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Abstract 
 

A collection of hardware weightless Boolean elements has been developed.  These form 

fundamental building blocks which have particular pertinence to the field of weightless 

neural networks.  They have also been shown to have merit in their own right for the 

design of robust architectures. 

 

A major element of this is a collection of weightless Boolean sum and threshold 

techniques.  These are fundamental building blocks which can be used in weightless 

architectures particularly within the field of weightless neural networks.  Included in 

these is the implementation of L-max also known as N point thresholding.  These 

elements have been applied to design a Boolean weightless hardware version of 

Austin’s ADAM neural network.  ADAM is further enhanced by the addition of a new 

learning paradigm, that of non-Hebbian Learning.  This new method concentrates on the 

association of ‘dis-similarity’, believing this is as important as areas of similarity. 

 

Image processing using hardware weightless neural networks is investigated through 

simulation of digital filters using a Type 1 Neuroram neuro-filter.  Simulations have 

been performed using MATLAB to compare the results to a conventional median filter.  

Type 1 Neuroram has been tested on an extended collection of noise types.  The 

importance of the threshold has been examined and the effect of cascading both types of 

filters was examined. 

 

This research has led to the development of several novel weightless hardware elements 

that can be applied to image processing.  These patented elements include a weightless 

thermocoder and two weightless median filters.  These novel robust high speed 

weightless filters have been compared with conventional median filters. 

 

The robustness of these architectures has been investigated when subjected to 

accelerated ground based generated neutron radiation simulating the atmospheric 

radiation spectrum experienced at commercial avionic altitudes.  A trial investigating 

the resilience of weightless hardware Boolean elements in comparison to standard 

weighted arithmetic logic is detailed, examining the effects on the operation of the 

function when implemented on hardware experiencing high energy neutron 

bombardment induced single event effects. 



 

 

 

Further weightless Boolean elements are detailed which contribute to the development 

of a weightless implementation of the traditionally weighted self ordered map. 
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Chapter 1 

 

1 Introduction 

 

1.1 Weighted Boolean Logic 

Boolean logic was first described by Charles Boole in 1854, and since has been used in 

everyday electronics and forms the basis of modern day computing [Boole 1854].  In 

1936 Turing produced his paper on computable numbers; where he proposed the 

fundamental operation of modern computing [Turing 1936].  The work of John Von 

Neumann introduced the architecture of the modern day stored programme computer 

[von Neumann 1958].  These architectures are based on weighted clocked logic 

operating with arithmetic units and counters, processing data in sequence.  Weighted 

logic has advantages in that it is compact, allowing large numbers to be easily 

implemented in binary systems.  Unfortunately it suffers from the fact that minor errors 

can cause massive data disruption.  Therefore error detection and correction codes such 

as Hamming correction have been developed to increase the robustness of the data and 

resultant systems [Hamming 1950].  This approach does not remove the risk of 

corruption but reduces the occurrence of corruption to an acceptable level. 

1.2 Weightless Logic  

Weightless logic forms the heart of the operation of weightless neural networks.  

Weightless neural networks are sometimes referred to as Boolean neural networks due 

to their properties and mode of operation [Picton 1994].  Weightless Boolean neural 

networks were first described in the McCulloch and Pitts paper written in 1943 

[McCulloch et al 1943]. McCulloch and Pitts proposed a simplified model for an 

artificial neuron based on the limited understanding of a neuron at the time.  The 

original neuron model is a weightless neuron; however in the early implementations 

using computers engineers were unable to get the model to work [Rochester et al 1956].  

The model was then altered to add the addition of weights which could be varied at each 

of the synapses feeding the neuron.  This concept has now formed the main stream of 

neural networks and consists of multiple neural network systems [Rumelhart et al 1986, 

Hopfield 1982].  It was not until Bledsoe and Brownings’ work on pattern recognition 
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that weightless neural networks were rediscovered [Bledsoe et al 1959].  Weightless 

neural networks lend themselves very well to implementation on modern electronics 

due to only having two states, ‘on’ or ‘off’, or in neural terms ‘firing’ or not ‘firing’.  

This is analogous to Boolean logic which also has two states of operation, ‘zero’ or 

‘one’.  Weightless neural networks although only having  two states of operation, are 

often implemented using weighted arithmetic counting units and weighted logic to 

perform the required sum and thresholding functions [Austin 1986]. 

1.3 Avionic Systems 

Avionic systems are subject to corruption caused by atmospheric radiation.  

Atmospheric radiation is not a new phenomenon but has been known about since its 

discovery in 1913 by Hess [Hess 1913].  Atmospheric radiation has not changed in 

intensity since its discovery, however our understanding has become much greater and 

we now understand some of the effects that influence the intensity [Dyer et al 2001].  

The effects of atmospheric radiation are causing more detrimental effects to avionic 

systems, due to the changes in electronic components used within them [Dyer et al 

2000].  The avionics industry is moving away from bespoke parts to commercial off-

the-shelf parts due to their lower cost and lack of military suppliers.  Therefore the 

industry has to investigate ways of using commercial off-the-shelf parts, without 

compromising the safety or reliability of the overall avionics systems. 

Military avionics systems are also developing new technology to implement evermore 

advanced systems, in order to give air superiority, these include things like voice 

recognition and visual targeting.  These systems require more processing power and 

electronics than traditional hand controlled systems. 

1.4 Atmospheric Radiation 

Cosmic radiation originates from deep in space although its exact origins are not fully 

understood.  It is believed the particles are generated by supernova activity [Dyer et al 

2000].  Atmospheric radiation is generated when primary cosmic rays consisting of 

highly energetic particles which penetrate the earth’s magnetic field, which acts as a 

shield against the majority of these particles [Dyer et al 2001].  These primary charged 

particles mainly consist of protons (hydrogen nuclei) along with alpha particles, helium 

nuclei and other nuclear fragments.  They interact with air molecules to generate a 

cascade of secondaries including neutrons as shown in Figure 1.1 from Chugg [Chugg 

2003c].  It is the neutrons which have the most detrimental effect on electronic systems. 
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Figure 1.1  A Diagram of the Primary Cosmic Rays Interacting with Air Molecules 

These reach a maximum flux at 60,000 feet, and reduce at lower altitudes.  Figure 1.2 

shows that the flux is 300 times less at sea level than at 60,000 feet.  The flux of these 

secondary particles also alters with latitude with a maximum at the earth’s poles, due to 

the increased effect of the earth’s magnetic field.  There are also anomalies such as the 

‘South Atlantic Anomaly’ described by Dyer et al which makes the prediction of the 

levels over the earth’s surface hard to determine [Dyer et al 2001].  With the lack of an 

exact origin and the fact that some of the primary particles were generated thousands of 

years ago, cosmic radiation level prediction is in its infancy.  It is known that certain 

factors such as the solar cycle have an effect on the levels but knowledge of other 

factors is limited.  The greatest effects on levels have been caused by events that were 

not and could not be predicted based on our present knowledge.  These include a factor 



 

4 

 

of 216 rise in cosmic fluxes back in 1956 and a factor of 31 rise in 1989 at 

approximately 32,000 feet altitude [Dyer et al 2001]. 

 

 

 

Figure 1.2  A Graph of Neutron Flux with Relationship to Altitude 

With the current lack of understanding and inability to predict cosmic fluxes accurately, 

the tendency has been to rely on real time monitoring such as fitted to Concorde [Dyer 

et al 2001].  Commercial aircraft operate within this environment as they typically 

cruise at between 30,000 to 45,000 feet.  From Figure 1.2 we see this gives an average 

neutron flux of approximately 2 n/cm
2
/s.  Until recently the main concern with 

operating in this environment has been for humans who are exposed to this radiation for 

long periods of time. This has resulted in legislation which now requires them to be 

classified as radiation workers and hence their radiation dose needs to be monitored 

[Schneur 1999].  This has resulted in a requirement for an accurate cosmic radiation 

monitor, particularly for neutrons which are the main component of atmospheric 

radiation.  Until recently these detectors have been large and bulky and not suitable as 

discrete personal monitors. 

 

1.5 Cosmic Radiation Effects on Avionic Components 

More recently there has been concern for the electronic systems operating in this 

environment: the effects of single event upset, burnout and damage have been 

understood for a long time in space applications [Dyer et al 2000]. 

Atmospheric Neutrons at ~55oN

0.001

0.01

0.1

1

10

0 10000 20000 30000 40000 50000 60000 70000 80000

Altitude (feet)

N
e

u
tr

o
n

 F
lu

x
 

(1
-1

0
M

e
V

 n
/c

m
2
/s

)



 

5 

 

The problem of corruption or damage to semiconductor devices occurs when one of 

these highly energetic neutrons interacts with atoms within the device.  The illustration 

in Figure 1.3 shows a typical interaction between an atmospheric neutron and a silicon 

atom [Chugg 2006]. 

 

Figure 1.3  An Illustration of an Atmospheric Neutron Interacting with Silicon 

It can be seen that the neutron interacts with the silicon atom leaving an intensely 

ionised cylindrical track.  It is this highly charged track that leaves charge within the 

cells of the device that can cause the change of state for that cell.  Due to the length of 

the tracks produced it is quite common to upset several cells with one interaction, 

meaning that single bit error detection and correction logic is insufficient. 

It is important to note that these effects are not new but the severity of these effects is 

increasing due to changing technology.  The main causes are the reduction of supply 

voltage levels, meaning the amount of charge required to flip data bits is less.  The 

geometry of parts is also reducing; meaning the number of cells affected by the track is 
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increasing.  To compound matters the amount of memory used in systems is also 

increasing. 

These atmospheric radiation effects have been widely observed at avionics altitudes due 

to the significantly lower shielding effects of the earth’s magnetic field and the 

atmosphere [Dyer et al 2000].  Technology trends in the semiconductor industry have 

led to devices becoming more susceptible.  These trends are improved speed, lower 

power consumption and reduced production costs along with increased capabilities 

within devices.  These goals have been achieved by reducing device operating voltage, 

die geometry size and increasing density of components.  Lowering the operating 

voltage of the device reduces the transition energy required to move from one logic state 

to another.  Reducing the die geometry reduces the power needed by the device and 

subsequent heat produced.  Smaller geometries also allow a greater gate count as the 

area taken by each logic gate is less and the frequency of operation of the device can be 

increased.  Unfortunately all these characteristics are leading to devices that are more 

susceptible to atmospheric radiation.  In addition, the avionics industry is moving away 

from high specification military parts toward commercial parts in an effort to reduce 

cost.  This is causing an increase in susceptibility of aircraft avionics to atmospheric 

radiation effects. 

 

1.6 Research in this Field  

In order to counteract this worrying trend, more detail of these effects and a greater 

knowledge of the environment, coupled with the ability to better predict flux levels, is 

required before the problem impacts on aircraft safety.  Therefore the need to design 

robust, resilient, systems for operating in this environment is growing, in conjunction 

with better capabilities for monitoring the environment.  This will lead to better 

understanding of the interaction process caused by the atmospheric radiation within 

electronic devices. 

The avionics industry is now aware of the need to study the potential issues caused by 

atmospheric radiation on avionics systems and has funded research programmes in 

conjunction with the Department for Business Enterprise and Regulatory Reform 

(formally the Department of Trade and Industry) and the Ministry of Defence [Chugg 

2003c]. 
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A potential solution to this ever increasing problem is that of weightless logic and 

weightless neural networks due to their ability to generalize which allows an element of 

self correction. 

 

1.7 Weightless Neural Networks 

Weightless neural networks are a technology which come under the banner of ‘Artificial 

Intelligence’ due to their ability to learn and adapt to presented information.  A neural 

network is a group of interconnected simple processing units which try to approximate 

the operation of part of the human brain.  They usually consist of a large number of 

processors which operate in parallel, each having its own knowledge and local memory.  

The way the processing units connect is usually fluid and it is these connections which 

increase the networks ability to adapt to different stimuli.  Although not programmed, 

they may follow rules which allow them to successfully operate and are not constrained 

to perform in an algorithmic manner.  The description of their operation is their 

structure and interconnects at any particular time given.  This gives them the power to 

solve complex non-linear problems which are mathematically challenging. 

 

Boolean hardware weightless neural networks are the principal focus of this research.  

Weightless neural networks differ from conventional neural networks such as the error 

back-propagation network and the Hopfield networks in several ways [Rumelhart et al 

1986, Hopfield 1982].  Weightless neural networks tend to be logic based using 

Boolean operators instead of the mathematical floating point equations used in weighted 

techniques.  Unlike conventional weighted networks, weightless neural networks in 

general have the unique property of being able to learn in one cycle, unlike weighted 

systems that require multiple cycles in order to iteratively alter the weights in the 

system.  Hardware weightless neural networks also exhibit several other properties that 

offer improvements over the conventional techniques particularly in the areas of 

robustness and speed [Bedford et al 1996].  Improvements in robustness can be found in 

weightless neural networks for several reasons.  The reduction or removal of the 

system’s dependence on a clock.  The data propagates through the system just incurring 

a small latency caused by the propagation delay of the logic.  Hardware weightless 

neural networks hence have a greater propensity to operate in a harsh environment such 

as in a high electromagnetic environment due to lack of their reliance on a clock pulse 

[King 2000].  Hardware weightless neural networks are parallel in their nature and 
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hence their speed of operation in comparison to an algorithmic approach based on a 

conventional processor is vastly superior in complex tasks such as scene analysis 

[Austin 1986]. 

 

1.8 Areas for Development 

1.8.1 ADAM 

The properties of weightless Boolean networks are ideally suited to the development of 

robust architectures designed to overcome the effects of atmospheric radiation 

experienced by modern avionics.  In order to gain the full benefit of this technology 

implementation of the networks it is vital to understand the robustness of the overall 

system.  Several weightless neural networks, although weightless in nature, are 

implemented using standard weighted architectures.  These include Austin's ADAM 

network which is implemented with the use of arithmetic counter units to sum the rows 

and columns of the matrices [Austin et al 1987].  King has demonstrated with his 

Neuroram that it is possible to develop hardware which is also capable of sum and 

thresholding necessary for the implementation of these weightless neural networks that 

does not rely on arithmetic counter units [King 2000]. 

1.8.2 Neuroram 

A promising technology which was researched under SPAESRANE is the use of 

Charged Coupled Devices (CCD’s) as a radiation detector as patented and presented by 

Chugg [Chugg et al 2002].  Studies of this technology at ground based neutron facilities 

have supported the hypothesis that these CCD element devices hold great promise as 

neutron detectors [Torok et al 2006].  The neutron radiation causes degradation of the 

CCD pixel elements and causes the generation of unwanted noise on the data.  Long-

term exposure of the sensors causes more severe damage to the CCD pixel elements.  

Pixels can become stuck in a particular state usually a maximum or minimum.  The 

effect of this is to generate white and black spots on an image similar to Salt and Pepper 

noise.  It is known that the properties of the median filter make it suitable for removing 

salt and pepper noise.  Pixels can also be damaged by the radiation exposure causing 

them to randomly oscillate in state even when not exposed to radiation; this effect is 

known as random telegraph noise. [Chugg et al 2003b].  King's Neuroram filter is an 

ideal technology for the removal of the salt-and-pepper noise.  The Salt and Pepper 

noise is similar in type to the effects which are caused by radiation damage to CCD 



 

9 

 

sensors.  His research in this area has been limited to the analysis of his filter with salt-

and-pepper noise.  It is proposed that the filter may be able to deal with other types of 

noise, but these have yet to be investigated, but may hold significance in the removal of 

further noise damage caused to the CCD by radiation effects.  The author was part of 

the SPAESRANE project organising and co-coordinating some of the earlier trials 

particularly at the Theodor Svedberg Laboratory located at the University of Uppsala in 

Sweden.  This included working with Chugg and King on the set up of these early CCD 

experiments, the results of these trials are available in the papers in Appendix A [Chugg 

et al 2003a, Chugg et al 2003b]. 

 

1.8.3 Conversion of Weighted Neural Networks to Weightless Architectures 

Neural networks tend to be robust by their nature; including weighted neural networks 

as they all possess the property to generalise.  This gives them an inherent ability to deal 

with corrupt or incomplete data. If this technology is to be used the architecture in 

which it is implemented needs to be carefully considered to reduce the effect of 

corruption.  An area of interest is the development of weightless neural networks based 

on the principles of existing weighted neural networks using weightless Boolean 

hardware technology. 

 

1.8.4 Robustness of Weightless Boolean Architectures 

Weightless technology by its very nature looks to offer a more graceful degradation in 

its performance when subjected to corruption due to its verbose nature and limited 

effect caused by any single corruption.  The aim of this research is to investigate this 

hypothesis and compare it with compatible weighted implementations.  This will be 

performed using ground-based neutron facilities as the use of flight trials is impractical 

due to cost and timescales. 

 

1.8.5 Implementation of Standard Architectures in Weightless Boolean Logic 

In order for weightless Boolean hardware technology to be a viable alternative to 

weighted binary implementations it is necessary to show that standard implementations 

of conventional weighted binary functions can be implemented in a weightless manner. 
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1.9 Research Objectives 

The research objectives for this thesis are all based around the development of 

weightless Boolean hardware architectures and their associated elements which derive 

from the field of weightless hardware neural networks.  A detailed chronological history 

of hardware weightless neural networks can be found in the next chapter which presents 

the background for the thesis. 

There are several aims of this research which are described below: 

The main objective is to develop a group of weightless Boolean elements that could be 

used to further improve existing weightless neural networks.  

 

 A primary aim of this thesis is to investigate whether the transition from 

weighted binary to weightless binary and Boolean architectures offers an 

improved resilience with reduced effects of corruption particularly on systems 

subjected to atmospheric radiation.  King had previously postulated that earlier 

weightless elements exhibited increased robustness [King 2000]. 

 The development of a group of weightless Boolean elements which could be 

used to further improve existing weightless neural networks.  A key driver is to 

remove clocks and counters, often associated with weighted implementations of 

these networks to improve their robustness for avionics applications. 

 Key to this research was to demonstrate the flexibility of these proposed 

weightless elements and show their applicability to existing weighted systems.  

The robust nature of these elements was also important. 

 Show how a traditional weighted neural network which relied on a weighted 

algorithmic approach could be redesigned and implemented using weightless 

Boolean hardware elements. 

 Further investigate the properties of King’s Neuroram as a neurofilter on an 

extended range of noise types, whilst understanding the importance of the 

threshold criteria [King 2000]. 
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1.10 Overview of the Thesis 

The aim of the thesis is to develop a collection of weightless Boolean elements which 

can be used to enhance existing weightless neural networks.  The viability of 

developing these weightless Boolean elements to implement an alternative to standard 

binary implementations of traditionally based arithmetic and clock based logic is also 

investigated.  Furthermore it is proposed that these weightless Boolean elements could 

be used to redesign standard weighted neural networks.  A key reason for moving to 

weightless Boolean elements is the removal of the clock and arithmetic units in 

conjunction with the removal of the weighting associated with traditional binary.  The 

driver for this is to improve the robustness to corruption and generate a more 

predictable, graceful degradation in performance when subjected to single event 

failures.  The necessity for this is driven by a new threat facing avionics, that of 

atmospheric radiation [MacDiarmid et al 2005].  Trials are performed at several ground-

based neutron accelerator facilities comparing traditional implementations of the swap 

block commonly found in the median filter.  This is compared with the novel swap 

block developed as part of a weightless Boolean median filter. 

1.10.1 Chapter 2  A Chronological History of Weightless Neural Networks 

This chapter is a continuation of the introduction and puts the thesis into context giving 

a chronological history of weightless neural networks which form the backbone of the 

research.  The origins of hardware neural networks and some of the physiological 

thoughts of early philosophers including James and Hebb which have led to some of the 

learning paradigms still used today [James 1890, Hebb 1949].  This thesis and the 

chronological history are bound to the field of hardware weightless neural networks and 

do not cover algorithmic implementations of weightless neural networks.  An overview 

of Austin's ADAM network in conjunction with Willshaw and N point thresholding are 

discussed [Willshaw et al 1969, Austin et al 1987].  The principles of King’s Neuroram 

are also described [King 2000]. 

 

1.10.2 Chapter 3  A New Weightless Boolean ADAM and Non - Hebbian Learning 

Chapter 3 proposes a collection of new weightless Boolean elements to implement 

threshold techniques.  The primary driver for the development of these weightless 

Boolean elements is the implementation of a weightless hardware ADAM neural 

network.  Austin’s implementation although FPGA based is still implemented using 



 

12 

 

arithmetic weighted binary counters to sum the columns and rows of the matrices before 

applying a threshold [Weeks et al 2005].  Novel weightless Boolean elements are 

developed which implement the key thresholding criteria used in the ADAM network, 

these being Willshaw and N point thresholding [Austin 1986].  These elements were 

also trialled on the author’s custom-built FPGA circuit board.  A description of the 

hardware is presented along with the test criteria applied during this research.  An 

additional weightless Boolean thermocoding technique which is designed to operate on 

serial weightless data is given.  This technique has been patented by BAE SYSTEMS 

and a copy of the author’s patents can be found in Appendix C. 

