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Abstract 

The aims of this study were to determine equal sensation curves for hand-arm steering wheel rotational 

vibration and to investigate the effect of gender on the subjective perceived intensity of steering wheel 

hand-arm vibration. Psychophysical response tests of 40 participants (20 males and 20 females) were 

performed using a steering wheel rotational vibration simulator using the category ratio Borg CR10 scale 

procedure for direct estimation of perceived intensity. The test stimuli were sinusoidal vibrations at 22 

third octave band centre frequencies in the range from 3 to 400 Hz, with acceleration amplitudes in the 

range from 0.04 to 27 m/s2 r.m.s.. Multivariate regression procedures were applied to the experimentally 

acquired data in order to establish a regression model expressing the Borg CR 10 perceived intensity 

values as a function of the two independent parameters of the frequency and amplitude of vibration. The 

equal sensation curves suggested a nonlinear dependency of the subjective perceived intensity on both 

frequency and amplitude. Females were found to provide higher Borg CR10 perceived intensity values 

than males (p<0.05), particularly at the higher intensity levels above approximately 1.0 m/s2 r.m.s and at 

the higher frequencies above approximately 20 Hz. 

Relevance to industry: For the manufacturers of steering systems and of other automobile components 

this study provides vibration perception curves and identifies the possible importance of gender towards 

the perception of vibration which arrives at the steering wheel. 

Keywords: Perception; Sensation; Hand; Gender; Vibration; Steering; Automobile 

 

1. Introduction 

 

The human subjective response to hand-arm vibration has been investigated in several studies which have 
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established equal sensation curves which indicate the combination of sinusoidal frequency and amplitude 

that produce a similar sensation of perceived intensity. Miwa (1967) established equal sensation curves 

for 10 male participants who held their palm flat against a plate which was vibrated sinusoidally in either 

the vertical or horizontal direction at acceleration amplitudes of either 0.31, 3.1 or 31.1 m/s2 r.m.s. over 

the frequency range from 2 to 300 Hz. Human subjective response to hand-arm vibration was found to 

decrease almost monotonically as a function of frequency. Reynolds et al. (1977) established equal 

sensation curves for 8 male participants who gripped with one hand a handle which was vibrated 

sinusoidally in either the vertical, axial or horizontal directions at acceleration amplitudes of either 1.0, 

10.0 or 50.0 m/s2 r.m.s. over the frequency range from 16 to 1000 Hz. The three curves suggested a 

nonlinear acceleration dependency of the perceived intensity of hand-arm vibration, and a general trend of 

reduced sensitivity with increasing frequency. Morioka and Griffin (2006) established a family of equal 

sensation curves for 12 male participants who gripped with one hand a cylindrical handle which was 

vibrated sinusoidally in either the vertical, axial or horizontal directions over the frequency range from 8 

to 400 Hz. At acceleration magnitudes greater than about 2.0 m/s2 r.m.s. the equal sensation curves 

suggested a decreased sensitivity to hand-arm vibration with increasing frequency, while at lower 

acceleration magnitudes the curves suggested an increased sensitivity to hand-arm vibration with 

increasing frequency from 20 to 100 Hz. At all vibration magnitudes, the curves suggested decreased 

sensitivity with increasing frequency from 8 to 16 Hz. 

 

With respect to automotive steering vibration Giacomin et al. (2004) established equal sensation curves 

for 15 participants (10 males and 5 females) who held a rigid sinusoidally rotating steering wheel with 

both hands at two acceleration amplitudes of 1.0 and 1.5 m/s2 r.m.s. over the frequency range from 3 to 

315 Hz. A constant acceleration dependency was noted from 3 to 5 Hz, and a decrease in the human 

sensitivity to hand-arm rotational vibration was found with increasing frequency from 5 to 315 Hz. 

Amman et al. (2005) established equal sensation curves for 28 participants (gender was not reported) who 

held an automotive steering wheel with both hands. The study investigated the human subjective response 

to 1.0 m/s2 r.m.s. amplitude sinusoidal vibration applied along either the longitudinal, lateral or vertical 

over the frequency range from 8 to 64 Hz. The study also investigated the subjective response to vibration 

along the rotational direction by means of sinusoidal stimuli with acceleration amplitudes of 0.8 and 1.6 

m/s2 r.m.s. over the frequency range from 8 to 20 Hz. Amman et al.’s equal sensation curves suggested a 

general trend of decreasing sensitivity to vibration with increasing frequency over the frequency range 
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investigated. 

