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Abstract

This paper develops a microeconomic model of directed search, where
firms are heterogeneous in the number of vacancies advertised, and
wages affect workers’ choices when both applying for jobs and accepting
a job. An aggregate matching function is derived, which incorporates
workers’ preferences for firms. The aggregate level of matches is shown
to be independent of the workers’ preferences in the job acceptance
stage. When firms’ labor demands are heterogeneous, the matching
market equilibrium outcome is suboptimal. Matching efficiency is, how-
ever, attained in equilibrium, when wages are employed as a rationing
device. This results in wage dispersion, despite workers being homoge-
neous.
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1 Introduction

Workers take into account many factors when they search for a job. In this
paper I consider two of these, wages and the number of vacancies, and I de-
velop a microeconomic model of directed search where workers’ preferences of
firms are explicitly modelled. An important contribution of the paper is to note
and analyze the fundamental difference between the two factors that “direct”
workers’ searches. Specifically, the number of vacancies at a firm, which deter-
mines its probability of a job offer, affects a worker’s choice of which jobs to
apply for. However once job offers are received, this factor becomes irrelevant
in the worker’s choice of which job offer to accept. On the other hand, wages
affect both the application choices and the acceptance choice of an applicant.
In this sense, firms are ex-post homogeneous when they offer uniform wages,
and ex-post heterogeneous when there is wage dispersion, where “ex-post” is
in reference to the job-offer stage of a job-matching process. The first part of
this paper asks the question of whether introduction of ex-post heterogeneity
affects the matching outcome. It turns out that the aggregate level of matches
is independent of the firms’ ex-post heterogeneity. In other words, once job
offers are made, the workers’ preferences for the jobs do not affect the aggre-
gate level of matches. The heterogeneity, however, affects the distribution of
the matches. This implies that search friction in a job-matching market arises
from coordination failures of the workers when they apply for jobs, and of
the firms when they make job offers,1 but no friction arises from the workers’
actions after job offers are received. This is the first main result.

The second main result concerns efficient coordination in the matching
market, defined as one that achieves the highest aggregate level of matches.
When a worker chooses his optimal strategy of which jobs to apply for, he
ignores the negative externality of his choice of firms on other applicants’
probabilities of a job offer from those firms that he applies to. When firms
offer heterogeneous numbers of vacancies, this leads to suboptimally high ap-
plications at firms offering higher number of vacancies. The argument is then
that a wage policy can be employed to “redirect” the search, so that efficient
coordination is attained in equilibrium. In this paper a simple example is
given, where the socially optimal aggregate level of matches is attained with
the use of heterogeneous wages. Intuitively, the wages reflect the social costs
of job applications, and in the efficient equilibrium the externalities are inter-
nalized. This gives a matching efficiency argument for wage dispersion, even

1In Albrecht, Gautier and Vroman (2006), these are classified as the “urn-ball” and the
“multiple-applications” frictions. See later for the definitions of these.
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when workers are homogeneous. One policy implication is that if the objective
of social planners is to minimize unemployment, then they should encourage
lower wages at firms advertising higher numbers of vacancies. The result that
wages can be used as an ex-ante allocation device to counter the coordination
inefficiency caused by multiple vacancies, despite the fundamental difference
between the two factors of wages and the number of vacancies, as described
above, relies crucially on the independence result attained.

There has been some work in the microeconomic search literature mod-
elling the role of wages in job searches. These have mainly investigated the
trade-off between wage level and matching success, for example, to explain
wage dispersion (e.g. Montogomery, 1991; Galenianos and Kircher, 2005). In
this paper wages are used formally as a tool for ex-ante allocation of resources.
To do this, a matching model that explicitly incorporates workers’ preferences
for higher wages is developed, and its equilibrium outcomes are investigated.
Therefore it differs from the macroeconomic matching models, where in gen-
eral the global equilibrium wage is determined as a result of bargaining after
workers and firms are matched (e.g. Pissarides, 2000).

A related work is Moen (1997). In Moen’s model the labor market is
divided into submarkets, each with an exogenously assigned wage. Observing
this, workers choose a submarket to join, within which matchings occur. This
leads to wage dispersion in equilibrium as a result of a trade-off between the
wage level and the expected duration of the unemployment period in the sub-
markets. However the model is partial, because while wages do play the role
of allocating workers to the submarkets, once within the submarkets there are
no worker preferences for the firms. Hence the matching mechanism itself, and
therefore also the matching function, do not incorporate the wage’s role as a
rationing device.

The aggregate matching function derived here belongs to the family of
multiple-application matching functions. Traditionally, matching functions
were derived in an urn-ball set-up where the market contained firms consisting
of a single vacancy, and workers made a single application (e.g. Pissarides,
1979; Blanchard and Diamond, 1994). Albrecht, Gautier and Vroman (2006)
note that the advantage of allowing multiple applications is that, while the
traditional models only capture what they term the “urn-ball friction”, where
some vacancies receive no applications while others receive more than one, the
multiple-application models also capture the “multiple-application friction”,
where some workers receive multiple job offers while others receive none.2

2Julien, Kennes and King (2000), in which firms make a job offer to one worker after
observing all applicants’ reservation wages, capture the second friction but not the first.
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More recently, models such as Albrecht et al. (2004) and Hori (2007) have
derived multiple-application matching functions under random-matching set-
ups. One disadvantage with multiple-application matching functions is that,
for large markets, the computation becomes cumbersome very rapidly. For
this reason a limiting expression is also derived here (as is done in Albrecht
et al. and Hori for their functions), which reduces the computation time
considerably.

There are in the literature other directed search models with multiple-
applications, such as Albrecht, Gautier and Vroman (2006) and Galenianos and
Kircher (2005, 2007).3 These two in particular attain similar results as those
presented here, but for very different reasons. In Galenianos and Kircher’s
first model, workers view their applications as a portfolio choice problem, and
they are thus willing to apply for jobs offering different wage levels (i.e. “risk-
diversify”). This incentivizes firms to post different wages, and in equilibrium
every worker applies once to each distinct wage. In their second model, wage
dispersion is driven by fundamentals where more productive firms post higher
wages. However both of these models assume firms with a single vacancy;
here, the multiple-vacancy element that allows heterogeneous labor demands
drives the efficiency and the wage dispersion results.

Mortensen (2003) provides a comprehensive survey on the wage dis-
persion literature.4 The explanations offered in the literature for the “fric-
tional wage dispersion” (Hornstein, Krussell and Violante, 2006) include firms’
productivity heterogeneity (Montgomery, 1991; Acemoglu and Shimer, 2000;
Galenianos and Kircher, 2007) and the reservation wage heterogeneity of the
workers (Albrecht and Axell, 1984). Those assuming homogeneous firms and
workers rely on asymmetric information, with workers having only partial in-
formation regarding wages offered by firms (Burdett and Judd, 1983; Mortensen,
2003). This paper adds an alternative reason for wage dispersion to this list.

The paper is structured as follows. Section 2 derives the firm-level and
aggregate matching functions for both finite and limiting cases, and obtains
the independence result. Section 3 analyzes the equilibrium outcome and
establishes wage dispersion for matching efficiency. Section 4 then gives the
concluding remarks. Finally, an analysis for the single-application case is given
in the appendix.

3Other models of directed search include Montgomery (1991), Acemoglu and Shimer
(1999) and Burdett, Shi and Wright (2001).

4He estimates that “observable worker characteristics that are supposed to account for
productivity differences typically explain no more than 30 percent of the variation in com-
pensation across workers.” (p.1)
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2 Directed Search Matching Model

2.1 Job Matching Market Mechanism

The job market consists of J firms who offer one or more vacancies for each
advertised job, and I homogeneous workers who apply to a multiple number
of jobs. An advertised job j = 1, ..., J is defined by its wage level wj, uniform
for all applicants, and the number of vacancies Lj. The jobs are otherwise
identical.