The learning criteria for the correlation matrix memory are examined. Until now the 

correlation matrix memory has always relied on Hebbian learning to train the neurons 

located at the intersections.  In weightless logic this is implemented with a traditional 

‘AND’ gate.  It is proposed that this ‘AND’ gate can be replaced by several other logic 

operators to allow the development of further learning criteria.  These additional 

learning criteria are investigated to see if they offer a plausible alternative.  The 

application of these criteria were simulated to determine the effect on matrix saturation 

in comparison to the traditional Hebbian learning criteria.  The chapter concludes with a 

schematic for a Boolean hardware weightless ADAM neural network which consists of 

the sum and threshold techniques proposed earlier in the chapter. 

 

1.10.3   Chapter 4  Hardware Weightless Boolean Median Filters 

 

Chapter 5 presents two new methods of implementing weightless median filtering.  The 

first of these is a technique for ordering the data in which the author has contributed a 

tagging method to the architecture.  The second is the author’s novel weightless 

Boolean median filter which is clockless and has been implemented in an FPGA.  Both 

these techniques have been patented, full details can be found in Appendix B.  The 

novel technique was then compared with a weighted implementation of an FPGA when 

subjected to single event upsets caused by neutron radiation.  Trials have been 

performed at TRIUMF and TSL and the results from TRIUMF were submitted and 

accepted for publication by the IET [King et al 2008]. 
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1.10.4 Chapter 5  Performance of Weightless Neural Network Image Filters 

Further examination of King’s Neuroram configured as a Type I Neuroram filter is 

performed in Chapter 4 [King 2000].  The analysis is performed on standard two-

dimensional greyscale images and examines the capability of King’s Neuroram to 

remove an extended range of noise types.  This is a continuation from King's initial 

research which trialled the filtering properties of Neuroram on similar images corrupted 

with salt and pepper noise.  The images are corrupted with several noise types and an 

evaluation of both a conventional median filter and the neural filter are performed.  The 

additional noise types include: additive Gaussian, additive uniform, multiplicative 

uniform and multiplicative Gaussian.  A trial with salt and pepper noise is undertaken to 

compare with King's original analysis.  Evaluation of the two filters is further extended 

with analysis of the performance when cascaded.  The ability to alter the threshold on 

Neuroram is examined with respect to the effect on the noise removal of the image.  

King's hypothesis that the ideal threshold for the filter when operating on the removal of 

salt and pepper is half the number of data samples is tested [King 2000]. 

 

1.10.5 Chapter 6  Boolean Weightless Self Ordered Map 

Chapter 6 describes a weightless Boolean implementation of the self ordered map 

[Aleksander et al 1995].  The chapter begins with a chronological history covering the 

development of the self ordered map.  This history is not covered in Chapter 2 as it is 

traditionally a weighted neural network.  The self ordered map differs from the 

previously described neural networks in that it is capable of ‘unsupervised learning’ 

[Kohonen 1984].  A description of the self ordered map and its operation is presented, 

in conjunction with the algorithms necessary to implement a simulation of the network 

on a sequential computer. 

In order to develop the weightless Boolean self ordered map a collection of weightless 

elements was designed.  Each of these individual elements is described in the chapter. 

These elements include a selector, an expander, and a Hamming distance reducer.  

Variations of these elements are also described.  A simulation of the weightless self 

ordered map is also described and the associated program is available in Appendix D.  

A block diagram describing how these elements can be constructed to form a weightless 

Boolean implementation concludes the chapter. 
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1.10.6 Chapter 7  Summary and Conclusions 

Chapter 7 gives an overview of the research objectives and descriptions of all the 

chapters and their contribution to the research. 

The summary of chapter 1 describes the author’s contribution to the two published 

papers, copies of which are attached in Appendix A [Chugg et al 2003a, Chugg et al 

2003b].  These papers describe some of the effects observed when using CCD’s to 

capture single event effects at trials performed at TSL. 

Chapter 2 gives an overview of the field of hardware weightless neural networks 

describing the prior art relating to this thesis. 

Chapter 3 describes the development of a collection of sum and threshold elements, 

including a serial thermocoder which has been patented and is attached in Appendix C 

[Armstrong et al 2003, Armstrong 2003a, Armstrong 2003b]. 

Two new additional sum and threshold elements are described which complement 

King’s original elements [King 2000]  A collection of alternative learning techniques 

for the correlation matrix memory are described which builds on the traditionally used 

Hebbian learning technique.  A weightless Boolean hardware implementation of L–Max 

and Willshaw thresholding techniques are discussed for use in a novel weightless 

Boolean hardware implementation of ADAM. 

 

Chapter 4 discusses the properties of King’s Neuroram acting as an image filter on an 

extended range of noise types [King 2000].  It is demonstrated that King’s Neuroram as 

an image filter is capable of removing multiplicative uniform, salt-and-pepper and 

multiplicative Gaussian noise.   However it does not perform well with additive 

Gaussian and additive uniform noise and demonstrates similar characteristics to that of 

a standard median filter.  King’s filter performs slightly worse at noise removal than the 

conventional median filter however it does not cause as much blurring.  An analysis of 

the ability to adjust the threshold and hence alter the performance of the Neuroram filter 

is also discussed.  King originally suggested a threshold value equal to 50% of the 

number of exemplars presented to his Neuroram was optimum when performing image 

filtering on two dimensional greyscale images [King 2000].  This research shows a 

threshold of 33% is the optimum. 

An evaluation into the performance of both a conventional median filter and Neuroram 

when cascaded is described which shows that the performance of the two filters differs.  

The Neuroram filter showed improvement in cascades of up to five deep; however this 
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was only three for the median filter.  Overall the performance with regard to noise 

removal was better for the median filter even with less numbers of cascades. 

 

Chapter 5 described a tagging technique and a weightless Boolean median filter both of 

which have been patented, copies of which are included in Appendix C.  The results 

from comparing the performance of the swap block taken from the weightless median 

filter and a conventional median filter when subjected to neutron radiation are 

presented.  The results show that when implemented on an FPGA susceptible to SEU 

when subjected to neutron radiation the robustness and failure modes differ.  The 

weightless swap block suffers more upsets due to its architecture but the resultant 

failures were more predictable.  In contrast the weighted swap block failed less but the 

consequences were more unpredictable due to the weighting of the data.  These findings 

were submitted and both presentations were accepted for publication at the IET 

(formerly IEE).  One of the presentations was made and copies of both can be found in 

Appendix B. 

 

Chapter 6 discusses the weightless Boolean hardware which was developed in order to 

implement a Weightless Self-Ordered-Map.  The weightless Boolean architectures 

developed include: a selector, expander and a Hamming distance reducer.  A block 

diagram of a weightless self ordered map is presented. 

 

1.10.7 Chapter 8  Further Work 

Chapter 8 offers suggestions for further work in the field of weightless Boolean neural 

elements as well as discussing further improvements to ADAM to reduce the effect of 

saturation.  A further hardware implementation of the weightless self ordered map in an 

FPGA architecture is suggested.  A possible extension to Neuroram and its filtering 

properties is proposed using adaptive filtering; two methods are discussed. 

 

1.10.8 Appendices 

Appendix A has the two papers resulting from trials at TSL in using CCD’s to capture 

single event effects. 

 

 Analyses of CCD Images of Nucleon-Silicon Interaction Events. 
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 Single Particle Dark Current Spikes Induced in CCD’s by High Energy 

Neutrons. 

 

Appendix B contains the two presentations submitted and accepted by the IET for 

publication. 

 

 BAE SYSTEMS, Air Systems Approach to the Problem of Atmospheric 

Radiation. 

 System Level Prevention: Managing SEE Using Error Correction Techniques. 

 

Appendix C contains three international patents, derived from the author’s BAE 

SYSTEMS invention reports.  These have been examined and published.  

 

 Ordering by Hamming Value. 

 Serial Weightless Data to Thermocode Coded Data Converter. 

 Ordering Weightless Binary Tuples According to Hamming Value. 

 

Appendix D consists of a DVD retained on the inside back cover of this thesis.  It 

contains MATLAB emulations, C code simulations, PIC C code, circuit diagrams and 

FPGA projects.  It represents an archive of electronic data generated during the course 

of this research.   
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Chapter 2 

 

2 A Chronological History of Hardware 
Weightless Neural Networks 

 

2.1 Overview 

This chapter presents a brief chronological history of the development of artificial 

hardware weightless neural networks. 

The development of the field of artificial neural networks is driven by two factors. The 

first of these is the quest to understand the human brain. This has led to many 

biologically plausible models that demonstrate our growing understanding of the 

operation of neurons and brain structures.  The second driver is the ability to use this 

technology to perform ‘intelligent’ operations, within specific boundaries, in order to 

solve complex non-linear problems.  Intelligent operations are those which require 

‘thought’ or decisions based on prior knowledge or experience.  Intelligence cannot 

easily be achieved with traditional sequential computers as these require a defined 

algorithm. Neural networks overcome this limitation by forming model free estimators. 

2.2 Boolean Logic 

Artificial hardware weightless neural networks are based on Boolean logic, which 

derives from George Boole’s algebraic systems of logic published in 1854 [Boole 

1854]. Claude Shannon proved in his Master’s thesis in 1937 that Boolean algebra and 

binary arithmetic could be used to simplify the switching circuits based on 

electromechanical relays used at the time in telephone routing switches [Shannon 1937].  

His thesis took this concept further by showing that structures of electromechanical 

relays could be used to solve Boolean algebraic problems.  Although McCulloch and 

Pitts are widely acknowledged as producing the first neuron model recent evidence 

shows that Turing proposed several neuron elements and associated structures 

[Copeland et al 1996].  Turing referred to these elements as ‘unorganised machines’ and 

proposed three separate machines known as ‘A’ type, ‘B’ type and ‘P’ type.  The most 

relevant is the ‘B’ type machine which is described with two inputs and one output 

which could be connected to each other; today we know this element as the two input 



 

18 

 

NAND gate.  Turing goes on to describe how initially these elements are randomly 

connected, and by appropriate interference these connections would alter and mimic 

education.  Turing stated that a ‘B’ type machine can be trained to ‘do any required job’ 

[Copeland et al 1996]. 

2.3 The McCulloch and Pitts Neuron Models 

McCulloch and Pitts wrote the first of two papers which are now recognised as the first 

model for a physiological neuron [McCulloch et al 1943, Pitts et al 1947].  Most 

artificial neural networks are fundamentally based upon these early models.  The 

McCulloch and Pitts models are built up of several key elements.  The inputs in to the 

model are known as synapses.  The synapses are the connections through which 

information is fed to the neuron.  Within the neuron there are two processing elements, 

one for summation and another for thresholding.  The output state of the neuron is 

determined by the information received from the synapses combined with the neuron’s 

threshold function.  The output of the neuron is delivered by the axon.  The axon of a 

neuron can be connected to one or more neurons via their synapses.  An example of the 

basic McCulloch and Pitts neuron is given in Figure 2.1. 

 

Figure 2.1  McCulloch and Pitts Neuron 

 

The neuron ‘fires’ when the summed synaptic response overcomes the threshold, 

otherwise it remains in it quiescent state. 

2.4 Inhibition of the Neuron 

McCulloch and Pitts describe multiple types of operation for their basic model, in 

particular they examine inhibition of the neuron. Two models for inhibition are 

presented using inhibitory synapses, which prevent or make the neuron less likely to fire 
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if they are triggered.  These models are termed, absolute inhibition and relative 

inhibition respectively. 

2.4.1 Absolute Inhibition 

In the case of absolute inhibition the inhibitory synapse has total control of the neuron. 

If the inhibitory synapse fires then the neuron cannot ‘fire’ at all.  If the inhibitory 

synapse is not active then the neuron will ‘fire’ if the sum of the excitatory inputs 

exceeds the threshold as shown in Figure 2.2. 

 

Figure 2.2  A McCulloch and Pitts Neuron with Absolute Inhibition 

 

2.4.2 Relative Inhibition 

In the case of relative inhibition, firing of the neuron is determined by the sum of the 

excitatory synapses minus the sum of the inhibitory synapses. If this result exceeds the 

threshold then the neuron will fire, otherwise it remains in its quiescent state as shown 

in Figure 2.3. 
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Figure 2.3  A McCulloch and Pitts Neuron with Relative Inhibition 

 

2.4.3 The Common McCulloch and Pitts Model 

Figure 2.4 shows the common McCulloch and Pitts model which forms the basis of 

most artificial neural networks.  The McCulloch and Pitts Model can be described by 

equation 2.1 where wi represents the weighting value for the input xi with T being the 

threshold function.  The weights Wn can only be integers. The model that McCulloch 

and Pitts present is weightless and hence the weights represent the number of weightless 

connections from a given source to the neuron. 
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2.4.4 A Mathematical Model for the McCulloch and Pitts Neuron. 

 

 

Figure 2.4  The Common McCulloch and Pitts Model 
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2.5 Hebbian Learning 

In 1949 Donald Hebb wrote a paper, which built on McCulloch and Pitts earlier papers, 

and introduced several important advances in the field of neural networks [Hebb 1949].  

Hebb’s paper discusses the link between psychology and physiology: this understanding 

has not dated in the intervening years.  The paper also introduces the term 

connectionism, which is used to describe the connections of single neurons to form 

neural structures containing multiple neurons. 

One of Hebb’s most important contributions to the field is his model for Hebbian 

learning:  ‘When an axon of cell A is near enough to excite cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.’ 

This is similar to the earlier thoughts of James.  ‘When two brain processes are active 

together or in immediate succession, one of them, on reoccurring tends to propagate its 

excitement into the other’ [James 1890].  If we substitute the ‘brain processes’ with 

‘neurons’ we have a connectionism rule that is almost identical to that of a Hebbian 

neuron. 

In 1956 Rochester et al at the IBM laboratories, in discussion with Hebb, implemented 

the first computer simulation of Hebbian learning [Rochester et al 1956].  This first 

simulation used neurons based on weightless binary devices and a threshold.  This 

simulation failed because the strength of the simulated synapse of the neurons grew 

uncontrollably.  In order to prevent this a normalisation rule was applied which meant 

that synapse values grew in strength at the expense of others.  As well as the 

normalisation function the second simulation had several other differences. These are 

that the synapse strength could range from –1 to +1 in real values instead of 0 to +1, 

meaning the neurons were no longer weightless binary neurons. The output of these 

simulated neurons was dependent upon frequency of firing; this was graded from 0 to 

15.  The Hebbian rule was also modified so a synapse value increased if it fired whilst 

one that did not fire was decreased.  The system that was simulated consisted of 512 

neurons and showed signs of working.  This resulted in the algorithmic weighted 

implementation of the common McCulloch and Pitts Model which forms the basis of 

the more prevalent weighted algorithm neural networks such as the Perceptron and 

Hopfield networks [Rumelhart et al 1986, Hopfield 1982]. 
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2.6 The First Hardware Weightless Neural Network 

The first practical hardware use of a weightless neural network was a pattern 

recognition system developed by Bledsoe and Browning [Bledsoe et al 1959a, Bledsoe 

et al 1959b].  They tackled the problem of character recognition.  The hardware they 

implemented to perform this task was an array of photo-detectors in a 10 by 15 

formation. These arrays were pseudo-randomly paired; they consisted of 150 photo-

detectors creating 75 photo-detector pairs.  Each photo-detector pair allowed the 

production of four possible states in memory.  Figure 2.5 shows a smaller 8 by 8 matrix 

to illustrate the operation of the system. 

 

Figure 2.5  Example of the Bledsoe and Browning Technique 

They introduced the term tuple to the forum. A tuple is a collection of weightless binary 

elements, which in this case are taken from a data space using pseudo-random mapping. 

Equation 2.2 is used to determine the number of storage sites in the memory matrix, L. 
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Where S is the number of operational states of the photocell. (S=2 for states 0 and 1) 

n is the parameter for n-tupling 

N is the number of photocells 

C is the number of categories of patterns learned and read (for Bledsoe and Browning’s 

example, C=36) 
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Bledsoe and Browning also studied the effects of changing tuple size n.  They noted that 

if the tuple size n =1, the system would behave as a standard template matcher.  

However they showed that for small tuple sizes, the system had the ability to generalise.  

Bledsoe and Browning also demonstrated that for small tuple sizes the memory could 

easily saturate if too many exemplars were shown.  Multiple exemplars are required for 

noisy data or for data with variances such as positional inaccuracies.  To compensate for 

over saturation the memory size can be increased by increasing n.  This was also 

demonstrated by Ullmann [Ullman 1973].  In the early 1970’s memory was an 

expensive commodity unlike today. Ullmann also performed a computer simulation 

assessment to determine the sensitivity of the system to the pseudo-random mapping 

process.  This study concluded the memory was generally insensitive to this memory 

mapping process [Ullman 1969].  Bledsoe and Browning also investigated non-

exclusive n-tuple mapping of the photocells in their system.  They concluded that there 

was no real advantage to be gained with this method. The main reasons for this were the 

increased memory capacity required and the longer computation time [Bledsoe et al 

1959b]. 

2.7 Correlation Matrix Memory 

In 1961 Steinbuch developed a learning matrix, ‘Die Lernmatrix’ [Steinbuch 1961], as 

shown in Figure 2.6.  The key property of this matrix is its ability to associate one 

pattern with another; the process of hetero-association.  Steinbuch used this matrix as a 

self-correcting translator circuit because of its properties in dealing with incomplete or 

corrupt data [Steinbuch et al 1962, Steinbuch et al 1967]. 
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Figure 2.6  Die Lernmatrix 

A mathematical description for this matrix is given by Picton [Picton 1994]. An 

example is now presented. 

 

Matrices have been used to describe the inputs and outputs of the correlation memory. 

 

Equation 2.3 shows the output matrix [Y] which is the product of the input matrix [X] 

and the correlation matrix [W]. 

     WXY   2.3 

Equation 2.4 shows Equation 2.3 re-arranged where [X]
t
 is the transpose of [X]. 

     YXW
t
  2.4 

Picton gives the following example showing a system trained on two patterns 

containing 4 inputs and 4 outputs so that n=4 and P=2. 

 

Equation 2.5 shows that within the [X] matrix there are rows labelled X1 and X2.  

Vectors have been created to describe the inputs 1010 and 0110. 
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Equation 2.6 shows that within the [Y] matrix there are rows labelled Y1 and Y2.  Vectors 

have been created to describe the outputs 1000 and 0101. 
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Equation 2.7 shows the transposed [X] matrix for this example 
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Equation 2.8 shows the trained correlation matrix for the given inputs and outputs. 
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Equation 2.9 shows the input vector multiplied by the correlation vector.  The expected 

outputs of [1000] and [0101] are not seen until an appropriate method of thresholding is 

performed. 
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Equation 2.10 demonstrates the capability of the matrix to deal with corrupt data.  In the 

example given, bit 1 is swapped giving [1011] instead of [0101].  If we examine the 

output with this given input we notice the matrix still gives the correct output.  It should 

be noted that this example was carefully chosen to show this aspect of the matrix. 
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2.10 

 

In 1969 Willshaw, Buneman and Longuet-Higgins published a paper describing an 

optical implementation of an associative memory [Willshaw et al 1969].  Their optical 

correlation matrix memory is called a correlograph.  They took the correlograph one 

step further to develop a neural network model.  In order to create this model they 

assumed the input lines in the horizontal direction act as axons and the vertical lines act 

as synapses. To this they applied Hebbian learning [Hebb 1949]. Because the system is 

a digital implementation this meant the synapses were logically ‘ANDed’ to the axons. 
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The training of this type of network is performed by example in a similar method to the 

learning matrix. 

2.8 WISARD 

WISARD is an acronym for Wilkie, Stonham and Aleksander’s Recognition Device.  

The inspiration for WISARD came from the previous work of Bledsoe and Browning 

and Aleksander [Bledsoe et al 1959a, 1959b, Aleksander et al 1984].  Initially 

Aleksander demonstrated a fused adaptive element, which could be trained as shown in 

Figure 2.7. 

 

 

Figure 2.7  A Fused Adaptive Element 

Aleksander proposed this circuit in 1965 [Aleksander 1965].  The fused adaptive 

element is taught by example.  Showing the element, or collection of elements, all the 

required outputs for a given set of inputs performs the teaching of the network whilst 

the network is in teaching mode.  Once the training has been performed and the network 

is set to recall mode the system will reproduce the trained association on the 

presentation of the same given input.  Aleksander also discusses the potential to 

recognise patterns in the presence of noise and this can be clearly seen as a precursor to 

WISARD. 
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The development of WISARD did not come about until 1984 when Aleksander, Wilkie 

and Stonham, studied the recognition of patterns in a noisy environment [Aleksander et 

al 1984, Stonham 1985].  WISARD was inspired from the earlier work of Bledsoe and 

Browning.  It is similar to the hardware character recogniser in the way the data space is 

randomly mapped into tuples stored in memory elements, in this case RAM blocks and 

the result of all the memory elements summed.  Unlike the earlier hardware of Bledsoe 

and Browning, WISARD captures the image using a camera and digitising system 

instead of photo detectors to make the matrix space [Aleksander et al 1984].  Matrix 

elements are pseudo-randomly chosen to form tuples, the tuple size being determined by 

the designer and limitation on address size of the RAMs.  Figure 2.8 shows an example 

of the mapping of the address space. 

WISARD is trained by using a ‘teach’ methodology by showing exemplars to the data 

matrix.  Before training can commence all the RAM locations need to be initialised to 

zero. Whilst set in the teach mode a pattern is input to the RAMs within a discriminator 

and the decoded address location from the n-tuple is stored with a ‘1’. 

