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A B S T R A C T   

Satellite-based inventories of bark beetle attacks are increasingly used for detecting and monitoring infested 
forest at the landscape scale. The Normalized Distance Red & SWIR index is one of few indices that have shown 
higher accuracies than commonly used vegetation indices. In this study, the temporal changes of the distance red 
swir (ΔDRS) index were analyzed, validated and applied to multi-temporal Sentinel-2 images covering one tile of 
110 x 110 km2. The main purpose was to assess the applicability of a new ΔDRS vegetation index to detect spruce 
forest after bark beetle (Ips typographus) attacks. Harvester data from a private forest company were used to 
validate the method. The normalized DRS index has previously been developed and tested at test site level, while 
this study explored and demonstrated the use of ΔDRS in an applied context on a larger scale. Water and 
chlorophyll induced changes and different disturbances were effectively identified across the landscape. A linear- 
discriminant analysis was used to classify 274 clusters as attacked and healthy forest, with an overall accuracy of 
78%. The largest ΔDRS values in our study (>0.06) corresponded well to clear-cuts, and all 172 clear-cuts were 
correctly classified. We conclude that the ΔDRS index has a potential to map vegetation changes related to water 
and chlorophyll changes in the Scandinavian forests and that it can be useful to identify bark beetle-infested 
forest within 1 year after the attacks and clear-cuts.   

1. Introduction 

Bark beetle outbreaks are a significant biotic disturbance in 
temperate forests (Sommerfeld et al., 2018), often leading to alterations 
in both biotic and abiotic conditions. These changes include decreased 
canopy cover, greater amounts of dead wood, and variations in stand 
ages and tree species composition, all of which contribute to biodiversity 
enhancement (Beudert et al., 2015; Lehnert et al., 2013). Simulta-
neously, bark beetles cause large economic forest damages. During the 
first two years of the ongoing outbreak in Sweden, 10–11 million m3 of 
timber were lost, while the Czech Republic required 260 million EUR in 
state interventions to address related issues (Hlásny et al., 2021; Huo 
et al., 2021). The occurrences of disturbances, and in particular bark 
beetle outbreaks, have increased drastically in the recent decades which 
partly can be attributed to the higher temperatures resulting from 
climate change, as well as increased homogeneity in managed forests 
which increase host availability (Raffa et al., 2015). The bark beetles 
benefit from higher temperatures as they exploit the weakening of host 
tree defenses caused by drought, and consequently, fewer beetles are 

needed to kill a tree under such circumstances. In addition, warmer 
summers shorten the generation time and thus increase the number of 
annual generations. The homogenous mono species plantations decrease 
resilience to natural disturbances in general (Jactel et al., 2017). This is 
obvious also for bark-beetle outbreaks where large host-tree volumes 
strongly increase infestation risks (Kärvemo et al., 2016; Pasztor et al., 
2014). Furthermore, forest management that includes clear-cuts expose 
more forest to distinct borders, which is known to increase the number 
of bark beetle attacks due to a changing microclimate (Hedgren et al., 
2003; Kautz et al., 2013) and host-tree volatiles (Hedgren et al., 2003). 
For some bark beetle species, such as the European spruce bark beetle Ips 
typographus, infested trees are commonly situated in small clusters or 
infestations patches. In Sweden, >80 % of the clusters contain fewer 
than 25 trees (Kärvemo et al., 2023) and in Slovakia 79 % were clustered 
within areas smaller than 500 m2 (Potterf et al., 2019). Methods are 
needed both for wall-to-wall mapping to support forest management 
decisions and for monitoring of damage levels at region and country 
level (Hanewinkel et al., 2008; Pasztor et al., 2014; Patacca et al., 2023). 

Remote sensing (RS) has increasingly been used as an efficient mean 
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to identify and map disturbances wall-to-wall over large areas (Candotti 
et al., 2022; Estrada et al., 2023; Luo et al., 2023; Mandl and Lang, 2023; 
Trubin et al., 2023). Methods that are feasible to map bark beetle 
attacked forest can often be efficient means to map also other damage 
types, e.g. wind throws (Candotti et al., 2022; Tanase et al., 2018). In the 
recent works aimed at addressing bark-beetle outbreak challenges, early 
detection and rapid management actions have been proposed as one 
crucial component (Abdullah et al., 2019; Gao et al., 2022; Luo et al., 
2023; Ortiz et al., 2013; Tanase et al., 2018; Trubin et al., 2024; Yu et al., 
2022). Effective sanitation felling of infested trees requires that the trees 
are cut before the adult beetles emerge (Wermelinger, 2004). In south-
ern Sweden, 50 % of the filial beetles have been found to emerge 11 
weeks after the brood was initiated (Öhrn et al., 2014). Within the 
vegetation period, an average time-lag of two to three months is 
commonly needed until the I. typographus infestation can be reliably 
detected in aerial surveys (Huo et al., 2023, 2021; Jactel et al., 2017; 
Kautz, 2014). 

