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Abstract
Intraspecific	 genetic	 variation	 in	 foundation	 species	 such	 as	 aspen	 (Populus tremu-
loides	Michx.)	shapes	their	impact	on	forest	structure	and	function.	Identifying	genes	
underlying	ecologically	important	traits	is	key	to	understanding	that	impact.	Previous	
studies,	using	single-	locus	genome-	wide	association	(GWA)	analyses	to	identify	can-
didate	genes,	have	identified	fewer	genes	than	anticipated	for	highly	heritable	quanti-
tative	traits.	Mounting	evidence	suggests	that	polygenic	control	of	quantitative	traits	
is	largely	responsible	for	this	“missing	heritability”	phenomenon.	Our	research	char-
acterized	the	genetic	architecture	of	30	ecologically	important	traits	using	a	common	
garden	of	aspen	through	genomic	and	transcriptomic	analyses.	A	multilocus	associa-
tion	model	revealed	that	most	traits	displayed	a	highly	polygenic	architecture,	with	
most	variation	explained	by	loci	with	small	effects	(likely	below	the	detection	levels	of	
single-	locus	GWA	methods).	Consistent	with	a	polygenic	architecture,	our	single-	locus	
GWA	analyses	found	only	38	significant	SNPs	in	22	genes	across	15	traits.	Next,	we	
used	differential	expression	analysis	on	a	subset	of	aspen	genets	with	divergent	con-
centrations	of	salicinoid	phenolic	glycosides	(key	defense	traits).	This	complementary	
method	to	traditional	GWA	discovered	1243	differentially	expressed	genes	for	a	poly-
genic	trait.	Soft	clustering	analysis	revealed	three	gene	clusters	(241	candidate	genes)	
involved	in	secondary	metabolite	biosynthesis	and	regulation.	Our	work	reveals	that	
ecologically	important	traits	governing	higher-	order	community-		and	ecosystem-	level	
attributes	of	a	foundation	forest	tree	species	have	complex	underlying	genetic	struc-
tures	and	will	require	methods	beyond	traditional	GWA	analyses	to	unravel.
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1  |  INTRODUC TION

Ecologically	important	traits	are	those	that	affect	an	organism's	abil-
ity	to	survive	and	reproduce	in	natural	environments	(Stinchcombe	
&	Hoekstra,	2008).	Despite	the	rapid	advances	in	our	understanding	
of	the	influence	of	genetic	variation	on	ecologically	important	traits	
in	 non-	model	 plants	 and	 their	 subsequent	 influence	 on	 ecological	
processes,	 the	genetic	architecture	 (number	of	genes,	effect	sizes,	
type)	 underlying	 those	 linkages	 is	 just	 beginning	 to	 be	 explored	
(Crutsinger,	2016;	Holliday	et	al.,	2017).	Incorporation	of	genomics	
into	“genes	to	ecosystems”	science	could	dramatically	advance	our	
understanding	of	fundamental	ecological	processes,	inform	predic-
tions	of	biological	plasticity	and	adaptation	to	a	changing	world,	and	
guide	efforts	toward	sustainability	of	natural	and	managed	ecosys-
tems	(Whitham	et	al.,	2008).

In	 the	 early	 2000s,	 Whitham	 and	 colleagues	 (Whitham	
et al., 2006, 2008)	 proposed	 a	 framework	 to	 extend	 genomics	 to	
communities	and	ecosystems.	They	suggested,	then	demonstrated,	
that	ecologically	important	traits	of	foundation	species	(such	as	Pop-
ulus	species)	could	be	the	bridge	connecting	underlying	tree	genes	
and	 genomic	 regions	 to	 community	 and	 ecosystem	 structure	 and	
function	 (i.e.,	 extended	 phenotypes).	 Extensive	 research	 on	Popu-
lus	species	 (e.g.,	Bailey	et	al.,	2006;	Bangert	et	al.,	2006;	Madritch	
et al., 2009;	Schweitzer	et	al.,	2004)	 established	 that	 intraspecific	
variation	has	heritable	effects	on	associated	communities	(e.g.,	her-
bivorous	 insects,	soil	microbes)	and	ecological	processes	 (e.g.,	 tro-
phic	 interactions,	 litter	 decomposition)	 at	 the	 genotype	 level,	 and	
is	 largely	mediated	by	plant	chemistry.	Very	few	studies,	however,	
have	 endeavored	 to	 identify	 genes	 associated	 with	 the	 variation	
in	 ecologically	 important	 traits	 that	 yield	 extended	 phenotypes	
(Crutsinger,	2016).