 

The equal sensation curves established in most of the studies performed to date represent the average 

responses of small groups of 8 to 15 people. In addition, the human subjective response to hand-arm 

vibration stimuli is based mainly upon responses from male participants despite the fact that since the 

1970s the percentage of female drivers has increased in most countries. In the UK, for example, the 

number of female drivers has increased from 29 to 63 percent while that of men has only increased from 

69 to 81 percent (National Travel Survey, 2005). 

 

The primary objective of the present study was to establish a family of equal sensation curves for 

perceived intensity of steering wheel rotational vibration using the most commonly applied regression 

models, namely, least squares regression, all possible regression, backward elimination regression and 

stepwise regression procedure. The secondary objective was to investigate the effect of gender differences 

on the shape of the equal sensation curves for hand-arm steering wheel rotational vibration. 

 

2. Experiment 

2.1 Test Facility 

Figure 1 presents a schematic representation of the steering wheel rotational vibration test facility used in 

this study and of the associated signal conditioning and data acquisition systems. The main geometric 

dimensions of the test rig, which were based on average data taken from a small European automobile, 

are presented in Table 1. The rotational steering system consisted of a 350 mm diameter aluminum wheel 

attached to a steel shaft which was in turn mounted to two low friction bearings which were encased in a 

square steel casing. The steering wheel consisted of a 5 mm thick central plate with two cylindrical 

handles of 25 mm diameter and 3 mm thickness welded at the extremities. The steering wheel was made 

of aluminum in order to obtain a first natural frequency greater than 350 Hz. Rotational vibration was 

applied by means of a G&W V20 electrodynamic shaker, which was connected to the shaft by means of a 

steel stinger rod, and amplified by PA100 amplifier (Gearing and Watson Electronics Limited, 1995) 

using an Leuven Measurement Systems (LMS) Cada-X 3.5 E software and a 12-channel Difa Systems 

Scadas Ⅲ front-end unit (LMS International, 2002). The acceleration obtained at the steering wheel was 

measured using an Entran MSC6 signal-conditioning unit (Entran Devices Inc, 1991). The acceleration 

was measured in the tangential direction. The car seat was fully adjustable in terms of horizontal position 
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and back-rest inclination as in the original vehicle. The safety features of the test rig, and the acceleration 

levels used, conform to the health and safety recommendations outlined by British Standard 7085 (1989). 

[Insert here Figure 1] 

[Insert here Table 1] 

 

2.2 Test stimuli 

Sinusoidal test stimuli were used. The frequencies were chosen to be 1/3 octave band center frequencies 

in the range from 3 to 400 Hz which span the frequency range (Ajovalasit and Giacomin, 2003; Fujikawa, 

1998; Giacomin et al., 2004) over which road vehicles present significant levels of steering wheel 

vibration. The maximum stroke of the test rig shaker unit (±10 mm) limited the maximum achievable 

acceleration at the steering wheel which, in turn, limited the minimum test frequency to 3 Hz. For 

frequencies lower than approximately 3 Hz accurate sinusoidal acceleration signals could not be achieved 

at the rigid wheel. The acceleration magnitudes were chosen to be in the range from 0.04 to 27 m/s2 r.m.s.. 

A total of 86 steering wheel rotational sinusoidal vibration stimuli were used as listed in Table 2. 

[Insert here Table 2] 

 

In order to ensure satisfactory signal reproduction accuracy a calibration procedure was performed in 

order to determine the drive voltage for use with each individual test participant. The accuracy of the 

signal reproduction was quantified by measuring the maximum r.m.s. error between the actuated stimulus 

at the wheel and the target drive stimuli. The maximum error was found to be below 5.0%, which 

compared favorable with the just-noticeable-difference value for human perception of hand-arm vibration 

of 15 to 18% determined by Morioka (1999). 