The job market operates as follows. First firms announce their job char-
acteristics, namely the wage levels w = (w1, ..., wJ)

0 and the number of vacan-
cies L = (L1, ..., LJ)

0. Next, viewing these, workers i = 1, ..., I select a firms
and make job applications. It is assumed that workers can apply only once
to a particular job, irrespective of the number of vacancies advertised for the
job. The number of applications a per worker is assumed given. A worker’s
set of applied jobs is only known by the applicant himself. If the firms receive
more applications than Lj, then they randomly select Lj candidates and make
job offers; otherwise they offer jobs to all applicants. Finally, applicants with
one or more job offers accept the job of their highest preference, or choose one
randomly if they are indifferent between the most preferred firms. There is
no wage renegotiation. Applicants with no job offer remain unemployed, and
vacancies with no application or a rejected job offer remain unfilled.

I now formalize the job-matching market mechanism for the finite case
where I, J <∞. The limiting case I, J →∞ is considered in Section 2.3. To
do this, the job-matching process is considered in three stages of job applica-
tion, job offer and job acceptance.

Job Application
In the job application stage, the workers’ problem is that of choosing between
pure strategies s ∈ {1, ..., σ} of selecting a jobs out of J . For example, s = 1
may be a strategy that applies to the first a firms j = 1, 2, ..., a. σ =

¡
J
a

¢
is

the total number of possible pure strategies. Given the number of workers ns
that choose each of the σ strategies, the number of applications received at
each firm αj can be calculated. More formally, first define

The strategy matrix S is a J × σ matrix representing the set of possible
pure strategies of selecting a jobs out of J, where σ =

¡
J
a

¢
.

Here each column of S is a permutation of selecting a out of J , where Sjs = 1
if strategy s involves an application to job j, and is 0 otherwise. In the above
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example where in strategy 1 workers apply to the first a firms, the first column
of S would contain a 1’s followed by J − a 0’s. Next,

A strategy realization n = (n1, ..., nσ)0 is a σ × 1 vector of the number of
workers selecting each strategy. The set of all possible strategy realizations
n when the number of applicants is I is denoted ΛI .

Clearly
Pσ

s=1 ns = I. By assumption, firms do not know the strategies chosen
by the workers, nor the resulting strategy realization n. The number of possible
realizations n ∈ ΛI is given by |ΛI | = λI =

¡
I+σ−1

I

¢
.5 Finally,

An application outcome α(n) = (α1(n), ..., αJ(n))
0 is a J × 1 vector of

the number of applications at each job, resulting from a given realization
n ∈ ΛI.

Then
PJ

j=1 αj(n) = aI. Given n, α(n) is calculated by,

α(n) = Sn (1)

where the strategy matrix S :Rσ 7→ RJ maps each strategy realization n ∈ ΛI

onto a unique application outcome α(n).
As will be discussed in Section 3, in equilibrium applicants randomize

between all pure strategies with probabilities θ = (θ1, ..., θσ)0. Then the prob-
ability that a realization takes a particular n ∈ ΛI is,

φn (θ) =
I!Qσ

s=1 ns!

σY
t=1

θntt (2)

where
P

n∈ΛI φn (θ) = 1. This is then also the probability that an application
outcome takes a particular α(n), given by equation (1). Now in this paper’s
model, there are two channels through which the applicants’ preferences of
the jobs is incorporated in the matching process. The choice of θ is the first
of these, where the applicants’ preference for firms offering higher wages and
higher numbers of vacancies can be reflected by larger θs for the strategies
that apply to those firms. The second channel is the rule that determines a
worker’s choice of which job to accept if he receives more than one job offers.
The latter is discussed later.

5This is the multiset coefficient
¡¡

σ
I

¢¢
, i.e. the number of multisets of cardinality I, with

elements taken from a finite set of cardinality σ.
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As an example, take a simple case (I, J ; a) = (3, 3; 2). There are σ =¡
3
2

¢
= 3 possible pure strategies in this case, represented by the following 3×3

strategy matrix,

S =

⎛⎝ 1 1 0
1 0 1
0 1 1

⎞⎠ (3)

For example, the first column represents strategy 1, where workers apply to
firms 1 and 2. There are λ3 =

¡
3+3−1
3

¢
= 10 possible realizations for the three

strategies that form the set Λ3,

Λ3 =

½⎛⎝ 3
0
0

⎞⎠,
⎛⎝ 2

1
0

⎞⎠,
⎛⎝ 2

0
1

⎞⎠,
⎛⎝ 1

2
0

⎞⎠,
⎛⎝ 1

1
1

⎞⎠,
⎛⎝ 1

0
2

⎞⎠,
⎛⎝ 0

3
0

⎞⎠,
⎛⎝ 0

2
1

⎞⎠,
⎛⎝ 0

1
2

⎞⎠,
⎛⎝ 0

0
3

⎞⎠
¾

For example, the first vector represents a strategy realization where all three
applicants choose strategy 1. The corresponding application outcomes are
then calculated using equation (1),

α(n) ∈
½⎛⎝ 3

3
0

⎞⎠,
⎛⎝ 3

2
1

⎞⎠,
⎛⎝ 2

3
1

⎞⎠,
⎛⎝ 3

1
2

⎞⎠,
⎛⎝ 2

2
2

⎞⎠,
⎛⎝ 1

3
2

⎞⎠,
⎛⎝ 3

0
3

⎞⎠,
⎛⎝ 2

1
3

⎞⎠,
⎛⎝ 1

2
3

⎞⎠,
⎛⎝ 0

3
3

⎞⎠
¾

In the first application outcome, firms 1 and 2 receive three applications
each, while firm 3 receives none. This results from the strategy realization
n = (3, 0, 0)0. Finally, when all applicants randomize between the 3 strate-
gies with probabilities θ =(θ1, θ2, θ3)0, the probability of this particular strat-
egy realization, and hence its corresponding application outcome occurring, is
φ(3,0,0)0 (θ) =

3!
3!0!0!

θ31θ
0
2θ
0
3 = θ31, using equation (2).

Job Offer
In the job offer stage of the job-matching process, given a realized n ∈ ΛI

with its corresponding α(n), firm j chooses randomly Lj workers from the
αj(n) applications received if αj(n) > Lj, or offers jobs to all applicants if
αj(n) ≤ Lj. A worker’s probability of a job offer from firm j is then,

pj(n) =

(
min

h
Lj

αj(n)
, 1
i
, if αj(n) > 0

0 , if αj(n) = 0
(4)

Now irrespective of whether he applies to the firms, an applicant has 2J

different possible job offer outcomes from the J firms, defined as,

A job offer outcome h = (h1, ..., hJ)0 is a J × 1 vector representing the job
offers received by an applicant, where hj = 1 if firm j offers the applicant
a job, and 0 otherwise. The set of all possible h is denoted H, where
|H| = 2J .
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Then given a realization n ∈ ΛI , the probability of h ∈ H occurring is,

p(h;n) =
JY

j=1

p
hj
j (n) {1− pj(n)}1−hj (5)

In the example with J = 3 firms, there are 23 = 8 possible job offer
outcomes for any applicant, given by,

H =

½⎛⎝ 0
0
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 0

1
0

⎞⎠,
⎛⎝ 0

0
1

⎞⎠,
⎛⎝ 1

1
0

⎞⎠,
⎛⎝ 1

0
1

⎞⎠,
⎛⎝ 0

1
1

⎞⎠,
⎛⎝ 1

1
1

⎞⎠
¾

(6)

In the first vector representation, the applicant receives no job offer from any
of the three firms. The probability of this happening depends on the number
of vacancies and the number of applications received at each firm. If, for
example, L = (1, 1, 2)0 and α(n) = (3, 3, 0)0, the probabilities of a job offer at
each firm are p1 = p2 =

1
3
and p3 = 0; and hence,

p ((0, 0, 0)0; (3, 0, 0)0) =

µ
1− 1

3

¶µ
1− 1

3

¶
(1− 0) = 4

9

Job Acceptance
Finally in the job acceptance stage, each applicant is assumed to have an accep-
tance rule that is determined by the applicant’s preference of the jobs ex-post
of the job offers. This is represented by a set of job acceptance probabilities
for each possible job offer outcome, as set out below,

An acceptance rule Rs(h) = (Rs1(h), ..., RsJ(h))
0 is a J × 1 vector of job

acceptance probabilities, where Rsj(h) is the probability that an applicant
employing strategy s accepts the job offer from j, given that such a job
offer is received in the realized job offer outcome h.