 

 

Figure 2.8  A RAM Discriminator 

Once the system has been fully trained the network is switched to recall mode where the 

response for all the individual discriminators is monitored when a pattern is presented to 

the network as shown in Figure 2.9.  The highest response to the pattern is the match or 

the closest match [Aleksander et al 1995]. 
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Figure 2.9  A Multi-Discriminator with Associated Response 

Picton’s analysis of WISARD is presented here: 

 

Equation 2.11 is derived from the training of the network, where P is the number of 

pixels, n is the tuple size and K is the number of RAMs per discriminator. 

n

P
K   2.11 

Equation 2.12 shows the probability  of selecting pixels from the same particular RAM 

in the jth discriminator, where A is the area of overlap between the presented pattern and 

the previously taught pattern, P is the number of pixels and n is the tuple size. 
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If K is large then it is probable that p of the RAMs in the discriminator will fire. 

Equation 2.13 shows the output of the jth discriminator rj if all the outputs of the RAMs 

are summed. 
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It is worth noting that if the two patterns are identical rj =K and A=P. Equation 2.14 

shows the normalisation of the output. 
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These equations have been derived for a simple example of one trained pattern and one 

input, however the equation still applies for more complex situations [Picton 1994]. 

 

A further way of making a decision is to use a confidence measure C as shown in 

Equation 2.15.  The confidence in a result is determined by taking the highest response 

from the strongest discriminator r1 and comparing it to the response from the strongest 

incorrect discriminator r2. 
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The highest confidence score for Equation 2.15 is 1 and this will only be gained if the 

response for r1  = 1 and the response from r2 = 0.  This is highly unlikely and will only 

occur when a pattern totally matches a trained pattern and has no overlapping pixels 

with any other exemplar in the memory. 

 

Substituting Equation 2.14 into 2.15 gives: 
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2.16 

Equation 2.16 indicates that as n increases the discriminatory power of the network 

increases, although there is a cost penalty in terms of increased memory requirement 

and reduction in the ability to generalise. 

2.9 ADAM  

ADAM is a bi-directional hetero-associative network, meaning the network can 

associate one set of data with another set of data in both directions [Austin et al 1987, 

Austin 1997, Austin et al 1994, Bolt et al 1992, Kennedy et al 1994].  ADAM is the 

acronym for Advanced Distributed Associative Memory and a block diagram of the 

architecture is shown in Figure 2.10. 
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Figure 2.10  A Block Diagram of the ADAM Architecture 

ADAM was created by Austin as part of his doctoral research in order to perform scene 

analysis [Austin 1986, Austin et al 1994].  Since then Austin has become a Professor at 

the University of York heading the Advanced Computer Architectures Group.  This 

position has allowed Austin and his students to closely examine and develop ADAM for 

industrial applications [Austin 1993, Austin 1998].  A typical application of its use has 

been the development of a hardware board for use in a computer for the Post Office to 

allow data mining of postal addresses which contain inaccurate or missing information 

[Austin et al 1998, Austin et al 1994, Kennedy et al 1995].  The performance of ADAM 

has been closely studied.  An assessment of ADAM’s fault tolerance and reliability has 

been performed by Bolt. Bolt demonstrated that as the tuple size n increased so did the 

operational fault tolerance [Bolt 1991]. 

 

ADAM is based on fundamental building blocks from some of the earlier neural 

networks [Beale et al 1997].  The heart of ADAM is two weightless correlation matrix 
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memories using a Hebbian learning rule [Willshaw et al 1969].  To reduce the problem 

of saturation ADAM uses pseudo-randomly mapped tupling to expand the input data.  

This random tuple mapping is similar to that used by Bledsoe and Browning in their 

optical character recogniser [Austin 1994]. 

 

Austin’s major contribution in the formation of the ADAM architecture was to add a 

class separator pattern between correlation matrix memories.  The advantage of this is 

that instead of associating A to B, the network associates A to C to B, where C is the 

class pattern.  It is this class separator that allows two different data types to be 

associated to each other.  Figure 2.11 shows an example of the first correlation matrix 

with the class pattern 1 0 0 0 1 0 1 0 being presented and an input of 1 0 1 1 0 0 1. 

 

 

Figure 2.11  The First Correlation Matrix Memory with ADAM 

Due to the nature of the class separator pattern being designer specified the distribution 

of the weightless code can be carefully controlled; this allows Austin to use his L-max 

(also known as N point) thresholding technique [Willshaw et al 1970]. 
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Figure 2.12  A Correlation Matrix Memory Containing Trained Data 

Previously trained data input is shown to the correlation matrix memory containing all 

the trained data.  Figure 2.12 shows the response of the summed outputs with a standard 

thresholding technique applied.  The standard threshold value is determined by the 

number of bits set in the input pattern, in this case the threshold is 4 [Kennedy et al 

1995].  The L-Max threshold value is generated by taking the highest summed value 

and making this the threshold, so in the example shown below the L-max threshold 

value is 4 [Willshaw et al 1970]. 

2.10 AURA 

AURA is a hardware weightless neural network developed by Austin and his team at 

the University of York in 1997 [Austin et al 1998]. AURA is an acronym for Advanced 

Uncertain Reasoning Architecture.  AURA was developed in conjunction with industry, 

one of the industrial sponsors was British Aerospace (now BAE SYSTEMS).  British 

Aerospace were interested in AURA for the development of mission systems control for 

future aircraft. Other interested industrial parties included chemical companies and the 

Post Office. Austin and his team developed products for both these parties based on 

AURA.  A system for the Post Office was developed to find the best matches for mis-
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spelt, incomplete or inaccurate addresses from its address database.  AURA’s strength is 

in searching large databases to match incomplete data a process known as ‘data mining’.   

 

AURA was developed for rule based learning systems. The heart of AURA is still based 

around the CMM as in ADAM.  The main difference with AURA is its method of pre-

processing which gives the network its reasoning capability.  In order to process the 

data it first needs to be converted to a suitable form.  To achieve this several stages of 

processing are required.  The CMM can only deal with weightless binary strings of k 

bits, k being determined by the size of the CMM’s being used.  The first stage of the 

network converts lexical tokens into binary vector patterns of the appropriate k bits in 

length.  This is followed by the binding of the variable names to the values then the 

superimposed coding of the sets of bound variables is performed.  This pre-processed 

data is then routed to each of the appropriate CMM networks.  Arity is defined as the 

number of antecedents in a rule.  The outputs of the CMM’s are resolved by taking the 

class separator pattern and identifying the matching rule.  A diagram of this architecture 

is given in Figure 2.13. 

 

Figure 2.13  A Block Diagram of AURA  

The key feature of AURA is its ability to match data which is incomplete given certain 

rules and gives it ‘data mining’ properties. 
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2.11 Cortex 

Austin and his team at the University of York developed a suitable hardware and 

computing architecture for a neural computer called Cortex-1 [Weeks et al 2005].  

Cortex-1 is an extension of AURA and is a scalable structure of multiple AURA’s.  The 

AURA systems are implemented on the PRESENCE cards developed earlier by the 

University.  PRESENCE stands for Parallel Structured Neural Computing Engine 

[Kennedy et al 1995].  Cortex-1 consists of 7 Sun PC’s which are networked and 

contain 4 PRESENCE cards [Moulds et al 1999].  Austin and his team are using this 

approach to perform large scale data mining to develop a system to detect benefit fraud 

using information from multiple databases.  This project was sponsored by the 

Department of Trade and Industry (now Department of Business, Skills and 

Innovation).  Other projects that Austin and his team are working on under his company 

Cybula include DAME which is an acronym for Distributed Aircraft Maintenance 

Environment.  The company’s involvement in DAME is to develop a distributed data 

mining and pattern matching engine based on AURA technology [Austin et al 1998].  

This is a major multiple partner project including other universities and companies 

including Rolls Royce.  Austin is now working in the field of bio-metrics again using 

AURA technology in the task of three dimensional facial recognition systems.  Austin 

has updated his Cortex computing and hardware which has been re-named Cortex-2.  

Cortex-2 contains the new PRESENCE 2 hardware processing card, which has greater 

processing power, storage capacity and interconnection speeds [Weeks et al 2005].  

PRESENCE 2 is based around a Xilinx Virtex 2 six million gate FPGA and 4 GB of 

SDRAM.  Austin is investigating further improving the performance of his AURA 

system with a compression technique for the data retrieved from the CMMs, this 

technique is called Compact Binary Vector coding [Austin et al 1998]. 

 

2.12 Neuroram 

Neuroram was designed by King in 1997, and constructed using hardware weightless 

Boolean elements [ King 2000, King 1999a, b, c, King et al 1999d].  King was trying to 

create a vastly simplified version of some of the elements of the neo-cortical region of 

the human brain.  The weightless binary elements that are described in his thesis, 

includes a Boolean method of performing a sum and threshold which is fundamental to 

the construction of artificial neurons [King 1999a].  King uses weightless asynchronous 

logic to perform this operation instead of using the standard clocked counters as found 
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in other weightless neural systems such as ADAM.  In his thesis King presents a 

philosophy of reducing clocked elements to improve the resilience and speed of his 

networks. 

 

Figure 2.14  A Block Diagram of Neuroram 

The block diagram of Neuroram shows the structure of the system.  The first block 

contains a first-in first-out (FIFO) based memory where strings of data are loaded in 

time sequence and shifted down.  The second stage is the sum and threshold element 

which sums and thresholds each of the columns to form the generic result, this is then 

further summed and thresholded to give the output. 

It is worth noting that although King used his Boolean sum and threshold elements, 

conventional sum and threshold elements could be used without any change in 

functionality [King 2000].  King also studies coding methods that could be used to 

format the data into a suitable form for use within Neuroram [King 2000]. 

 

King then uses Neuroram as a simple digital filter to reduce the effects of white 

Gaussian noise on signals.  The coding and pre-processing of the data is essential in the 
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operation of Neuroram.  King investigated the use of Gray code, K-code (which was his 

own code), thermocode and weighted binary coding for pre-processing using a simple 

test waveform with additive white Gaussian noise and correlating them to the original 

waveforms without the additive noise [King 2000].  His results show the importance of 

coding on Neuroram as demonstrated by the effects of K-coding which severely 

corrupted data.  The pre-processing method which yielded the highest correlation score 

for this problem was a Gray code with a pseudo-random key.  King also investigated the 

effects of thresholding for the (SAT1) threshold elements.  This investigation was 

performed by training the network on 32 data sets of the same waveform in 8 bit Gray 

code with 256 samples and additive white Gaussian noise on each waveform.  Each 

waveform had a signal to noise ratio of approximately 22 dB which was increased by 5 

dB when filtered with a threshold between 12 and 17 [King et al 1998].  These 

waveforms were then fed into a Neuroram architecture and summed and thresholded by 

the sum and threshold elements (SAT1) to generate the generic template.  The generic 

template was then correlated to the original reference waveform.  The threshold was 

then varied from 0 to 32 to evaluate the signal to noise ratio.  The results show a value 

around the mid threshold value greatly increases the signal to noise ratio demonstrating 

the suitability of Neuroram as a filter and ‘clean-up’ memory [King 2000]. 

 

King takes the filter investigation one stage further and adds the second sum and 

threshold element (SAT2) to the architecture [King 2000].  This element allows the 

generic result to be stored and used again or a new generic result to be used.  This is 

determined on whether the new generic result is a significant improvement on the 

already stored generic result, if so, it is overwritten.  The new architecture was then used 

to filter two dimensional images.  The images were 8 bit Gray encoded with salt and 

pepper noise added.  The aim of the network was to remove the noise.  In order to do 

this a 3 by 3 window was slid over the image.  The 8 bit Gray code for each element of 

the window was then fed into Neuroram and each of the elements summed and 

thresholded with a mid value to produce the generic template.  This generic template 

was then correlated with the central pixel value; if the generic template is better than the 

central pixel value the value is changed.  King demonstrates that this methodology 

provides an effective way of removing salt-and-pepper noise in images [King 2000].  

King also repeats this process using thermocode instead of Gray code which yields a 

further small improvement.  King also compares the results with a standard median 

filter, which performs slightly better than the weightless thermocode filter. 
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Chapter 3 

 

3 A New Weightless Boolean ADAM and Non-
Hebbian Learning  

 

3.1 Introduction 

Austin’s ADAM network is traditionally implemented in a combination of hardware 

and software, often using hardware to accelerate the processing and maximise the 

parallel nature of the network [Weeks et al 2005].  Even though the principles of 

ADAM are weightless, Austin uses conventional weighted binary counters to calculate 

the sum and threshold values [Austin 1986].  This chapter proposes a fully Boolean 

hardware implementation of ADAM using the novel Boolean elements proposed in this 

thesis.  The Correlation Matrix Memory CMM which forms the heart of ADAM is also 

examined and a new learning paradigm is presented: non-Hebbian learning [Hebb 

1949].  Methods of combining CMMs to increase network capacity are also 

investigated.  The chapter concludes with an architecture of a fully Boolean hardware 

implementation of the ADAM network.  This chapter also describes the hardware and 

the test philosophy for all hardware weightless elements that have been developed 

through this research.  A novel serial sum and threshold technique which has been 

patented is also described. 

 

3.2 Design and Test Philosophy 

This research is focused on the development of weightless Boolean hardware elements.  

Therefore in order to develop these weightless elements and test them a suitable 

platform and philosophy is required. There are two main approaches to this; the first of 

these is to simulate the networks on a personal computer using a high-level language.  

The disadvantage of this method is that a computer can only sequentially process single 

step operations due to the limitation of its processor. Conversely, neural networks by 

their very nature are parallel, updating multiple elements simultaneously.  This means 

that the simulations tend to be slow in comparison; however this is mitigated due to the 

speed and multiple processor architecture of modern personal computers. Neural 
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networks although vastly parallel operate at much lower refresh rates.  Modern higher-

level languages such as C and MATLAB are ideally suited to the simulation of 

weightless neural networks and their associated weightless elements.  MATLAB is a 

matrix-based language which is compatible with the structure of weightless Boolean 

elements, because these can easily be described in matrix form.  MATLAB supports the 

logical Boolean operators equivalent to the gate functions being implemented.  The C 

programming language offers a more flexible approach and has been used in this 

research to simulate the weightless ADAM neural network.  Therefore the software 

implementation of these networks has used Borland C++ version 4.52 operating in ‘only 

C compiler mode’ and MATLAB version 7.01 including the image processing toolbox 

version 5.01 in conjunction with the signal processing toolbox version 6.21.  All the 

simulations and weightless toolboxes created within this research can be found in the 

enclosed DVD in Appendix D. 

 

In conjunction with the software simulation of the weightless neural elements this 

research has also required suitable hardware in order to develop and verify the hardware 

elements developed during this research.  The aim of this research was to create and 

develop a new weightless neural network followed by analysis of the network.  A 

custom designed board known as ‘Neuromorph’ was designed and built to aid the 

evaluation of the hardware elements.  The board was designed using the Innoveda 2 

schematic capture tool (now Mentor Graphics) and the symbols manually created.  The 

layout was performed at BAE SYSTEMS and the production of the printed circuit board 

was outsourced. 

 

3.3 Neuromorph Board 

An architecture which is much more suited to this task is that of a large field 

programmable gate array (FPGA).  This is due to the fact that most weightless neural 

networks are constructed from multiple simple elements connected in parallel. FPGA’s 

lend themselves to these architectures because they contain look up tables which can be 

configured as logical functions.  Therefore simple elements which are connected in 

parallel are easy to implement on them. 
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Figure 3.1  The Neuromorph Board Designed by the Author 

 

The board is designed around a 300,000 gate Xilinx Virtex I FPGA which is the heart of 

the board [Xilinx 1998].  The board also contains two DC - DC power supplies which 

provide  the FPGA with 2.5 volts and 3.3 volts.  The 3.3 volts supply also supplies the 

on-board EEPROM which can store the FPGA programme.  The FPGA can be 

configured so that at power on the EEPROM automatically configures the FPGA.  This 

is required because the FPGA is static RAM based and needs programming as its 

configuration is lost on power down.  The board has 160 input / output pins brought out 

to four connectors so that data can be easily interfaced to the FPGA.  There are on-

board jumpers which allow different configuration modes; including parallel, serial, 

JTAG and EEPROM.  Initially implementations of weightless neural network designs 

were performed by entering the designs into the Innoveda 2 schematic capture tool  

using the Virtex symbol library.  The design was then checked and compiled into an 

EDIF file for use by the Xilinx Alliance software, which checks, builds and compiles 

the code into a suitable format to program the FPGA.  The resultant ‘.bit’ file was then 

used to program the Neuromorph board using the Xilinx Multilinx system.  Xilinx offer 

several ways of programming the device and the jumper settings on the Neuromorph 

board allow all of these.  The most convenient way is using the JTAG port.  The median 

filter discussed in Chapter 5 was developed using a new version of the Xilinx Alliance 
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version 5.1 software which allows direct schematic entry and simulation.  This negated 

the need of the Innoveda toolset and the associated exporting of the EDIF. 

 

 

Figure 3.2  An Overview of the Neuromorph Board 

 

A block diagram of the main components of the Neuromorph board are given in Figure 

3.2. 

3.4 Sum and Threshold 

A fundamental element of any neural network is the sum and threshold function which 

forms the basic neuron; weightless neural networks are no exception.  The difference in 

a weightless implementation is rather than being algorithm based, the output is 

determined by the number of active excitatory inputs minus the number of inhibitory 

inputs.  King in his thesis likened this to a see-saw balance [King 2000].  All inputs and 

outputs in weightless neural networks only have two states ‘firing’ or ‘not firing’ and no 

weighting function.  This means that these neurons lend themselves to simple 

implementation in conventional Boolean logic.  A typical Boolean two input ‘AND’ 

gate could be also classed as a weightless neuron with a threshold of two and was 

appreciated by Turing [Copeland et al 1996].  Similarly if a two input ‘OR’ gate was 
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used this could be described as a weightless neuron with a threshold of one as shown in 

Table 3.1. 

 

 

Synaptic Input A Synaptic Input B ‘AND’ Gate 

Threshold = 2 

‘OR’ Gate 

Threshold = 1 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 

Table 3.1  Boolean Logic Acting as a Neuron 

 

In order to optimise the data for processing in a weightless neural network it is often 

advantageous to separate the ‘firing’ inputs from the ‘non-firing’ inputs. ‘Firing’ inputs 

are represented by ‘1’ and ‘non-firing’ inputs ‘0’ in conventional logic.  An elegant 

method of performing this simple separation of logic within a tuple is to thermocode the 

data [King 2000].  This can be done in a number of ways; King has developed some 

Boolean structures which can perform this operation on small tuples or form hierarchies 

for larger tuples.  The disadvantage of these structures is as the tuple data size grows so 

does the number of layers.  The propagation delay of the structure increases with each 

additional layer. 
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3.5 King’s Weightless Thermocoder 

 

Figure 3.3 shows a weightless thermocoder implemented to King’s design [King 2000].   

 

Figure 3.3  The Weightless Thermocoder 

The design consists of six 4 input thermocoder blocks arranged into a follow through 

structure to ensure all bits are organised into thermocode.  The structure allows 8 bits of 

weightless data to be converted into a weightless thermcode.  The structure is clockless 

and parallel operating on Boolean logic, each layer adds < 1 ns propagation delay when 

implemented in modern high performance FPGA’s such as the Xilinx Virtex II [Xilinx 

2001].  Due to the parallel nature of the structure the maximum propagation delay is < 8 

ns equating to a clock speed of greater than 125 MHz.  The weightless thermocode is 

used in weightless neural technology to perform the summation function, instead of 

standard weighted binary counter technology. 

 

3.6 A Serial Weightless Thermocoder 

A novel Boolean serial weightless thermocoder has been developed that generates an ‘n’ 

length thermocode from a weightless data stream [Armstrong 2003a].  This technique 

follows from the author’s earlier work on thermocoding [Armstrong 1999]. 



 

43 

 

The technique converts a fast serial stream of weightless data into thermocode.  The 

weightless stream of data is commonly found in weightless neural network systems, 

often in the sum and threshold areas of the network.  This section of the weightless 

neural network needs to be robust and fast and this technique offers both these 

characteristics. 

The operation of the thermocoder is based around the use of ‘D’ type flip-flops.  As 

long as the initial state is a thermocode value the system is guaranteed to provide the 

correct thermocode after n clock cycles where n is the number of bits in the 

thermocoder.  The thermocoder operates by performing a shift left operation or a shift 

right operation depending on whether the incoming data is ‘1’ or ‘0’.  As the incoming 

data is introduced into the chain a bit of data is lost at the other end of the chain. 

 

Figure 3.4  Initial Condition 

Figure 3.4 shows the thermocode with an initial condition of half the bits set and the 

other half not set.  The thermocoder can be initialised in any condition but it is 

recommend that the data is preset as thermocode otherwise it can take a number of 

cycles before the thermocode will give valid data. 

If data is ‘1’ 

  

If data is ‘0’ 

New 

data 

1 1 1 1 0 0 0 0 
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Figure 3.5  Input of Logic High ‘1’ Being Input to the Thermocoder 

Figure 3.5 shows the thermocode as a serial bit of data of ‘1’ is presented and 

implemented in the thermocoder. 

 

Figure 3.6 Input of Logic High‘1’ Implemented and Input of Logic Low ‘0’ 

Figure 3.6 shows the implementation of the next bit of data being presented to the 

thermocoder a logic low ‘0’. 