 

2.3 Test subjects and test protocol 

A total of 40 university students and staff participated in this study, of which 20 were male and 20 were 

female. A consent form and a short questionnaire were presented to each participant prior to testing, and 

information was gathered regarding their anthropometry, health and history of previous vibration 

exposures. Table 3 presents a basic summary of the physical characteristics of the group of test 

participants. The mean values and the standard deviation of the height and weight of the test participants 

presented in Table 3 were close to the 50 percentile values for the U.K. population (Pheasant and 

Haslegrave, 2005). A statistical t-test performed for the test groups suggested significant differences in 
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height and weight between the males and the females (p<0.05), while no significant differences were 

found in age between the males and the females. All subjects declared themselves to be in good physical 

and mental health. 

 

Before commencing testing each subject was required to remove any heavy clothes such as coats, and to 

remove any watches or jewelry that they were wearing. They were then asked to adjust the seat position 

and backrest angle so as to simulate a driving posture as realistically as possible. Since grip type and grip 

strength (Reynolds and Keith, 1977) are known to effect the transmission of vibration to the hand-arm 

system, the subjects were asked to maintain a constant palm grip on the steering wheel using both hands. 

In addition, they were asked to maintain the grip strength which they felt they would use when driving on 

a winding country road. The subjects were also asked to wear ear protectors so as to avoid auditory cues. 

Room temperature was maintained within the range from 20 to 25℃ so as to avoid significant 

environmental effects on the skin sensitivity (ISO 13091-1, 2001). 

[Insert here Table 3] 

 

A Borg CR10 category-ratio scale (Borg, 1998), shown in Figure 2, was used to provide direct estimation 

of the perceived intensity of vibration. The Borg CR10 scale has been found to be reliable in quantifying 

the human perception of hand-arm vibration, with reliability coefficients ranging from 0.841 to 0.986 

(Wos et al., 1988). The information describing the experiment was presented to the test participant by the 

experimenter using the instructions provided by Borg (Borg, 1998) for the scale’s administration. The test 

subjects were further asked to focus their eyes on a board which was placed about 1 meter ahead at eye 

level, which presented the Borg rating scale. Before starting the experiment two trial runs were performed 

so as to familiarize the participants with the test procedure. 

[Insert here Figure 2] 

 

In order to assess the individual’s ability to rate the stimuli, all 86 stimuli were repeated three times in 

three single blocks, for a total of 258 assessment trials for each participant. The mean Borg CR10 values 

of the three repetitions, and the SD values, were thus calculated for each stimulus. In order to minimize 

any possible bias resulting from learning or fatigue effects, the order of presentation of the test signals 

was randomized for each subject and for each block. A break of 1 minute after the presentation of each 

block was used to reduce annoyance effects. A 7 second stimulus duration was used so as to provide a 
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vibrotactile stimulus which remained within human short-term memory (Sinclair and Burton 1996), thus a 

stimulus which could be judged without reliance upon the long-term storage of stimuli information by the 

test participant. A complete test required approximately 60 minutes to complete with one participant. 

 

3. Multivariate regression methods 

A statistical regression analysis was performed using both MATLAB (Mathworks Inc., 2002) and the 

SPSS software (SPSS Inc., 2004). The objective was to establish a mathematical model to express the 

Borg CR10 subjective intensity as a function of the two independent parameters of frequency and 

magnitude. A linear fitting procedure was chosen since nonlinear fitting methods often suffer from 

convergence problems and since the deviation from linear forms in the current application were not so 

dramatic as to produce extensive local minima or widely differing multiple solutions. Four different 

approaches to regression modeling were attempted which differed in the statistical selection criteria used 

for deciding which variables to maintain in the regression expression. The four methods were least-square 

regression, all possible regressions, backward elimination and the stepwise regression procedure (Draper 

and Smith, 1998). Based on the results from a previous study (Ajovalasit and Giacomin, 2007) all the 

regression models were expressed in logarithmic polynomial form up to either 4th, 5th or 6th order. The use 

of a logarithmic transformation and of polynomial regression terms from 4th to 6th order for both the 

frequency and the acceleration values was found in the previous study to provide the most accurate 

description of the physical phenomena contained in the dataset. 

 

The selection criteria for choosing an optimal model were taken in this study to be the following (a) the 

fitted model should produce the highest goodness-of fit as defined by the highest adjusted coefficient of 

determination ( 2
aR ) and by the smallest residual mean-square error (MSE) (Hocking, 1976), (b) the equal 

sensation curves which can be determined using the regression model should present similar frequency 

dependency characteristics to those found in previous studies on the physiology of vibrotactile perception, 

and (c) the fitted mathematical equation should be as simple as possible in light of possible practical 

application.  