The rule must satisfy,

1. Rsj(h) = 0 ∀j such that Sjshj = 0.

2.
PJ

j=1Rsj(h) =

½
0 if

PJ
j=1 Sjshj = 0

1 otherwise
.

The first criterion states that an applicant assigns a zero-job-acceptance prob-
ability to all firms to which he does not apply to, or that he applies to, but
does not receive a job offer. The second criterion is the adding-up constraint
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for the probabilities, except for the case when there are no job offers from all
applications, in which case the sum equals 0. This acceptance rule provides
the second channel of incorporating applicants’ preferences of the jobs in this
model of match.

Here I give two examples of Rs(h). The first is when firms are ex-post
homogeneous; that is, workers are indifferent between all jobs once job offers
are received. In this case,

R†sj(h) =
SjshjPJ
k=1 Skshk

(7)

Note Sjshj = 1 for the firms that an applicant employing strategy s applies
to (i.e. Sjs = 1) and receives a job offer from (i.e. hj = 1). The denominator
is therefore the number of job offers received by a strategy s applicant, for a
particular job offer outcome h. This case occurs when all firms offer uniform
wages. On the other hand, when they offer non-uniform wages, the firms
are ex-post heterogeneous. Then if the applicants have a preference ordering
1 Â 2 Â ... Â J for firms j ∈ {1, ..., J}, the acceptance rule is, this time,

R††sj(h) = Sjshj

j−1Y
k=1

(1−Rsk(h)) (8)

Therefore the smallest indexed (i.e. the highest preferred) firm with Sjshj = 1
would have R††sj(h) = 1, which makes R

††
sj(h) for all subsequent firms equal to 0.

For the rest of the paper, the ex-post homogeneous and ex-post heterogeneous
cases are denoted by the same superscripts “†” and “††”.

Consider again the example of (I, J ; a) = (3, 3; 2). An applicant with
strategy s has an acceptance rule Rs(h) defined on all possible job-offer out-
comes h ∈ H in (6). Take a case where an applicant selects strategy 1 in the
strategy matrix (3), where he applies to firms 1 and 2. Then his acceptance
rule when firms are ex-post homogeneous is, as defined by equation (7),

R†
1(h) =

½⎛⎝ 0
0
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 0

1
0

⎞⎠,
⎛⎝ 0

0
0

⎞⎠,
⎛⎝ 1/2

1/2
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 0

1
0

⎞⎠,
⎛⎝ 1/2

1/2
0

⎞⎠
¾

For example, if the applicant receives a job offer from firms 1 and 3 (i.e.
h = (1, 0, 1)0, the sixth case in (6)), then he would accept the job offer from firm
1 with probability 1, while if he receives a job offer from all three (h = (1, 1, 1)0,
the eighth case) he would accept firms 1 and 2 with probabilities 1

2
. If, on

the other hand, the firms are ex-post heterogeneous and an applicant had a
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preference ordering 1 Â 2 Â ... Â J for the firms, the acceptance rule for the
strategy 1 applicant given by equation (8) is,

R††
1 (h) =

½⎛⎝ 0
0
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 0

1
0

⎞⎠,
⎛⎝ 0

0
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠,
⎛⎝ 0

1
0

⎞⎠,
⎛⎝ 1

0
0

⎞⎠
¾

Therefore firm 1, if it offers a job, would always have its offer accepted, while
firm 2’s offer would only be accepted when firm 1 does not offer a job.

2.2 Firm-Level and Aggregate Matching Functions

Under the above set-up, the firm-level and the aggregate job-matching func-
tions are now derived. First, given a strategy realization n ∈ ΛI of the I
applicants, let zjs(n) be the probability that an applicant employing strategy
s accepts a job offer from firm j, given that j offers the applicant a job. This
is given by,

zjs(n) =
X
h∈H

p(h;n)

pj(n)
Rsj(h) (9)

This probability clearly depends on the applicants’ ex-post preferences of the
firms. For example, for the two cases considered above in equations (7) and
(8), zjs(n) is, respectively,

z†js(n) = Sjs

a−1X
i=0

(−1)i
(i+ 1)!

JX
k=1,k 6=j

...
JX

r=1,r 6=j,k,l,...| {z }
i summations

Skspk(n)...Srspr(n) (10)

z††js(n) = Sjs

j−1Y
k=1

(1− Skspk(n)) (11)

The proof of (10) is given in Appendix A. Equation (11) is the survival rate
that an applicant with strategy s would not receive any job offers from firms
of higher preference than j. Now given zjs(n), the probability that there is a
job match between firm j and a strategy s applicant is zjs(n)pj(n). Therefore,
a firm’s expected number of matches is calculated by the following firm-level
matching function, when I workers make a applications to firms offering L =
(L1, ..., LJ)

0 vacancies,

mj(I,L; a) =
X
n∈ΛI

φn (θ)
σX

s=1

nszjs(n)pj(n) (12)

10



where again φn (θ) is the probability that the strategy realization is n ∈ ΛI

when applicants randomize between pure strategies with probabilities θ, given
by equation (2). Section 3 analyzes the choice of θ; for now θ is taken as given,
and is suppressed for notational brevity in the argument of mj(.), or m(.) and
Ψ(.) below. The job market’s aggregate match level is then (12) summed over
all firms j = 1, ..., J ,

m(I,L; a) =
JX

j=1

mj(I,L; a) =
X
n∈ΛI

φn (θ)
σX

s=1

ns
X
h∈H

p(h;n)
JX
j=1

Rsj(h) (13)

Now, recall the second criterion for Rs(h), which stated that when the
job offer outcome is h,

PJ
j=1Rsj(h) = 0 if no job offer is received from all ap-

plications, and is 1 otherwise. The term
P

h∈H p(h;n)
PJ

j=1Rsj(h) is therefore
the probability that a strategy s applicant receives at least one job offer when
the strategy realization is n, which equals 1−

QJ
j=1 (1− Sjspj(n)). Substitut-

ing this in (13) yields the aggregate matching function,

m(I,L; a) = I [1−Ψ(I,L; a)] (14)

where Ψ(I,L; a) is the probability that an applicant receives no job offer from
all his applications,

Ψ(I,L; a) =
X
n∈ΛI

φn (θ)
σX

s=1

ns
I

JY
j=1

(1− Sjspj(n)) (15)

The level of unemployment is then given by IΨ(I,L; a). Now crucially equa-
tions (14) and (15) are independent of Rsj(h). Hence,

Proposition 1 (Independence) The aggregate match level is independent
of the applicants’ ex-post preferences of the firms.

As already explained, firms are ex-post heterogeneous when applicants
have non-uniform preferences of the firms once job offers are received. The
acceptance rule Rs(h) describes these preferences. The aggregate matching
function’s independence of Rs(h) implies that the level of aggregate match is
already determined at the point when job offers are made, irrespective of which
offer each worker chooses to accept. The acceptance rule then determines the
distribution of the matches, given by equation (12), which depends on Rs(h).

This means that in the model of job match considered, search frictions
are caused by coordination failures in the job-application and the job-offer
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stages of the job-matching process. In expression (13), these are the coor-
dination failures when selecting n ∈ ΛI and h ∈ H in the respective sum-
mations. Albrecht, Gautier and Vroman (2006) term these as the urn-ball
and the multiple-applications frictions. The former refers to the coordina-
tion failure where some vacancies receive no application while others receive
more than one, as captured in the original urn-ball models such as Pissarides
(1979). The latter refers to the coordination failure where some workers re-
ceive multiple offers while others receive none. Proposition 1 states that the
additional consideration of workers’ ex-post preferences does not add to the
job-matching market’s search friction, but it affects the distributional outcome
of the matches.

