a rise in the 

reflection coefficient is seen for the mode matching method, as well as a frequency shift.  For 

example, in Fig. 3 the second peak shifts from a value of 662.0pw =Λ  at a frequency of 48.5 

kHz, to a multi modal value of 695.0=Λ  at a frequency of 145 kHz.  This effect can also be 

seen in the study of expansion chambers in acoustic waveguides [34].  This behaviour at higher 

frequencies is very useful for illustrating the limitations of a plane wave (or single mode) based 

analysis: the difference between the two methods is caused by the relative influence of higher 

order evanescent modes in the prediction of reflection coefficient.  These evanescent modes are 

crucial to the delivery of a converged solution for the axial shear stress matching conditions [Eqs. 

(22), (24) and (26)], especially at higher frequencies.  Here, Eq. (64) omits all evanescent modes 

and so applies continuity of shear stress over the whole area/volume (analogous to continuity of 

acoustic volume velocity in an acoustic waveguide) rather than over individual “particles” in the 

waveguide.  As the frequency increases, evanescent modes play more of a role in delivering the 

correct axial continuity conditions in the mode matching scheme, and so the two methods begin 

to depart from one another.  This simple example illustrates the importance of higher order modes 

to mode matching schemes and this is one reason why numerical methods for solving the 

eigenproblem are preferable since for more complex problems many evanescent roots are 

normally required (see Kirby [16] for a discussion on this issue for acoustic waveguides).  The 

mode matching predictions in Fig. 3 may readily be extended to higher frequencies, however this 

has been omitted from Fig. 3 in order to focus on validating the method against experimental 

data, and here it is evident that very good correlation is obtained between the measured and 

predicted reflection coefficient up to approximately 115 kHz.  Moreover, the level of agreement 

between prediction and measurement is comparable to that seen in other studies [29]. 
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A traditional check on the validity of predictions for non dissipative systems is a simple power 

balance and for the mode matching method the sound power balances to machine accuracy for all 

frequencies shown in Fig. 3.  Note, however, that for modal based solutions balancing sound 

power does not always provide reliable evidence that the model has been implemented correctly 

(see Lawrie and Guled [35]).  Nevertheless the data reported in Fig. 3 demonstrates that the mode 

matching method is capable of providing accurate predictions for very modest or, one may argue, 

negligible computational expenditure.  The mode matching method also offers a straightforward 

way of validating the hybrid method developed in Section 2.2, and for the data shown in Fig. 3, 

agreement to two decimal places was obtained for the two methods using a value of 121=Tp  in 

the hybrid method (using eight noded quadrilateral elements in region 3).  Obviously, the use of 

the hybrid method to solve problems for uniform defects is not computationally efficient, 

however the size of the numerical problem is very small and solutions can be still obtained very 

quickly.  Of course, as the defect size increases the hybrid method will become slower in view of 

the additional elements required to accurately capture the behaviour within the defect (whereas 

the solution time for the mode matching method is not a function of the length of the defect). 

 

One further issue with the hybrid method is the location of planes B and C.  This has been 

discussed in detail for more complicated “obstacles” in acoustic waveguides by Kirby [17] and, in 

general, it was concluded that one should not locate these planes close to areas in which modal 

scattering is pronounced.  This is because a modal solution often requires a proportionally larger 

number of modes to accurately represent a complex sound field when compared to the use of a 

standard finite element discretisation.  Therefore, there exists an optimum location for planes B 

and C in which the efficiency of the approach is maximised, so that the size of the finite element 

mesh is balanced against the number of modes required in the wave based solution.  However, the 

problems studied here are sufficiently straightforward to allow planes B and C to be located very 

close to (but not coincident with) each area discontinuity. 
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The purpose of the hybrid method is of course to study non uniform area discontinuities.  