 

4. Results 

Table 4 presents the mean and one standard deviation values obtained for each frequency and each 

amplitude tested for the 40 test participants. For each test amplitude the mean Borg CR10 subjective 
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values can be seen to generally decrease with increasing test frequency, suggesting a lower perceived 

intensity at higher frequencies as expected from psychophysical theory (Gescheider, 1997) and from 

previous research (Miwa, 1967; Reynolds et al., 1977; Giacomin et al., 2004; Amman et al., 2005; 

Morioka and Griffin, 2006). Another feature that can be observed is that the standard deviation was found 

to generally increase with increasing test amplitude, suggesting a greater difficulty on the part of the test 

participants to distinguish high amplitude stimuli. 

[Insert here Table 4] 

 

4.1 Effect of the multivariate regression approach 

In order to identify an optimal model with which to represent the equal sensation curves the goodness-of-

fit statistics were evaluated for each polynomial regression expression determined by means of each 

multivariate regression procedure. Table 5 presents the goodness-of-fit statistics for the overall test dataset 

(n = 40) obtained using the four multivariate regression analysis procedures at polynomial orders up to 

the 6th order. As can be seen from Table 5, although the differences in mean square error MSE and 

adjusted coefficient of determination 2
aR  were small among the different approaches used, the best 

result was achieved by means of the stepwise regression procedure using terms up to 6th order, which 

obtained the lowest MSE value (0.084) and the highest 2
aR  value (0.983). 

[Insert here Table 5] 

[Insert here Figure 3] 

 

Figure 3 presents the equal sensation curves which achieved the lowest MSE and the highest 2
aR  for 

each of the different multivariate regression procedures. The curves obtained by means of the stepwise 

regression procedure suggested a decreased sensitivity with increasing frequency from 6.3 to 400 Hz, a 

constant sensitivity from 3 to 6.3 Hz, and a dip behavior in the vicinity of 100 Hz similar to the well 

known response of the Pacinian mechanoreceptors (Verrillo, 1966; Reynolds et al., 1977). In addition, the 

6th order stepwise regression procedure produced a regression model with only 12 coefficients which was 

 

S = 3.4268 + 0.7638log(f) + 2.3058log(a) + 0.5289log(a)2 – 0.2506log(f)3 +             (1) 

– 0.0978log(f)2log(a) – 0.0881log(f)log(a)2 + 0.0396log(a)3 + 0.0523log(f)4 + 

– 0.0004log(f)6 + 0.0003log(f)5log(a) – 0.0003log(f)3log(a)3 
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where S is the Borg CR10 subjective intensity value which is determined by the fitted model, f is the 

frequency in units of Hertz and a is the r.m.s. acceleration magnitude in units of meters per second 

squared. 

 

4.2 Effect of gender 

Table 6 presents the goodness-of-fit statistics obtained for the regression models which were fit separately 

to the data of only the male test participants (n = 20) and of only the female test participants (n = 20) 

using the multivariate procedures. For each of the regression methods, the model order which provided 

the best results for the complete dataset was applied also to the data obtained for each individual gender 

group. As can be seen in Table 6, the stepwise regression procedure was found to provide the best model 

for both the male and the female test groups. The procedure provided a MSE value of 0.064 and a value 

of 0.985 for 2
aR  for the males while it produced a MSE value of 0.168 and a value of 0.973 for 2

aR  for 

the females. 

 

Figure 4 presents the equal sensation curves obtained for the male and the female sample groups obtained 

by means of the stepwise regression procedure. From the results of Figure 4 it can be seen that the 

females provided higher perceived intensity values than the males for the same physical stimulus at most 

frequencies. At frequencies above approximately 20 Hz the equal sensation curves for the female test 

group are characterized by a flatter shape than those obtained for the male test group, whereas at 

frequencies below approximately 20 Hz similar shape was found for both groups. Gender differences 

were more marked at acceleration amplitudes above approximately 1.0 m/s2 r.m.s.. For example, it can be 

seen in Figure 4 that the subjective response of the females for the stimulus with amplitude of 2 m/s2 r.m.s. 

and frequency of 30 Hz was approximately 4.0 on the Borg CR-10 scale, while that of males for the same 

stimulus was approximately 3.0 on the Borg CR-10 scale.  