Given	 the	 importance	 of	 intraspecific	 trait	 variation	 to	 tree	
ecology	 and	 forest	 health,	 researchers	 are	 directing	 their	 efforts	
to	 understand	 how	genetic	 and	 genomic	 variation	 influences	 trait	
variation	 within	 populations	 (Holliday	 et	 al.,	 2017).	 Genome-	wide	
association	 (GWA)	analyses	have	become	the	premier	strategy	for	
identifying	candidate	genes	associated	with	variation	in	traits	of	in-
terest.	Forest	trees	present	formidable	challenges	to	GWA	analyses	
because	they	are	physically	large,	long-	lived,	harbor	exceptional	ge-
netic	 diversity,	 and	often	 have	 large	 genomes	 that	 are	 difficult	 to	
sequence	 (Petit	 &	Hampe,	 2006).	 Furthermore,	many	 ecologically	
important	tree	traits	have	complex	genetic	architectures,	often	with	
small	 allelic	 effects	 on	 the	 phenotype	 that	 are	 difficult	 to	 detect	
using	GWA	(Lind	et	al.,	2018).

Human	 genomics	 research	 often	 pioneers	methods,	 like	GWA	
analyses,	 that	 are	 subsequently	 used	 with	 other	 organisms	 (e.g.,	
forest	trees)	and	can	be	a	bellwether	for	emerging	practices	in	the	
study	of	quantitative	traits.	Traditional	GWA	studies	of	highly	her-
itable	 quantitative	 traits	 in	 humans	 have	 revealed	 relatively	 few	
candidate	genes	with	large	effects	(Robinson	et	al.,	2014;	Visscher	
et al., 2017).	As	a	result,	ongoing	discussion	has	focused	on	where	
the	so-	called	“missing	heritability”	might	be	found.	Although	several	
non-	mutually	exclusive	explanations	have	been	advanced	(Edwards	

et al., 2014;	 Génin,	 2020;	 Gibson,	 2012;	 Maher,	 2008;	 Robinson	
et al., 2014; Young, 2019; Zhou et al., 2022; Zuk et al., 2012),	 the	
role	of	polygenicity	(many	genes	of	small	to	moderate	effect	influ-
ence	phenotypic	variation)	remains	substantial.	Further	analyses	of	
human	 traits	 with	 unexplained	 heritability	 have	 shown	 that	 most	
have	a	polygenic	architecture	and	that	rare	variants	may	play	an	im-
portant	(albeit	smaller)	role	in	trait	variation	(Hernandez	et	al.,	2019; 
Marouli	et	al.,	2017;	Visscher	et	al.,	2017;	Wood	et	al.,	2014; Yang 
et al., 2010).

A	similar	 story	has	been	unfolding	 for	 forest	 tree	species	 (Ing-
varsson	&	Street,	2011).	Most	forest	tree	GWA	studies	have	iden-
tified	 relatively	 low	 numbers	 of	 significant	 loci,	 explaining	 a	 small	
proportion	of	variation	in	highly	heritable	quantitative	traits	(Barker	
et al., 2019;	Bresadola	et	al.,	2019; de la Torre et al., 2021, 2022; 
Fahrenkrog	et	al.,	2017;	Hallingbäck	et	al.,	2019; Lind et al., 2018; 
McKown	et	al.,	2018)	with	rare	exceptions	(Wang	et	al.,	2018).	Sev-
eral	 studies	 have	 begun	 to	 employ	 modified	 and	 complementary	
methods	 to	address	potential	 sources	of	 “missing	heritability,”	 fol-
lowing	the	lead	of	human	genomics	research.	The	multilocus	GWA	
is	one	extended	GWA	method	 that	 can	be	used	 to	assess	 the	ge-
nomic	architecture	of	potentially	polygenic	 traits	 (Bresadola	et	al.,	
2019; de la Torre et al., 2021).	A	multilocus	GWA	provides	 a	way	
to	understand	how	variation	in	a	marker	set	is	associated	with	trait	
variation	 by	 evaluating	 the	 effects	 of	multiple	 loci	 simultaneously	
on	a	given	phenotype.	Additionally,	transcriptomic	methods	such	as	
differential	expression	are	being	used	to	complement	GWA	methods	
without	the	need	for	extensive	species-	specific	resources,	which	are	
not	available	for	most	forest	tree	species	(Carrasco	et	al.,	2017).	Our	
study	 focuses	on	aspen	 (Populus tremuloides	Michx.),	 a	 foundation	
forest	tree	species.	Aspen	is	highly	genetically	diverse	(Cole,	2005; 
Mitton	&	Grant,	1996)	and	exhibits	very	little	population	structure	
across	its	range	(Callahan	et	al.,	2013),	both	ideal	characteristics	for	
genome-	wide	association	analyses.	Aspen	has	the	largest	geograph-
ical	 range	 of	 all	 tree	 species	 in	North	America	 and	 is	 ecologically	
important.	As	a	foundation	tree	species,	it	provides	food	and	habitat	
for	an	estimated	500	plant	and	animal	species,	enhances	biodiver-
sity,	 and	 provides	 ecosystem	 services	 such	 as	 carbon	 sequestra-
tion	 (Madson,	1996; Rogers et al., 2020).	At	 the	same	time,	aspen	
faces	threats	from	herbivory	and	climate	change	(Refsland	&	Cush-
man,	2021; Rogers et al., 2020).