 

If data is ‘1’ 

  

If data is ‘0’ 

New 

data 

1 1 1 1 1 0 0 0 

1 

If data is ‘1’ 

  

If data is ‘0’ 

New 

data 

1 1 1 1 0 0 0 0 

0 
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Figure 3.7  A Logical Implementation of Weightless Thermocoder 

Figure 3.7  shows a four bit logical implementation of the weightless thermocoder.  This 

implementation was performed using schematic entry into the Innoveda schematic entry 

tool using the Xilinx symbol library.  The Xilinx symbol library often names the 

symbols for instance FDC represents a single D type flip-flop.  The implementation was 

then checked and exported via an EDIF netlist to the Xilinx Alliance 4.2i toolbox where 

the design was checked and compiled to produce a suitable bit map for downloading 

into the Xilinx Virtex XCV300 FPGA on the Neuromorph card.  The design was tested 

using a clock, light emitting diodes and switches.  The technique is most suited to neural 

networks which generate the data in a stream such as ADAM [Austin 1986] and 

Neuroram [King 2000].   

 

The most widely used technique for the summation and thresholding is that of using 

conventional arithmetic logic units and counters even in weightless neural networks.  
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Austin tends to use this approach in his ADAM and AURA architecture implementing 

them in fast FPGA’s on bespoke acceleration hardware {Weeks et al 2005]. 

 

The thermocoder technique demonstrated can be used to make a sum and threshold 

module which can be used in neural networks to implement a basic McCulloch and Pitts 

neuron [McCulloch 1943].  This can be implemented by taking two of the thermocoder 

units, one for the ‘sum’ part and the other for the ‘threshold’ part and comparing the 

logic output of the two units used to determine the thermocode unit with the greatest 

number of ‘1’s.  If the ‘sum’ has the greatest Hamming value then the ‘sum’ is greater 

than the ‘threshold’ and the threshold has been exceeded.  If the ‘threshold’ has the 

greatest Hamming value then the ‘sum’ is less than the ‘threshold’ and hence the 

threshold has not been exceeded. This comparison can be made using either the ‘less 

than or equal to comparator’ or alternatively the ‘greater than or equal to comparator’ 

shown in Figure 3.8 and Figure 3.9 respectively. 

 

 

Figure 3.8  Less Than or Equal to Comparator 

The greater than or equal functions are key elements to the implementation of a 

weightless neuron.  The greater than or equal to sum and threshold element can be used 

to decide if the neuron should ‘fire’ or not.  The greater than or equal to element takes a 

weightless thermocoded threshold and evaluates it against a weightless data stream.  If 

the weightless data is not thermocoded then an additional weightless thermocoder will 

be required as in Figure 3.3. 
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Figure 3.9  Greater than or Equal to Comparator 

 

3.7 CMM Learning 

The core of all of Austin’s networks is the correlation matrix memory originally 

developed by Steinbuch to offer robustness and a form of error correction in telephone 

exchanges where components were prone to failure [Steinbuch et al 1962, Steinbuch et 

al 1967].  The 'learning' of the CMM in a weightless neural network is performed using 

Hebbian learning.   

 

The learning concentrates on the reinforcement of neurons which ‘fire’. Traditionally 

the CMM ignores neurons which do not fire and hence the associated junctions remain 

at a quiescent state.  The matrix operates by performing an association between two 

inputs at each intersection where the neuron is located as shown in Figure 3.10. 

 

Figure 3.10  The Logic at the Intersections of the Correlation Matrix Memory 

= 
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The neuron implements Hebbian learning using a two input 'AND' gate and a memory 

cell.  The training of the neuron at the intersection means the inputs are strengthened by 

the storage of a ‘1’ at that intersection.  This only occurs when both the inputs for a 

given intersection are ‘1’.  This effectively generates a content addressable memory 

[Aleksander et al 1995].  Memory which is addressed by the data is equally known as 

content addressable memory or associative memory and differs from conventional 

memory as it does not require a prescribed address to where the information is located. 

The information is located based on its content. 

 

3.8 The Performance of CMM as Neural Memory 

The performance of the correlation matrix memory is dependent upon the level of 

saturation.  Saturation is an issue when over 50% of the neurons in the matrix are 

trained with a '1'.  Over-saturation of the network can severely affect the ability of the 

network to generalise.  A more severe side effect of over-saturation is incorrect 

associations which can occur.  The greater the saturation of the matrices, the greater the 

tendency of the network to produce incorrect associations [Bolt et al 1992].  Austin 

introduces several techniques to reduce the occurrence of saturation including tupling 

the incoming data.  This ensures a pre-determined number of ‘1’s in a tuple for any 

given data possibility.  Austin further controls the network by introducing the addition 

of a second correlation matrix memory [Austin 1986].  This addition of a second matrix 

allows separation of the matrices with the class pattern.  Although at first sight this adds 

a greater level of complexity it allows a greater control of the matrices as the class 

pattern is a user controlled parameter.  A combination of the two techniques 

significantly delays the onset of saturation with the network. 

 

3.9 A New Learning Paradigm of Non-Hebbian Learning 

This research has investigated whether different Boolean logic operators at the 

intersection of the correlation matrix memory are plausible and offer any merit.  These 

techniques were proposed to improve the performance of an over-saturated network.  

The rationale being that a non-association is equally important as an association.  

Therefore the neurons in the matrices which are not responding are equally important 

when evaluating a trained network against a given input for a response. 
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The first trial involved a new implementation of the correlation matrix memory, where 

the importance of the non-association was given prime focus.  This resulted in the 

development of a correlation matrix memory which associated ‘0’s using a 2 input NOR 

gate as shown in Table 3.2.  

This demonstrated that the use of other Boolean logic operators were plausible and 

functional such as the EXNOR gate.   

 

Synaptic Input A Synaptic Input B Gate 

 

Output 

0 0 NOR 1 

0 1 Ā . B  1 

1 0 A . B̄  1 

1 1 AND 1 

Table 3.2  Boolean Neural Logic 

 

The new techniques add an extension in that other ‘learning elements’ are proposed to 

that of Hebbian learning.  The operation of the matrix remains unchanged, the 

difference is the new elements of learning.  Instead of using the Hebbian ‘AND’ gate 

method new learning elements are given below. 

 

3.9.1 Traditional Hebbian Learning 

1010 taught with 1001 using the Hebbian learning method on the CMM. 

 

 1 0 0 1 

1 1 0 0 1 

0 0 0 0 0 

1 1 0 0 1 

0 0 0 0 0 
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3.9.2 ‘NOR’ Gate Implementation 

This method has been identified as the author’s ‘non-Hebbian’ technique.  This method 

logically inverts the inputs, so unlike the Hebbian method the learning is performed on 

the ‘zeros’ instead of the ‘ones’.  This can be implemented by inverting both inputs and 

then passing this to an ‘AND’ gate or instead using a ‘NOR’ gate. 

 

Example of Non-Hebbian learning: 1010 taught with 1001 using the Hebbian learning 

method on the CMM. 

 

 1 0 0 1 

1 0 0 0 0 

0 0 1 1 0 

1 0 0 0 0 

0 0 1 1 0 

 

3.9.3 Difference Learning 

This method has been identified the author’s ‘Difference’ technique.  This method 

logically inverts one input, so unlike the Hebbian method the learning is performed by 

‘ANDing’ an inverted input with a non-inverted input – an A AND (NOT B) gate. 

 

Example of Difference learning: 1010 taught with 1001 using the difference learning 

method on the CMM. 

 

Example 1 

 1 0 0 1 

1 0 0 0 0 

0 1 0 0 1 

1 0 0 0 0 

0 1 0 0 1 
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Example 2 

 1 0 0 1 

1 0 1 1 0 

0 0 0 0 0 

1 0 1 1 0 

0 0 0 0 0 

 

This demonstrated that the use of other Boolean logic operators were plausible and 

functional.  It was immediately apparent that this approach was not practical as a 

straightforward substitution for a conventional correlation matrix memory in the 

ADAM network [Austin 1986].  As the ADAM network has been optimised to reduce 

the number of ‘1’s hence increasing the ‘0’s within the matrices causing the immediate 

over-saturation of the network when using this neural operator. 

 

The network was redesigned to address this by reducing the number of ‘0’s stored 

within the correlation matrix memory.  This necessitated the redesign of several 

elements of pre-processing to remove the bias to a low level of ‘1’s to a low level of 

‘0’s. 

 

The result was that an inverse tuple and inverse class pattern had been created.  

Functionally it was only another ADAM network all be it focused on ‘0’ instead of ‘1’ 

but the ability to deal with saturation had not changed. 

 

3.10 A Weightless ADAM Architecture 

The key aim was to develop an alternative hardware architecture for Austin’s ADAM 

which was Boolean logic based instead of the current counter based techniques.  This 

meant that logical implementations of the Willshaw and N point thresholding were 

required [Willshaw et al 1969]. 

 

The following elements perform key functions required in neural networks. It is 

common for the functions to be implemented using clocked counter based techniques in 

Austin’s hardware implementations even in weightless neural networks. These 

techniques are novel in that they allow a completely weightless Boolean implementation 

of the hardware as well as the function. 
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3.11 A Weightless Boolean Willshaw Threshold Element 

 

Figure 3.11  Willshaw Thresholding 

 

The Willshaw threshold is a key element in weightless neural networks, often used to 

select the data stream which most closely represents the desired request.  Austin’s 

ADAM is a typical example which can use the Willshaw thresholding technique: it can 

be used in the class separator pattern to associate the two correlation matrix memories 

[Austin et al 1987].  The operation of the logic is to take all the separate data streams 

and bring them together to determine the maximum data response.  This is then 

compared with each of the separate data streams, any data streams which correspond 

have their output (out n) set to ‘1’.  There will be at least one output which is set to ‘1’ 

due to the way the Willshaw threshold is derived.  In practice when used in a neural 

network the user is unlikely to want to know the Willshaw value, hence the Willshaw 

outputs (LMAX n) would not be brought out from the logical structure.  They are only 

present in this design to show where the Willshaw value can be found and for test and 

evaluation purposes.  The Willshaw threshold is used by Austin in his ADAM network 

to determine the result from the matrix.  It is used to select the rows which have the 

highest response.  Conventionally, Austin performs this function with an arithmetic 

summation of the columns and storing the highest response which is then applied to all 

the columns as the threshold. 
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3.12 A Weightless Boolean N Point Threshold Element 

N point thresholding is often referred to as L-Max thresholding [Willshaw et al 1970].  

N point thresholding is used in the class separator pattern to select the columns with 

highest correlation score.  The architecture in Figure 3.15 allows N point thresholding to 

be implemented using Boolean weightless logic, instead of using conventional clocked 

counters as in Austin’s implementations.  ADAM uses N point thresholding to select the 

columns of the second matrix using the class pattern as the comparison [Austin 1986]. 

 

 

 

Figure 3.12  Weightless N Point Thresholding 
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3.13 Implementation of a Weightless Boolean ADAM Architecture 

The majority of ADAM is based on weightless Boolean logic including the tupling and 

the correlation matrix memory.  The areas highlighted in Figure 3.13 by the dotted lines 

show the thresholding elements of ADAM which are not weightless.  These elements 

can be replaced with the elements shown in Figure 3.11 and Figure 3.12 in order to 

implement a fully weightless hardware Boolean architecture. 

 

Figure 3.13  A Block Diagram of ADAM 

 

An example of how the Willshaw thresholding weightless Boolean element can be 

implemented and added to the correlation matrix memory is shown in Figure 3.13.  To 

implement this function within ADAM using the correlation matrix memory each of the 

rows within the matrices are individually thermocoded. The Willshaw threshold is 

generated by the logic shown in Figure 3.11, each of the thermocoders is then compared 

with the Willshaw results using a greater than or equal to function and this determines 

the output for each row of the matrix. 
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Figure 3.14  A Diagram of the Weightless Boolean Willshaw Threshold on a CMM 

 

Similarly the implementation of the N Point threshold is shown in Figure 3.15.  This 

technique is usually used on the class pattern rather than the input data in the 

implementation of ADAM however it can be used on the input data as well. The 

summation is performed by the thermocoder and the threshold applied by the greater 

than or equal to logic function.  A full description of the logic is given in Figure 3.11.  

Each of the rows in the matrices are also separately thermocoded and individually 

compared with the thermocode input data each producing a one bit result for the output 

of either zero or one dependent on the data. 
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Figure 3.15  A Diagram of the Weightless Boolean N point Threshold on a CMM 

 

3.13.1 Simulation of the ADAM Network 

 

An example of the operation of the weightless Boolean ADAM network is presented in 

Figure 3.16.  The example is based on a pre-trained ADAM network which does not 

have tupling applied to the inputs.  Figure 3.16 shows a pre-trained data pattern being 

shown to the trained network and the operation of the network in recalling the 

associated pattern.  The weightless thresholding techniques used in the network are 

shown in more detail in Figure 3.17 and Figure 3.18. 
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Figure 3.16  A Weightless Example of the ADAM Network 
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Figure 3.17  A Weightless Example of N Point Thresholding 

 

The implementation of weightless N point thresholding is shown in more detail in 

Figure 3.17.  N point thresholding is used to determine the class pattern from the input 

data on a trained network.  N point thresholding is implemented by thermocoding the 

input data and comparing this with the thermocoded response from the columns of the 

correlation matrix memory neurons which have fired as shown in the thermocoded data 

in Figure 3.17.  The greater than or equal to logic is then used to compare the 

thermocoded columns with the thermocoded input data.  In this example this produces 

the class pattern 00101 for the given input of 10110. 
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Figure 3.18  A Weightless Example of Willshaw Thresholding 

 

Willshaw thresholding is used on the second correlation matrix memory to determine 

the output from the presented class pattern as shown in Figure 3.18.  The class pattern in 

this example is 00101 which is presented to the second trained correlation matrix 

memory.  Each of the neurons which respond are then thermocoded horizontally as 

shown in thermocoded data.  The thermocoded data is then Willshaw thresholded by 

vertically ‘OR’ gating the columns to determine the threshold to be applied which is 

equal to the maximum response in this case 11000.  The threshold value is then used to 

compare with each of the thermocoded rows using the greater than or equal to logic this 

produces the Recall Data in this example 10100. 

 

The operation of the non-Hebbian ADAM network is identical apart from the fact that 

instead of the neuron in the matrices firing and producing a ‘1’ when two inputs fire a 

‘1’ is only produced when the two inputs do not fire and both input conditions are ‘0’. 
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3.13.2 Simulation of the ADAM Network in Appendix D 

 

Attached in Appendix D is a simulation of the new learning elements.  Multiple 

simulations were developed during the research.  The simulation program demonstrates 

the ability of the Hebbian and novel non-Hebbian techniques to implement the ADAM 

neural network.  The simulation produces random matched data words, which are taught 

into the matrix. Then a random trained word is picked and presented to the trained 

matrix and its recall word and the output is then scored and thresholded against the 

trained data.  The simulation showed that using both Hebbian learning and non-Hebbian 

learning the matrices had the same performance.  In summary a collection of non-

Hebbian learning elements has been proposed.  These are based on other logical 

functions which will operate as the neural function at the intersections within the 

matrix. 

 

3.13.3 Summary of Chapter 3 

A new hardware Boolean weightless implementation of Austin’s ADAM neural 

network has been proposed using a collection of weightless Boolean sum and threshold 

architectures developed by the author.  The main consistuent of these are weightless 

implementations of decision logic including a Willshaw thresholding element 

[Willshaw et al 1969].  A novel method for thermocoding weightless serial data which 

has been patented is demonstrated.  The test philosophy used to trial these new elements 

is presented including a description of hardware used.  A novel method for 

thermocoding weightless serial data which has been patented is demonstrated.  This 

chapter demonstrates how weighted neural networks can be converted in Boolean 

weightless hardware using a collection of Boolean weightless architectures. 
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Chapter 4 

4 Hardware Weightless Boolean Median Filters 
 

4.1 Overview 

This chapter presents a collection of novel weightless Boolean median filters.  A 

description of the operation of each of the filters is presented.  The robustness of a 

weightless Boolean logic structure used in the weightless median is examined when 

subjected to a high neutron flux environment, typically experienced at avionics 

altitudes.  The performance of the novel weightless Boolean swap element which is part 

of the weightless median filter is compared and evaluated with a conventional median 

filter swap element. Both elements are examined when implemented on a standard 

FPGA which is subjected to a high neutron flux environment at ground based 

accelerator facilities.  The results from these trials are analysed and discussed. 

 

4.2 Median Filtering  

Median filtering is a technique that is used to remove certain types of noise from an 

image.  It is particularly effective at removing outlier noise such as Salt-and-Pepper 

noise.  Salt-and-pepper noise occurs when pixels within the image is corrupted resulting 

in them becoming either a minimum value or a maximum value. In greyscale images 

these pixels become either black or white hence the term salt-and-pepper noise. 

 

4.2.1 Operation of the Median Filter 

The median filter is implemented by passing a window in which the filter operates over 

the whole image in sequence as shown in Figure 4.1. 
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Figure 4.1 Milk Drop Image with 2 Dimensional 3 by 3 Matrix Window 

As the filter window is passed over the image, adjacent pixel values are used to 

calculate a replacement pixel value for the centre pixel.  This operation forms the basis 

of many filtering techniques.  The type of filtering executed is dependent upon the 

replacement algorithm.  Median filtering is performed by ordering all the pixel values in 

magnitude and replacing the centre pixel value with the middle value.  A conventional 

median filter implementation would use an arithmetic logic unit found in a processor to 

sequentially compare and order the values. 

 

4.3 Novel Techniques for Median Filtering  

Two novel weightless means of performing this median filtering using weightless 

Boolean hardware are described below. 

 

The first technique allows weightless data to be ordered according to magnitude.  This 

technique was developed by King with the addition of a tagging technique proposed by 

the author.  The tagging technique allowed weightless non-thermocode data to be 

maintained during the ordering technique. 

 

The second technique is a novel weightless Boolean median filter which utilises a 

weightless Boolean swap block.  This technique was developed as part of this research 

following on from the initial work investigating King’s Type 1 Neuroram as an image 

filter. 

Both these techniques have been patented by BAE SYSTEMS. Copies of the original 

patent can be found in Appendix C. 

198 195 197 

201 198 195 

196 194 199 
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4.3.1 Weightless Ordering 

King and the author jointly hold a patent on weightless ordering and tagging 

[Armstrong et al 2003]. King's contribution was the ordering method and the author’s 

contribution was the tagging method.  The filter is implemented by first taking the pixel 

values from the window function and converting them into a weightless binary string.  

This can be implemented relatively easily in hardware again without the need for a 

clock or processor.  The implementation is simply a case of thermocoding the data 

horizontally and then thermocoding all the data vertically. Figure 4.2 show three values 

of weightless data each four bits in length which represent typical input data from a 

function window. 

 

0101 

0100 

1101 

Figure 4.2  Typical Input Data 

 

The first stage is to thermocode each string of weightless binary data which represents a 

pixel value from the window function.  This operation is performed using King's tuple 

ordering method [King 1999a].  The thermocoding is then performed on all the pixel 

values from the processing window this then gives the data as shown in Figure 4.3. 

 

1100 

1000 

1110 

Figure 4.3  Weightless Data after Horizontal Thermocoding 
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The second stage is to order the thermocode values into magnitude order.  This 

operation can be performed by thermocoding the data in the vertical direction as shown 

in Figure 4.4. 

 

1000 

1100 

1110 

Figure 4.4  Weightless Data after Horizontal and Vertical Thermocoding 

 

Once all the vertical lines have been thermocoded the data is now in magnitude order.  

To perform the median function is now a case of taking the middle value and using this 

to replace the central value in the window after converting the thermocode value back to 

binary.  This technique is a weightless hardware method which can be further enhanced 

using the parallel thermocode described later in this chapter. 

4.3.1.1 Shortcomings of Weightless Ordering 

The disadvantage with this technique is that the correspondence to the original data is 

lost.  The original data is lost as although the Hamming value of the original data is 

maintained the original order and bit positions are lost through the process. 

 

4.3.1.2 Contributions of the Tagging Method 

The tagging method addresses these shortcomings by associating the original data with 

a tag.  These tags were formed from the original data.  Once the vertical thermocoding 

has been performed the resultant ordered thermocodes are compared with tags and 

where the thermocodes are the same length the original data replaces the thermocode; 

hence the original data is ordered.  The technique does have a drawback that if several 

numbers have the same thermocode length the original data position for the same string 

may be lost as shown in  

Figure 4.5. 
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1011 

0101 

1010 

0100 

 

May yield 

 

1011 

1010 

0101 

0100 

Figure 4.5  An Example of Wrong Positional Assignment 

 

4.3.1.3 The Implementation of the Tagging Technique 

The logic for performing the comparison and tagging is given in Figure 4.6, Figure 4.7 

and Figure 4.8.  The comparison for the tagging technique is made using ‘EXNOR’ 

gates to compare the thermocode data from all the vertical and horizontal thermocoders 

to each of the original dataset.  The graphical description of this is given at the bottom 

of the circuit diagram in Figure 4.6, this also gives a description of the labels used 

within the circuit diagrams below. 
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Figure 4.6  New Result for the First Value 
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Figure 4.7  New Result for the Second Value 
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Figure 4.8  New Result for the Third Value 
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4.4 A Novel Boolean Weightless Median Filter 

This technique is based on a more conventional implementation of median filtering.  