In a previous work, we developed a vegetation index based on two 
spectral bands from Sentinel-2 (S2), denoted normalized distance red & 
swir (NDRS), (Huo et al., 2021), where its spectral response due to the 
changing tree physiology was discussed in Section 5.1. This index was 
used to classify bark-beetle attacked forest in a relatively small Swedish 
test site (1,600 ha) and it has since been both tested and compared with 
other indices, and evaluated across other European forest types, e.g., in 
the European Alps (Candotti et al., 2022; Dalponte et al., 2022; Huo 
et al., 2023; Jamali et al., 2023). The normalization requires known 
locations of spruce stands, which may not be available. The steps toward 
an applied use of the NDRS index have motivated us to explore the 
relationship of the DRS index to bark beetle attacks, and furthermore 
assess the performance, in an environment relevant for boreal forestry, 
and in a large-scale operational setting. Most other studies have focused 
on test site level or used high-resolution data that are not suitable for 
wall-to-wall monitoring. The analyses in this paper extend previous bark 
beetle mapping efforts based on satellite (Bárta et al., 2021; Candotti 
et al., 2022; Dalponte et al., 2022; Huo et al., 2021; Jamali et al., 2023) 
and aerial data (Bárta et al., 2022; Kärvemo et al., 2014). Several of 
them focused on early detection (Bárta et al., 2021,2022, Candotti et al., 
2022, Huo et al., 2021, Jamali et al., 2023), and some used sensors 
allowing the work to be carried out at single-tree level, e.g, high- 
resolution hyperspectral imagery or lidar, (Bárta et al., 2022; Dalponte 
et al., 2022; Huo et al., 2023). Both Candotti et al. (2022) and Dalponte 
et al. (2022) investigated the use of multiple S2 bands or multiple 
vegetation indices based on S2, applied to bark beetle attacked trees in 
the Alp region. Jamali et al. (2023) focused on the early detection in 
Sweden using S2 data. Early detection has proven to be challenging and 
not providing consistent results. Nevertheless, mapping of bark beetle- 
attacked trees in later stages is also beneficial for forest management, 
but has not yet been successful operationally. For example, 72 % of the 
trees in Sweden killed by bark beetles are still not removed, causing 
dangerous conditions with dead standing trees (Wulff and Roberge, 
2023). Comparisons of study results are not straightforward, due to 
different study designs, spatial scales (of trees and sensor resolution), 
validation metrics, and extent of study areas. Furthermore, only studies 
based on balanced data samples can to some degree be compared. Yet, 
we think that a single method for mapping bark beetle attacked trees 
over large areas with high accuracy is still missing. A number of criteria 
should hence be met: the method should provide such accuracy that it is 
operationally useful, the area of interest should span considerably more 
forest than a single test site or local ecosystem, the method works with 
data available wall-to-wall to enable monitoring (i.e., an alert system 
could be implemented), the method is useful for the later attack stages 
too – early detection is not realistic for most operational forestry, the 
method does not require extensive complementary data (e.g, pheromon 
traps, recent laser scanning data or other high-resolution data unavai-
lable at large-scale), and at best – the method works regardless of 
geographic region. 

Several studies adressing many of these criterias have demonstrated 
the potential of using Landsat (Senf et al., 2015) or S2 data (Barta et al. 
2021, Candotti et al. 2023, Dalponte et al. 2023, Jamali et al., 2023), 
with Senf et al. (2015) adressing a forest in British Columbia, the first 
three S2 studies adressing temperate forest in the alps, and Jamali et al., 
2023 adressing the early detection of boreal forest. Yet, the demon-
stration of a bark beetle damage map of boreal forest with useful ac-
curacy is yet sparse or non-existing. 

The main focus of this study is the testing, applied use, and evalua-
tion of ΔDRS (temporal DRS change) in a large-scale context suitable for 
national operational forest monitoring, and building upon operational 
reference data. The objectives were to 1) generate a large-area forest 
map indicating bark beetle attacks (not addressing early detection spe-
cifically), 2) assess the accuracy of the map(s) in an operational relevant 
environment, and 3) identify and share other useful experiences related 
to the mapping method(s). 

2. Material and Methods 

2.1. Study site and reference data 

The study was conducted in Sweden (northern Europe), located 
mainly in the boreal forest region, though the southernmost parts are 
within the hemi-boreal and nemoral regions. In 2018, an extensive 
drought hit Europe and Sweden (Rousi et al., 2023). Consequently, 
many spruce trees reduced their vitality and suffered from large-scale 
attacks by the spruce bark beetle. Large areas of southern Sweden 
were particularly exposed and the largest forest company in the area 
(Södra) provided harvester data for their forests in both 2018 and 2019. 
During this period, there were unfortunately few cloud-free images and 
due to this, we selected a single Sentinel-2 tile (33VWD) covering 110 ×
110 km2 as study area (Fig. 1). This is located in southeastern Sweden 
and had the best combination of cloud-free images and harvester data 
available as ground reference. The forest in the area is dominated by 
Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.) 
and birch (Betula spp.), where pine (30 %) and spruce (46 %) constitute 
most of the volume (SLU, 2019). For every harvested tree, the harvester 

Fig. 1. Overview of southern Sweden with the study areas zoomed in (co-
ordinates in WGS84; EPSG:4326). 
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registered tree species, diameter breast height (DBH), if it was bark 
beetle attacked or healthy (visually inspected by the harvester operator), 
the position of the harvester based on global navigation satellite system 
(GNSS), and the date of harvest. Since the harvester operator assessed 
the status of attacked or healthy trees, some trees in the green-attack 
phase were likely falsely assigned to the healthy class. National aerial 
ortho-photos (a mosaic with 0.16 m resolution) were provided in a web 
map service (WMS) from the Swedish National Land Survey, which were 
used to verify reported forest operations and for visual interpretation of 
the results. 