Growth	and	defense	 traits	 in	aspen	show	extraordinary	vari-
ation	 among	 genets	 (Cole	 et	 al.,	2021; Lindroth et al., 2023).	 In	
both	 natural	 and	 controlled	 environments,	 aspen	 has	 exhibited	
trade-	offs	between	growth	and	defense	under	variable	environ-
mental	conditions	(Cole	et	al.,	2016, 2021; Cope et al., 2019, 2021; 
Donaldson et al., 2006;	 Osier	 &	 Lindroth,	 2006).	 For	 example,	
salicinoid	phenolic	glycosides	represent	a	class	of	secondary	me-
tabolites	 that	 strongly	mediate	 plant-	herbivore	 interactions,	 are	
negatively	associated	with	growth	metrics,	and	are	largely	genet-
ically	controlled	(Boeckler	et	al.,	2011; Cole et al., 2021; Lindroth 
&	St.	 Clair,	2013;	Osier	&	 Lindroth,	 2006).	 Variation	 in	 phenolic	
glycosides	 influences	 performance,	 distribution,	 and	 abundance	
of	 aspen-	associated	 herbivores	 (Donaldson	 &	 Lindroth,	 2007; 
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Holeski et al., 2016;	 Lindroth	 and	 St.	 Clair	 2013).	 At	 the	 same	
time,	high	intraspecific	competition	has	been	shown	to	select	fast-	
growing	and	poorly-	defended	genotypes	(Cope	et	al.,	2021),	that	
could	 leave	 some	 aspen	 stands	 vulnerable	 to	 pests.	 How	 aspen	
populations	 respond	 to	 environmental	 pressures	 has	 long-	term	
consequences	 for	 intraspecific	 genetic	 variation	 and	 associated	
community	structure	(Barker	et	al.,	2019; Cope et al., 2021).	Thus,	
an	understanding	of	the	genetic	architecture	of	intraspecific	vari-
ation	in	ecologically	important	traits	(e.g.,	growth	and	defense)	is	
critical	to	their	future	management	and	conservation.

Our	initial	GWA	analysis	in	this	system	(Barker	et	al.,	2019)	was	
one	 of	 the	 first	 studies	 to	 identify	 specific	 genes	 associated	with	
plant	traits	that	shape	herbivore	community	composition.	That	work,	
however,	documented	fewer	than	expected	associations	for	highly	
heritable	tree	traits.	To	that	end,	this	current	study	aimed	to	explore	
the	genetic	architecture	underlying	phenotypic	variation	in	ecolog-
ically	 important	 traits	using	modified	GWA	and	an	expanded	data	
set.	We	aimed	to	characterize	the	genomic	architecture	(number	of	
genes,	effects	sizes,	type)	for	30	ecologically	important	growth	and	
defense	traits	in	aspen	using	single-	locus	and	multilocus	GWA.	We	
also	explored	whether	high	defense-	low	growth	and	 low	defense-	
high	growth	phenotypes	exhibit	differential	expression	patterns.	To	
answer	this	question,	we	performed	a	differential	expression	anal-
ysis	on	a	set	of	aspen	genets,	half	with	extremely	high	and	half	with	
extremely	low	concentrations	of	salicinoid	phenolic	glycosides.

2  |  METHODS

2.1  |  WisAsp common garden

The	Wisconsin	Aspen	 (“WisAsp”)	common	garden	was	established	
in	 2010	 at	 the	Arlington	Agricultural	 Research	 Station	 (University	
of	Wisconsin-	Madison)	near	Arlington,	Wisconsin	(USA).	The	source	
genets	were	 collected	along	a	north–	south	 transect	 in	Wisconsin,	
USA,	 (corresponding	to	 the	northern	subpopulation	of	aspen,	Cal-
lahan et al., 2013)	 and	 propagated	 via	 root	 cuttings	 to	 create	 the	
WisAsp	common	garden.	WisAsp	contains	a	total	of	1824	P. tremu-
loides	trees	distributed	across	four	blocks	using	a	randomized	com-
plete	 block	 design	 and	 surrounded	 by	 a	 perimeter	 of	 additional	
aspen	 trees	 (N = 256).	Our	data	collection	occurred	during	 the	pe-
riod	of	time	when	trees	were	4–	7 years	old,	and	the	canopy	was	ap-
proaching	closure.	For	detailed	information	about	the	garden	design	
and	site	characteristics	see	(Barker	et	al.,	2019).	Genet	identity	was	
verified	 using	microsatellites	 as	 described	by	Cole	 et	 al.	 (2021).	 A	
total	of	516	unique	genets	were	identified,	with	an	average	of	3.51	
replicates per genet.