Therefore, the reflection coefficients for two tapered defects are shown in Fig. 4.  These defects 

have been chosen to replicate those studied by Carandente et al. [29] and here a value of 
�30=γ  

is chosen for the taper angle, with mm 6.321 =a  and mm 1.381 =b (see Fig. 2).  In Fig. 4 the 

reflection coefficient for 
�90=γ  is also included (this is a uniform defect of the type seen in Fig. 

3), as well as a “V” shaped defect with a taper angle of 
�11=γ .  Here, a “V” shaped defect is 

obtained by setting LN to be very small (a value of 0.001 mm was used).  To facilitate comparison 

with Carandente et al. [29], the reflection coefficient in Fig. 4 is plotted against the non-

dimensional variable λ′
eL100 , where eL  is the equivalent length of the defect and λ′  is the 

wavelength of sound.  For an uncoated pipe, γcot)( 11 abLL Ne −+= .  The results presented in 

Fig. 4 compare very well with those predictions reported by Carandente et al. [29] and this 

provides further validation of the hybrid and mode matching methods developed here.  However, 

Carandente et al. used a fully three dimensional finite element discretisation of the entire pipe to 

generate their theoretical predictions and so it is clear that the current computational techniques 

will be significantly faster.  Furthermore, the large reduction in degrees of freedom also allows 

predictions to be extended to higher frequencies with relative ease, and both methods in Section 2 

are suitable for uniform pipes of arbitrary length, whereas a full FE discretisation will quickly 

become very expensive as the length of the pipe increases.  In Fig. 4 it is also noticeable that the 

effect of the taper on the reflection coefficient is significant only at higher values of λ′
eL ,  

 

A further validation of the hybrid method may be obtained by comparing predictions against 

experimental measurements taken for a tapered defect.  Accordingly, in Fig. 5 predictions are 

compared against measured data for the refection coefficient of a tapered defect in the same pipe 

as that used in Fig. 3 (see also discussions in Section 3); the angle of the taper is 
�

30=γ  and 
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mm 15=NL .  In Fig. 5 generally good agreement is observed between prediction and 

experiment, although at lower and higher frequencies the agreement is not as good as that seen 

for the defect without a taper in Fig. 3.  This difference is likely to be caused by experimental 

errors that may be attributable to an increase in coherent noise when a taper is present, although 

this observation remains to be supported by further investigation.  The agreement between 

prediction and experiment seen in Fig. 5 is, however, generally comparable to that seen in the 

literature [29] and is accurate to within 10% below 90 kHz, which may be considered to be 

acceptable for this type of problem. 

 

4.2 Coated Pipe 

The presence of a viscoelastic coating is known to cause significant problems when identifying 

defects in pipes and so in Fig. 6 the reflection coefficient for a uniform defect is presented for a 

pipe coated with bitumen.  The geometry of the pipe and the thickness of the coating is given in 

Section 3, and the uniform defect has a length mm 15=NL .  The theoretical predictions in Fig. 6 

were obtained using the mode matching approach, with four quadratic elements for the steel 

substrate and two for the coated region, which delivers a converged solution for the reflection 

coefficient to two decimal places up to 140 kHz.  The experimental data in Fig. 6 were obtained 

in exactly the same way as that seen for the uncoated pipe, although the transducers that detect 

the reflected pulse were moved 1 m away from the end of the bitumen coating. 

 

In Fig. 6 three theoretical predictions are presented for a coated pipe.  The first set of theoretical 

predictions is obtained using the material constants reported by Barshinger and Rose [2], so that 

s/m 10 24.0~ -3×=cα , m/s 750~ =cc  and 
3kg/m 1500=cρ ; the second set of predictions is 

obtained using data reported by Simonetti and Cawley [32], with s/m 10 122.0~ -3×=cα , 

m/s 770~ =cc  and 
3

kg/m 1750=cρ .  It is clear in Fig. 6 that when using data measured by 
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Barshinger and Rose, or Simonetti and Cawley, there is a significant discrepancy between the 

predicted and measured reflection coefficients.  Furthermore, it is noticeable that at higher 

frequencies the predicted amplitude of the reflection coefficients is significantly reduced and is 