It is also designed to overcome some of the disadvantages faced by the previous 

ordering and tagging technique.  The previous technique requires two stages of 

thermocoding which with large datasets can be timely.  This technique in comparison 

only requires the data to be thermocoded initially; the only subsequent delay within 

the system is caused by the swap block.  These blocks however are designed to 

operate in parallel.  Although the structure to implement a median filter is still 

sequential the delays incurred would be less than when a large dataset is used with the 

previous technique.  The operation of this filter also works by the ordering of the 

original data so the median, highest or lowest values can be found. This is performed 

without any loss of positional data unlike the previous method.  Again the 

implementation is fully Boolean logic based so the system is totally asynchronous.  

This weightless median filter operates on similar principles to the previous filter, in 

that the weightless data is thermocoded and compared.  The difference is that the 

original data is preserved throughout the process.  This is achieved by comparing the 

two weightless values and then thermocoding them whilst still preserving the original 

values.  If the second value has a greater thermocode value than the first of the two 

original weightless values then they are swapped over.  If the first value has a greater 

thermocode value then the original data it is passed on to the next stage as shown in 

Figure 4.10.  This process deals with the comparison of two weightless codes.  If 

greater numbers of codes need ordering it is the cascade architecture which is 

important to the operation of the median filter.  Figure 4.10 also shows the logical 

implementation of this method which includes a thermocoder in the structure.  

However if the data is already thermocoded, from either a previous stage or the input 

data is thermocoded, this is not necessary.  The thermocoder shown in Figure 4.10 is 

King’s thermocoder.  The next section discusses the use of an alternative thermocoder 

which would result in a lower propagation delay.  Figure 4.11 gives a typical structure 

with minimal swap elements to implement a nine input median filter, unnecessary 

data is removed to reduce the number of elements required.  The structure is to be 

designed so there are enough stages to ensure that the data is completely organised. 

Figure 4.9  gives an example of a suitable structure given three weightless input 

strings where all data is retained. 
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Figure 4.9  An Example of a Weightless Type 2 Median Filter Architecture 
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Figure 4.10  Logic Diagram of a Weightless Swap Block 
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Figure 4.11  Minimal Weightless Median Filter Architecture 
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4.5 A High Speed Weighted Binary to Thermocode Converter 

In order for the weightless median filter to be a practical replacement for a standard 

median filter it is necessary for it to operate at high speed as many applications which 

will benefit from its robust properties also require high speed processing such as 

medical imaging [Hazra et al 2004].  The nature of the median filter prevents it from 

taking advantage of parallel methods of operation.  Therefore it is necessary to reduce 

the propagation delay of each stage of the filter to a minimum.  Modern FPGA’s such as 

the Xilinx Virtex II range have a gate propagation delay of approximately 1 ns.  The 

example in Figure 4.10 shows an implementation of King’s weightless thermocoder 

[King 2000].  This is presented with two 4 bit weightless binary values.  These are 

operated on by two input thermocoders arranged in the necessary structure as defined by 

King to ensure that all bits are thermocoded [King 2000].  Using two bit thermocoders 

the logic structure needs the same number of layers as inputs.  In this case there are four 

inputs and hence four layers of logic equating to a total propagation delay for the 

thermocoder of 4 ns.  The subsequent Hamming value comparator and swap block 

elements would comprise four layers of logic hence another 4 ns propagation delay.  

The total propagation delay for this weightless Boolean swap block would be 8 ns, 

subsequent swap blocks do not need thermocoding and hence will only have a 

propagation delay of 4 ns.  If this is applied to the structure shown in Figure 4.10 this 

would give the overall filter using two sets of four inputs as shown a total propagation 

delay of 40 ns.  This equates to an equivalent clock speed of 25 MHz.  This could 

further be improved by the Xilinx software which would compile the logic reducing the 

number of logic layers.  A similar weighted version of the median filter used in medical 

imaging is capable of a clock speed of 48 MHz [Bates et al 1997].  The element 

presented is very basic and a more realistic median filter would be expected to operate 

with nine inputs all consisting of 8 bit weighted data which requires a 256 bit weightless 

tuple.  If the data is presented in weightless binary format, in order to be thermocoded 

using an equivalent architecture each input would take 256 ns.  This is because each 

additional weightless input bit increases the number of layers of logic proportionally.  

All the inputs could be dealt with in parallel.  The subsequent swap elements would take 

approximately 4 ns each, using the architecture in Figure 4.11.  The propagation delay 

of all the swap elements would be 36 ns as there are nine elements in series.  The 

overall propagation delay of the weightless median filter would be 392 ns, equivalent to 

a clock speed of approximately 2.5 MHz.  This is not suitable for the more demanding 
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applications such as medical imaging [Hazra et al 2004].  The main constituent of the 

delay is the pre-processing, as the original data is likely to be standard weighted binary. 

 

4.5.1 A Parallel Weighted Binary to Thermocoder 

Therefore a replacement to King's thermocoder is proposed, that of a simpler parallel 

conversion method.  This method creates a logic array for every bit in the weightless 

thermocode string.  Although the number of layers of logic would increase with larger 

data widths the rate of growth is significantly less than that proposed by King [King 

2000].  This is demonstrated in Table 4.1 below where using King's implementation this 

would require seven layers of logic in this method only requires one layer. 

 

Value Inputs Outputs 

Logic A B C A.B.C A.B (A.C+A.B) A (A+B.C) (A+B) (A+B+C) 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 0 1 

2 0 1 0 0 0 0 0 0 1 1 

3 0 1 1 0 0 0 0 1 1 1 

4 1 0 0 0 0 0 1 1 1 1 

5 1 0 1 0 0 1 1 1 1 1 

6 1 1 0 0 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 1 1 

Table 4.1  Operation and Boolean Logic of the Binary to Thermcode Converter 

 

A thermocoder operating on a weightless tuple of 256 bits where the logic gates can 

cope with 8 inputs would equate to 3 layers of logic with an overall propagation delay 

of approximately 3 ns.  Additionally the swap element logic can be optimised using the 

FPGA manufacture’s software reducing the swap element propagation delay time to 

approximately 2 ns per layer.  Thus giving the median filter an overall propagation 

delay of only 21 ns.  This would equate to a clock speed of approximately 47 MHz 

which would be suitable for high speed operations.  As new faster FPGA’s are produced 

this operational speed can increase as device propagation delays through logic gates fall. 
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4.6 Evaluation of a Weightless Swap Element in a High Neutron Flux 

Environment 

The aim of the testing was to investigate the hypothesis that different Boolean logic 

implementations of standard elements will have improved abilities to withstand 

corruption.  The logical elements chosen for this trial were a subset of the patented 

weightless median filter and a compatible weighted element taken from an FPGA 

implementation of a weighted median filter [Xilinx 1998].  The author understood that 

the underlying logic implementation is static random access memory based look-up 

tables. 

 

4.6.1 Initial Trials with the Median Filter 

Initial investigations into the performance of the two architectures were focused on the 

complete median filters.  A brief summary of the testing performed on these filters and 

the information gained which led to the final trial of the sub elements of these filters is 

presented in this section. 

 

The median filters used were designed with 5 inputs each, 4 of which were fixed values 

within the FPGA all with a decimal value between 0 and 11.  The range of values was 

limited by the number of inputs and outputs available on the test equipment which was 

22.  Therefore with the weightless architecture requiring one input and output this 

limited the maximum number of values to 11.  In order to make it a comparative test the 

values of the weighted architecture were also limited to a maximum value of 11 which 

translates into 4 weighted binary inputs and outputs. 

 

The values used were carefully chosen to give a selection of results given the input 

value, so that the filters could be cascaded and the result would ripple down through to 

the final output.  Therefore the filter values were set to 2, 3, 5, 7 this then corresponded 

to an output of 0-3 for any input value up to 3, 4 for 4 and an output of 5 for any input 

value from 5 to 11. 

The median filters were initially implemented in a Xilinx Virtex IV device on a Xilinx 

test board but this proved to be more resilient to corruption by neutrons than previous 

Virtex devices.  Therefore no real results were gained at this initial trial. 
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Following an investigation it was determined by Xilinx that the Virtex II part was 

nearly twice as susceptible to corruption compared with the Virtex IV part and was the 

most susceptible device in the Virtex range.  Because the experiment was investigating 

the robustness of the architecture, it required the least robust device in order to increase 

the data for better statistics.  Additionally the new device was filled with as many filters 

as would fit in, to increase the number of errors and again improve statistics. 

 

The code was recompiled for the Virtex 2 device.  The Rutherford Appleton Laboratory 

offered SPAESRANE the opportunity to evaluate their facility in Harwell to compare it 

to the other atmospheric neutron simulation facilities.  This allowed the new Virtex II 

architecture to be trialled and acted as a proving ground before the TSL trial. 

 

This immediately exposed one flaw in the test system design, in that once  the Virtex IV 

device became so corrupted that it produced a constant error there was no method of 

detecting this and reprogramming the device.  As the test set was designed to be 

autonomous the hardware and software were updated with an additional signal to 

reprogram the device with its configuration, when so many instances of the same error 

in succession were detected.  This latest version of hardware and software was taken to 

TSL where three median architectures were trialled: weightless, weighted unclocked 

and weighted clocked.  On evaluation of the results it was decided to concentrate on the 

weightless unclocked architecture versus the weighted architecture. 

 

Median filters have the property to remove outlier noise.  In this case this would include 

spurious results which we would want to capture.  This was only compounded by the 

fact the architecture was made up of a chain of median filters. 
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4.7 The Weightless and Weighted Swap Element Trial 

Therefore for the next trial at TRIUMF it was decided to pick a smaller element of the 

median filter which would not exhibit the outlier removal properties of the median 

filter; notably the swap block.  This element was also the main part of the median filters 

responsible for their functionality. 

 

4.8 Test Philosophy 

In order to test the architecture it was necessary to cause single event upsets in the 

FPGA that the architecture was being implemented in.  In order to achieve a single 

event upset suitable ground-based neutron facilities were identified, these being the 

Theodor Svedberg Laboratory (TSL) in Sweden and the Tri-University Meson Facility 

(TRIUMF) facility in Canada. 

 

4.8.1 Test Facilities 

4.8.1.1 Theodor Svedberg Laboratory 

TSL is located in Sweden at the University of Uppsala.  It was built in 1947 and is one 

of the earliest facilities of its kind.  A synchrocyclotron is used to generate high-energy 

protons which are directed onto a tungsten target.  This results in a simulated 

atmospheric spectrum with a maximum energy of 180 MeV.  This is also known as a 

white spectrum beam and is named as the ANITA beam which stands for Atmospheric-

like Neutrons from thIck TArget [Prokofiev et al 2009].  The beam has been 

characterised by Torok and Platt and compared to similar facilities [Torok et al 2006].  

This beam is available in the Blue Hall and locked to prevent exposure to staff and 

researchers whilst the beam is on. 



 

78 

 

 

Figure 4.12  TSL Blue Hall – Looking Down the Beam Line 

 

There are two “counting rooms” where experiments can be remotely monitored.  The 

main connections between the two are via BNC connections to the Blue Hall.  One 

counting room is shown in Figure 4.13.  The set up of the experiment for this facility is 

shown in the block diagram in Figure 4.14. 
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Figure 4.13  One of the Counting Rooms at TSL 

 

Figure 4.14  A Block Diagram of the TSL Test System Layout 
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4.8.1.2 Tri-University Meson Facility (TRIUMF) 

 

TRIUMF is located at the University of British Columbia, Vancouver, Canada as shown 

in Figure 4.15. 

 

Figure 4.15 TRIUMF at the University of British Columbia 

The synchrocyclotron is capable of producing, on average, 10
15

 protons every second  

with energies ranging from 450 to 500 MeV. 

 

 

Figure 4.16  TRIUMF NIF Buried in the Isotope Production Facility 

A well defined neutron beam of approximately 8 by 12 cm is provided in the Neutron 

Irradiation Facility (NIF) with a similar spectrum to that of the atmosphere.  [Blackmore 

et al 2003].  The neutron flux is one million times that at 39,000 feet for flux >10 MeV 

and consists of many thermal neutrons.  These can easily be removed with cadmium 

plates; this trial used the thermal neutrons so no cadmium shield was required.  This 
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beam is characterised from thermal energy to 500 MeV.  The fluence is determined by 

integrated proton beam current calibrated against activation foil measurements.  The 

beam is located beneath a counting room and accessed using a slider plate via wire and 

guide rails.  The test system having to be lowered on a plate as shown in Figure 4.17.  

The test set was modified as shown in Figure 4.18.  A block diagram for the set up is 

shown in Figure 4.19. 

 

 

Figure 4.17  TRIUMF NIF Slot and an Example Test Board on Slider Plate 
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Figure 4.18  The Test System for Mounting on the Assembly for TRIUMF 
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Figure 4.19  A Block Diagram of the TRIUMF Test System Layout 

 

4.8.1.3 The Architecture for Neutron Trials 

The device was filled with a chain of swap blocks which constantly swapped all 11 bits 

as they passed through each unit using decimal values between 0 and 11 as shown in 

Figure 4.20.  The architecture chosen ensured the value present, between 0 and 11 

would also be the value returned under correct operation.  Therefore any corruption 

would be immediately apparent and would be passed through the architecture.  This trial 

concentrated on two architectures; that of a weightless swap block and a weighted swap 

block, and was carried out at TRIUMF.  Due to the high flux produced at this facility 

along with the carefully selected part a good number of results were collected which 

contradicted the hypothesis that the weightless architectures would be less susceptible.  

This is due to the fact more signals were needed, as each bit was represented in 

hardware. 
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Figure 4.20  Swap Block Architecture with the FPGA Device 

 

4.9 Test Architecture Descriptions 

4.9.1 Weightless architecture 

The weightless architecture consists of simple Boolean gate structures which 

manipulate the bits as they propagate through the architecture. The swap block consists 

of two main elements; a thermocode block followed by the weightless swap block.  An 

example of the swap block structure of this element is shown in Figure 4.22.  The 

thermocoder element is formed by a hierarchical structure of ‘AND’ and ‘OR’ gates 

[King 2000].  Figure 4.23 shows the overall thermocode structure.  The complete test 

architecture is the maximum number of these elements which can be fitted into a Xilinx 

Virtex II 1000 device, which in this case was 100.  Figure 4.21 show the full Xilinx 

usage report. 

 

Elements Used Total Percentage (%) 

Look-up Table 4 input 10,074 10,240 98 

Slices (related logic) 5,118 5,120 99 

Slices (unrelated Logic 4,891 5,118 95 

Total Number OF LUTs 227 5,118 4 

Number of bonded IOBs 22 172  

Total Equivalent Gate Count 60,444   

Figure 4.21 Weightless Swap Block Architecture Usage Report 
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Figure 4.22  Weightless Swap Architecture 
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Figure 4.23 Thermocoder Structure 
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4.10 Weighted architecture 

The weighted architecture is much simpler and a more conventional architecture. The 

swap block consists of a conventional 4 bit input comparator which controls two, four 

bit multiplexers as shown in Figure 4.24.  Figure 4.25 shows an example of the 

connection architecture clearly showing the crossover between swap blocks. 
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Figure 4.24 Weighted Swap Architecture 

With this architecture using less single lines, 4, opposed to the 11 used in the weightless 

system, more elements could be fitted into a Xilinx Virtex II XCV 1000 device. In this 

experiment this was 504.  Figure 4.26 shows the full Xilinx usage report. 

 

Both architectures were replicated and chained together to utilise the maximum amount 

of the device in order to maximise the number of errors that would be detected. 

 

Figure 4.25  Shows the Weighted Swap Block Architecture Mapping 
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Elements Used Total Percentage (%) 

Look-up Table 4 input  6,048 10,240 59 

Slices (related logic) 5,040 5,120    98 

Slices (unrelated Logic 0  5,040    0 

Total Number OF LUTs 6,048 10,240 59 

Number of bonded IOBs 12 172 6 

Total Equivalent Gate Count 42,336   

Figure 4.26 Weighted Swap Block Architecture Usage Report 

4.11 Test Set and Test Program 

 A test set using a PIC device and a standard laptop was used to stimulate the 

architecture under test and record the results. The test set was capable of driving and 

monitoring either 11 weightless bits when running the weightless monitoring code, or 4 

weighted binary bits when running the weighted code. The test set was designed to 

constantly cycle through values 0 to 11.   A block diagram of the test set is shown in 

Figure 4.27 including the board under test with the FPGA in which the architectures are 

implemented. 

 

 

Figure 4.27  Test Set Block Diagram 
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The Xilinx device was reprogrammed with each architecture in turn using the Xilinx 

download cable, this was to eliminate the effects of any batch differences between 

Xilinx devices.   

 

A commercial Xilinx test board was used with a Virtex II 1000 to host the architecture; 

this was then connected to the test set. Due to the method of access to the beam the 

whole test system was then strapped to a metal plate which was then lowered into the 

beam. The results were passed back to the computer for logging via an RS232 cable. A 

power cable was also sent down to the test set which had two on-board dc-dc 

converters, one to power the test set and the other to power the board under test. This 

allowed a higher voltage to power the device to be sent down the cable, and hence 

negate any effects of voltage drop due to the cable length. A USB cable was sent down 

via boosters to the Xilinx programmer which was also attached to the plate, so the 

device could be reprogrammed. 

The PIC device within the test set was programmed using PIC C.  A copy of the 

program can be found in Appendix D. 

4.12 Analysis of the Data 

The raw data collected on the computer was in text format and was saved to disk 

through hyper terminal.  This raw data is manually summarised in Table 4.2.  The 

results were then analysed using chi squared statistics to determine a cross-section rate.  

A confidence level of 90% was used.  An add-in program to Excel was used and is 

included in Appendix D [Buchan 2004]. 

 

4.12.1 Establishing Neutron Fluence 

The neutron counter used at the TRIUMF facility is mounted after the test sample.  

Therefore to calibrate the fluence in neutrons per cm
2
 from the neutron monitor counter 

a correction factor has to be applied to take into account the attenuation of the neutrons 

caused by the board under test.  The correction factor is established by dividing the 

count of neutrons over a period of time t1 with no sample, by a similar run with the 

experiment in the beam line for a period of time t2.  Once these two values and times 

have been recorded, Equation 4.1 can be used to calculate the number of neutrons/cm
2
. 
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InBeamtime

InNmCountDUT

OutBeamtime

OutNmCountDUT

NmCountFluence

_

_

_

_

109.3 3  

4.1 

 

NmCount is the TRIUMF facility neutron monitor count value during the trial 

NmCount DUT_Out is the Device Under Test out of the neutron beam, for calibration 

purposes 

NmCount DUT_In represents the Device Under Test in the neutron Beam 

Beamtime_Out is the time out of the beam, for calibration purposes 

Beamtime_In is the time the Device under Test was in the neutron beam 

 

Calculation from counts to neutrons/cm
2
/s 

Calibration flux  = (70,649 neutrons over 60 seconds)  

This is approximately 1,177 neutrons/cm
2
/s without any obstructions or attenuation 

between the facility counter and the source.  A presentation was accepted for 

publication by the IET [King et al 2008]. 
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Table 4.2  Collated Results from Trial  

X-SECTION 100

CONFIDENCE 90 ALPHA 0.05

FLUENCE EVENTS LOWER LIMIT BEST ESTIMATE UPPER LIMIT

ICM Errors

weightless 910606 13 7.60148E-06 1.42762E-05 2.44127E-05

weightless 923051 18 1.15573E-05 1.95005E-05 3.08193E-05

weightless 2600035 45 1.26242E-05 1.73075E-05 2.31587E-05

weightless 1424339 18 7.48975E-06 1.26374E-05 1.99726E-05

weighted 643035 3 9.62113E-07 4.66538E-06 1.36342E-05

weighted 668110 4 1.63127E-06 5.98704E-06 1.53292E-05
weighted 3606409 18 2.95805E-06 4.99111E-06 7.88811E-06
weighted 2830877 9 1.45374E-06 3.17923E-06 6.03516E-06  

Table 4.3  Results following Chi Squared Analysis 

Filename Date Start In Beam End Counts Number of Errors Bit 1 (1) Bit 2 (2) Bit 3 (4) Bit 4 (8)

Wless 1 22/06/2006 13:33:14 13:33:51 13:48:51 910606 13 13

Wless 2 22/06/2006 14:20:03 14:20:35 14:35:21 923051 18 18

Wless 3 22/06/2006 15:01:28 15:02:17 15:51:44 2600035 45 45

Wless 4 22/06/2006 17:28:59 17:29:44 17:53:15 1424339 18 18

5858031 94 94

Weight 1 22/06/2006 13:55:37 13:56:46 14:11:07 643035 3 1 1 1

Weight 2 22/06/2006 14:41:04 14:42:03 14:53:05 668110 4 1 1 1 1

Weight 3 22/06/2006 16:00:37 16:01:20 17:23:42 3606409 18 6 4 5 3

Weight 4 22/06/2006 17:57:47 17:58:33 18:47:10 2830877 9 3 4 2

7748431 34 11 9 9 5
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Figure 4.28  Occurrence versus Divergence of Error 

4.13 Conclusions 

The results show that although the weightless architecture experienced more errors, the 

magnitude of these errors was much less and entirely deterministic in value.  This could 

have advantages in high reliability systems.  Conversely, although the weighted 

implementation had three times less corruptions the effects of the corruption were much 

more significant and less deterministic.  This was due to the fact each bit represented a 

weighting meaning the corruption could range from one to the value of the most 

significant bit. Therefore the percentage error could be up to 50%, but in this 

experiment all bits were not fully utilized. This increased the maximum potential error 

to 72% of the maximum value.  Whereas the maximum error for the weightless 

architecture was only 9% of the maximum value.  The weighted architecture is more 

compact due to the reduced number of signal lines meaning that just over five times 

more gate elements could be fitted into the device under test. 