Note that the independence result does not imply that the levels of ag-
gregate matches are the same when firms offer uniform or non-uniform wages.
This is because the wages affect the applicants’ ex-ante preferences of the
firms, as well as their ex-post preferences. In the model, this leads to a dif-
ferent choice of θ, and thus a different m(I,L; a). The proposition states the
equivalence of m(I,L; a) when θ is the same, independent of the applicants’
choice of Rs(h).

2.2.1 Example

To demonstrate this result, return to the example of (I, J ; a) = (3, 3; 2) with
labor demands L = (1, 1, 2)0. Take a case now where applicants i = {1, 2, 3}
choose respectively strategies s = {2, 3, 3}, where strategy 2 applies to firms 1
and 3 and strategy 3 applies to firms 2 and 3, as represented by the strategy
matrix (3). The strategy realization is then n = (0, 1, 2)0. This results in the
application outcome α = (1, 2, 3)0, where firm 1 receives an application from
applicant 1, firm 2 receives applications from applicants 2 and 3, and firm 3
receives applications from all three. For L = (1, 1, 2)0, there are six possible
outcomes when firms select their candidates, which from the point of view of
the workers are,∙

1, 3
2, 3
−

¸
,

∙
1, 3
2
3

¸
,

∙
1
2, 3
3

¸
,

∙
1, 3
3
2

¸
,

∙
1, 3
−
2, 3

¸
,

∙
1
3
2, 3

¸
(16)

Here, each outcome representation portrays the firms from which the workers
receive a job offer. For example in the first outcome, applicant 1 receives job
offers from firms 1 and 3. The number of aggregate matches is already de-
termined at this point prior to the workers’ decisions of which job to accept,
which for each respective outcome in (16) are {2, 3, 3, 3, 2, 3}. Therefore which
job offer each worker chooses to accept in the end has no effect on the number

12



of aggregate matches. It does, however, affect the final distribution of the
matches. For example, if the firms were ex-post heterogeneous and the appli-
cants’ acceptance rule was given by equation (8) (i.e. the preference ordering
of 1 Â 2 Â 3), then in the first outcome in (16) the two filled jobs will be
at firms 1 and 2. If, on the other hand, the firms were ex-post homogeneous
(i.e. Rs(h) given by equation (7)), then the possible distributions of the two
matches among the three firms in the first outcome are (1, 1, 0)0 (i.e. firms 1
and 2 have one filled job each), (1, 0, 1)0, (0, 1, 1)0 and (0, 0, 2)0 (i.e. both filled
vacancies are at firm 3).

2.2.2 Literature Comparison

As a matching function for directed search with multiple-vacancies firms and
multiple-applications workers, (14) nests many of the existing matching func-
tions in the literature. For example in Albrecht et al. (2004) and Hori (2007),
workers making multiple applications are randomly matched to firms with a
single vacancy. Then by setting θs =

1
σ
and Lj = 1 in equation (15), the

workers’ probability of no job offer is,

Ψ(I, J ; a) =
1

σI−1

X
n∈ΛI

(I − 1)!
(n1 − 1)!

Qσ
s=2 ns!

aY
j=1

(1− pj(n)) (17)

where pj(n) = 1
αj(n)

if αj(n) > 0, and 0 otherwise.6 Substituting this in (14)
yields the matching function derived in Hori (2007). Hori further demonstrates
that in taking the limit I, J → ∞ and J

I
→ μ < ∞, equation (17) yields the

same limiting result as that derived by Albrecht et al. (2004),

Ψ(I, J ; a) =
n
1− μ

a

³
1− e−

a
μ

´oa
(18)

The limiting case of (15) is formally discussed in Section 2.3.
More traditional matching functions are derived in an urn-ball set-up

where workers apply to one firm, and firms randomly select one candidate for
their single vacancy. This is a special case of (17) when a = 1,

Ψ(I, J ; 1) =
IX

n1=1

µ
I − 1
n1 − 1

¶µ
1

J

¶n1−1µ
1− 1

J

¶I−n1 µ
1− 1

n1

¶

= 1− J

I

(
1−

µ
1− 1

J

¶I
)

6This is derived using symmetry, by selecting strategy 1 that applies to the first a jobs
as the representative applicant.
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leading to the matching function derived in Pissarides (1979),

m(I, J ; 1) = J

(
1−

µ
1− 1

J

¶I
)

(19)

Petrongolo and Pissarides (2001) further note that for large J this becomes,

m(I, J ; 1) = J
³
1− e−

I
J

´
(20)

which is simply equation (18) substituted in function (14) when a = 1.7 As
already noted these functions capture the urn-ball friction of the job-matching
market. Julien, Kennes and King (2000) on the other hand consider the case
where firms choose one applicant to make one job offer, and workers with
multiple offers auction their employment. In the derived model here, this is
the case Lj = 1 ∀j and a = J , which when applied to equation (17) yields,

m(I, J ;J) = I

(
1−

µ
1− 1

I

¶J
)

(21)

This is the matching function derived by Julien, Kennes and King which cap-
tures the multiple-application friction. These are all random-matching models.
In contrast in the literature, there have not been simple closed-form formu-
lations of directed search matching. The derived function (14) is one such.
Then for example, the directed search version of the Pissarides’ (1979) single-
vacancy, single-application function (19) can be derived by letting Lj = 1 ∀j
and a = 1 in equation (15),

m(I, J ; 1) = J

(
1− 1

J

JX
j=1

(1− θj)
I

)
(22)

where θ = {θ1, ..., θJ} is the mixed-strategy probabilities of choosing firms
j = 1, ..., J .

2.3 Limiting Case

Consider now the limit as I, J →∞ while V
I
→ μ <∞, where V =

PJ
j=1 Lj.

The number of vacancies Lj at each firm is assumed to remain relatively small,

7Blanchard and Diamond (1994) also uses this limiting form of matching function, with
an additional exogenous parameter in the exponent representing the acceptable application
probability.
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as would be under competition. As argued by Albrecht, Gautier and Vroman
(2003), the number of applications αj at each firm can now be treated as being
independent. In this case equation (15) becomes,

lim
I,J→∞

Ψ =
σX

s=1

θs

JY
j=1

(
1− Sjs

IX
α=1

min

∙
Lj

α
, 1

¸
prob [αj = α| αj ≥ 1]

)
(23)

where, as the probability of any applicant applying to firm j is
Pσ

s=1 Sjsθs,

prob [αj = α| αj ≥ 1] =
µ
I − 1
α− 1

¶Ã σX
s=1

Sjsθs

!α−1Ã
1−

σX
s=1

Sjsθs

!I−α

Ignoring the minimum function in (23) in the limit,

lim
I,J→∞

Ψ =
σX

s=1

θs

JY
j=1

∙
1− Sjs

Lj

Eαj

¡
1− e−Eαj

¢¸
(24)

where Eαj = I
Pσ

s=1 Sjsθs is the expected number of applicants at firm j
given θ. Equation (18) is the symmetric case Lj = 1 and θs =

1
σ
of this. This

approximation is useful, as in comparison to (15), equation (24) reduces the
computation required for Ψ by a factor of λI , which for example for (I, J ; a) =
(12, 6; 2) is 9, 657, 700. Table 1 shows the simulated results for (I, J ; 2), which
suggests that the approximated probability (24) rapidly converges to its true
value (15).8

I = 3 4 5 6 7 8 9 10 11 12

J = 3 0.253
0.322

0.242
0.274

0.243
0.262

0.237
0.246

0.227
0.231

0.234
0.238

0.227
0.230

0.220
0.221

0.227
0.229

0.221
0.223

4 − 0.270
0.322

0.259
0.285

0.254
0.269

0.247
0.254

0.244
0.247

0.249
0.254

0.243
0.245

0.233
0.232

0.242
0.244

5 − − 0.281
0.322

0.270
0.292

0.264
0.276

0.257
0.261

0.256
0.258

0.247
0.244

0.253
0.253

0.246
0.243

6 − − − 0.288
0.322

0.278
0.296

0.272
0.281

0.267
0.272

0.262
0.262

0.260
0.259

0.257
0.255

< Table 1: Ψ(I,L; 2) computed using (15) (top) and (24) (bottom) >

8Here for each (I, J), Lj is set to be a decreasing step function to the nearest integer such
that