seen almost to disappear beyond the first minima in the experimental data.  In contrast the 

measured reflection coefficient in Fig. 6 is seen to follow a similar pattern to that seen for the 

uncoated pipe, albeit with lower values for the reflection coefficient.  This behaviour is what one 

would expect to see if the bitumen coating was simply attenuating the axial sound propagation, 

with the influence of the coating on the scattering at the defect being relatively small.  Clearly 

then the discrepancies seen in Fig. 6 serve to question the appropriateness of the theoretical 

model, or at least the appropriateness of the values reported in the literature when analysing the 

bitumen coating used in the current study.  It is noticeable, moreover, that in the literature 

comparisons between prediction and experiment for coated pipes remains limited, and to date 

only small amounts of data have been measured for the attenuation of T(0,1), and even these are 

limited to frequencies above those studied here. 

 

The third set of theoretical predictions in Fig. 6 is seen to agree much better with the 

experimental data.  These predictions have been obtained after running parametric studies with 

different values of cα
 

and cρ , and choosing values that gives good agreement between 

prediction and experiment.  Here, values of s/m 10 9.3~ -3×=cα  and 
3

kg/m 1200=cρ  were 

identified, although a value of m/s 750~ =cc  was retained.  Thus, the parametric studies required 

a relatively modest change in the density of the coating, but a much larger change in the value of 

cα~  when compared to those reported in Refs. [2] and [32].  It was decided that cα~  should be the 

subject of larger variations in value because this is the most difficult parameter to measure 

independently and so the most uncertainty exists with this value; for example, a direct 

measurement of this parameter has yet to be realised over the frequency range shown in Fig. 6 for 

a thin sheet of bitumen typically found in industrial applications.  Accordingly there is still a 
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question mark over what constitutes an appropriate value for the constant cα~  for the particular 

type of material studied here and also how this value varies between, for example, differing types 

of bitumen.  The results presented here suggest that a much higher value than that reported by 

Barshinger and Rose [2], and Simonetti and Cawley [32], is appropriate for the bitumen coating 

used in these experiments, although given the inherent uncertainty with this data it would 

probably be unwise to extrapolate this value to other types of bitumen before more experimental 

work has been undertaken.  Thus, Fig. 6 demonstrates that it is possible to generate good 

agreement between prediction and theory for the coated pipe, but it appears necessary to do 

further work on the acoustic properties of coatings such as bitumen and, ideally, to develop a 

method that will independently measure cα~  for relatively thin sheets of bitumen that cannot be 

studied using methods such as the one described by Simonetti and Cawley [32]. 

 

The theoretical predictions in Fig. 6 are also seen to oscillate over the frequency range shown, 

although heavy damping is also seen in data at higher frequencies.  These oscillations are caused 

by internal reflections within the coating material.  The wavelength and amplitude of these 

oscillations is largely dictated by the length of the coating ( cL ), and here a longer coating 

generally gives oscillations of shorter wavelength and higher amplitude.  This effect can also be 

seen in later figures.  It is, however, noticeable that the amplitude of the oscillations relative to 

the overall amplitude of the reflection coefficients shown in Fig. 6 is small and so one cannot 

expect to pick up these oscillations in the experimental data. 

 

The theoretical analysis in Section 2 and the data reported in Fig. 6 assume that a finite length of 

coating is present before the defect so that the incident sound field may be generated within an 

uncoated section.  This allows for a straightforward comparison between predictions obtained for 

coated and uncoated pipes since the same definition for reflection coefficient may be used.  This 

does, however, assume that the discontinuity at plane A has a negligible influence on sound 
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propagation.  Accordingly, in Fig. 7 the reflection coefficient for this area change alone is 

investigated for different coating thicknesses using the data determined previously (with 

s/m 10 9.3~ -3×=cα  and 
3

kg/m 1200=cρ ).  Here, the reflection coefficient for plane A on its 

own can readily be recovered by setting all the modal amplitudes in the mode matching model to 

zero, except for the modes scattered by plane A.  In Fig. 7 the reflection coefficient is plotted 

against a non-dimensional variable sstk , for different coating thicknesses of 

1 and  ,5.0 ,25.0=sc tt .  Here, the reflection coefficient for the coated pipe studied in Fig. 6 is 

shown, although the data generated for other standard pipe sizes also closely fit the (non-

dimensional) curves shown in Fig. 7, and are omitted here only in the interests of clarity.  Figure 