4.14 Summary of Chapter 4 

A novel weightless Boolean median filter has been developed which has been patented, 

this filter has been implemented within an FPGA.  The main element of this filter, the 

swap block, has been compared with a standard median filter swap block.  Both filter 
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elements have been implemented in an FPGA and the performance and resilience is 

determined when subjected to man-made ground based neutron radiation.  Trials have 

shown that weightless architectures experience more errors although the magnitude of 

these errors is much less and more deterministic.  Chapter 5 investigates the 

performance characteristics of a standard median filter against that of King’s Neuroram. 
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Chapter 5 

 

5 Performance of Weightless Neural Network 
Image Filters 

 

5.1 Overview 

This chapter describes the simulation work performed to evaluate the performance of a 

neurofilter in comparison to a conventional median filter.  Reference images are used 

with different types of added noise to perform this assessment.  The neurofilter used in 

these simulations was based upon King’s Neuroram network [King 2000].  King uses 

the Neuroram network to filter images with added salt and pepper noise and compares 

the results to a standard median filter. The work in this chapter is a continuation of 

King’s analysis evaluating the Type 1 Neuroram against a selection of further noise 

types.  The effects of using different thresholds in the neurofilter are also examined.  

King’s thesis showed that a mid point threshold gave the best filtering performance.  

This hypothesis was tested in particular with the different types of noise.  In conjunction 

with the noise test the effects of filtering multiple times known as ‘cascade filtering’ 

was trialed.  The results for cascaded neurofilters and the median filters are presented.  

 

Testing the filters with the reference images below evaluates their performance with 

particular respect to the removal of noise. 

 

5.2 Reference Images 

Three reference images were taken for this work from the University of Cape Town, 

Digital Image Processing standard image library [University of Cape Town 2004].  The 

three images comprise an image of an F16 aeroplane, a Milk Drop and Los Angeles 

airport.  These images will be referred to as F-16, Milk Drop and LAX and are shown in 

Figure 5.1, Figure 5.2 and Figure 5.3 respectively. All the images are black and white 

512 by 512 pixels 8 bit greyscale. 
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Figure 5.1  Reference Image F-16 

 

 

Figure 5.2  Reference Image Milk Drop 
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Figure 5.3  Reference Image LAX 

 

5.3 Noise Types 

In order to evaluate the performance of the neurofilter and the median filter various 

noise types were added to the reference images which ranged from 10% to 90% noise in 

10% increments.  Each of the resultant noisy images were then independently filtered 

using a simulation of a conventional median filter and a simulation of a Neuroram filter.  

The resultant performance data was then stored in a MATLAB matrix to aid the 

graphical presentation.  The noise types used to evaluate the performance of the filters 

were salt and pepper noise, additive Gaussian, additive uniform, multiplicative Gaussian 

and multiplicative uniform.  The noise types were generated using a MATLAB program 

from the Internet given in Appendix D.  This program was secured from the MATLAB 

exchange as part of a larger Nonlinear Diffusion Toolbox written for MATLAB and 

produced by Frederico D'Almeida [D'Almeida 2003].  A description of each of the noise 

types and its effect on the images are described below.  The noise was applied to a test 

image, this image consisted of a 512 by 512 pixels, 8 bit greyscale image generated 

using MATLAB [The Math Works Inc 1995].  The image was a uniform mid range 

grey as all pixels were set to 127 except for the first two pixels which were 255 and 0 

respectively.  This was necessary as the noise generation program used the maximum 

and minimum values in the image to select the range of noise.  Figure 5.4 shows the 
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greyscale image along with the image with the different types of noise added.  The 

accompanying histogram for each of the images given in Figure 5.5. 

5.3.1 Additive Gaussian Noise 

The first noise type used to distort the image was additive Gaussian.  The additive 

Gaussian noise corruption is implemented by summing a random Gaussian value to the 

value of each pixel.  The size of the Gaussian curve is given by the variance which in 

this case is the default for the program of 1.  The percentage value used in the program 

represents the percentage of the pixels within the image affected.  The histogram Figure 

5.5 (b) clearly shows the effects of the additive Gaussian noise and shows the Gaussian 

curve centred about mid-point. 

 

5.3.2 Additive Uniform Noise 

Summing a uniformly distributed random value to each pixel generates the additive 

uniform noise.  The percentage determines the amplitude of the noise added and is 

based on the percentage between the minimum and maximum pixel values in the image.  

The histogram in Figure 5.4 (c) clearly shows the additive noise on the original image. 

 

5.3.3 Multiplicative Gaussian Noise 

The multiplicative Gaussian noise is generated in a similar way to the multiplicative 

uniform noise.  The noise is added to a percentage of image pixels and follows a 

standard Gaussian distribution. 

 

5.3.4 Multiplicative Uniform Noise 

The multiplicative uniform noise is generated by multiplying a random uniformly 

distributed value to each pixel, the percentage represents the amplitude of noise added 

to the pixels and is based on the percentage between the minimum and maximum pixel 

values in the image.  The histogram Figure 5.5 (e) clearly shows the uniform 

distribution of the noise on the image. 
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5.3.5 Salt and Pepper Noise 

The salt and pepper noise is generated by taking a percentage of pixels in an image and 

randomly setting them to the minimum or maximum pixel value in this case, either 0 or 

255.  The histogram in Figure 5.4 (f) clearly shows the generation of black and white 

pixels.
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a) Grey Level Image (d) 10% Multiplicative Gaussian Noise 

  

(b) 10% Additive Gaussian Noise (e) 10% Multiplicative Uniform Noise 

  

(c)10% Additive Uniform Noise (f) 10% Salt and Pepper Noise 

Figure 5.4  MATLAB Greyscale Image with Different Noise Types Added 
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(c) (f) 

Figure 5.5  (a) Shows a Histogram of MATLAB Greyscale Image, (b, c, d, e, f) 

Show Histograms of the Greyscale Following the Corruption with the Stated 

Different Noise Types 
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Figure 5.6  A Close Up View of the Multiplicative Uniform Histogram  
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Figure 5.7  A Close up View of the Multiplicative Gaussian Noise Histograms 

 

Figure 5.6 and Figure 5.7 shows a close up view of the two histograms for the corrupted 

images.  The multiplicative uniform histogram shows a relatively even level of noise 

across the bins.  The characteristics of the multiplicative Gaussian display a peak of 

noise at the zero bin level representing all the negative values which are out of range 

and hence are classed at the minimum level of zero. 
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(c) (f) 

Figure 5.8  Histogram of the F-16 Image with the Different Noise Types Added 

 

Figure 5.8 (a) shows the histogram of the reference image of the F16.  It can seen that 

the majority of the pixels in the image are around the 200 bin level.  Figure 5.8 

(b,c,d,e,f) shows the resultant histograms following the addition of the different types of 

noise.  The distortion caused when additive Gaussian is added to the image has severely 

damaged the image properties as the noise places the pixel values outside the maximum 

pixel value, thus the majority of picture information is loss. 
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(c) (f) 

Figure 5.9  Histogram of the LAX Image with the Different Noise Types Added 

 

Figure 5.9 (a) gives the histogram for the reference LAX image.  Figure 5.9 (b, c, d, e, f)  

the histogram shows that the majority of pixels in the image are around the 50 to 150 

bin region.  This means again the severity of the damage caused by the additive 

Gaussian noise is significantly more than the other noise types. 
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(c) (f) 

Figure 5.10  Histogram of the Milkdrop Image with the Different Noise Types 

Added 

 

5.4 Evaluation Criteria 

Several measurement criteria have been used to evaluate the quality of the filtered 

images.  These include the standard measurement techniques of mean squared error, 

peak signal to noise ratio and finally the more subjective but important criteria of visual 

inspection.  Mean Squared Error (MSE) is used as it measures the differences between 
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two images, in this case the filtered image and the reference image.  MSE is used 

instead of the pure difference because using the difference would yield both positive 

and negative numbers whereas the squared element of MSE always ensures the result is 

positive.  The equation for MSE is given in equation 3.2. 
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Where M and N define the pixels in the given image and fr(x,y) represents the reference 

image and f(x,y) the filtered image. 

 

The lower the MSE the greater the similarity of the two images.  Therefore it is 

commonly used to evaluate the performance of any image restoration algorithm or filter.  

A reference image is used and compared to the processed image.  The processed image 

has had damage introduced and has subsequently been processed to remove the 

corruption.  The effectiveness of the process to remove the noise can then be quantified; 

the lower the MSE the better the filter or algorithm has restored the image.  Another 

standard measurement used to measure the similarity of images is the Peak Signal to 

Noise Ratio.  This measurement technique is based on the MSE result and hence does 

not generate negative values.  The equation for PSNR is given in equation 3.3.  Unlike 

the MSE the higher the PSNR the better the performance of the filter. 

 











MSE
LogPSNR

2

10

255
10  

3.3 

 

In equation 3.3 the value of 255 is used because it is the peak signal numerical value 

since the pixel width is eight bits. 

 

The final form of evaluation of the images is probably the most important and yet the 

most subjective.  As this method is visual inspection, this method is important as images 

are visual representations and the removal of noise is often performed to aid the ability 

to understand the image. 
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5.4.1 Additive Gaussian Noise Filter Results 

 

 

(a) F-16 with 20% Additive Gaussian noise 

 

(b) Median Filtered 
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(c) Neurofiltered 

Figure 5.11  Images of F-16 Reference with 20% Additive Gaussian Noise and 

Filtered Images 

 

This simulation uses additive Gaussian noise.  Figure 5.11 (a), shows the F-16 reference 

image with 20% additive Gaussian noise, images Figure 5.11 (b) and Figure 5.11 (c) 

show the results after median filtering and neurofiltering respectively.  On visual 

inspection the performance of the median filter and the neurofilter on this image are 

poor with very little noise removal.  It can be seen that the performance of the median 

filter is better than the neurofilter which causes larger noise clusters causing more 

distortion to the image. It is clear that both the median filter and the neurofilter are not 

effective for the removal of additive Gaussian noise.  The poor operation of the filters is 

reflected in both the MSE results and the PSNR results as shown in Figure 5.12. 
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Figure 5.12  Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive Gaussian Noise 
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5.4.2 Additive Uniform Noise Filter Results 

 

 

(a) Milk Drop with 20% Additive Uniform Noise 

 

(b) Median Filtered 
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(c) Neurofiltered 

Figure 5.13  Images of Milk Drop reference with 20% additive uniform noise and 

filtered images 

 

Following the additive Gaussian noise simulation the filters were further evaluated 

using additive uniform noise. 

Figure 5.13 (a), shows the Milk Drop reference image with 20% additive uniform noise, 

images Figure 5.13 (b) and Figure 5.13 (c) show the results after median filtering and 

neuro-filtering respectively. The results from the additive uniform simulation confirm 

both the median filter and neuro-filters inability to deal with the removal of additive 

noise.  Visual inspection of the images shows little or no improvement in image quality 

in comparison to the noise images.  It can be seen that the median filter has the effect of 

causing slight blurring to the image.  The neurofilter does not cause blurring and hence 

has a sharper contrast but causes slight pixelisation, particularly on edges.  The poor 

performance of the filters is further reflected in both the MSE and PSNR results shown 

in Figure 5.14 which show little or no improvement with respect to the noisy unfiltered 

reference image. 
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Figure 5.14  Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive Uniform Noise 
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5.4.3 Multiplicative Gaussian Noise Filter Results 

 

 

(a) LAX with 20% Multiplicative Gaussian Noise 

 

(b) Median Filtered 
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(c) Neurofiltered 

Figure 5.15 Images of LAX Reference with 20% Multiplicative Gaussian Noise and 

Filtered Images 

 

A simulation using multiplicative Gaussian noise was performed.  Figure 5.15 (a), 

shows the LAX reference image with 20% multiplicative Gaussian noise, images in 

Figure 5.15 (b) and Figure 5.15 (c) show the results after median filtering and 

neurofiltering respectively.  Visual inspection of the noisy image shows lots of pixel 

noise which destroys the detail of the original image.  It can be seen that from the 

images in Figure 5.15 (b) and Figure 5.15 (c) that the median filter and the neurofilter 

perform well at removing this type of noise, however both have introduced distortion.  

The median filter causes slight blurring causing loss of detail, sharpness and contrast.  

The neurofilter does not cause blurring but causes slight pixelation but does not affect 

the contrast and sharpness, if anything it improves them.  The effects of damage caused 

by the filters can be more clearly seen on the writing on the F-16 images.  It is 

noticeable that the damage is worst on the neurofiltered image.  This is confirmed with 

the MSE and PSNR results shown in Figure 5.16 which show improvements in image 

quality after filtering of the noisy images. 
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Figure 5.16  Graphs of MSE and PSNR for Median Filter and Neurofilter on Multiplicative Gaussian Noise 
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5.4.4 Multiplicative Uniform Noise Filter Results 

 

 

(a) F-16 with 20% Multiplicative Uniform Noise 

 

(b) Median Filtered 
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(c) Neurofiltered 

Figure 5.17  Images of F-16 Reference with 20% Multiplicative Uniform Noise and 

Filtered Images 

 

Following the multiplicative Gaussian noise tests the filters were further examined 

using multiplicative uniform noise to assess their performance. Figure 5.17 (a), shows 

the F-16 reference image with 20% multiplicative uniform noise.  Images in Figure 5.17 

(b) and Figure 5.17 (c) show the results after median filtering and neurofiltering 

respectively.  Visual inspection of the noisy images shows lots of pixel noise similar to 

the ‘pepper’ component of ‘salt and pepper’ noise, which cause a loss of detail in the 

original image.  This simulation confirmed the abilities of both these filters to remove 

this type of noise effectively.  The damaging effects that both filters caused in the 

multiplicative Gaussian trials are again present.  In this simulation the presence of the 

black pixels (pepper noise) after filtering was more noticeable on the neurofiltered 

image.  It should be noted that the threshold used on all the simulations for the 

neurofilter was King’s suggested 50%, and later simulations show the ideal value to be 

less.  Probably due to the optimum threshold being dependent on the average greyscale 

of the image.  It is expected that this will improve the performance of the neurofilter.  

The MSE results in Figure 5.18 show that both filters work but it is clear that the 
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performance of the neurofilter is not as good as the median filter particularly as the 

noise percentage increases.  This is confirmed by the PSNR results. 



 

 

1
1
8
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Multiplicative Uniform MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

 
0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

Multiplicative Uniform MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

 
0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

Multiplicative Uniform MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

 

9 10 11 12 13 14 15 16 17 18 19
5

10

15

20

25

30

35

Multiplicative Uniform PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

 
8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

Multiplicative Uniform PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

 
8 10 12 14 16 18 20

8

10

12

14

16

18

20

22

24

26

Multiplicative Uniform PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

 

Figure 5.18  Graphs of MSE and PSNR for Median Filter and Neurofilter on Multiplicative Uniform Noise 
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5.4.5 Salt and Pepper Noise Filter Results 

 

 

(a) Milk Drop with 20% Salt and Pepper Noise 

 

(b) Median Filtered 
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(c) Neurofiltered 

Figure 5.19  Images of Milk Drop Reference with 20% Salt and Pepper Noise and 

Filtered Images 

 

The salt and pepper noise image processing was repeated in order to evaluate the 

techniques used with those used by King to demonstrate consistency.  Figure 5.19 (a), 

shows the Milk Drop reference image with 20% salt and pepper noise.  Images in 

Figure 5.19 (b) and Figure 5.19 (c) show the results after median filtering and 

neurofiltering respectively.  It can be seen that both of the filters perform well on the 

salt and pepper images and the results concur with the findings reported by King.  

Visually the performance of the median filter gives an improved image with greater 

noise removal of the salt and pepper noise in comparison to the neurofilter.  The 

neurofilter does have the advantage of maintaining contrast and does not cause blurring 

which is important in certain applications. The MSE and PSNR shown in Figure 5.20 

confirm the visual results showing the performance of the median filter is better. 
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Figure 5.20  Graphs of MSE and PSNR for Median Filter and Neurofilter on Salt and Pepper Noise 
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It is clear that both the median filter and neurofilter are well suited to the removal of 

the salt and pepper, multiplicative Gaussian and multiplicative uniform noise.  They 

are not well suited to the removal of additive noise types such as additive Gaussian 

and additive uniform noise.  The MSE and PSNR results show that the median filter 

outperforms the neurofilter with the exception of lower percentage multiplicative 

Gaussian noise where the results show the neurofilter performs slightly better.  

Changing the threshold could further increase this.  A visual inspection of the images 

reflects that the median filter performs better than the neurofilter.  Although the 

distortion caused by filtering could be considered to be less with the neurofilter. The 

neurofilter causes pixelisation but also improves the edge definition and contrast 

whereas the median filter just causes blurring. 
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5.5 Cascade Filter 

 

This novel cascade filter trial was performed to establish the optimal number of 

filters in line to gain best performance and to identify a balance between 

performance and real estate.  Real estate is the amount of logic required in a 

semiconductor device.  Cascade filtering is implemented by performing multiple 

sequential filtering on the same image.  The image is taken and filtered the resultant 

filtered image is then taken and filtered again this process is repeated in this case up 

to 20 times.  Both the median filter and neurofilter were tested to establish the 

difference in their characteristics when cascaded.  Both filters used the reference 

Milk Drop image.  Both median filtering and neurofiltering were performed on the 

reference image using a 3 by 3 filter applied to the whole image.  For the neurofilter 

the threshold level was set to four. 

 

The Milk Drop reference image was used initially with 20% salt and pepper noise 

and then increased to 30%.  This was in order to prove the characteristics of the 

filters were not noise level related.  The simulation was performed using MATLAB 

simulations.  The appropriate level of noise was added to each of the reference 

images.  Each of the noisy images was then processed using either a median filter or 

the neurofilter.  After each level of filtering the measurement criteria of MSE and 

PSNR were calculated.  This iterative filtering was performed using both types of 

filter, up to twenty times.  Each image after filtering was stored along with the 

measurement criteria data. 

 

Figure 5.21 shows the results of the median filter and neurofilter on the reference 

Milk Drop image with 20% added salt and pepper noise.  From the graphs shown in 

Figure 5.21 it is clear that the optimum number of filters in cascade for the median 

filter is three.  Although if real estate was a real constraint then two filters would 

offer a good compromise, with only a slight loss of performance.  The optimum level 

of cascading for the neurofilter is four stages as shown in the figures given in Figure 

5.21. 

 

From the median filtered images shown in  
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Figure 5.22 there is a clear visible improvement in the quality of the images after the 

second level of filtering.  It can be seen that there is no level of improvement from 

the 20
th

 level of filtering compared to the 3
rd

 level of filtering.  The quality of the 

image after the 20
th

 level of filtering is actually poorer due to the distortion effects 

caused by the filter.  The median filter causes blurring which damages the quality of 

the image.   

 

The neurofilter shown in Figure 5.21 shows improvements in the image after a 

greater number of cascade levels in comparison to the median filter.  The optimum 

number of cascaded filters is four, but the damage caused by repeated filtering is less 

than in the standard median filter.  The images in Figure 5.22 show little 

improvement in the latter images due to the low amount of noise in the images.  The 

neurofilter does not have as profound an effect on the degrading of the image quality 

as the median filter but does cause pixelisation on the edges.  The images in  

Figure 5.26 show that unlike the median filter where the effect of multiple filtering 

yields very little improvement in noise removal, after the initial few stages the 

neurofilter still offers a noticeable difference in noise removal.  Although the latter 

stages of filtering introduce a greater level of inaccuracies which counteract the 

improvements in noise removal and hence there is little or no improvement in the 

measurement criteria. 

 

The evaluation of the data shown in Figure 5.21 and Figure 5.24 demonstrates that 

the performance results of the filters is not noise level related.  Although the 

improvement of noise removal after multiple stages of neuro-filtering is clearer in 

the latter data set. This is due to the increased distortion in the reference image. 