PJ
j=1 Lj = I (i.e. μ = 1) and LJ = 1. For example for (I, J) = (6, 3), L = (3, 2, 1). The

mixed-strategy θ is set using the formula θs =
PJ

j=1 SjsLj

.
σ1I, where σ1 =

Pσ
s=1 Sjs =¡

J−1
a−1
¢
. Thus θs is higher for types that apply to firms with larger Lj .
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3 Equilibrium Analysis

3.1 Factors Directing Search: Wages vs Number of Va-
cancies

Before proceeding to analyze the equilibrium outcomes of the directed search
job-matching market established above, I note an important fundamental dif-
ference between wages and the number of vacancies as factors directing work-
ers’ searches. The number of vacancies at a firm, which given the number of
applications at the firm determines its probability of a job offer, affects work-
ers’ ex-ante, but not ex-post, preferences of the firms. This is because once job
offers are received, the number of vacancies is no longer a relevant factor in the
worker’s choice of a firm. On the other hand, wages affect both the ex-ante
and ex-post preferences of the applicants. This seems to suggests that if, as
shown below, heterogeneity in the number of vacancies offered at the firms
leads to inefficiency in the matching outcome (where efficiency is measured by
the level of successful aggregate matches), then wages may not be an optimal
policy tool to use to resolve the inefficiency. This is because while counter-
acting the inefficiency effects of heterogeneous L in job application, such a
wage policy could have an unintended effect on the applicants’ choices in job
acceptance. Crucially, however, Proposition 1 implies that this is not the case,
so far as matching efficiency is concerned. This is now formally discussed.

3.2 Efficient Equilibrium

As Galenianos and Kircher (2007, p.18) state, in directed search “the stan-
dard notion of efficiency is that of constrained efficiency.” For example in
Montgomery (1991, p.173), a social planner is “constrained to operate within
the existing institutional structure,” and maximizes the expected output of the
economy, which is calculated as the product of a firm’s value of output and its
probability of successfully filling the vacancy, aggregated over all firms. In this
paper each matched job produces identical output. Therefore the outcome is
constrained efficient, when the number of matches is maximized conditional on
the matching frictions given I and L. The efficiency concerned is thus that of
“matching efficiency”.9 Intuitively, the planner’s objective here is to minimize
frictional unemployment.

9This differs from those models that investigate efficient level of labor market tightness,
such as Moen (1997) and Albrecht, Gautier and Vroman (2006). A further discussion on
the exogeneity assumption of L is given in Section 4.
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The social planner thus chooses symmetric equilibrium strategy θ∗ that
maximizes expression (14), or equivalently that minimizes (15), subject to
the conditions

Pσ
s=1 θ

∗
s = 1 and θ∗ ≥ 0, given (I,L; a). In this section, for

notational brevity, the arguments (I,L; a) are now suppressed. Then,

Proposition 2 (Efficient Coordination) The job application coordination
is efficient when applicants choose strategy probabilities θ∗ ≥ 0, such that,

Ψ̄s (θ
∗)−Ψ (θ∗) ≥ 0 and θ∗s

£
Ψ̄s (θ

∗)−Ψ (θ∗)
¤
= 0 ∀s = 1, ..., σ (25)

where Ψ (θ) is given by (15), and Ψ̄s (θ) is the average probability of no job
offer when an applicant chooses strategy s,

Ψ̄s (θ) =
X

n∈ΛI−1

φn (θ)
σX
t=1

nt + χst
I

JY
j=1

(1− Sjtpj(n+χ
s)) (26)

and χs is a σ × 1 vector with all elements χst = 0 except χss = 1.

Proof. Minimize expression (15) with respect to θ, subject to the
adding-up condition

Pσ
s=1 θs = 1,

min
θ,η

$(θ, η) =
X
n∈ΛI

φn (θ)
σX

s=1

ns
I

JY
j=1

(1− Sjspj(n)) + η

Ã
1−

σX
s=1

θs

!
(27)

where η is a Lagrangian multiplier and φn (θ) is given by equation (2). With
the constraint θ∗ ≥ 0 the first-order conditions are,

IΨ̄s (θ
∗)− η ≥ 0 and θ∗s

£
IΨ̄s (θ

∗)− η
¤
= 0 ∀s = 1, ..., σ (28)

where Ψ̄s (θ) =
X
n∈ΛI

ns
Iθs

φn (θ)
σX
t=1

nt
I

JY
j=1

(1− Sjtpj(n)) (29)

Equation (29) is the average probability of no job offer given that an applicant

chooses strategy s, where ns
Iθs

φn (θ) =
(I−1)!

(ns−1)! σ
t=1,t 6=s nt!

σQ
u=1,u6=s

θnuu θns−1s is the

probability of the strategy realization n ∈ ΛI for I workers, given that ns ≥ 1.
This is equivalent to the probability φn (θ) of the strategy realization n ∈ ΛI−1
for I−1 workers. Rewriting equation (29) for n ∈ ΛI−1 is then (26). Condition
(25) follows from (28) as Ψ (θ) =

Pσ
s=1 θsΨ̄s (θ) =

η
I
at θ∗. Finally checking

the second-order condition,

∂2$

∂θ2s
=
X
n∈ΛI

µ
n2s − ns

θ2s

¶
φn (θ)

σX
t=1

nt
I

JY
j=1

(1− Sjtpj(n)) (30)
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This is strictly greater than zero for I > 1, as n2s −ns ≥ 0 for all non-negative
integers ns, and strictly so for ns ≥ 2. Hence $(θ, η) is a strictly convex
function in θ, implying that the solution θ∗ is the global minimum.

Intuitively if Ψ̄t < Ψ̄r for t 6= r, then decreasing the probability θr of
choosing strategy r and increasing θt of choosing t, such that dθt = −dθr > 0,
decreases the overall Ψ as,

dΨ(θ) =
σX

s=1

∂Ψ

∂θs
dθs = I

¡
Ψ̄t − Ψ̄r

¢
dθt < 0

Therefore, higher coordination efficiency is achieved by shifting applicants out
of r and into t until Ψ̄t and Ψ̄r equate, subject to the condition θr ≥ 0.
Thus the socially optimal aggregate match level is achieved, when the average
probability of no job offer if an applicant chooses strategy s with a positive
probability equates for all s.

The result in Proposition 2 can be further refined for the case a = 1.
The problem is then simplified to that of each worker choosing a strategy
j ∈ {1, ..., J} of applying to firm j. Appendix B gives a full analysis for
this case. In reference to the socially optimal outcome θ∗, it is shown that, (i)
θ∗j > 0 ∀j (i.e. the socially optimal equilibrium is an interior solution), and (ii)
if Lj > Lk, then θ∗j > θ∗k (i.e. applicants always apply to higher labor demand
firms with higher probabilities). These are not necessarily true for the case
a > 1. Take for example the case (I, J ; a) = (5, 3; 2) with L = (3, 2, 1)0, and
the strategy matrix given in (3). The efficient equilibrium for this example
is θ∗ = (0, 0.61, 0.39)0 (i.e. it is socially optimal for workers not to choose
strategy 1 that applies to the two firms with high labor demands). This is
because for relatively large I, the probability of a job offer at firms with low
labor demand becomes small, such that the optimization problem becomes
that of finding efficient matching amongst the high labor demand firms. In
the example then, the efficient allocation of the applicants at firms 1 and 2 is
attained by using solely strategies 2 and 3, yielding a corner solution θ∗1 = 0
for strategy 1.

3.3 Equilibrium with Uniform Wage

I now proceed to consider the symmetric Nash equilibrium of the job-matching
market. In particular, I first consider the case where firms offer uniform wage.
The number of vacancies L is, on the other hand, assumed to be non-uniform.
Therefore the firms are ex-ante heterogeneous but ex-post homogeneous. An
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applicant’s objective in a Nash equilibrium is to minimize his probability of
no job offer, given the actions of others. Then,

Proposition 3 When L is non-uniform but w is uniform, the symmetric
Nash equilibrium θ† is inefficient. Moreover for a = 1, the Nash equilibrium
exhibits over-crowding at the firm with the highest labor demand.