2.2. Satellite data 

The S2 images were selected using Google Earth Engine (GEE), from 
the data catalog “COPERNICUS/S2_SR”, which provided Level 2 surface 
reflectance values. The S2 acquisitions covering the study area during 
2018–2019 were filtered for cloud coverage < 20 % and visually 
inspected to identify useful scenes. Since no single scene in 2018 was 
cloud-free, we used GEE to derive a cloud-free mosaic based on the 
procedure of taking the median pixel value (in the time domain) per 
pixel, out of the useful scenes in each year, to derive a cloud-free mosaic. 
This approach enabled us to derive a “before attacks” image t1, based on 
the time range July 21 until August 31, 2018, which is within the 
vegetated season in the study area. Then, a single cloud-free image was 
identified on August 27, 2019 (Table 1), which was used as “after” image 
t2, although some trees attacked from a second swarming period – 
usually including a five-fold reduction of bark beetles compared to the 
main flight (Öhrn et al., 2014) – may still be in the green attack stage 
(Jactel et al., 2017). To investigate the temporal stability of ΔDRS from 
2018 until different times in the season 2019, we derived cloud-free 
mosaics (as described above) based on four different time periods in 
2019, spring (t2*1), summer(t2*2), late summer (t2*3), and autumn (t2*4) 
– after the vegetation season (Table 1). 

2.3. Rasterization of harvester reference data 

The harvested tree positions were rasterized (10 × 10 m2 pixels) to 
create heat maps of harvested trees for both attacked and healthy trees 
for each pixel. This enabled us to identify areas with different harvest 
intensities and derive the proportion of healthy and attacked harvested 
trees per pixel. The distribution of attacks per pixel was exponentially 
declining, with a range of 1 to 56. Most pixels had few attacks, and as the 
number of attacks per pixels increased, fewer pixels were available 
(Fig. 2). It is unlikely that as much as 56 trees were actually located 
within a single 10 × 10 m2 pixel, but since the GNSS receiver was 
mounted on the harvester cabin roof and not on the harvester head, 
multiple records can have duplicated coordinates. The uncertainties in 
the harvester positioning may worsen this problem. 

2.4. Derivation of DRS and ΔDRS 

The DRS was derived as (cf. eq. (1) in Huo et al., 2021): 

DRS =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Red2 + SWIR2

√
(1)  

using band 4 (10 × 10 m2 pixels) as red, and band 12 (20 × 20 m2 pixels) 
as SWIR. In Huo et al. (2021), the DRS was normalized with respect to 
the range of DRS values of spruce-dominated pixels and a threshold was 
estimated to separate healthy and attacked forest. The normalization 
reduces DRS changes due to phenology, enables comparisons of DRS 
between different seasons, and it is an efficient method for identifying 
attacked forest when we have a priori information that attacks do exist. 
However, in practice we may not have access to maps of spruce- 
dominated forest from sufficiently large areas to normalize and esti-
mate the threshold accurately, and it could be more efficient to use the 
change of DRS over time. Therefore, this study tests the performance of 
using temporal DRS changes (ΔDRS) on mapping bark beetle damage. 
The assumption is that the tree species composition or vegetation in a 
pixel remains stable throughout the time span investigated with ΔDRS. 
Then, chlorophyll related changes (captured by the red band) and water 
induced changes (captured by the SWIR band) in the vegetation will be 
the main drivers of changing DRS values. Since the water exchange in 
vegetation is dependent on the phenology, we assumed that using 
approximately the same phenology season could ensure robust esti-
mates. This was further investigated in Section 2.5.3 to explore the 
temporal stability of ΔDRS. We defined the ΔDRS as 

ΔDRS = DRSt2 − DRSt1 (2)  

using the image mosaic “after” as t2, and image mosaic “before” as t1. 
The ΔDRS pixel values for the single pixels or clusters of pixels were 
extracted and used to assess the usefulness in the following sections. 

2.5. Analyses 

2.5.1. Approach 1: Pixel level 
The harvester data were used for two different validation ap-

proaches, one for the validation at pixel level and one for validation at 
cluster level. The harvester data after t2 (27. Aug 2019, Table 1) until 
the end of the year 2019 were used as references for the bark beetle 
mapping. In the first, we considered the number of attacked trees per 
pixel that could be detectable based on ΔDRS, hence indicate the rela-
tionship between the attack intensity and the ΔDRS. We extracted the 

Table 1 
Acquisition times of satellite images. The t2 images with names in subscript 
indicate the four different “after” images, which were used in the temporal 
stability analysis.  

Dataset Period Purpose 

DRS t1 21 Jul – 31 Aug 2018 before image for all ΔDRS analyses 
DRS t2 27 Aug 2019 after image for main ΔDRS analysis 
DRS t2*1 30 Apr – 31 May 2019 after image 1 for seasonal stability analysis 
DRS t2*2 2 Jun – 20 Jul 2019 after image 2 for seasonal stability analysis 
DRS t2*3 27 Aug 2019 after image 3 for seasonal stability analysis 
DRS t2*4 21 Sep – 29 Oct 2019 after image 4 for seasonal stability analysis 
DRS t3 25 Jun 2019 after image for clear-cut analysis  

Fig. 2. Histogram of attacked trees per pixel. Vertical bar denotes truncation 
limit and gray vertical bars denote extended intervals. 
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ΔDRS pixel values for the locations where the harvester had registered 
attacks. In each pixel interval with a width of 1 (applied to the range 1, 
2, 3 … 56), we randomly put aside 10 % of the pixels for testing and used 
the other 90 % for modeling. Due to a lot of noise, the pixels for each 
interval were averaged to derive the mean ΔDRS value for each interval 
(separately for modeling and testing). 

