
University of Iowa
Iowa Research Online

2014 ASEE North Midwest Section Conference Flipped Classroom

Oct 17th, 11:03 AM - 11:21 AM

Increasing Material Coverage in Software
Engineering through the Introduction of the
Flipped Classroom
Walter Schilling
Milwaukee School of Engineering

Follow this and additional works at: https://ir.uiowa.edu/aseenmw2014

Part of the Educational Methods Commons, and the Engineering Education Commons

This Presentation is brought to you for free and open access by the College of Engineering at Iowa Research Online. It has been accepted for inclusion
in 2014 ASEE North Midwest Section Conference by an authorized administrator of Iowa Research Online. For more information, please contact lib-
ir@uiowa.edu.

Schilling, Walter, "Increasing Material Coverage in Software Engineering through the Introduction of the Flipped Classroom" (2014).
2014 ASEE North Midwest Section Conference. 2.
https://ir.uiowa.edu/aseenmw2014/flipped_classroom/2B/2 https://doi.org/10.17077/aseenmw2014.1020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Iowa Research Online

https://core.ac.uk/display/61112896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/aseenmw2014?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/aseenmw2014/flipped_classroom?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/aseenmw2014?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/aseenmw2014/flipped_classroom/2B/2?utm_source=ir.uiowa.edu%2Faseenmw2014%2Fflipped_classroom%2F2B%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/aseenmw2014.1020
mailto:lib-ir@uiowa.edu
mailto:lib-ir@uiowa.edu

1

Proceedings,
The 2014 ASEE North Midwest Section Conference,
October 16‐17, 2014, Iowa City, IA.

ASEE‐NWMSC2014‐2B2

Increasing Material Coverage in Software Engineering through the
Introduction of the Flipped Classroom

Dr. Walter Schilling
Department of Electrical Engineering and Computer Science

Milwaukee School of Engineering

Abstract

Software Engineering represents a rapidly changing engineering discipline. As a young
discipline, the field has not reached the same level of maturity as other engineering disciplines.
Furthermore, as a rapidly evolving field, it also is encountering greater change than many other
disciplines of engineering. This change leads to a much greater challenge meeting the needs of
diverse engineering constituents. More material must be taught in each course and at a faster
pace in order to ensure that students are ready for the demands of industry.

At the Milwaukee School of Engineering, curriculum changes have resulted in a reduction in lab
content and credit for courses. In one course, Operating Systems, the lab component has been
removed entirely. However, through prudent course design and the usage of the flipped
classroom, the same amount of content was able to be covered in less time.

This article will present an analysis of the findings of applying the flipped classroom to teaching
operating systems to software engineering students. Included will be analysis of student
performance from control groups prior to the curriculum conversion, as well as observations
from students on the usage of the flipped classroom. In particular, the data indicates improved
performance for the bottom group of students when using the flipped classroom approach.

Introduction

Software Engineering is a rapidly evolving field. Each year, there are new innovations and new
technologies which must be taught to students. However, this can be tremendously challenging,
for degree programs are credit-limited and must be designed with for students to graduate in a
timely fashion. In 2010, the Software Engineering Program at the Milwaukee School of
Engineering (MSOE) underwent a major curriculum transformation, adding new required
courses in Computer Networking, Web Applications Development, Real Time Systems, and
Programming Languages. These additional courses were added based on industrial advisory
board and recent alumni feedback. However, in order to make space for 15 new quarter hours,
compromises needed to be made in other areas of the curriculum. One such area receiving
modification was the coverage of operating systems. This article describes the changes made to
the course as well as results from the first offering of the course in a flipped classroom format.

2

Institutional Profile

MSOE offers an accredited Bachelors of Science degree in software engineering, and has been
accredited since 2002. As an institution, there is a strong emphasis on small class sizes (14:1
student to faculty ratio) and extensive laboratory experience. Students graduating from MSOE
spend on average 600 hours in laboratories related to their major. Institutionally, there is more
square footage devoted to lab space than lecture hall space. All engineering students are required
to complete a three course capstone experience. While the majority of students on campus are in
the engineering fields, the school also offers a nursing program, a technical communication
program, and several business programs.

MSOE prides itself in having very few traditional computer labs on campus. Instead, all students
enrolled in the university are issued a laptop as part of a technology package which includes the
laptop and all relevant software needed for the program the student is enrolled in.

The software engineering program offers several unique learning opportunities. One part of the
program is a 12 credit Software Development Laboratory experience where students work on
large-scale, industry-sponsored projects. Students are also required to take an application domain
sequence of three related, specialized courses which emphasize the application of software
engineering material to different domains. Most software engineering courses are offered in the
3+2 format, meaning the course meets in lecture three times for one hour and have a 2 hour
associated lab period.

The Baseline Operating Systems Course

In the old curriculum, the Design of Operating Systems Course, CS3841, was shared by the
Software Engineering Program and the Computer Engineering Program. The course consisted of
3 hours of lecture per week and a 2 hour lab. Lab activities consisted of labs designed to
demonstrate the usage and core designs for an operating system. All labs used a Linux Virtual
machine and the C programming language. Outcomes for CS3841 are shown in Figure 1.