Proof. In a job application game, given that all other applicants choose
the mixed strategy θ0, an applicant chooses θ to minimize the probability
Ψ(θ;θ0) of receiving no job offer given his choice of strategy, subject to the
condition

Pσ
s=1 θs = 1 and θ ≥ 0, where,

Ψ(θ;θ0) =
σX

s=1

θs
X

n∈ΛI−1

φn (θ
0)

JY
j=1

(1− Sjspj(n+χ
s)) (31)

χs is again a σ × 1 vector with all elements χst = 0 except χss = 1. By the
same argument as in Proposition 2, the symmetric solution θ† when firms are
ex-post homogeneous is given by

Ψs(θ
†)−Ψ(θ†) ≥ 0 and θ†s

£
Ψs(θ

†)−Ψ(θ†)
¤
= 0 ∀s = 1, ..., σ (32)

where Ψs (θ) =
X

n∈ΛI−1

φn (θ)
JY

j=1

(1− Sjspj(n+χ
s)) (33)

Equation (33) is the applicant’s probability of no job offer given that he chooses
strategy s, when all workers choose θ. Contrast this with Ψ̄s(θ) in (26), where
Ψ̄s(θ) is the average over all applicants of the probability of no job offer given
that the applicant chooses strategy s. It immediately follows then from a
comparison with the condition (25), that the symmetric Nash equilibrium is
inefficient. The proof for over-crowding at the firm with the highest labor
demand for the case a = 1 is given in Appendix B.

As with the efficient equilibrium, Appendix B further shows that when
a = 1, (i) the Nash equilibrium is also an interior solution, and (ii) that in
the Nash equilibrium workers always apply to firms with higher labor demand
with higher probabilities.

The reason for the matching inefficiency in the Nash equilibrium is that
when an applicant chooses his optimal application strategy, he ignores the
negative externality of his action on other applicants’ probabilities of matching
success. To see this, decompose Ψ̄s (θ) in (26) into two parts,

Ψ̄s (θ) =
1

I
Ψs (θ)+

I − 1
I

X
n∈ΛI−1

φn (θ)
σX
t=1

nt
I − 1

JY
j=1

(1− Sjtpj(n+χ
s)) (34)
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Now compare the second term with the average probability of no job offer in
the expression (15) when there are I − 1 applicants,

Ψ(I − 1,L; a) =
X

n∈ΛI−1

φn (θ)
σX

s=1

ns
I − 1

JY
j=1

(1− Sjspj(n)) (35)

Then, by joining in the labor market and choosing strategy s, an applicant
adds his probability of no job offer to the average (the first term in equation
(34)), but also makes the existing applicants’ probabilities worse by increasing
competition at those firms that he applies to (i.e. pj(n+χs) ≤ pj(n) in equa-
tions (34) and (35)). Ignoring this negative externality, in Nash equilibrium,
applicants over-apply to firms offering a higher number of vacancies.

In contrast, if the number of vacancies were also uniform,

Corollary 1 For uniform labor demand, the Nash equilibrium outcome is ef-
ficient.

Proof. By symmetry, θ∗s = θ†s =
1
σ
∀s = 1, ..., σ are the solutions in

conditions (25) and (32) that make Ψ̄s = Ψs = Ψ.

In this case the firms are identical; and therefore the matching outcome
is that of random search. The point of the analysis so far is then that when
workers have strict preference ordering of the firms, such that they apply
to some firms with higher intensity than others, in equilibrium there will be
an inefficient aggregate level of matches due to the externality effect of the
individual choices. Hence introduction of heterogeneity, be it in the levels of
labor demand as here or otherwise, results in a suboptimal outcome. This
agrees with the result attained by Galenianos and Kircher (2005). In their
model firms with single vacancy offer non-uniform wages. Then the number of
matches is maximized when workers apply to all firms with equal probability,
but is lower when they apply to certain firms with higher intensity, which will
be the case when workers have a preference for higher wages. The difference
here is that in this section the heterogeneity is in the number of vacancies L.
Then the efficient coordination is attained by a non-uniform θ∗, defined by
(25).

3.4 Equilibrium with Wage Dispersion

Now, consider the case where the firms offer both heterogeneous numbers of
vacancies and non-uniform wages. If firms are otherwise identical, workers
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would always strictly prefer the firm offering the higher wage. For simplicity
then, assume that the workers are risk-neutral and that their benefit from a
job match with firm j is the wage level wj. As an applicant’s probability of
matching with firm j when the realization outcome is n ∈ ΛI is zjs(n)pj(n),
where zjs(n) was given in equation (9), the applicant’s expected income when
he chooses θ while all other applicants choose θ0 is,

Ew(θ;θ0) =
σX

s=1

θs
X

n∈ΛI−1

φn (θ
0) zjs(n+χ

s)pj(n+χ
s)wj (36)

In particular, if the wages are distinct and the firms are ordered in the de-
scending order of the wages w1 > w2 > ... > wJ , then the workers’ ex-post
preferences are 1 Â 2 Â ... Â J for which the expression for zjs was derived in
(11). By the same argument as before then, the symmetric solution θ†† that
maximizes this is given by,

Ews(θ
††)−Ew(θ††) ≤ 0 and θ††s

£
Ews(θ

††)−Ew(θ††)
¤
= 0 ∀s = 1, ..., σ (37)

where Ews (θ) is an applicant’s expected income given that he chooses strategy
s,

Ews (θ) =
X

n∈ΛI−1

φn (θ) zjs(n+χ
s)pj(n+χ

s)wj (38)

The Nash equilibrium solution θ†† now depends on w; the wage distribution
w†† that yields θ†† = θ∗ attains efficient coordination in the job-matching
market. One example was already given in Corollary 1: when labor demands
L is uniform, then the uniform wage w1 = ... = wJ attains matching efficiency.

I now illustrate this using once again the simple example (I, J ; a) =
(3, 3; 2). Let the labor demands this time be L = (1, 2, 2)0. The strategy
matrix S is again given in (3). Solving (25) and (32) yields the following ef-
ficient equilibrium and uniform wage Nash equilibrium solutions θ∗ and θ†,
with their corresponding probabilities of no job offer Ψ(θ), aggregate match
levels m(I,L; a) and the distributions of the matches mj(I,L; a),

θ∗ or θ† Ψ(θ) m(I,L; a) mj(I,L; a)
Efficient eqm (0.25, 0.25, 0.50)0 0.0417 2.875 (0.536, 1.169, 1.169)0

Nash eqm (0.18, 0.18, 0.64)0 0.0456 2.863 (0.465, 1.199, 1.199)0

Thus, in this case, in the Nash equilibrium the applicants choose strategy 3
with a suboptimally high probability, leading to overcrowding at the two firms
with higher labor demands.
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Now, consider a wage distribution w = (w1, 1, 1) where w2 and w3 are
normalized to 1. Then w††1 can be solved for which the solution θ†† to the
condition (37) equals θ∗. This is found to be w††1 = 1.21, for which the corre-
sponding results are,10

θ†† Ψ(θ) m(I,L; a) mj(I,L; a)
Nash eqm (0.25, 0.25, 0.50)0 0.0417 2.875 (0.875, 1, 1)0

With the use of heterogeneous wages as a rationing device, the matching effi-
ciency is now attained in equilibrium. Note, however, that the distribution of
the matches is shifted towards the firm offering the higher wage. This gives
an example where, while introduction of one or more heterogeneities causes
inefficient coordination in a matching market, a social planner may be able
to design the market in such a way that the externality effects of the het-
erogeneities offset each other, increasing the overall matching efficiency. The
above example is where wages are used to perfectly offset the externality ef-
fect of the heterogeneous labor demand. More specifically, by offering lower
wages at the firms attracting suboptimally high number of applications, the
externality associated with heterogeneous labor demands is fully internalized.
Once again, given the difference between wages and the number of vacancies as
factors directing search, as discussed in Section 3.1, this result relies crucially
on the result established in Proposition 1 that the level of aggregate match is
independent of the workers’ preferences ex-post of job offers.11