Müller et al., (2022) used similar harvester data, and they treated 
pixels with more than 10 registered trees as unreliable which were then 
removed. They did not explain the reasoning behind this, but bark 
beetles are more commonly attacking older and larger trees, >25 cm 
DBH as suggested by Sproull et al. (2015). By transferring this concept to 
a Swedish forest context (i.e., with smaller trees), we believe that this 
corresponds to trees with a DBH of about 20–40 cm in the managed 
forest in our study, which corresponds to a crown area of about 10–20 
m2 (Pretzsch et al., 2015). In case of a fully stocked, mature forest, there 
would only fit in about 5–10 trees in a single pixel (100 m2). Hence, we 
agree with Müller et al., (2022) that it would only be somewhat reliable 
registrations within the range of about 1–10 trees per pixel. 

The rasterized harvested tree map provided 11,786 pixels with at 
least one attacked spruce tree, 244 pixels with 10 attacks per pixel and at 
17 attacks per pixel, we only had 24 pixels available (Fig. 2). For illus-
tration purposes, we processed all our data, but for the higher values (e. 
g. 23 attacks/pixel), there were few or no pixels available. We therefore 
decided to widen the interval (over which the mean was computed) 
when there were fewer than 30 pixels, until at least 30 pixels were 
included (e.g. the interval was extended from [23,23] to [23,24] at-
tacks/pixel, illustrated with gray vertical bars in Fig. 2). The limit of 30 
pixels was selected as it corresponds to when a Student’s t-distribution 
approximately converges into a normal distribution, but even if 30 
pixels may be enough for the statistics, the mean value will be more 
accurate when computed from more pixels. There were only 747 pixels 
with more than 10 attacks/pixel (6 % of all pixels). Therefore, agreeing 
with the hypothesis by Müller et al., (2022), we also decided to truncate 
the dataset used for modeling at 10 trees per pixel (Fig. 2). We assumed a 
linear relationship between attacks and ΔDRS and estimated the model 
parameters with a linear regression model, 

attacks = α0 +α1ΔDRS+ ε (3)  

where attacks denote the number of attacked trees per pixel, ΔDRS the 
change of DRS, and ε is the residual standard error. The estimated pa-
rameters were α0 = − 4.844, α1 = 1316, and ε = 0.9077. The regres-
sion model was used to predict the attacks of the validation dataset (the 
10 % put aside) and the accuracy was estimated as root mean square 
error: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ŷi − Yi)

2

√

(4)  

with Y being the reference, Ŷ the prediction for i attacks/pixel, and n 
denoting the total number of intervals (10). 

2.5.2. Approach 2: Cluster level 
In the second validation approach, we created clusters of the 

attacked and healthy trees registered by the harvester, using the same 
period as for the single pixels (Fig. 3). The ΔDRS values of single pixels 
are not only decided by what happens within the single pixels but are 
also highly influenced by the surroundings. In particular, the SWIR 
band, which was only acquired at 20 × 20 m2 pixels, was oversampled to 
enable deriving the DRS at 10 × 10 m2 pixels. Therefore, the main dif-
ference here compared to the Approach 1: Pixel level, is that we studied 
clusters of pixels, instead of single pixels with a much larger variation. 
Assessing a slightly larger area (although small) reduces the impact of 
positioning errors and other noise we cannot control. To derive the 
clusters of attacked trees, we filtered the rasterized harvester pixels with 
the criteria that a single pixel should have > 5 trees and out of these, 
>50 % should be attacked. A closing morphological operation (dilation 
followed by erosion) was then applied using a 5 × 5 pixels kernel, 
implemented with the Whitebox plugin in QGIS (Lindsay, 2016), with 
the result that gaps smaller than 5x5 pixels were removed. The pixels 
fulfilling these criteria were then converted to polygons. A corre-
sponding procedure was carried out to generate clusters with only 
healthy harvested trees. Then, we filtered the clusters and required them 
to be at least 30 m away from other clusters, and having a minimum area 
of 500 m2. This generated 842 attacked tree clusters and 137 healthy 
tree clusters. The tree properties of the clustered datasets are presented 
in Table 2. The mean DBH of attacked clusters was 30.2 cm, while it was 
27.8 cm for healthy clusters (Fig. 4), indicating similar tree properties in 
both groups. The significance was p < 2.2e-16, when comparing the two 
groups using a Kolmogorov-Smirnov test. However, the spread of DBH is 
a bit larger for the healthy trees (10.1 vs. 9.45 cm, Table 2). 

Then, we extracted the mean, 1st, and 99th percentile of the ΔDRS 
pixel values for the clusters and used these as explanatory variables in a 
linear discriminant analysis (LDA, from the MASS package in R) to 
classify the ΔDRS clusters as healthy or attacked. To handle the class 
imbalance (842 attacked and 137 healthy clusters), we used all the 
healthy clusters but only a random sample (n = 137, using the function 
sample in R) of the attacked clusters to get a balanced dataset (n = 274) 
and hence enable a fair analysis. The accuracy was presented as a 
confusion matrix with the classifications and overall accuracy (OA). 

Fig. 3. Raster maps of trees registered by the harvester in EPSG:3006 – unit in meters. (a) Total number of trees registered by the harvester, rasterized to 10x10 m2 

pixels. (b) The same area filtered for the number of bark beetle killed trees (>5 cut trees in a pixel and more than 50 % of them being attacked). Delineation of 
clusters fulfilling the filter criteria in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Clusters of clear-cuts were also derived using a corresponding 
approach, but including all harvested trees (more on the use of these in 
Section 2.5.3). These clusters were obtained using a buffer radius of 40 
m and including at least 300 trees, harvested within the period from 1 
Sep 2018, until 26 Aug 2019. Then, the clusters were visually inspected 
using aerial ortho-photographs from the Swedish Land Survey, captured 
in 2021–2022, and 13 stands were identified as outliers due to being 
only partly cut (e.g., due to thinning operations) or having false polygon 
borders (e.g., single trees were registered out on the road instead of in 
the forest, causing an overestimation of the polygon size). The auto-
matically generated reference dataset included 185 clear-cuts harvested 
between the images t1 and t2 (Table 1), of which 13 were outliers. The 
properties of all the clear-cuts are described in Table 2 and these data 
will be further discussed in the Section 2.5.3. 