[Insert here Figure 4] 

[Insert here Table 6] 

 

5. Discussion 

The results of this study suggest that the stepwise regression procedure provided the best equation for 

modelling the hand-arm equal sensation curves. The best fit equation provided the lowest MSE of 0.084 
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and the highest adjusted coefficient of determination 2
aR  of 0.983 using only 12 coefficients. Compared 

to the other regression procedures used in this study, the equal sensation curves obtained by means of 

stepwise regression suggested small variations in the shape of the curves at low vibration amplitudes and 

more uniform shape at high vibration amplitudes, resembling the curves defined by previous researchers 

(Reynolds et al., 1977; Gescheider et al., 2004). A possible explanation of the effectiveness for the 

stepwise regression procedure may be that only a small number of coefficients were included in the 

model. Direct support for this can be found in the study of Barrett and Gray (1994) who applied the 

stepwise regression procedure for constructing a multivariate regression model. They found that the 

stepwise regression procedure provided a better model using a rather small number of variables as 

opposed to the all possible subsets approach. In addition, the general efficiency of stepwise regression 

was noted by Wallace (1964), who suggested that the stepwise regression procedure provided a better 

model because of the reduced bias of the coefficients selection procedure. 

 

The results of this study also suggest that the equal sensation curves for steering wheel rotational 

vibration differed between males and females. These differences are most obvious at intensity levels 

above approximately 1.0 m/s2 and at frequencies above approximately 20 Hz. This difference is partially 

supported by the results of Verrillo (1979) who found that vibratory stimuli at suprathreshold levels are 

felt more intensely by females than by males, and by those of Neely and Burström (2006) which suggest 

that females report higher levels of physical intensity and discomfort than males. Similar indications can 

also be found in the study of steering wheel vibration induced fatigue performed by Giacomin and 

Abrahams (2000), which found that females reported greater arm region discomfort than males, and by 

the questionnaire-based investigation of Giacomin and Screti (2005) which found that female drivers 

reported higher discomfort responses than male drivers for the hand-arm region. 

 

While substantial differences in the perception of hand-arm vibration between males and females appear 

to be present in the research literature, the exact cause has yet to be clarified. While gender itself may be a 

dominant factor, particularly in the trends identified by Verrillo, the actual mechanical mass of the hand-

arm system may be the primary cause of variance in several research investigations, including this current 

study. For example, Burström and Lundström (1994) have suggested that the size and mass of the 

subject’s hand and arm greatly affect energy absorption. Further research is therefore required so as to 

establish whether these differences are sensory differences or, instead, biomechanical in nature. 
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[Insert here Figure 5] 

Figure 5 presents the best fit equal sensation curves determined in this study, the results of Miwa (1967) 

for hand-arm vibration in the vertical direction, the results of Reynolds et al. (1977) for hand-arm axial 

direction vibration, the results of Giacomin et al. (2004) and those of Amman et al. (2005) for steering 

wheel hand-arm rotational vibration. Each of the equal sensation curves shown in Figure 5 represents a 

curve of equal subjective perceived intensity. The equal sensation curves of the current research study are 

interpolations of the Borg values provided by the test subjects. The curves shown in Figure 5 are for the 

Borg values 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0. The equal sensation curves from the 

previous research studies are, instead, interpolations of the acceleration data points obtained using 

magnitude estimation test protocols in the case of Reynolds et al., Giacomin et al. and Amman et al. and a 

paired-comparison method in the case of Miwa. All the curves suggest a decreased sensitivity of hand-

arm vibration with increasing frequency for frequencies above about 6.3 Hz. For frequencies below 6.3 

Hz, the curves obtained in this study suggest a constant sensitivity as also found in the results of Miwa 

and of Giacomin et al.. The reduction in sensitivity was found, however, to be greater in the curves of 

Miwa than in either those of Reynolds et al. or those of the current study. While difficult to demonstrate 

without replication of each of the previous studies, a possible explanation for the differences may in part 

be the use of different psychophysical test methods in the various investigations and the use of only male 

test participants. As can be seen from Figure 4, females were found to provide higher perceived intensity 

values than males resulting in a lower equal sensation curve. 