As discussed in the introduction, some evidence of wage dispersion is
surveyed in Mortensen (2003), who estimates that “observable worker charac-
teristics that are supposed to account for productivity differences typically ex-
plain no more than 30 percent of the variation in compensation across workers”
(p.1). Hornstein, Krussell and Violante (2006) also agrees with this estimation.
Explanations offered for the remaining “frictional wage dispersion” include
productivity heterogeneity of the firms, the reservation wage heterogeneity of
the workers, and asymmetric information (i.e. workers have only partial infor-
mation regarding wages offered). The above discussion suggests that, insofar
10In this case as firms 2 and 3 are identical, zjt(n) required is a hybrid of (10) and (11).
11In some sense this argument is analogous to that given with the Fundamental Theorems

of Welfare Economics (FTWE). There, arguably, a social planner can simply force all agents
to consume at the Pareto efficient outcome that is the most desirable to the planner, if such
an outcome is known. Instead, the Second FTWE suggests that the planner can adjust the
initial endowment through redistribution, and the desired Pareto efficient point is reached
as a Walrasian equilibrium. Here, a planner can force all applicants to choose the efficient
mixed strategy θ∗ in order to attain the maximum level of aggregate matches. The argument
of this section is that, instead, the planner can use one of the tools - in this case the wages
- as a rationing device so that the efficient outcome is achieved as a Nash equilibrium.
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as wage allocation by social planners is allowed, there is a matching efficiency
reason for having wage dispersion despite workers being homogeneous, when
firms offer a heterogeneous number of vacancies.

4 Conclusions

Two main results are attained in the paper. First, in deriving the aggre-
gate matching function that incorporates explicitly the workers’ preferences
for firms, it is shown that the aggregate level of matches is independent of the
workers’ preferences of jobs ex-post of job offers. However, the final distribu-
tion of the matches is affected by the preferences. Second, while heterogeneity
in the number of vacancies at firms causes inefficiency in the job-matching
outcome, it is argued that wages can be used as a rationing device to attain
efficient coordination in equilibrium. This is despite the difference as factors
directing search between wages and the number of vacancies, namely that the
former affects workers’ choices in both job application and job acceptance,
while the latter only affects workers’ job application. The second result relies
crucially on the first. The results also give an alternative reason for wage
dispersion.

There are short-comings in the model, which may be resolved with future
research. For example, here it is assumed that social planners are able to
implement the wage profile that leads to the efficient outcome. However, if
wages are allowed to be determined endogenously by the firms, then efficient
coordination would not be attained because firms with higher labor demand
may raise wages to attract more applications, as predicted by Burdett, Shi
and Wright (2001). The results of this paper suggests that this would further
increase inefficiency. Similarly, in the paper the labor demands are assumed
given exogenously. The situation envisaged here was, for example, where any
employment contract has an exogenous probability of dissolution, and the
firms are simply replacing their lost employees. Indeed the whole production
side of the firm is (intentionally) absent. Endogenizing Lj will provide firms
with a second rationing tool where they may strategically adjust Lj to attract
more applicants. Allowing this would also permit a welfare analysis where one
could investigate the efficiencies of the distribution of vacancies over firms,
and the social efficiency of the equilibrium aggregate level of vacancies. The
latter would be an extension to the constrained efficiency analyses of Moen
(1997) and Albrecht, Gautier and Vroman (2006). Further, allowing firms to
renegotiate wages post-application will provide the firms with an even larger
strategy space. For example, depending on the realized number of applications,
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firms may wish to raise their wage offers in order to increase their matching
probabilities. Knowing this possibility, firms may further strategically alter
their ex-ante behavior. Finally, heterogeneity in jobs and workers may be
introduced. The matching functions would then capture both market frictions
induced by coordination failure and heterogeneity. The model here provides a
concrete base for such extensions.

Appendix

A Ex-post Homogeneous Firms

For ex-post homogeneous firms, a strategy s worker who applies to j would
accept j’s offer with probability 1

i+1
if the worker has i other offers. Then for

a strategy realization n, the probability of job acceptance by the strategy s
worker is,

z†js(n) =

Sjs

a−1X
i=0

1

(i+ 1)!

JX
k=1,k 6=j

...
JX

r=1,r 6=j,k,l,...| {z }
i summations

Skspk(n)...Srspr(n)
JY

t=1,t6=j,...,r
(1− Stspt(n))| {z }

J−1−i product sums

The term 1
(i+1)!

reflects the i! symmetries in the i summations, as well as the
1

i+1
probability of job acceptance. Expanding the product-sum terms yields

equation (10).
Consider now the following summation, noting that only a of Sjs’s equal

1,

JX
j=1

z†js(n)pj(n) =
aX
i=1

(−1)i−1
i!

JX
j=1

JX
k=1,k 6=j

...
JX

r=1,r 6=j,k,l,...| {z }
i summations

Sjspj(n)...Srspr(n)

= 1−
JY

j=1

(1− Sjspj(n))

Substituting this intomj(I,L; a) given by function (12), and summing up over
j = 1, ..., J also yields the aggregate matching function (14).
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B Case a = 1 Analysis

When a = 1, the problem is simplified to that of each worker choosing one
firm to apply to. The number of applicants at firm j is then αj(n) = nj.

First then, consider the efficient equilibrium established in Proposition
2 for this case. The average probability of no job offer when an applicant
chooses firm j is now,

Ψ̄j(θ) =

NI−1,1X
n1=0

...

NI−1,J−1X
nJ−1=0

JY
k=1

¡
NI−1,k
nk

¢
θnkk

JX
h=1

nh + χjh
I

Ã
1−

"
Lh

nh + χjh
, 1

#−!

where NI−1,j = I − 1 −
Pj−1

l=1 nl, nJ = NI−1,J , and χjh = 1 for h = j and
0 otherwise. Here also, [x, y]− = min [x, y]. Using further the adding-up
constraint

PI
j=0 θj = 1, this becomes,

Ψ̄j(θ) = 1−
1

I

JX
k=1

I−1X
nh=0

¡
I−1
nh

¢
θnhh (1− θh)

I−1−nh £Lh, nh + χjh
¤−

(39)

The second term is the average probability of a successful job application,
calculated as the expected total number of job offers divided by the number
of applicants I. This is so when a = 1 as in this case each job offer leads
to a job match with certainty. Now, when a worker applies to a firm j, the
total number of job offers is unchanged if the number of applications already
received nj is greater than or equal to Lj, while the number is increased by
1 if nj < Lj. Hence the internal solution condition Ψ̄j(θ

∗) = Ψ̄k(θ
∗) in (25)

simplifies to,

Lj−1X
nj=0

¡
I−1
nj

¢ ¡
θ∗j
¢nj ¡1− θ∗j

¢I−1−nj = Lk−1X
nk=0

¡
I−1
nk

¢
(θ∗k)

nk (1− θ∗k)
I−1−nk (40)

That is, the probabilities that the number of applications already received is
less than the number of advertised jobs are the same. The formal proof of this
is given below.

For the uniform wage symmetric Nash equilibrium established in Propo-
sition 3, again using the adding-up constraint

PI
j=0 θj = 1, the probability of

no job offer for a strategy j applicant is now,

Ψj(θ) = 1−
I−1X
nj=0

¡
I−1
nj

¢
θ
nj
j (1− θj)

I−1−nj
∙

Lj

nj + 1
, 1

¸−
(41)
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which is 1 minus the probability that the applicant’s application is chosen by
the firm.

Using these then, firstly,

Proposition 4 For a = 1 and Lj < I ∀j, both the efficient equilibrium and
the uniform wage symmetric Nash equilibrium solutions θ∗ and θ† are interior;
that is, every firm receives a positive number of applications.