2.5.3. Other factors impacting ΔDRS 
In order to address our third objective, identify other useful experi-

ences, we further identified factors that cause DRS changes and can 
potentially be misinterpreted as bark beetle attacks. By recognizing 
these cases, they can be managed with a greater attention and at best be 
masked out using auxiliary data. We focused on two additional contexts 
relevant for the forest sector: 1) how ΔDRS change due to various forest 

practices or other human induced activities – including commercial 
thinning, shelter wood cutting (even-aged harvesting where seed trees 
are left), and clear-cutting, and 2) the temporal stability of ΔDRS. 

Most of the clear-cut clusters that were identified as outliers were in 
fact only partly cut stands, i.e., stands where commercial thinning had 
been applied (9), or cutting where seed trees were left (4). These clusters 
were not so many that a statistical validation could be used, but 
nevertheless – we visualize examples of these cases as indications on 
what can be expected. In Swedish forestry, commercial thinning in-
volves a harvester cutting about 30–35 % of the basal area in order to 
increase the value of the remaining trees by improving the growing 
conditions through decreased competition. Even-aged harvesting 
methods can be carried out in different ways, but one common approach 
makes use of shelter wood cutting during the transition of two rotation 
periods and leaves seed trees for natural regeneration. It is often applied 
to pine dominated forest, and the largest trees are left in order to provide 
a natural seed source for the regeneration. Yet, the larger part of the 
forest is cut, although dominant trees are left – hence partly obstructing 
the spectral changes from the cutting. When the next generation of trees 
has started growing, the seed trees are cut as well. To test the accuracy of 
using ΔDRS to identify clear-cuts, we classified the ΔDRS map based on 
a threshold (ΔDRS ≥ 0.06) and assessed the accuracy with the 172 clear- 

Table 2 
Properties of clustered polygons and the trees in these. D denote the diameter breast height.  

Dataset Mean Area (m2) Sd Area (m2) Min Area (m2) Max Area (m2) Mean D (cm) Sd D 
(cm) 

Min D (cm) Max D 
(cm) 

n 

Healthy tree clusters 1,778 2,200 500 13,200  21.2  10.1  5.2  70.7 137 
Attacked tree clusters 1,345 1,062 500 6,200  23.9  9.45  5.4  70.6 842 
Clear-cuts 11,400 17,800 671 162,000  23.6  10.2  5.2  70.7 185  

Fig. 4. Basal area-weighted diameter breast height of trees in the two cluster groups. The p-value represents the significance when comparing the two groups using a 
Kolmogorov-Smirnov test. 
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cut clusters (after the 13 outliers had been removed, Table 2). The 
threshold was subjectively chosen based on the ΔDRS values for the 
clear-cuts, visual interpretation of the ΔDRS raster, and comparisons 
with the harvested trees. The detection accuracy was expressed in 
percent of correctly classified clear-cut clusters. 

The second context, temporal stability of ΔDRS, is an important 
aspect since cloud-free satellite images are often difficult to acquire the 
same time every year due to cloud cover (at least in Sweden). We hy-
pothesized that the same phenological season should be used for the 
before and after images to enable confident conclusions based on ΔDRS. 
Nevertheless, optical satellite images may not be available due to cloud 
cover (as is often the case in Sweden), and then one may have to 
combine images from different seasons. Therefore, it is important to 
understand the robustness of ΔDRS to images from different seasons. We 
assessed this visually by deriving ΔDRS from the same before attack 
image (late summer 2018), but to different after attack images: spring, 
summer, late summer, and autumn (as defined in the study area in 
Sweden, the dates are shown in Table 1). 

3. Results 

3.1. Approach 1: Pixel level 

The relationship between ΔDRS and number of attacks per pixel is 
illustrated in Fig. 5 a. This relationship is very noisy (remember the 
potential positing errors), and Fig. 5 b illustrates the corresponding 
relationship where the pixel values were averaged for each interval. 
Here, the relation shows a logarithmic growth from 0 up to about 17 
attacks per pixel, then the spread increases drastically. Remembering 
that there were relatively few pixels available for more than 10 attacks/ 
pixel, and that bark beetles usually attack mature forest, we disregarded 
the case with more than 10 attacks/pixel (Fig. 5 c). 

The model results for prediction of the 10 % of the pixels that were 
put aside, was an RMSE = 2.95 attacks/pixel (53.6 %) and the linear 
model (Eq. (3) had an R2 = 0.92. The predictions-vs-field plot is pre-
sented in Fig. 6. The variance around the 1:1 line is considerable, but the 
overall trend is yet linear. Despite a lot of noise in the overall relation-
ship (Fig. 5 a), the tendency (Fig. 5 c) is that more intense attacks (in 
terms of number of infested/attacked trees) cause larger ΔDRS 
increases. 