 

A clear characteristic which is apparent throughout all the trials is that the median 

filter performs significantly better than the neurofilter.  The performance of the two 

filters differs and the way the filters operate in a cascade formation yields some 

distinct differences.  The main difference being in the optimum number of cascades 

of filter which yields best effect.  Ideally three median filters in cascade offers the 

most improvement; further increasing the number of filters has a detrimental effect, 

as this causes blurring of the images and loss of high frequency detail.  The optimum 

number of cascades for the neurofilter is four.  Although further increasing the 
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number of filters in cascade removes more noise unlike the median filter where there 

is little or no improvement after the third stage of filtering.  The other difference is 

the amount and type of damage caused by multiple stages of filtering.  The median 

filter unlike the neurofilter does not cause blurring, although it does cause 

pixelisation particularly on image edges.  In contrast the neurofilter does not cause as 

much high frequency loss as the median filter. 
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Figure 5.21 MSE and PSNR Results for Cascade of Median Filters and Neurofilters on Milk Drop with 20% Added Salt and Pepper Noise 
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Figure 5.22 Cascade of Median Filters on Milk Drop with 20% Added Salt and Pepper Noise 
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5.23 Cascade of Neurofilters on Milk Drop with 20% Added Salt and Pepper Noise 
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Figure 5.24 MSE and PSNR results for Cascade of Median Filters and Neurofilters on Milk Drop with 30% Added Salt and Pepper Noise 
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Figure 5.25 Cascade of Median Filters on Milk Drop with 30% Added Salt and Pepper Noise 
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Figure 5.26 Cascade of Neurofilters on Milk Drop with 30% Added Salt and Pepper Noise 
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5.6 Threshold Assessment 

 

The threshold component was examined to King’s prediction, which states the ideal 

threshold value for optimum performance of Neuroram is approximately half the 

number of exemplars used, although he qualifies this accepting that this is data 

dependent [King 2000]. In this case the exemplar size is nine, because the filter is being 

implemented using a 3 by 3 window on the image.  Therefore with this exemplar size 

we would expect the optimum threshold would be either 4 or 5.  The trial was 

performed again using the standard reference images referred to at the beginning of this 

chapter.  The standard MATLAB implementation of Neuroram was used.  In order to 

prove this hypothesis several different reference images were taken to ensure the results 

were not image dependent.  The uniform multiplicative image was repeated with two 

noise levels to ensure that the noise value did not affect the results. 

 

The threshold on the images was set between 1 and 8 and the value of the filtered image 

compared with the reference image using the measurement criteria of MSE and PSNR.  

The results for each threshold for a given image were plotted for the MSE and PSNR 

values.  The filtered images were also stored for visual comparison. 

 

The first trial was performed on the LAX reference image with 20% additive Gaussian 

noise.  The image was filtered with the neurofilter using thresholds ranging from 1 to 8 

and the subsequent PSNR and MSE then plotted as shown in Figure 5.27.  The diagrams 

in Figure 5.28 show the effects of the filter with different threshold.  It can be seen that 

at lower thresholds the definition of the image is low, the contrast is poor only having 

two levels of grey.  As the threshold is increased more detail is shown with an optimum 

threshold being about three or four.  This is reflected in the MSE and PSNR graphs 

shown in Figure 5.27.  It is hard to judge the ideal because the performance of the filter 

on this type of noise is poor as demonstrated by the results given earlier in this chapter. 

 

The second trial was performed on the Milk Drop reference image with 20% added 

multiplicative uniform noise.  Figure 5.30 shows the filtered images, it can be seen at 

the low threshold values that the images still contain a lot of white noise.  Whereas at 

the high threshold values the images contain a lot of black noise.  The image with the 

least noise is that which has been filtered with the neurofilter with a threshold value of 
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three.  This is confirmed with the results of the MSE and PSNR values given in Figure 

5.29. 

 

The third trial performs the same test as the second one but this time with a noise level 

of 40%.  The effect of the neurofilter on the images is the same as the second test as 

expected and is shown in Figure 5.32.  Again the results show the threshold value for 

optimum filtering of the neurofilter is three.  This is confirmed by the MSE and PSNR 

results given in Figure 5.31.  This trial was performed to demonstrate that the filter’s 

operation with respect to its threshold was not noise level dependent. 

 

The final trial was performed on the Milk Drop reference image with 20% added salt 

and pepper noise.  The results for this trial with respect to threshold concur with those 

of the previous two trials again confirming that the filter operation is fixed and are not 

noise type or level dependent.  Again the low threshold values leave a lot of white noise 

and the high threshold values leave a lot of black noise.  The images and the graphs in 

Figure 5.33 and Figure 5.34 confirm that the optimum threshold for this neurofilter for 

this task is three. 

 

Therefore this study demonstrates that the optimum threshold for Neuroram when 

configured as an image filter operating on a 3 by 3 matrix giving nine data exemplars is 

three.  This gives a threshold percentage of 33%, this differs from the value of 

approximately 50% claimed by King [King 2000]. 

 

The reason for this difference in results from King’s original prediction of 

approximately 50% is due to the limited amount of data that the prediction was made 

on.  The threshold level is only determined by one graph with one dataset.  On closer 

examination of this graph in King’s thesis, it shows that the 50% value was not the 

highest response, however the threshold around 40% gave the highest response.  The 

graph shows how values in the region of between 35% and 55% all give a response 

significantly higher.  The difference between responses is relatively small though.  The 

conclusion from this is that the original prediction was done on a limited data set as well 

as the prediction is only a rough one rather than an absolute value.  In order to 

determine the true optimum threshold value further research is required on larger data 

set sizes as this initial research would suggest the value is data dependent. 
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Figure 5.27 MSE and PSNR for Filter Thresholds on LAX Image with 20% Additive Gaussian Noise 

   

No filter Filtered threshold 1 Filtered threshold 2 

Figure 5.28 Filtered LAX Image with 20% Additive Gaussian Noise with Different Thresholds 
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Figure 5.28 Filtered LAX Image with 20% Additive Gaussian Noise with Different Thresholds 
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Figure 5.29 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20% Multiplicative Uniform Noise 

   

No filter Filtered threshold 1 Filtered threshold 2 

Figure 5.30 Filtered Milk Drop Image with 20% Multiplicative Uniform Noise using Different Thresholds 
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Figure 5.30 Filtered Milk Drop Image with 20% Multiplicative Uniform Noise using Different Thresholds 
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Figure 5.31 MSE and PSNR for Filter Thresholds on Milk Drop Image with 40% Multiplicative Uniform Noise 

   
No filter Filtered threshold 1 Filtered threshold 2 

Figure 5.32 Filtered Milk Drop Image with 40% Multiplicative Uniform Noise using Different Thresholds 
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Figure 5.32 Filtered Milk Drop Image with 40% Multiplicative Uniform Noise using Different Thresholds 
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Figure 5.33 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20% Salt and Pepper Noise 

   
No filter Filtered threshold 1 Filtered threshold 2 

Figure 5.34 Filtered Milk Drop Image with 20% Salt and Pepper Noise using Different Thresholds 
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Figure 5.34 Filtered Milk Drop Image with 20% Salt and Pepper Noise using Different Threshold 
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Chapter 6 

 

6 Boolean Weightless Self Ordered Map 

 

6.1 Overview  

This chapter describes a weightless Boolean implementation of Kohonen’s self ordered 

map.  A brief description of a conventional self ordered map and its associated 

algorithms is given.  This has not been covered in the earlier chapters because the self 

ordered map is traditionally a weighted neural network, often implemented using an 

algorithmic approach.  An overview of the novel weightless Boolean elements used is 

given proceded by the structures that can be formed to implement the Weightless Self 

Ordered Map (WSOM).  Finally an overall architecture of the WSOM is presented 

including discussion of the MATLAB simulation. 

 

6.2 The History of the Self Ordered Map 

Although the idea of self organisation was proposed in 1973 by Von der Malsburg, it 

was not until the mid 1970’s that Willshaw and Von der Malsburg produced computer 

models [von der Malsburg 1973, Willshaw et al 1970].  Their inspiration was to 

produce a biologically plausible visual system that could determine edge orientation and 

light intensity similar to that found in the visual cortex.  The Self Ordered Map (SOM) 

was finally developed by Teuvo Kohonen a Finnish scientist in 1988 [Kohonen 1984, 

Kohonen 1988].  He used the earlier concepts of self organisation proposed by 

Willshaw and Von der Malsburg. 

 

6.3 Learning Types 

The SOM is an ’unsupervised learning’ neural network meaning the network learns 

from the frequency of the experienced data rather than having a teacher.  This differs 

from the other neural networks featured so far, as these require input and output data to 

be trained into the network. 
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6.4 Operation of the Self Ordered Map 

The basic function of the SOM comes from the collection of differing neurons within 

the network ‘firing’ in response to different stimuli.  A highly simplified example of 

Kohonen’s map, based on Aleksander’s description is given [Aleksander et al 1995].  

The basic example uses a structure of 12 neurons or nodes each of which consist of 4 

bits.  The graphical representation shows a ‘1’ state as a black square, conversely a 

white square represents a ‘0’ state.  The input data or input stimuli are presented to all 

the nodes in the network.  The two patterns which the network is going to learn are 

0111 and 1001 and are graphically represented in a box, and filled top left to bottom 

right.  Each of the 12 neurons in the network has weights; in this case they are either ‘1’ 

or ‘0’ also represented by black and white squares.  The weights are arranged in a 

similar manner to the input data.  Each of the element’s weights correspond to a similar 

bit in the input pattern and correspond to one of the bits in the input pattern.  Initially 

the weights of the neuron are randomly set.  The system ‘learns’ by allocating areas of 

the network, known as a neighbourhood which correspond to certain input stimuli.  The 

first input 0111 is presented to the untrained network to assess which node gives the 

maximum response; in this case it is neuron 1 or node 1 as shown in Figure 6.1. 

 

 

Figure 6.1  Initial Response to Input Pattern 0111 

 

Similarly when the input 1001 is shown to the untrained network, the maximum 

response is from neuron 8 or node 8 as shown in Figure 6.2. 
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Figure 6.2  Initial Response to Input Pattern 1001 

 

The next step is to identify a suitable neighbourhood around that neuron; this will be the 

neighbourhood size.  In this example the criteria being applied are to strengthen the two 

neurons either side of the maximum responding neuron; these being 6, 7, 9 and 10.  

Now the neighbourhood has been identified the next stage is to apply a learning rule, 

this is usually a strengthening rule.  However to apply the standard ‘Mexican hat’ 

learning parameter the neurons on the periphery will be weakened [Beale et al 1997].  

Here we are just applying the strengthening rule to the identified neurons to increase 

their response to the input stimuli.  This is achieved by changing the weights to improve 

the correlation by reducing the number of bits difference between the identified neurons 

and the input pattern; in this case the reduction is by one bit.  This action is performed 

on all the identified neurons in the associated neighbourhood as shown in Figure 6.3; 

this shows the effects of training around neuron 8. 
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Figure 6.3  Training Neuron 8 

The next input 0111 is then tested on the network, where results in a maximum response 

from neuron 1 as shown in Figure 6.4. 

 

 

Figure 6.4  Response after Training on Pattern 0111 

 

The same neighbourhood criterion is applied; however this exceeds the edge of the 

network.  Therefore we wrap the data around the edge of the network to avoid creating 

edge effects, and the necessary special rules which need to be applied to negate them.  

Therefore the neurons which form the neighbourhood are 0, 1, 2, 3 and 11.  The 

strengthening rule is then re-applied on the identified neighbourhood, the results of 

which can be seen in Figure 6.5. 
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Figure 6.5  Training Neuron 1 

 

The result of the training on the basic network is that two distinct areas of the network 

respond to the differing inputs, this is the principle of the SOM.  This is demonstrated in 

Figure 6.6 below where the initially trained value 1001 is presented back to the network 

and the higher numbered node region of the network responds well; conversely when 

0111 is presented the lower numbered region of the network responds well. 

 

 

Figure 6.6  Training Neuron 2 
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6.5 Algorithmic Equations for the Implementation of the SOM 

The SOM learning process is often implemented algorithmically using the following 

equations as described by Beale [Beale et al 1997].  The equations are a list of learning 

rules applied in stages. 

 

Step 1 

This describes the initialisation of the network and is given by Equation 6.1. 

 

  10  nitWij  6.1 

 

Equation 6.1 represents the weight from input i to node j at time t.  The weights from 

the n nodes are initially set to small random values.  The initial radius of the 

neighbourhood around node j should be large Nj(0). 

 

Step 2 

Equation 6.2 shows the next stage where an input xi(t) is presented to node i at time t. 
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Step 3 

Equation 6.3 is applied to calculate the distance dj between the input i and each output 

node j. 

 

    





1

0

2
n

i

ijij twtxd

 

6.3 

 
 

Step 4 

The node with the minimum dj is selected and designated as j*. 
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Step 5 

Equation 6.4 shows for the new weights within the defined neighbourhood Nj*(t) 

surrounding node j*. 

 

          twtxttwtw ijiijij  1  6.4 

 
 

 (t) describes the learning rate or gain, where  (t) is a value between 0 and 1.  It is 

common to have a large learning rate which diminishes in time, hence slowing the 

weight changes as the network becomes more stable.  Similarly the neighbourhood 

Nj*(t) will also be reduced as time increases. 

 

Step 6 

Repeat the process from step 2. 

 

6.6 Applications of the Self Ordered Map 

The SOM has been used to address practical problems ranging from image 

compression, to FPGA routing [Barbalho et al 2002, Maniatakos et al 2008].  Kohonen 

initially implemented a speech recognition system for his native language, Finnish, 

producing a phonetic typewriter [Kohonen 2001]. 

6.7 The Weightless Self Ordered Map 

The WSOM works on the same principles as the conventional SOM.  Both SOMs 

require the nodes to be configured with small random values.  In the case of the 

weighted SOM this is the production of a random weighting function for each node in 

the network.  The WSOM consists of a pattern of weightless bits.  This random 

assignment in the WSOM can be achieved by loading the nodes with random strings, in 

practice pseudo random binary strings.  It may be advantageous to initialise the map 

with graded initial conditions dependent on the data.  An example of this would be 

increasing thermocode.  The SOM operates by taking some input stimuli and comparing 

them with responses from the individual nodes within the network.  This evaluation is 

carried out with an array of EX-NOR gates; the resultant weightless data is the level of 

correlation between the node and the input data.  The XNOR gate has been used in 

weightless logic as a fast parallel method of correlating weightless data. If two 
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positionally equivalent data bits within a given data stream match then it produces an 

output ‘1’, but if the outputs don’t match then a ‘0’ is produced at the output. 

 

Because the resultant correlated data is weightless it can be re-ordered because the bit 

positions hold no significance.  In order to aid the subsequent stages of processing the 

data is thermocoded.  King’s weightless thermocoder described in Chapter 3 is a 

suitable weightless Boolean element to perform this function.  Each of the nodes within 

the network is designed to contain a resultant weightless thermocoder which represents 

a correlation score of that node in relation to the input.  The SOM operates on a 

‘winner-takes-all’ principle which means the strongest response is selected for further 

processing.  The weightless Boolean L-Max element was originally designed for the 

replacement of Austin’s arithmetic implementation used with the ADAM network in 

Chapter 3.  However it is a simple and elegant method of selecting the highest 

responding nodes.  The L-Max function simultaneously compares all the weightless 

correlation scores for each of the nodes and sets a threshold equal to the greatest 

response.  Every node within the network is then compared to this response and a 

weightless bit for each node is set to either ‘1’ if it meets the L-max criteria or ‘0’ if not. 

This results in the highest responding node being identified; however there may be 

occasions when more than one node will have the maximum response.  To overcome 

this problem a simple Boolean logic selector was developed to yield only one response.   

 

 

Figure 6.7  Weightless Boolean Selector 

 

The selector is a simple element which is designed to be used on thresholded weightless 

data.  The thresholded data should result with sparsely populated points of interest 

represented by ‘1’ in the data stream.  The function of the selector is to pick out an 

individual point of interest, when there are several points.  The purpose of this is so that 
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in a network an operation can be performed on this one point or region of interest, such 

as reinforcing or weakening of this element.  The selector is used to detect the first bit in 

the weightless data stream.  The selector operates by setting the output (OUTn) to ‘1’ of 

the corresponding first input (An) that is set ‘1’ all other outputs are subsequently set to 

‘0’.  When implemented in the WSOM it was noticed that an offset was needed as the 

wrap-around effect of the offset skews the data therefore an offset in the selector is 

needed.  Figure 6.8 shows a selector with a fixed offset of one bit.  This is a variant of 

the selector circuit with an offset.  This function is equivalent to the standard selector 

with one minor difference: instead of setting the equivalent bit to ‘1’ it sets each of the 

adjoining bits to ‘1’ and all other outputs to’0’. 

 

 

 

Figure 6.8 Weightless Boolean Selector with Offset 

 

The selector is designed to select the first highest response and discard all the other 

responses.  It is used to identify a point of interest and form a neighbourhood which will 

be enhanced to respond to the given stimuli which resulted in its selection.  Therefore 

the next stage is to identify the surrounding nodes which will be used to form the 

neighbourhood.  These will also be strengthened to an equal or lesser extent depending 

on the learning criteria.  Figure 6.9 shows a diagram for a fixed ‘expander’.  This uses 

the information from the selector to broaden the field of selected nodes to be operated 

on. 
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Figure 6.9  Weightless Boolean Expander 

 

The weightless Boolean expander element is designed to be used within a single area of 

interest such as found in a self learning network like the WSOM.  The expander’s role is 

to select a defined surrounding region around the point of interest.  Two variations of 

the expander are shown, the first in Figure 6.9 is a simple Boolean logic implementation 

which only selects the adjoining bits.  Figure 6.10 showing a further variation allows a 

more adaptive expansion of the surrounding bits.  The example given in Figure 6.10 

shows where up to an additional two adjoining bits on either side can be strengthened.  

However the architecture is scalable to allow as many adjoining bits to be set, it could 

also be designed so it only strengthens one side, or any combination of bits either side. 
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Figure 6.10 shows a more useful extension to the ‘expander’ offering variable 

expanding, this allows the region of interest size to be set and easily varied.  This 

technique is more in-line with the conventional Kohonen topology where the learning 

rate controls the amount of change as the network evolves giving the network learning 

true adaptability. 

 

 

Figure 6.10  Weightless Boolean Multiple Bit Expander 

 

The final stage is to take the nodes which have been highlighted for strengthening and 

to alter their response to input stimuli.  This function is performed by the Hamming 

distance reducer; the basic variant only reduces the difference between the stimuli and 

node by one bit, or a set number of bits as shown in Figure 6.12. 
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Figure 6.11  Weightless Boolean Hamming Distance Reducer with Test Points 

 

The Hamming distance is the number of bits which differ between two data sets, in this 

case two data streams (A1-An) and (B1-Bn).  The Hamming distance reducer is designed 

to alter the status of bits in one weightless data stream to reduce the Hamming distance 

between the two data streams.  Figure 6.11 shows a basic Hamming distance reducer 

which is a set architecture that only reduces the Hamming distance between the two 

data streams, by one bit, that being the first different bit in the data stream.  Note that 

outputs (REF1 - 4) and (OLD1 - 4) would not be used in a real system but are only 

present for testing.  Figure 6.12 shows a large version of the single bit Hamming 

distance reducer with no test outputs. 
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Figure 6.12  Basic Hamming Distance Reducer 

 

 

Figure 6.13  The Multiple Bit Hamming Value Reducer 

 

Figure 6.13 shows a multiple bit Hamming distance reducer comprising several earlier 

elements, these being King’s weightless thermocoder and the greater-than-or-equal-to 

weightless Boolean comparator.  The logic shown allows all eight bits to be swapped if 
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required; however in practice this would be unlikely and is only used to demonstrate the 

flexibility of the element.  The multiple Hamming distance reducer has been designed 

so that the amount by which the Hamming distance is reduced can be varied.  This 

allows another method of controlling the learning rate. 

 

6.8 Self Ordered Map Elements 

These elements have all been derived from the quest to design a weightless self ordered 

map. Although these elements have been designed with this purpose, some have been 

enhanced, and the intention is that these add to the collection of weightless Boolean 

building blocks that can be used to further develop existing and new weightless neural 

networks. 

Figure 6.16 shows the overall architecture of the WSOM using the Boolean weightless 

logic elements described previously within this chapter.  All the weightless elements 

described above have been individually tested using the ‘Neuromorph’ development 

board and an array of switches and light emitting diodes to confirm operation. 

 

6.9 Simulation Results 

The overall operation of the network has been simulated in MATLAB with two 

programmes; the first for training the network and the second for evaluating the network 

once trained.  Each of these programmes can be found in Appendix D along with more 

generic examples where the size of the network can be altered.  The logic elements were 

described as logical functions in MATLAB in order to simulate the network. 

 

The example at the beginning of the chapter is simulated using the two MATLAB 

programmes which have been pre-loaded with the initial conditions shown in Figure 

6.16 and Figure 6.15  The MATLAB Weightless Self Ordered Map is trained via a text 

file ‘data.txt’, for this example this file contains the two values 0111 and 1001.  