3

The Design of Operating Systems course earned a reputation as being a tough course from
students. In this course, they spent a significant amount of time working on labs, as several of
the labs were quite challenging from a technical standpoint, and many students did not fully
grasp the C programming language. Additionally, students were required to write a 20 page
research paper on computer engineering or software engineering related topics.

The New Operating Systems Course

In developing a new curriculum, 16 quarter hours of classes were added to the program,
including 4 new courses with labs. In order maintain the number of credits in the curriculum,
compromises needed to be made, and as such, a decision was made to remove the associated lab
from the operating systems course, replacing it with a lecture only course. This resulted in a
40% reduction in contact time with the students.

To make the adjustment, the overall outcomes of the course were reduced slightly, resulting in
the course outcomes provided in Figure 2. The most significant outcomes removed from the
course dealt with student research and the ability to perform independent research, as this topic
was moved to another course in the curriculum. Several other outcomes were modified to a
lower level of Bloom’s Taxonomy. However, this resulted in a challenge, as overall, the
technical content of the course had not been significantly reduced nor could be reduced if
students were to be prepared for the new Real Time Systems Course which followed.

Upon successful completion of this course, the student will be able to:
 1. Identify the components of operating system process management.
 2. Recognize issues related to concurrent processes and synchronization techniques.
 3. Discuss and illustrate several approaches to operating system memory management.
 4. Discuss and illustrate several scheduling algorithms.
 5. Describe input/output handling in operating systems.
 6. Illustrate file system interfaces and implementation.
 7. Construct software applications which use POSIX/UNIX system calls to spawn additional processes.
 8. Construct software which uses multiple POSIX/UNIX threads.
 9. be able to perform independent research on a focused technical topic.
 10. be able to document research results in a technical paper.
 11. Construct software which implements a fundamental data structure in C and manages memory
 using malloc and free.
 12. Construct a software library which manages a memory heap.

Figure 1: CS3841 Design of Operating Systems Course Outcomes

4

In an attempt to make the course more efficient, the course was developed from the start to use a
“flipped learning” method. The flipped learning classroom, extensively described in literature
[1], [2], allows an instructor to increase the amount of time devoted to active learning exercises
while not reducing content coverage, and offers many benefits from an academic standpoint.

Flipping this class involved the development of 20 videos which covered the bulk of the lecture
material, as is shown in Figure 3. Videos ranged in length between 6:40 and 18:44, with the
average length being 9:23. 25 in class active learning exercises were also developed, ranging
from implementing a simple context switcher on a 32 bit microcontroller to developing a simple
user shell for Linux. Each video contained an embedded quiz, typically 5 questions, which
assessed student understanding of the lecture material.

Topic

Script
writing
time

Video
Recording

Video
Editing

Quiz
Writing

Overall
Video
length

Scheduling Part 1 2:32:34 1:16:16 0:54:53 0:13:10 0:06:50

FCFS Scheduling 1:02:05 1:04:22 0:01:25 0:16:04 0:06:40

SJF Scheduling 1:22:41 0:42:44 0:35:33 0:31:37 0:10:13

Processes 0:42:01 0:55:11 0:33:48 0:32:23 0:18:03

Process Operations 1:41:17 0:32 0:46:15 0:20:00 0:11:03

Interprocess Communciations 2:04:03 0:26:53 1:03:14 0:31:14 0:09:17

System Calls 6:50:19 1:52:11 2:10:52 0:12:44 0:18:44

OS Structures 2:56:55 0:45:04 1:34:56 0:09:30 0:10:07

Process Synchronization 1:52:47 1:38:21 1:36:06 0:16 0:13:40

Process Operations (Context Switching) 0:45:00 0:40:00 0:40:00 0:12:00 0:14:02

Sockets 1:52:27 1:28:36 1:16:23 0:41:00 0:12:10

Threads 1:49:14 0:29:11 1:00:10 0:31:15 0:07:24

Thread cancellation and system calls 1:01:00 0:30:00 0:26:00 0:28:38 0:09:42

Priority Scheduling 0:11:26

Virtual Memory 0:14:56

Deadlocks 0:21:00 0:53:00 0:26:00 0:29:00 0:14:54

File Systems 3:16:11 0:40:11 1:48:19 0:14:54 0:16:41

Memory 0:17:44

 2:54:17

Figure 3: Video Lecture data.

Upon successful completion of this course, the student will be able to:
 1. Identify the components of operating system process management.
 2. Recognize issues related to concurrent processes and synchronization techniques.
 3. Discuss and illustrate several approaches to operating system memory management.
 4. Analyze the usage of memory management systems experimentally.
 5. Discuss and illustrate commonly used scheduling algorithms.
 6. Describe input/output handling in operating systems.
 7. Illustrate file system interfaces and implementation.
 8. Apply POSIX system calls.