3.2. Approach 2: Cluster level 

The second approach addressed healthy and attacked clusters of 
pixels. The group means were statistically different (using a one-sided t- 
test), with the 99th percentile of ΔDRS = 0.00104 for the healthy 
clusters and 0.0241 for the attacked clusters (Fig. 7). The Figs. 8-10 

visualize a few different forest regions where the ΔDRS map is compared 
with ortho-photos, or overlaid with the number of attacked trees per 
pixel, as registered by a harvester after the ΔDRS (t1-t2). The classifi-
cation assessment was expressed in a confusion matrix (Table 3), with 
healthy and attacked clusters predicted with an LDA. The accuracies 
ranged from 0.77 to 0.78 with the overall accuracy (OA) being 0.78 
(Table 3). The figures confirm attacks predicted by the map, but they 
also visualize challenges with scattered harvester registrations, position 
inaccuracies, and possibly false positives of ΔDRS – which yet are 
impossible to test, since we are missing field data about the other areas 
indicated as attacked except where the harvesters have been. 

3.3. Other factors impacting ΔDRS 

To generate a bark beetle map (e.g., as presence-absence) based on 
ΔDRS, we also need to address the cases when ΔDRS changes are driven 
by reasons other than the presence of bark beetle infested trees. We 
explored this in two contexts, where the first addressed the three forest 
management activities common in Swedish forestry: commercial thin-
ning, shelter wood cutting (leaving seed trees), and clear-cuts. These 
actions are typically registered in databases and can hence normally be 

Fig. 5. a) ΔDRS vs. number of attacked trees per pixel. b) Grouped ΔDRS vs. number of attacked trees per pixel. c) The same scatterplot as (a) but only with 10 or 
fewer attacked trees per pixel. 

Fig. 6. Scatter-plot of predicted-vs-field registered attacks for the range of 1–10 
attacks per pixel. 
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masked out using these auxiliary data. Since we had too few occurrences 
for these contexts to enable a statistical evaluation, this section can only 
illustrate the problem as a qualitative assessment. Fig. 11 illustrates an 

area where commercial thinning (about 30–35 % of basal area removed) 
has been carried out and the change of ΔDRS was about 0.02 or below. 
Fig. 12 illustrates an area where most of the trees were cut, but the 
largest, dominant seed trees were left for regeneration. In this case, the 
loss was considerable and the ΔDRS values ranged about 0.05–0.06. An 
example of the third activity, a clear-cut, is illustrated in Fig. 13. For this 
clear-cut, the ΔDRS was about 0.06 or more for the pixels within the 
clear-cut, and lower at the edge pixels. Hence, ΔDRS appeared as a good 
clear-cut detector. The mean ΔDRS for all the clear-cut clusters was 
0.126 while the pixels with the lowest 5 % ΔDRS within the clear-cuts 
had a change of 0.0638 and the 95 % change was 0.168 (Fig. 14). The 
quantitative assessment included a classification of the 172 clear-cuts, 
using 0.06 as threshold (Section 2.3, 2.5.3). Out of these, 100 % were 
correctly classified. Since the ΔDRS values for clear-cuts are signifi-
cantly higher than areas of bark-beetle attacked trees, these can effec-
tively be masked out. 

The second context addressed the temporal stability of ΔDRS by 
using the same “before attack” image, but computing ΔDRS with respect 
to different “after attack” images throughout the season (Table 1). The 
effects of season are illustrated in Fig. 15, where it can be seen how 
larger changes (0.06 or more) are visible already in the spring (Fig. 15 
a), but with large areas in-between ranging from 0 to 0.04, which later 
during the season stabilized and approached 0 (Fig. 15 b-d). We inter-
pret this as the phenological changes driven by the internal water ex-
changes and chlorophyll shifts having a considerable impact and we 
therefore expect that the most reliable use of ΔDRS would be based on a 
“before” and “after” image from approximately the same day-of-year, 
but from different years. 

Fig. 7. Box plots of attacked and healthy cluster groups ΔDRS percentile 99 
(p99) values used in the LDA. 

Fig. 8. a) Illustration of clusters (outlined in orange, representing pixels with more than 5 harvested trees – see 2.5.2), overlaying the ΔDRS map. b) The same area 
and maps in a), with the attacks registered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Illustration of ΔDRS map (a) vs. ortho-photo (b) from 2022 with attacks registered by a harvester overlaid, coordinates in EPSG:3006.  
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4. Discussion 

A robust method for detecting bark beetle attacked forest over large 
areas is important to direct and plan efficient use of management 

resources as early as possible, e.g., to refine the timber value while it is 
still possible. This study has presented analyses that show that the use of 
the new ΔDRS index, based on S2 images, can contribute to such map-
ping applicable to, e.g., detecting forest damage and risk assessments 
across time and space. It uses the high sensitivity to bark beetle infested 
forests observed in bands 4 and 12 of S2 images, as demonstrated in 
(Huo et al., 2021), and avoids the need for information on the species 
composition of the forest. The overall relationship of single pixels, 
although noisy, showed that higher ΔDRS changes indicated more bark 
beetle attacked trees. The OA classification accuracy of 0.78 at the 
cluster level is better than, or of the same order, as has been reported 
with other indices tested on balanced datasets. For example, Dalponte 

Fig. 10. Illustration of ΔDRS map (a) vs. ortho-photo (b) from 2022 with attacks registered by a harvester overlaid, coordinates in EPSG:3006.  

Table 3 
Confusion-matrix of healthy and attacked cluster predicted with LDA.  

Pred \ Ref Healthy Attacked Accuracy 

Healthy 106 30 0.78 (precision) 
Attacked 31 107  
Accuracy 0.78 (sensitivity) 0.77 (specificity) 0.78 (overall)  

Fig. 11. Illustration of an area affected by commercial thinning, coordinates EPSG:3006. a) ΔDRS 2018–2019, b) ortho-photo 2021.  