Following training the recall can be performed by a second programme shown in Figure 

6.15 and a text file ‘data2.txt’.  This text file allows the user to present data to the 

network, the network will respond with closest match.  If the network has been 

sufficiently trained and a training data set is given the network will return this as the 

closest match. 
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% function  Neuron = 

somtrain(Elements,NumberofNeurons,FieldofStrength,LearningRate) 

% This program performs a weightless 

% self ordered map 

% James Armstrong 23/02/05 

% Filename somtrain.m 

% Issue 1 

  

  

Elements=4; 

NumberofNeurons=12; 

FieldofStrength=2; 

LearningRate=1; 

  

%initalise (NumberofNeurons) with (Elements) 

Neuron = [1 0 1 1 0 1 0 1 1 1 1 1;1 1 1 1 0 0 0 0 0 1 0 1;0 1 1 1 0 1 

1 1 0 1 0 0;1 1 0 0 0 0 0 0 1  1 0 0]; 

  

fid=fopen('C:\data.txt','r'); 

while(~feof(fid)) 

     

    data=(fgetl(fid)); 

    for Elenum=1:Elements   

        Input(Elenum,1)=str2num(data(Elenum)); 

    end; 

       

    % Xnor the input with all neurons 

    for val=1:NumberofNeurons 

        Xnored(:,val)=logical(xnor(Input,Neuron(:,val))); 

        

XnorNeurons(:,val)=logical(wtothermo(xnor(Input,Neuron(:,val)))); 

    end; 

  

    % Determine the Lmax thermocode 

    for Elenum=1:Elements 

        L_max(Elenum,1)=logical(sum(XnorNeurons(Elenum,:))); 

    end; 

  

    % Select the neurons which match the L-max 

    for val=1:NumberofNeurons 

        

MatchNeurons(1,val)=logical(greaterequal(XnorNeurons(:,val),L_max(:,1)

)); 

    end; 

  

    % Selects the first neuron which matches the L-max value 

    SelectorPosition=0; 

    test=0; 

    for val=1:NumberofNeurons 

        if(MatchNeurons(1,val)==1&&test==0); 

          test=1; 

          SelectorPosition=val; 

        end; 

    end; 

  

    % This takes the selected Neuron and strengths the reponse of the 

Neuron 

    % surrounding dependant on the value of FieldofStrength 

  

   StrengthenNeurons=logical(zeros(NumberofNeurons,1)); 

   FieldofStrengthSize=((2*FieldofStrength)+1); 

   for Field = 1:FieldofStrengthSize 

       StrengthenNeurons(Field,1)=1; 
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   end; 

   StrengthenNeurons=circshift(StrengthenNeurons,-FieldofStrength); 

   ShiftNumber=(SelectorPosition-1); 

   StrengthenNeuronsShifted=circshift(StrengthenNeurons,ShiftNumber); 

   

StrengthenNeuronsShifted=reshape(StrengthenNeuronsShifted,1,NumberofNe

urons); 

    

    % Teaching the map this function takes the SOM Map and strengthen 

the 

    % map in the region selected to best match the input 

  

    for val=1:NumberofNeurons 

        LearningRateCount=LearningRate; 

        if(  StrengthenNeuronsShifted(1,val)==1) 

            for bit=1:Elements 

                if(Xnored(bit,val)==0&&LearningRateCount>0) 

                    Neuron(bit,val)=Input(bit,1); 

                    LearningRateCount=(LearningRateCount-1); 

                end; 

            end; 

        end; 

    end; 

end; 

     

fclose(fid); 

save('C:\Weightless Toolbox\matlab_som.mat') 

Figure 6.14  Weightless Self Ordered Map MATLAB Training Program 

 

function  [result,position] = Readtrain() 
% This program performs a weightless 
% self ordered map 
% James Armstrong 25/02/05 
% Filename somread.m 
% Issue 1 

  

  
Elements=4; 
NumberofNeurons=12; 

  
load('C:\Weightless Toolbox\matlab_som.mat') 

  
fid=fopen('C:\data2.txt','r'); 
while(~feof(fid)) 

     
    data=(fgetl(fid)); 
    for Elenum=1:Elements 
         Input(Elenum,1)=str2num(data(Elenum)); 
    end; 

     
    % Xnor the input with all neurons 
    for val=1:NumberofNeurons 
        Xnored(:,val)=logical(xnor(Input,Neuron(:,val))); 
        

XnorNeurons(:,val)=logical(wtothermo(xnor(Input,Neuron(:,val)))); 
    end; 

  
    % Determine the Lmax thermocode 
    for Elenum=1:Elements 
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        L_max(Elenum,1)=logical(sum(XnorNeurons(Elenum,:))); 
    end; 

  
    % Select the neurons which match the L-max 
    for val=1:NumberofNeurons 
        

MatchNeurons(1,val)=logical(greaterequal(XnorNeurons(:,val),L_max(:,1)

)); 
    end; 

  
    % Selects the first neuron which matches the L-max value 
    test=0; 
    for val=1:NumberofNeurons 
        if(MatchNeurons(1,val)==1&&test==0); 
          test=1; 
          result=Neuron(:,val); 
          position=val; 
        end; 
    end; 
end; 
 fclose(fid);  

Figure 6.15  Weightless Self Ordered Map MATLAB Recall Program 

 

The simulation has shown that it is possible to implement the originally algorithmic 

SOM in weightless Boolean elements.  The implementation of the weightless SOM has 

led to the development of further weightless Boolean elements. These include the 

selector and expander including variants.  The Hamming distance reducer is also useful 

for other weightless neural functions where controlled reduction of Hamming distance 

is required as part of learning.  It is envisaged that these elements will be added to the 

collection of weightless Boolean elements which will allow further non-weightless 

systems to be implemented weightlessly, particularly neural networks where areas of 

the network need to be selected for processing or regions defined. 
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Figure 6.16  Architecture of the Weightless Self Ordered Map
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6.10 Summary of Chapter 6 

Further weightless Boolean hardware elements are presented which build on the sum and 

threshold logic described in the earlier chapters.  These additional weightless Boolean 

elements are each described and used to form a weightless Boolean hardware self ordered 

map.  The weightless self ordered map has been simulated in MATLAB using the example in 

the chapter.  It is demonstrated how conventional weighted neural networks can be converted 

into weightless neural networks using Boolean weightless architectures. 

 



 

161 

 

Chapter 7 

 

7 Summary and Conclusions 
 

7.1 Overview 

This thesis describes a collection of weightless Boolean elements which are being used 

to improve both weightless and weighted neural networks and implement novel filters.  

The robustness of weightless elements has also been demonstrated by trials carried out 

at ground-based neutron test facilities.  

7.2 Objectives 

All the objectives described in the introduction were achieved; these are as follows: 

 To examine the robustness of weightless elements versus weighted elements 

when subjected to high-energy neutron radiation mimicking that of the 

atmosphere through accelerated testing at a ground-based facility. 

 

 To develop a collection of weightless Boolean elements to add to the existing 

body of elements to further improve weightless neural networks by replacing 

weighted arithmetic counter units with sum and threshold techniques. 

 

 To further examine King’s Type 1 Neuroram filter as an image filter when 

subjected to an extended range of noise types in conjunction with evaluating 

threshold properties of the filter. 

 

 To demonstrate how weightless Boolean elements can be developed to 

implement weightless Boolean hardware implementations of existing weighted 

neural networks; notably the self ordered map. 
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 The final objective was to show how weightless Boolean elements could be 

developed to replace weighted binary counters in the implementation of robust 

avionic designs. 

 

7.3 Summary of Chapters 

The author now briefly summarises the chapters in this thesis focusing on their 

contribution to the field. 

 

Chapter 1 introduces the research describing the problems faced by the avionics 

industry caused by atmospheric radiation as well as techniques to understand the 

interactions between neutrons and semiconductor electronics.  Two papers in which the 

author contributed at the test facility are presented in the appendices. These describe 

some of the effects observed when using CCD elements to understand semiconductor 

neutron interaction processes.  An overview of the history of Boolean logic and the 

differences between weighted and weightless Boolean logic is discussed. 

 

Chapter 2 gives a chronological history of weightless hardware neural networks 

discussing the McCulloch and Pitts model for a neuron through to the modern day 

approach to weightless neural networks such as ADAM and Neuroram [McCulloch et al 

1943, Austin 1986, King 2000].  The history of the division of the McCulloch and Pitts 

model into both weighted and weightless neural networks is described [Pitts et al 1947].  

The operation of ADAM and the correlation matrix memory and associated threshold 

techniques are discussed [Austin 1986]. 

 

Chapter 3 develops a collection of weightless sum and threshold architectures which are 

formed from simple Boolean logic.  Several variations of logic architectures are 

described; including a serial method generating thermocode which has been patented by 

BAE SYSTEMS.  The patent is included in Appendix C.  In addition new weightless 

Boolean sum and threshold elements are presented which complements the elements 

proposed by King [King 2000].  These are the greater-than-and-equal and the less-than-

and-equal functions given in Figure 3.8 and Figure 3.9 respectively.  The advantages of 

these new architectures are they allow the greater-than-or-equals or less-than-or-equals 

to be performed in a single stage.  Previously King described three elements, greater 
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than, equals to, and less than.  In order to implement the combination of these 

architectures two elements were required, this meant there would be two stages of logic. 

The method proposed here reduced this to a single stage of logic and hence reduces the 

propagation delay. 

This chapter also describes a new method of learning for the correlation matrix memory. 

The plausibility of using different logic to implement the learning at the intersections of 

the correlation matrix memory which have conventionally been formed from ‘AND’ 

gates derived from Hebbian learning has been examined [Hebb 1949].  Table 3.2 shows 

a collection of alternative Boolean logic gates that can be used to implement different 

learning criteria, these include the ‘NOR’ gate and half the structure of the ‘EXOR’ 

gate.  The effects of different learning criteria have been simulated using ADAM 

network [Austin et al 1987]. 

In order to design the weightless Boolean hardware architecture of ADAM two new 

weightless Boolean threshold elements are described which perform the L – Max (N 

Point) threshold and the Willshaw threshold [Austin et al 1987].  Figure 3.14 and Figure 

3.15 show the new weightless Boolean architectures used to form a weightless ADAM. 

 

Chapter 4 describes and evaluates a weightless Boolean hardware median filter when 

implemented on an FPGA and subjected to single event affects caused by neutron 

radiation.  The weightless Boolean hardware median filter has been patented by BAE 

SYSTEMS to protect intellectual property rights.  Section 5.4 describes the 

asynchronous weightless Boolean filter and analyses the operational speed in 

conjunction with conventional weighted median filter implemented in a similar FPGA 

[Xilinx 1998].  Section 5.5.1 describes a new technique with greater parallelism for 

converting weighted binary data into thermocode.  This is then compared with King’s 

thermocoding technique assessing the speed of operation of both filters when converting 

8-bit binary into thermocode.  The parallel technique reduces the layers of gates in 

comparison to King's method drastically reducing the propagation delay of the overall 

median filter and making the performance comparable to that of a weighted binary 

median filter implemented in an FPGA. 

A study of both filters is made when subjected to neutron radiation using an FPGA 

which is prone to single event upsets.  The results show that the weightless architecture 

is more prone to upset.  However these upsets have a limited affect on the overall result 

due to the inherent nature of the architecture meaning the failure mode is more graceful 

and predictable.  The increase in upsets within this architecture is due to the number of 
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data channels as each data channel can only carry one bit.  Conversely the weighted 

median filter suffers less upsets but the outcome of these is much less predictable as 

each of the bits could be affected varying the amount by which the data is changed.  The 

worst-case is that the data could halve or double in magnitude with a single bit failure. 

This is demonstrated in Figure 4.28 which shows the results of the testing undertaken. 

 

Chapter 5 evaluates of King’s type 1 Neuroram filter using three standard images and a 

collection of further noise types to better characterises the performance of the filter.  

The noise types that have been applied to the three standard images are additive 

Gaussian, additive uniform, multiplicative uniform and multiplicative Gaussian as well 

as Salt and Pepper noise as originally tested by King [2000].  The effects on the images 

are shown in Figure 5.5 through to Figure 5.10.  This analysis was presented in the form 

of histogram plots of the original image and the resultant images following corruption 

by the different noise types.  The effect of the filter on removing these noise types has 

been assessed using the evaluation criteria of PSNR and MSE as described in section 

4.4.  It is clear that the additive Gaussian noise causes severe corruption to the image, 

this is shown in Figure 5.11(c).  The results shown in Figure 5.12, Figure 5.14, Figure 

5.16, Figure 5.18 and Figure 5.20 clearly demonstrates the median filter is better for 

certain noise types.  Most types of filter performed well on the original salt-and-pepper 

noise trials by King, including multiplicative Gaussian noise and multiplicative uniform 

noise.  The filter is not well-suited to the removal of additive noise types such as 

additive Gaussian and additive uniform noise.  It is clear from the images in Figure 

5.15, Figure 5.17 and Figure 5.19 the weightless median filter causes less blurring and 

has improved definition in contrast to the standard median filter. 

A novel trial was performed on both the median filter and the neural filter to identify the 

ideal number of filters in cascade.  The images used for these were corrupted with the 

salt-and-pepper noise as this was the noise type the filters perform the best with.  Figure 

5.21 shows the optimum number of filters for the median filter was two.  However the 

neural filter continued to show improvement up to five filters with the compromise of 

performance against number of filters being three.  The overall performance of the 

median filter was better than that of the neural filter. 

A final evaluation of the weightless filter examining its properties with various 

thresholds was performed in section 4.6.  King in his thesis describes the optimum 

threshold being half the number of samples, in this case this would equate to a threshold 

of either 4 or 5 [King 2000].  King did qualify this statement saying that the threshold 
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would have some data dependency. This research was conducted on two separate 

images as shown in Figure 5.28 and Figure 5.30.  Figure 5.28 shows the effects of the 

filter with different thresholds and demonstrates that at lower thresholds the definition 

of the images is poor.  However as the threshold increases more detail is revealed 

showing an optimum threshold of three or four demonstrated by the graph shown in 

Figure 5.27.  The trial was then repeated on the Milk Drop image using multiplicative 

uniform noise which was added at 20%.  This had similar characteristics showing a lot 

of white noise at the lower thresholds and a lot of dark noise at the higher thresholds as 

shown in Figure 5.30.  This trial was repeated with 40% added noise and the results 

were the same.  This showed the ideal threshold for the filter to be three, against King's 

original prediction this shows a threshold of 33% performs better in a nine sample 

window than the originally suggested 50%. 

 

Chapter 6 describes a novel weightless implementation of the self ordered map.  This 

implementation follows the principles of the conventional self ordered map originally 

developed by Kohonen [Kohonen 1984].  As part of the implementation of the self 

ordered map several novel weightless elements had been developed.  These extend the 

collection of weightless elements for the development of both weightless neural 

networks as standard weightless architectures.  These include a selector circuit shown in 

Figure 6.7 which is designed to select the first responding output in a parallel line of 

weightless data.  An expander circuit shown in Figure 6.9 which is primarily designed 

to take the output of the selector circuit.  The operation of this element is to ensure a 

wider number of outputs responses adjacent to the stimulated input or inputs.  This 

circuit can be used in conjunction with the selector circuit to enhance a region of 

interest within a weightless network.  The final weightless Boolean element developed 

is the Hamming distance reducer shown in Figure 6.12.  This is designed to take two 

weightless Boolean streams of data and reduce the Hamming distance between the 

streams of data.  Two versions of this are given, one which reduces one of the data 

streams by one bit and the other which allows multiple bits to be altered in order to 

reduce the Hamming distance as shown in Figure 6.13. 

The culmination of these elements is the implementation of a weightless self ordered 

map.  This demonstrates that a weighted neural network such as the self ordered map 

can be implemented in weightless Boolean hardware. 
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7.4 Original Contributions 

7.4.1 Robustness to Corruption 

It has been demonstrated through ground based accelerator testing in a high flux neutron 

environment that weightless Boolean implementations respond differently to data 

corruption compared to standard weighted binary implementations.  Although the 

incidence of corruption is increased in comparison to an equivalent weighted 

implementation, due to the increased size of the data bus, the resultant effect is less 

significant.  This is due to the removal of the binary weighting function which 

contributes to a random data corruption.  Therefore weightless logic has advantages in 

avionic hardware which is subjected to atmospheric radiation effects; it has applicability 

to voting systems and high integrity systems. 

7.4.2 Production of a Weightless Median Filter 

An aim of the research was to demonstrate that standard functions and elements could 

be re-designed and implemented in weightless Boolean logic.  A novel median filter 

was produced which does not require any clocked arithmetic elements.  The parallel 

nature of the weightless logic ensures that high speed operation of the filter could be 

achieved.  Coupled with its increased robustness, this makes it an ideal target for 

medical and avionic applications. 

7.4.3 Neuroram as an Image Filter 

The research has further defined the properties of Neuroram when configured as an 

image filter.  It has characterised the properties of Neuroram and its ability to filter 

noise on a greater range of adjustment of the threshold of Neuroram. It has shown its 

effects are similar to those of a standard median filter although it has some distinct 

differences.  The corruption to the image caused by applying the filter is different, the 

fact it does not damage the edges of the images.  Another distinct difference is the effect 

of cascading Neurorams. 

7.4.4 Sum and Threshold Elements 

A further selection of sum and threshold weightless Boolean elements have been 

designed which contribute to the prior art for use in weightless neural networks.  These 

include Willshaw and N point sum and threshold elements which form an integral part 

of the ADAM network and new techniques for thermocoding weightless data.  A logic 



 

167 

 

element capable of producing combined ‘greater-than-or-equal-to’ and ‘less-than-or-

equal-to’ results has been produced. 

7.4.5 Non-Hebbian Learning 

Conventionally correlation matrix memories have been based on Hebbian learning.  A 

new selection of learning criteria has been suggested, the main example being that of 

non-Hebbian learning.   

7.4.6 ADAM 

A completely Boolean implementation of ADAM has been designed and simulated. It is 

based on the novel weightless Boolean sum and threshold elements.  This has resulted 

in an ADAM network that no longer relies on counters or arithmetic logic, improving its 

robustness and ensuring the network is not only weightless in operation but also in 

implementation.   

7.4.7 Self Ordered Map 

A collection of weightless Boolean elements have been designed which have allowed a 

weightless implementation of Kohonen’s self ordered map [Kohonen 1984].  These 

elements include a weightless Boolean expander, selector, and Hamming distance 

reducer. 
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Chapter 8 

 

8 Further Work 
 

8.1 Neuroram 

A further extension to Type 1 Neuroram particularly with regard to image filtering is to make 

use of the ability to alter its threshold is suggested.  This research has shown the threshold 

needs to be altered dependent on the data, in this case the greyscale of the image.  Two 

possible extensions are; a filter which sets the threshold for the whole data set in this example 

the overall average greyscale of the image.  A more flexible alternative is a dynamic 

threshold which is based on the local regional greyscale.  It is expected this will have 

improved characteristics over the fixed threshold models described in this thesis. Closer 

examination of this property using frequency analysis may define the level of improvement in 

comparison to traditional techniques.  This further work may yield areas where these filters 

are more applicable; such as medical imaging.  It is suggested that an evaluation using a 

cascade of Neurorams acting as image filters each with differing thresholds may yield some 

interesting properties. 

 

8.2 Weightless Neural Element Properties 

This research has investigated the robust nature and design of weightless Boolean logic 

elements, and has shown the architectures to be larger, however it is believed that the 

removal of the high speed clocked elements should also reduce their power consumption and 

thermal dissipation when implemented in hardware.  The reduction of clock speed will also 

reduce the incidence of atmospheric radiation induced transient single event upsets which are 

more likely to lead to metastability when high clock speeds are used.  A study into these 

hypotheses may further support the applicability of this technology in avionic systems. 

 

8.3 Non-Hebbian Techniques 

The author’s new learning criteria proposed for the Correlation Matrix Memory in this 

research may offer improvements in other existing weightless neural networks, particularly 
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those based on the CMM such as AURA [Austin et al 1998].  Further analysis of these 

networks using these new learning criteria is required to study the operation and 

implementation of them and further characterise their performance. 

 

8.4 ADAM 

A further evaluation of ADAM using a combination of non-Hebbian learning and Hebbian 

learning is required.  It is proposed that the addition of non-Hebbian learning in parallel with 

Hebbian learning may be beneficial on a network that is becoming saturated.  This regime 

would use the same tupling but the final result would be a combination of both learning 

techniques.  The philosophy behind this is that the network would have less ‘zeros’ and these 

would hold valuable information which is presently being lost with the current method. 

 

8.5 Weightless Self Ordered Map 

The weightless self ordered map has only been simulated so far using MATLAB with a 

restricted data set.  Simulations using larger and varied data sets would further confirm the 

operation of the weightless implementation.  A full hardware implementation of the 

weightless self ordered map on a typical FPGA architecture would demonstrate a physical 

implementation. 

 

8.6 Weightless Boolean Elements 

The weightless Boolean elements developed during this research are generic.  Further 

investigation into applying them to other weighted and weightless neural networks is 

suggested to examine if any benefit could be gained.  The weightless elements generated also 

may have merit in the field of robust voting systems for high reliability systems operating in 

harsh environments; these include space, high altitude, medical and industrial applications 

where they are subjected to high electro-magnetic fields. 

Further research into the robust nature of these elements should be performed in high electro-

magnetic fields to evaluate if this technology is more robust due to the removal or reduction 

of the clock systems.  Examination of the Electro-Magnetic Compatibility (EMC) of 

weightless Boolean logic in comparison to standard implementations may show reduced 

EMC emissions due to the removal or reduction of the clock frequency. 
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Appendices 

 

Appendix A has the two papers resulting from trials at TSL in using CCD’s to capture 

single event effects. 

 

 Analyses of CCD Images of Nucleon-Silicon Interaction Events. 

 Single Particle Dark Current Spikes Induced in CCD’s by High Energy 

Neutrons. 

 

Appendix B contains the two presentations submitted and accepted by the IET for 

publication. 

 

 BAE SYSTEMS, Air Systems Approach to the Problem of Atmospheric 

Radiation. 

 System Level Prevention: Managing SEE Using Error Correction Techniques. 

 

Appendix C contains three international patents, derived from the author’s BAE 

SYSTEMS invention reports.  These have been examined and published.  

 

 Ordering by Hamming Value. 

 Serial Weightless Data to Thermocode Coded Data Converter. 

 Ordering Weightless Binary Tuples According to Hamming Value. 

 

Appendix D consists of a DVD retained on the inside back cover of this thesis.  It 

contains MATLAB emulations, C code simulations, PIC C code, circuit diagrams and 

FPGA projects.  It represents an archive of electronic data generated during the course 

of the research. 
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