Figure 2: CS3844 Operating Systems Course Outcomes

5

Assessment of the First Offering

In order to assess the sentiment of students enrolled in the course, a brief survey was provided at
the end of the course for students to provide feedback on the course, shown in Figure 4. Overall,
students viewed the course positively. In general, students felt the course had approximately the
same difficulty as their other software engineering courses, and they strongly agreed that the
videos provided better preparation than a comparable textbook for the course materials. Overall,
students felt that the videos were about the right length and overall they would enroll in another
flipped classroom if given the opportunity.

The survey did reveal some surprising results. First and foremost, the students indicated that
they spent about the same amount of time on this class as they did on their other classes. This
was quite surprising, as their other courses all involved extensive labs and were 4 credit courses,
resulting in at least an additional 2 contact hours per week as well as outside of lecture work.
This sentiment either indicates the students are not spending as much time in their other courses
as we feel they are or the survey was misinterpreted. Further analysis of this area will occur in
future offerings.

It was also surprising to see the strong support for embedded quizzes in the videos. In the past,
other faculty members have attempted to use videos for class preparation in lieu of a textbook.
However, any feedback to the instructor has come from a blackboard or paper based quiz. With
these videos, quizzes were embedded directly into the videos using Camtasia quiz feature [3].
This prevented students from watching parts of the video without completing the quizzes as well
as providing feedback to the instructor on how long students spent watching videos. It also
prevented students from taking the quiz without watching the video (though it was possible for
students to fast forward through parts of the video, and many students did this). All in all, this
seemed to improve the cognitive understanding of the material.

To assess student learning, the results from the midterm exam were compared between flipped
and non-flipped courses. This result is shown in Figure 5. Overall, the top performing students
generally matched in the flipped classroom offering with those in the most recent 3 traditional
courses. However, as the students’ grade percentiles decreased, the flipped scores were higher,
indicating greater understanding of the material. This trend held constant across all subsections
of the exam as well. Students performed better on the multiple-choice, free response, and
problem-based sections of the exam in the flipped classroom offering versus the traditional
offerings.

6

Question Responses Average Median Stdev

Overall, this course was ________
my other SE courses.

(5) Significantly harder than
(4) harder than
(3) about the same as
(2) easier
(1) significantly easier 2.88 3 0.59

Overall, I spent ________ my other
SE courses.

(5) Significantly more time than
(4) more time than
(3) about the same time as
(2) less time than
(1) significantly less time than 3.04 3 0.82

I felt that the usage of videos and
online material in advance of class
helped to prepare me for lecture
better than traditional textbook
readings.

(5) Strongly Agree
(4) Agree
(3) Ambivalent
(2) Disagree
(1) Strongly Disagree 4.42 4.5 0.64

I prefer the “flipped classroom”
approach to a traditional classroom
approach.

(5) Strongly Agree
(4) Agree
(3) Ambivalent
(2) Disagree
(1) Strongly Disagree 3.62 4 0.94

Overall, I felt that the videos lengths
were.

(5) Way too long
(4) too long
(3) about right
(2) too short
(1) way too short 3.15 3 0.46

If given the opportunity, I would
enroll in another class taught using
the “flipped classroom” approach.

(5) Strongly Agree
(4) Agree
(3) Ambivalent
(2) Disagree
(1) Strongly Disagree 3.76 4 0.97

I felt that the quizzes in the video
forced me to pay attention and
watch the videos.

(5) Strongly Agree
(4) Agree
(3) Ambivalent
(2) Disagree
(1) Strongly Disagree 4.24 4 0.93

Figure 4: CS3844 Flipped Classroom student feedback.

7

Figure 5: A Comparison of Midterm Exam grades between the Flipped Classroom and the
traditional classroom.

Summary and Conclusions

This paper has shown preliminary results of incorporating a flipped classroom approach to
teaching a technical topic in the software engineering program. The flipped classroom approach
was necessitated by a need for greater teaching efficiency as part of a curriculum change and a
40% reduction in content time for a given course. All in all, the approach was supported by
students in the class and resulted in an increase in student’s performance as measured by
examination.

Bibliography

1. J. Bergmann, Flip Your Classroom: Reach Every Student in Every Class Every Day, International Society For

Technology In Education (ISTE), 2012.
2. J. Bishop and M. Verleger, "The Flipped Classroom: A Survey of the research," in ASEE Annual Conference,

Atlanta, 2013.
3. "Camtasia - Advanced Features: Adding a Quiz to a Lecture," 3 7 2013. [Online]. Available:

http://webs.purduecal.edu/oit/files/2013/09/Camtasia-Lecture-Recording-with-Quizzes-revised-9-5-13.pdf.
[Accessed 1 6 2014].

	University of Iowa
	Iowa Research Online
	Oct 17th, 11:03 AM - 11:21 AM

	Increasing Material Coverage in Software Engineering through the Introduction of the Flipped Classroom
	Walter Schilling

	Increasing Material Coverage in Software Engineering through the Introduction of the Flipped Classroom