Fig. 12. Illustration of an even aged managed forest that was harvested but letting seed trees remain. Coordinates in EPSG:3006. a) ΔDRS, b) ortho-photo 2021.  
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et al., 2022 showed a best case with 0.73, but most combinations were 
about 0.7 or lower. It is higher than Tanase et al. (2018) who reported 
(64–74 %) when using L-band SAR at a test site in Germany and higher 
than Bozzini et al. (2023) who reported (58–72 %) when using vegeta-
tion indices from S2 in an alpine region in Italy. It is similar to the results 
from Gao (2022) who reported a classification accuracy of 0.72–0.8, 
when using hyperspectral reflectance and machine learning models in 
China. At the same time, we want to stress that comparisons of results 
across studies are difficult due to, e.g., various study designs, spatial 
scales, resolutions, datasets, and times after attack, to mention a few 
factors. The OA was similar or slightly lower than we reported using 
NDRS in a case study at a small Swedish test site (0.8–0.9, Huo et al., 
2021). Yet, these results together with the other analyses show that the 
method can be useful for large area mapping and an operational context. 
Furthermore, the potential impacts of the work are considerable, e.g., 
when used for national damage maps, resource maps for risk analyses 
(for the coming years), as input data to studies on environmental and 

structural factors and their associations with bark beetle damage and 
forest susceptibility, etc. The practical aspect that changes captured 
through ΔDRS are assumed to reflect chlorophyll and water induced 
changes in the vegetation, i.e., due to bark beetles or other disturbances, 
is straightforward without requirements on knowing the species 
composition (as is the case for the NDRS). Hence, all tree species com-
positions present in the landscape were included in our study. 

The use of operational harvester data explored in this study has been 
a unique possibility of using a very large amount of field reference trees 
from a large spatial area. Nevertheless, practical uncertainties related to 
the reference data as well as those related to the satellite data have 
partly obstructed clear, convincing results. Since the tree status 
(attacked or healthy) was assigned by the harvester operator, trees in the 
green attack phase were probably not assigned as attacked in the 
reference data, and hence not classified as such. The challenges of not 
having a well-designed experiment in advance reduced the statistical 
possibilities to draw conclusions, e.g., due to class imbalances of 

Fig. 13. Coordinates in EPSG:3006. a) ΔDRS with clear-cuts identified as red. b) Ortho-photo 2022. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 14. Boxplots of ΔDRS values for a) the clear-cut clusters. 5th percentile (orange), mean (green), 95th percentile (blue) b) the mean ΔDRS for the three groups of 
other factors, commercial thinning, seed trees, and clear-cuts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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attacks/healthy trees, insufficient number of attacked trees within the 
spatial resolution of the S2 satellite sensor, and location uncertainties 
related both to the harvester and to satellite data, to mention a few. 
Furthermore, the spatial resolution was different for the red and short- 
wave infrared bands (4 and 12) used to compute ΔDRS (Clerc and 
Team, 2022), which influences the estimates of single pixels. 

Based on the results of the first, pixel-level approach, we could 
identify a linear relationship between the ΔDRS index and the intensity 
of bark beetle attacks. We avoided testing the relationship above 10 
attacks/pixel, due to the unreliable registrations, which was further 
confirmed in the scatter plot (Fig. 5 b). The prediction uncertainty of 
single pixels was considerable and one possible reason (acknowledged 
also by Müller et al., 2022) was the positional inaccuracy of the bark 
beetle trees registered by the harvester, since the GNSS receiver was 
located on the harvester cabin roof rather than on the harvester head. 
Furthermore, the positional inaccuracies of GNSS receivers within the 
forest can be significant, although they have decreased in recent years 
thanks to their improved abilities of using multiple GNSSs (Hauglin 
et al., 2017; Næsset and Gjevestad, 2008; Noordermeer et al., 2021; 
Persson et al., 2022; Valbuena et al., 2010). Additionally, the location 
accuracy of the satellite pixels is about 11 m (~1 pixel) for unrefined S2 
images (Clerc and Team, 2022), which contributes to the spatial 
disparity between harvest and S2 data. 

Other reasons may be trees being in the green-attack phase, i.e., at an 
infestation stage with no visible discoloration of the tree crowns and 
thus it is challenging to detect these in S2 images. The spectral changes 
can be seen at the earliest 7–8 weeks after attacks using multispectral 
drone imagery, reported by Huo et al., (2023). Hence, there may be 
attacked trees that do not show any spectral changes at the time for the 
acquisition of the satellite image (hence affecting the ΔDRS), although 
the harvester operator may have easily seen the spectral changes of the 
canopy later in the fall, at the time these trees were harvested. 

As an attempt to reduce the impact of location-related inaccuracies, 

the second approach analyzed clusters of attacked trees. Using the 
smallest area limit of 500 m2, we had at least five pixels for each cluster, 
which therefore stabilized spectral inaccuracies of the single pixels. The 
clusters were generated automatically based on the harvester registra-
tions, and based on the visual interpretation, we still think that the 
delineation step can be improved. As we are not aware of any opera-
tional large-area mappings wall-to-wall today, the OA of 0.78 at cluster- 
level for our method appears useful, given the spatial scale of the sensors 
and the study area. The spatial resolution of the satellite images was 
rather coarse and it is rare that most trees within a pixel would be 
attacked. Huo et al., 2021 suggested that at least half of the trees within 
a pixel need to be attacked to be visible in S2. Furthermore, except for 
Müller et al., (2022) and Jamali et al., (2023), we are not aware of any 
other research that have used operational harvester data for wall-to-wall 
mapping of the European spruce bark beetle at this spatial scale and 
resolution. 