Proof. For the efficient equilibrium solution to be interior in (25), I
require that Ψ̄j (θ)− Ψ̄k (θ) < 0 whenever θj = 0 and θk > 0. Noting that in
equation (39) the expressions for Ψ̄j (θ) and Ψ̄k (θ) differ only for h = j and
k in the h-summations,

Ψ̄j (θ)− Ψ̄k (θ)

=
1

I

I−1X
nj=0

¡
I−1
nj

¢
θ
nj
j (1− θj)

I−1−nj ©[Lj, nj]
− − [Lj, nj + 1]

−ª
+
1

I

I−1X
nk=0

¡
I−1
nk

¢
θnkk (1− θk)

I−1−nk ©[Lk, nk + 1]
− − [Lk, nk]

−ª
= −1

I

Lj−1X
nj=0

¡
I−1
nj

¢
θ
nj
j (1− θj)

I−1−nj +
1

I

Lk−1X
nk=0

¡
I−1
nk

¢
θnkk (1− θk)

I−1−nk

as [Lj , nj + 1]
− − [Lj, nj]

− = 1 for nj < Lj, and 0 for nj ≥ Lj. This formally
proves the equality (40). Now when θj = 0 the first term equals 1; and hence,
at θ such that θj = 0 and θh > 0,

Ψ̄j (θ)− Ψ̄k (θ) = −
1

I

I−1X
nk=Lk

¡
I−1
nk

¢
(θk)

nk (1− θk)
I−1−nk < 0

as required.
Similarly, for the uniform wage Nash equilibrium, when θj = 0, (41) is

zero as either θnjj = 0 when nj > 0, or
h

Lj
nj+1

, 1
i−
= 1 when nj = 0. On the

other hand, when θj > 0, Lj < I means that at least one term of
h

Lj
nj+1

, 1
i−
is

less than 1, ensuring that Ψj > 0. Therefore, at θ such that θj = 0 and θk > 0,
Ψj(θ) − Ψk(θ) < 0, which does not satisfy (32). Thus, the Nash equilibrium
solution must also be interior.

Next, regarding any two strategies j and k such that j applies to a higher
labor demand firm than k,
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Proposition 5 For any j and k such that 1 ≤ Lk < Lj < I, in both the
efficient equilibrium and the uniform wage symmetric Nash equilibrium the
applicants apply to j with a higher probability than k; that is, θ∗j > θ∗k and
θ†j > θ†k.

Proof. I prove these by contradiction. First, suppose that for Lj > Lk,
θ∗j ≤ θ∗k. As the solution must be interior, Ψ̄j (θ

∗) = Ψ̄k (θ
∗). Now it follows

from the equality (40) that the probabilities of the number of applications
being more than the number of advertised jobs must also equate,

I−1X
nj=Lj

¡
I−1
nj

¢ ¡
θ∗j
¢nj ¡1− θ∗j

¢I−1−nj = I−1X
nk=Lk

¡
I−1
nk

¢
(θ∗k)

nk (1− θ∗k)
I−1−nk (42)

A couple of lines of algebra yields, for the following derivative,

∂

∂θk

I−1X
nk=Lk

¡
I−1
nk

¢
θnkk (1− θk)

I−1−nk = (I − 1)
¡
I−2
Lk−1

¢
θLk−1k (1− θk)

I−1−Lk > 0

Therefore, in replacing θ∗k with the weakly smaller θ
∗
j in the right-hand side of

(42),

I−1X
nj=Lj

¡
I−1
nj

¢ ¡
θ∗j
¢nj ¡1− θ∗j

¢I−1−nj ≥ I−1X
nk=Lk

¡
I−1
nk

¢ ¡
θ∗j
¢nk ¡1− θ∗j

¢I−1−nk
>

I−1X
nk=Lj

¡
I−1
nk

¢ ¡
θ∗j
¢nk ¡1− θ∗j

¢I−1−nk
The second line follows as Lj > Lk ≥ 1. This is a contradiction. Hence
θ∗j > θ∗k.

Next suppose that for Lj > Lk, θ
†
j ≤ θ†k. Again as the solution is always

interior, Ψj(θ
†) = Ψk(θ

†). This time in differentiating (41) with respect to θj,

∂Ψj

∂θj
= (I − 1)

I−2X
nj=0

¡
I−2
nj

¢
θ
nj
j (1− θj)

I−nj−2

Ã∙
Lj

nj + 1
, 1

¸−
−
∙

Lj

nj + 2
, 1

¸−!
(43)

This is strictly positive when Lj < I. Then in replacing θ†k in Ψk(θ
†) with the
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weakly smaller θ†j,

Ψj(θ
†) ≥ 1−

I−1X
nk=0

¡
I−1
nk

¢
(θ†j)

nk(1− θ†j)
I−1−nk

∙
Lk

nk + 1
, 1

¸−
> 1−

I−1X
nk=0

¡
I−1
nk

¢
(θ†j)

nk(1− θ†j)
I−1−nk

∙
Lj

nk + 1
, 1

¸−
which is a contradiction for Lk < Lj < I. Hence θ†j > θ†k.

Finally, let firm 1 be the firm with the highest labor demand. Then,

Proposition 6 For firm 1 such that L1 = max
1≤j≤J

{Lj}, θ∗1 < θ†1.

Proof. I prove this by showing that at the efficient equilibrium θ∗,
Ψ1(θ

∗) < Ψj(θ
∗) ∀j 6= 1; hence θ1 must be increased to reach the Nash

equilibrium θ†. First rewrite equation (41) as,

Ψj(θ) =
I−1X

nj=Lj

¡
I−1
nj

¢
θ
nj
j (1− θj)

I−1−nj −
I−1X

nj=Lj

¡
I−1
nj

¢
θ
nj
j (1− θj)

I−1−nj
µ

Lj

nj + 1

¶
Then, as at θ∗ equality (42) is true, Ψ1(θ

∗) < Ψj(θ
∗) if and only if,

I−1X
n1=L1

¡
I−1
n1

¢
(θ∗1)

n1 (1− θ∗1)
I−1−n1

µ
L1

n1 + 1

¶

>
I−1X

nj=Lj

¡
I−1
nj

¢ ¡
θ∗j
¢nj ¡1− θ∗j

¢I−1−nj µ Lj

nj + 1

¶
(44)

These terms represent the probabilities of a job offer at each firm, given that
the total number of the applications nk+1 is more than the number of adver-
tised jobs Lk, k ∈ {1, j}. Now (42) ensures that at the efficient equilibrium,
the cumulative probabilities of all outcomes nk, such that nk+1 > Lk, are the
same at both firms. Moreover at each of these outcomes, the job offer proba-
bility Lk

nk+1
is greater at firm 1 than at firm j; note in particular at nk = Lk,

L1
L1+1

>
Lj

Lj+1
, and at nk = I − 1, L1

I
>

Lj
I
.12 Therefore (44) is true, imply-

ing that Ψ1(θ
∗) < Ψj(θ

∗). Finally, we know from (43) that ∂Ψk

∂θk
> 0 when

12The terms in (44) can be interpreted as the binomial tree pricing of options with payoffs
Lk

nk+1
if nk ≥ Lk, and 0 otherwise. The efficiency condition (42) ensures that the probability

of the option being in-the-money at the maturity (i.e., the payoff being strictly greater than
zero) is the same for both firms 1 and j, while L1 > Lj implies that the payoff curve for
option 1 is always strictly above that for option j. Hence the value of the option (with zero
discounting in this case) is unambiguously higher for the former than for the latter.
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PI
k=0 θk = 1. Hence θ1 must be increased from θ∗1, and θj decreased from θ∗j ,

to attain θ† such that Ψ1(θ
†) = Ψj(θ

†). This is true for all j = 2, ..., J , and
hence θ†1 > θ∗1 unambiguously.

There is, therefore, overcrowding at the firm with the highest labor de-
mand in the uniform wage Nash equilibrium, compared with the efficient equi-
librium. For example, when (I, J ; a) = (5, 3; 1) and L = (3, 2, 1)0, the efficient
equilibrium is calculated to be θ∗ = (0.554, 0.328, 0.119)0, while the uniform
wage Nash equilibrium turns out to be θ† = (0.607, 0.316, 0.078)0. This result
agrees with both Propositions 5 and 6.
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