7 indicates that in general the reflections from this area discontinuity are small when compared to 

the data presented in Fig. 6, although one can see an increase in values at lower frequencies.  The 

data presented in Fig. 6 has a value of 3.0=sc tt  and so it appears justifiable to neglect the 

influence of the reflections from plane A when discussing the results in Fig. 6; however, it is 

evident that as the length of the coating increases, and the value of the reflection coefficient 

drops, the influence of plane A will become more significant, especially at higher values of sc tt . 

 

In order to validate the hybrid model for a coated pipe a defect similar to that used for the 

uncoated pipe is examined.  Accordingly theoretical predictions for a coated pipe identical to that 

reported in Fig. 6 are presented in Fig. 8, but this time for a tapered defect with an angle of 

�60=γ  and a defect length of mm 30=NL .  Thus, the previously optimised values of 

s/m 10 9.3~ -3×=cα , m/s 750~ =cc  and 
3

kg/m 1200=cρ  are used for the coating and predictions 

are compared here with experimental data obtained for a tapered defect machined into a coated 

pipe.  It is evident in Fig. 8 that the level of agreement between prediction and measurement is 

similar to that seen in Fig. 6, although at higher frequencies the predictions tend to overestimate 

the reflection coefficient.  It is also noticeable that at lower frequencies the measured reflection 
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coefficient drops off rapidly and agreement between prediction and experiment is poor; however, 

it is likely that this is caused by experimental errors occurring at relatively low frequency, since 

in this frequency range the transducers are less efficient and are prone to higher errors.  

Nevertheless, the agreement between prediction and measurement over a wide frequency range is 

generally good in Figs. 6 and 8 and this suggests that the theoretical model is capable of capturing 

the physics of the problem. 

 

In Fig. 9 the reflection coefficient for a “V” shaped defect (
�30=γ ) is investigated for a coated 

pipe by varying values of sc tt  from 0.1 to 0.5.  Here, the length of the coating is increased to 

2 m, with mm 391 =a , mm 85.412 =a , mm 65.441 =b  and s/m 10 9.3~ -3×=cα .  The effect of 

increasing the length of the coating from 0.995 m to 2 m is immediately obvious in Fig. 9, and a 

significant lowering of the reflection coefficient is observed when compared to the uncoated pipe.  

This is consistent with axial attenuation in the coating playing a dominant role.  Clearly the 

bitumen coating is predicted to have a significant effect on sound propagation and it is noticeable 

that the amplitude of the reflection coefficient is significantly reduced over the whole frequency 

range, even for relatively thin coatings.  It is interesting also to note that the reflection coefficient 

for 5.0=sc tt  is higher than that for 25.0=sc tt  over a significant frequency range, which is 

not what one would expect; the reasons for this are not clear.  The predictions in Fig. 9 do, 

however, clearly illustrate problems that are likely to be encountered when attempting to locate 

defects in coated pipes using the fundamental torsional mode: any increase in coating length is 

likely to further reduce the refection coefficient from the defect and make it increasingly difficult 

to locate the defect.   
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5.  CONCLUSIONS 

 

The attenuation of guided elastic waves in coated pipes has been studied using two fast and 

efficient numerical methods.  Both methods utilise the modal solutions delivered by the SAFE 

method and mode matching is used to study uniform defects, with a hybrid method used to 

analyse non-uniform defects.  Good agreement between prediction and measurement for uncoated 

pipes is observed, and it is demonstrated that these numerical methods require very few degrees 

of freedom in order to study the scattering of torsional modes from axisymmetric defects in pipes. 