The ΔDRS index has the potential to reflect many forest changes 
related to chlorophyll and water changes. These include, e.g., 1) natural 
disturbances such as forest insect infestation, disease infection, storm 
damage, drought, haze, wildlife damage etc., 2) human induced 
changes, e.g., forest management actions, and 3) seasonal changes, e.g., 
phenology. We acknowledge that without appropriate masking, all the 
cases affecting ΔDRS could cause false positives in a bark beetle map 
and, e.g., by using auxiliary data about forest management activities, 
such ambiguities can be reduced. Detection of forest operations (i.e., 
harvesting and thinning) has been demonstrated with optical satellite 
images, relying on similar wavelength regions as used in the DRS. For 
example, the red, near-infrared, and shortwave-infrared bands have 
been used in Landsat images (Heikkonen and Varjo, 2004; Olsson, 1994; 
Schroeder et al., 2011). Similarly, the near-infrared and mid-infrared 
bands have been used in SPOT-4 images (Magnusson et al., 2008), and 
the red-edge and shortwave-infrared bands have been used as well as the 
normalized difference vegetation index in Sentinel-2 images (Abdi, 

Fig. 15. The temporal stability of the ΔDRS, as computed from the same “before attack” image, but until different “after attack” images (Table 1) the following year: 
a) spring, b) summer, c) late summer, d) autumn. Coordinates in EPSG:3006. 
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2020; López-Amoedo et al., 2021). For longer time intervals, the 
Harmonized Landsat Sentinel-2 product has been used with the 
normalized burned ratio derived from the near-infrared and shortwave- 
infrared bands (Mulverhill et al., 2023). The third section of our analyses 
addressed the forest management actions and phenology (i.e., temporal 
changes throughout the year). In particular, commercial thinning caused 
ΔDRS changes that were similar to bark beetle attacks, while the har-
vested areas with seed trees left had a ΔDRS somewhere between thin-
ned and clear-cut forest, hence a bit higher ΔDRS (around 0.04–0.06). 
However, masking only based on ΔDRS values in this range could cause 
intense bark beetle outbreaks to be falsely masked. The clear-cuts had a 
mean ΔDRS higher than 0.06 and all clear-cuts were correctly classified 
(using a threshold of 0.06). Therefore, clear-cuts can be identified and 
masked from a ΔDRS map indicating bark beetle damage. In the time 
series (Fig. 15), the clear-cuts appeared visible during all seasons, hence 
being less sensitive to the more restrictive conditions for which ΔDRS 
may be used in order to represent bark beetle attacks. 

As a further tool to discriminate damage types (or factors) causing 
ΔDRS changes, it could be possible to use more frequent observations or 
longer time series. For example, bark beetle damage is often visible in S2 
images from August to October, so ΔDRS changes in this period may 
largely be caused by bark beetle infestations, while ΔDRS changes 
during the summer may be related to drought, and changes during the 
winter may be caused by storms (common in Sweden). Moreover, the 
spatial pattern in moving windows can be useful to identify bark beetle 
damage (Olsson et al., 2023). To date, we are not aware of any studies 
able to distinguish the damage types and it would therefore be a 
meaningful future work. This study also showed how forest management 
activities can be mapped with ΔDRS and how they potentially influence 
the mapping accuracy of bark beetle damages. 

The ΔDRS changes caused by phenology was not extensively 
explored in this study. Yet, we interpreted areas with a deviating ΔDRS 
in the early season and almost no difference (approaching zero) later, as 
phenological changes driven by the internal water exchanges and 
chlorophyll shifts having a considerable impact. Therefore, for mapping 
purposes we suggest using maps from similar seasons (day-of-year) to 
calculate the ΔDRS, otherwise a seasonal time-series analysis would be 
needed. 

We have not touched upon the topic of early detection. Nevertheless, 
we suggest that a near-real time mapping could potentially be developed 
by continuously deriving sequential ΔDRS maps, e.g., every month 
(using the current month as “after” image, and comparing with an image 
one year ago). Then, the phenological impacts that were demonstrated 
in Fig. 15 could be reduced and the larger changes could effectively be 
masked/identified. This would release resources to carefully handle 
cases with smaller ΔDRS values, i.e., in the range of 0 to 0.03, where 
bark beetle attacks would typically appear. Nevertheless, the near-real- 
time mapping refers to the time when we can obtain maps, instead of the 
time when the attacks happen. So far, no research has shown an 
acceptable accuracy on detecting green-attack trees with S2 images. 

5. Conclusions 

This study demonstrated how S2 satellite images could be used to 
compute a new ΔDRS index related to bark beetle attacked forest. The 
index map was validated with reference trees registered by operational 
harvesters, although many issues related to position accuracy and 
spatial resolution of S2 images reduced the most convincing results. To 
reduce such issues, automatic clusters of healthy and attacked trees were 
derived, for which the mean ΔDRS was extracted and used to predict 
healthy or attacked clusters using LDA. This assessment showed an 
overall accuracy of 0.78 and that the attacked tree clusters in our study 
on average had a ΔDRS of 0.02. When ΔDRS changes were larger, in 
particular above 0.06, they indicated clear-cut forest. An assessment of 
172 clear-cut clusters were predicted with 100 % accuracy, using this 
criterion. Smaller changes such as thinning or partial cutting were also 

reflected in the ΔDRS, although smaller than for clear-cut forest. We 
suggest masking such areas using auxiliary data about forest manage-
ment activities. We conclude that ΔDRS is useful in mapping chlorophyll 
and water related changes such as disturbances (bark beetle attacked 
forest in our case) and management operations, but it is also very suit-
able for clear cut mapping. 
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