 

It is also evident from Figure 5 that at low perceived intensities from 0.5 (just noticeable) to 1.0 (very 

weak) of the Borg CR-10 scale the equal sensation curves determined in the current study show 

similarities in shape to the well-known vibrotactile perception threshold curves of the human hand. As the 

perceived intensity increases towards the maximum value of 8.0 found in the current study the equal 

sensation curves assume a more uniform shape, however, resembling the annoyance threshold for the 

hand-arm system defined by Reynolds et al. (1977). Comparison of the results of Figure 5 suggests that 

while the curves of Miwa and of Amman et al. suggest relatively small dependencies on the vibration 

amplitude, the equal sensation curves of the current study and those of Reynolds et al. suggest a 

significant nonlinear response. A possible explanation of these differences may be the use of relatively 

low reference stimuli amplitudes in the studies of Miwa and of Amman et al. The use of a low reference 
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frequency has been found to affect the shape of equal sensation curves, especially at frequencies above 

approximately 50 Hz (Giacomin et al., 2004).  

 

6. Conclusion 

Psychophysical response tests of 40 participants (20 males and 20 females) were performed in a steering 

wheel rotational vibration simulator using the category-ratio Borg CR10 scale procedure for direct 

estimation of perceived vibration intensity. The equal sensation curves for steering wheel hand-arm 

rotational vibration were established using multivariate regression analysis procedures. The best fit 

regression model to describe the equal sensation curves was found to be a 6th order polynomial model 

having 12 terms, which was obtained by means of a stepwise regression procedure. The results suggest a 

nonlinear dependency of the subjective perceived intensity on both frequency and amplitude. The equal 

sensation curves were found to be characterized by a decreased sensitivity to hand-arm vibration with 

increasing frequency from 6.3 to 400 Hz, but a constant sensitivity from 3 to 6.3 Hz. The best fit 

regression models determined for the male test participants and for the female test participants suggest 

important differences in the frequency range from 20 to 400 Hz, while both curves suggest similar 

sensitivity at frequencies below 20 Hz. Females were found to be more sensitive to steering wheel 

rotational vibration than males, particularly at intensity levels above approximately 1.0 m/s2 r.m.s. and at 

frequencies above approximately 20 Hz (p < 0.05). 
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[Table 1] Geometric dimensions of the steering wheel rotational vibration test rig. 

 

[Table 2] Frequency and amplitude of the 86 sinusoidal rotational steering wheel vibration stimuli. 

 

[Table 3] Mean and standard deviation summary statistics for the test participants. 

 

[Table 4] Summary of the subjective responses obtained by means of Borg CR-10 scale. 

 

[Table 5] Goodness of fit statistics obtained for overall data set (n = 40). 

 

[Table 6] Goodness of fit statistics obtained separately for the male test participants data set (n = 20) and    

for the female test participants data set (n = 20). 
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[Figure 1] Steering wheel vibration test rig and associated electronics. 

 

[Figure 2] Borg’s category ratio CR-10 scale (adapted from Borg 1998). 

 

[Figure 3] Equal sensation curves obtained for Borg subjective perceived intensity values from 0.5 to 8.0 

using the four regression procedures considered in this study. 

(a) Least-square regression procedure,  

(b) All possible regressions procedure, 

(c) Backward elimination regression procedure, 

(d) Stepwise regression procedure. 

 

[Figure 4] Equal sensation curves obtained separately for the male test participants and for the female test 

participants, obtained by means of the stepwise regression procedure. 

 

[Figure 5] Equal sensation curves obtained in the current study and those obtained in previous studies of 

hand-arm translational or rotational vibration. 

 



 1

 
 [Table 1] Geometric dimensions of the steering wheel rotational vibration test rig. 

 
[Table 2] Frequency and amplitude of the 86 sinusoidal rotational steering wheel vibration stimuli. 