 

The main aim of this article is to quantify reflection coefficients for axisymmetric defects in 

coated pipes and here it is seen that the use of data published in the literature for the bulk acoustic 

properties of bitumen does not provide good agreement between prediction and experiment.  In 

order to rectify this, it was found to be necessary to change the value for cα , and a value up to 16 

times larger than, for example, the data reported by Barshinger and Rose [2] was found to provide 

good agreement between prediction and measurement.  Whilst this approach does demonstrate 

that it is possible to achieve good agreement between prediction and measurement such an 

approach is rather unsatisfactory.  To provide more confidence in the values chosen here for cα  it 

is necessary in the future to develop an independent method for measuring cα  for the frequency 

range investigated, that is, the frequency range over which this technique is normally applied in 

the field and for the type of material normally encountered.  This will enable conclusions to be 

drawn regarding the appropriateness of the values deduced here, and also the appropriateness of 

extrapolating data from higher frequencies [2].  Of course, further investigation is also necessary 

to see if the discrepancies are simply a result of the different type of bitumen used.  It is, 

however, clear that the coating has a very pronounced effect on sound propagation and the results 

presented in Fig. 9 serve to question the feasibility of using the T(0,1) mode to locate defects in 

long lengths of coated pipelines. 
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The theoretical methods reported here can readily be extended to other symmetric problems, such 

as longitudinal modes; they may also, in principle, be extended to the study of non-axisymmetric 

defects and the propagation of flexural waves.  This is because the SAFE method is a general 

method for locating eigenmodes and it has been shown in the literature that this method will work 

equally well for a waveguide of arbitrary cross-section; moreover, the mode matching/hybrid 

methods can also in principle be extended to three dimensional problems.  Therefore, given the 

potentially large computational savings observed in this current study it appears sensible in the 

future to investigate extending these techniques to more complicated scenarios for coated pipes. 
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Figure 1.  Geometry of uniform defect. 
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Figure 2.  Geometry of non-uniform defect. 

 

ts 

tc 

Plane A Plane B Plane C 

γ 

Ω3s 

Ω3c 

LN 

Γ3c 

Γ3s 
ΓY ΓX 

Region 1 Region 2 Region 3 Region 4 

L3 



 40

 

 

 

 

 

 

 

 
 

Figure 3.  Reflection coefficient for uniform defect.             , mode matching predictions; 

, plane wave predictions; ▲ , experiment. 
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Figure 4.  Hybrid method predictions for the reflection coefficient of uniform and  

non-uniform defects.               , uniform defect; 

                 , tapered defect, 
�30=γ  ;                 , “V” defect, 

�11=γ . 
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Figure 5.  Reflection coefficient for tapered defect, 

�

30=γ .               , hybrid method predictions; 

▲ , experiment. 
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Figure 6.  Mode matching predictions for the reflection coefficient of a uniform defect in a coated 

pipe.             , s/m 10 24.0~ -3×=cα , 
3kg/m 1500=cρ  [2];              s/m 10 122.0~ -3×=cα , 

3
kg/m 1750=cρ  [32];              , s/m 10 9.3~ -3×=cα , 

3
kg/m 1200=cρ  ; ▲ , experiment. 
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Figure 7.  Mode matching predictions for the reflection coefficient of the transition between an 

uncoated and coated section of pipe.               , 1=sc tt
 ;               , 

5.0=sc tt  ;                , 

25.0=sc tt . 
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Figure 8.  Reflection coefficient of a tapered defect in a coated pipe, with 
�

60=γ . 

               , hybrid method predictions; ▲ , experiment. 
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Figure 9.  Hybrid method predictions for the reflection coefficient of a “V” shaped defect, with 

�

30=γ  and m2=cL .                   , uncoated pipe;               , 5.0=sc tt ; 

                , 25.0=sc tt ; and                   1.0=sc tt . 

 
 