Frequency (Hz) Acceleration amplitude (r.m.s. m/s2) 

3 0.080, 0.165, 0.486, 1.000 

4 0.318, 0.127, 0.503, 1.263 

5 0.080, 0.225, 1.065, 3.000 

6.3 0.143, 0.454, 0.810, 2.579 

8 0.080, 0.275, 1.748, 6.000 

10 0.153, 0.560, 1.071, 3.921 

12.5 0.080, 0.298, 2.146, 8.000 

16 0.159, 0.634, 1.263, 5.017 

20 0.080, 0.335, 2.867, 12.000 

25 0.167, 0.732, 1.530, 6.694 

31.5 0.080, 0.364, 3.521, 16.000 

40 0.172, 0.795, 1.710, 7.906 

50 0.080, 0.382, 3.981, 19.000 

63 0.176, 0.853, 1.876, 9.088 

80 0.070, 0.362, 4.255, 22.000 

100 0.060, 0.782, 1.841, 10.197 

125 0.060, 0.336, 4.461, 25.000 

160 0.040, 0.642, 1.620, 10.307 

200 0.060, 0.344, 4.713, 27.000 

250 0.150, 1.411, 2.977, 13.265 

315 0.400, 1.360, 8.529 

400 0.800, 3.782, 6.347 

Geometric Parameter Value 

Steering column angle (H18) 23 

Steering wheel hub centre height above floor (H17) 710 mm 

Seat H point height from floor (H30) 275 mm 

Horizontal distance adjustable from H point to steering wheel hub centre (d = L11=L51) 390-550 mm 

Steering wheel handle diameter 25 mm 

Steering wheel diameter 350 mm 
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[Table 3] Mean and standard deviation summary statistics for the test participants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test Group Age (years) Height (m) Weight (kg) 

Males (n=20) 33.9 (6.2) 1.81 (0.08) 84.2 (14.0) 

Females (n=20) 34.3 (6.6) 1.61 (0.06) 56.5 (7.1) 

Total (N=40) 34.1 (6.4) 1.71 (0.12) 70.3 (17.8) 
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[Table 4] Summary of the subjective responses obtained by means of Borg CR-10 scale. 
Frequency 

(Hz) 
Acceleration 

(m/s2) 
Subjective 
response SD  Frequency 

(Hz) 
Acceleration 

(m/s2) 
Subjective 
response SD 

3 

0.08 
0.165 
0.486 

1 

0.695 
1.525 
2.658 
4.131 

0.544 
0.758 
1.006 
1.211 

 

40 

0.172 
0.795 
1.71 
7.906 

0.701 
2.094 
2.333 
6.335 

0.558 
1.090 
0.903 
2.683 

4 

0.127 
0.318 
0.503 
1.263 

0.837 
1.645 
2.408 
4.100 

0.724 
0.826 
0.864 
1.305 

 

50 

0.08 
0.382 
3.981 

19 

0.194 
1.231 
3.910 
7.610 

0.198 
0.692 
1.432 
2.953 

5 

0.08 
0.225 
1.065 

3 

0.578 
1.612 
4.687 
6.188 

0.527 
0.800 
1.748 
1.748 

 

63 

0.176 
0.853 
1.876 
9.088 

0.833 
1.509 
2.716 
4.407 

0.612 
0.771 
1.430 
1.720 

6.3 

0.143 
0.454 
0.81 
2.579 

1.433 
2.425 
3.968 
6.538 

0.796 
0.936 
1.792 
1.663 

 

80 

0.07 
0.362 
4.255 

22 

0.198 
1.107 
3.599 
6.459 

0.218 
0.633 
1.599 
1.946 

8 

0.08 
0.275 
1.748 

6 

0.412 
2.198 
4.805 
8.651 

0.467 
0.891 
1.252 
2.709 

 

100 

0.06 
0.782 
1.841 

10.197 

0.092 
1.780 
1.800 
4.619 

0.180 
1.167 
0.822 
2.074 

10 

0.153 
0.56 
1.071 
3.921 

0.986 
2.216 
3.509 
6.272 

0.693 
0.963 
1.369 
1.311 

 

125 

0.06 
0.336 
4.461 

25 

0.134 
1.271 
2.723 
5.483 

0.223 
0.769 
1.190 
2.648 

12.5 

0.08 
0.298 
2.146 

8 

0.460 
1.361 
5.389 
8.383 

0.358 
0.641 
2.155 
1.804 

 

160 

0.04 
0.642 
1.62 

10.307 

0.043 
1.321 
2.394 
3.967 

0.127 
0.743 
1.138 
1.678 

16 

0.159 
0.634 
1.263 
5.017 

0.729 
2.523 
3.231 
6.845 

0.428 
1.101 
0.813 
2.399 

 

200 

0.06 
0.344 
4.713 

27 

0.098 
0.880 
2.686 
4.429 

0.183 
0.730 
1.268 
2.423 

20 

0.08 
0.335 
2.867 

12 

0.213 
1.652 
4.619 
8.574 

0.221 
0.791 
1.180 
2.769 

 

250 

0.15 
1.411 
2.977 

13.265 

0.238 
1.457 
2.271 
3.354 

0.414 
0.841 
1.292 
1.648 

25 

0.167 
0.732 
1.53 
6.694 

0.650 
1.948 
4.082 
6.206 

0.507 
1.032 
2.076 
1.676 

 

315 
0.4 

1.36 
8.529 

0.495 
1.303 
3.036 

0.609 
0.947 
1.809 

31.5 

0.08 
0.364 
3.521 

16 

0.228 
1.123 
4.489 
8.148 

0.329 
0.677 
1.979 
1.942 

 

400 
0.8 

3.782 
6.347 

0.709 
2.224 
2.305 

0.769 
1.690 
1.487 

 
 



 4

[Table 5] Goodness of fit statistics obtained for overall data set (n = 40). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters 
 
 

Methods 

Polynomial 
order 

Interaction 
terms 

Mean square error 
(MSE) 

Adjusted 
coefficient of 
determination 

( 2
aR ) 

Number of 
regression 

coefficients 

3rd 0.107 0.979 12 
4th 

4th 0.088 0.982 15 

3rd 0.108 0.978 14 

4th 0.093 0.981 17 5th 

5th 0.093 0.980 21 

3rd 0.108 0.978 16 

4th 0.091 0.981 19 

5th 0.092 0.980 23 

 
 
 

Least-squares 
procedure 

 
 

6th 

6th 0.098 0.975 28 

4th - 0.106 0.979 9 

5th - 0.085 0.983 13 
Stepwise 

procedure 
6th - 0.084 0.983 12 

4th - 0.101 0.980 11 

5th - 0.099 0.980 11 

Backward 
elimination 
procedure 6th - 0.099 0.981 10 

4th - 0.100 0.980 13 

5th - 0.106 0.980 17 
All possible 
procedure 

6th - 0.109 0.979 19 
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 [Table 6] Goodness of fit statistics obtained separately for the male test participants data set (n = 
20) and for the female test participants data set (n = 20). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters 
 
 

Methods 

Gender 
Polynomial 

order 
Interaction 

terms 

Mean square 
error 

(MSE) 

Adjusted 
coefficient of 
determination 

( 2
aR ) 

Number of 
regression 

coefficients 

M 0.07 0.983 15 Least-squares 
procedure F 

4th 4th 
0.174 0.970 15 

M 0.064 0.985 12 Stepwise 
procedure F 

6th - 
0.168 0.973 12 

M 0.08 0.982 11 Backward 
elimination 
procedure F 

6th - 
0.181 0.971 11 

M 0.083 0.981 13 All possible 
procedure F 

4th - 
0.194 0.969 13 
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[Figure 1] Steering wheel vibration test rig and associated electronics. 

 

0 Nothing at all "No P"

0.3

0.5 Extremely weak Just noticeable

1 Very weak

1.5

2 Weak Light

2.5

3 Moderate

4

5 Strong Heavy

6

7 Very strong

8

9

10 Extremely strong "Max P"
11

Absolute maximum Highest possible
 

[Figure 2] Borg’s category ratio CR-10 scale (adapted from Borg 1998). 
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(a)                                    (b) 

(c)                                    (d) 

 

[Figure 3] Equal sensation curves obtained for Borg subjective perceived intensity values from 

0.5 to 8.0 using the four regression procedures considered in this study. 

(a) Least-square regression procedure,  

(b) All possible regressions procedure, 

(c) Backward elimination regression procedure, 

(d) Stepwise regression procedure. 
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[Figure 4] Equal sensation curves obtained separately for the male test participants and for the 

female test participants, obtained by means of the stepwise regression procedure. 
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[Figure 5] Equal sensation curves obtained in the current study and those obtained in previous 

studies of hand-arm translational or rotational vibration. 

 

 

 

 

 

 

 

 