2.2  |  Phenotypic data

Evaluated	 traits	 were	 selected	 because	 of	 their	 importance	 to	
the	fitness	of	aspen	(Cole	et	al.,	2021; Cope et al., 2019)	and	their	

cascading	 effects	 on	 trophic	 interactions,	 community	 structure,	
and	ecosystem	 function	 (Barker	et	 al.,	 2018;	Rubert-	Nason	&	Lin-
droth, 2021).	Surveys	of	30	traits	(growth,	phenology,	reproduction,	
indirect	defense	and	damage,	growth-		and	defense-	related	phyto-
chemistry)	were	carried	out	at	WisAsp	common	garden	each	year	
from	2014	to	2018.	Table 1	 lists	the	surveyed	traits,	provides	trait	
descriptions	and	specifies	 the	associated	publications	 that	contain	
detailed	methodological	information.

Detailed	 collection	 and	 processing	 for	 the	 following	 surveyed	
traits	are	described	by	a	previous	publication	(Cole	et	al.,	2021).	The	
sex	of	each	tree	was	determined	through	genotyping	a	sex-	specific	
marker,	 TOZ19	 (Pakull	 et	 al.,	 2015).	 Flowering	 was	 assessed	 by	
counting	the	number	of	flowering	twigs	per	tree.	Growth	was	sur-
veyed	by	measuring	the	height	and	diameter	of	each	tree	after	each	
growing	season	and	several	growth	measures	including	volume,	rel-
ative	 growth,	 and	 basal	 area	 increment	were	 calculated	 (Table 1).	
Foliar	morphology	and	 indirect	defense/foliar	damage	were	quan-
tified	from	digital	scans	of	 leaves	collected	each	year	 in	 late	June/
early	 July	and	early	August,	 respectively.	Leaf	collection	was	con-
ducted	on	each	 tree	by	haphazardly	 selecting	 four	 leaves	 (more	 if	
they	were	small)	from	one	or	more	branches	in	each	cardinal	direc-
tion.	Finely	pulverized	freeze-	dried	leaves	were	used	to	quantify	all	
foliar	phytochemicals.	Salicinoid	phenolic	glycoside	concentrations	
(salicin,	salicortin,	tremulacin,	and	tremuloidin)	were	quantified	using	
ultra-	high-	performance	 liquid	 chromatography-	mass	 spectrometry	
as	reported	by	Rubert-	Nason	et	al.	 (2018).	Condensed	tannin	con-
centrations	 were	 quantified	 colorimetrically	 using	 the	 acid	 buta-
nol	method	described	by	Barker	et	al.	(2019).	Nitrogen	and	carbon	
values	were	determined	by	near-	infrared	reflectance	spectroscopy	
and	 calibrated	 using	 reference	 values	 from	 combustion	 gas	 chro-
matography,	 as	outlined	by	Barker	et	 al.	 (2019)	 and	Rubert-	Nason	
et	al.	(2013).

The	following	traits	were	not	included	in	Cole	et	al.	(2021)	and	are	
further	described	here.	Concentrations	of	jasmonic	acid,	jasmonate-	
isoleucine,	 benzyl	 alcohol	 glucoside,	 and	 salicylic	 acid	were	 quan-
tified	 by	 ultra-	high-	performance	 liquid	 chromatography,	 using	 the	
methods	 outlined	 by	 Boeckler	 et	 al.	 (2013).	 These	 phytochemical	
analyses	were	performed	using	finely	pulverized	freeze-	dried	leaves.	
Phenology	was	assessed	by	recording	the	timing	of	bud	break	every	
2–	3 days	in	the	spring	using	a	5-	point	scale	as	described	by	Barker	
et	al.	(2019).	Bud	break	values	were	obtained	using	a	local	2-	degree	
polynomial	regression	adapted	from	Rohde	et	al.	(2011),	where	bud	
break	stage	(e.g.,	1–	5	on	the	point	scale)	was	the	response	and	the	
dates	of	observation	were	the	predictors,	to	generate	a	prediction	
equation	for	the	date	each	tree	reached	stage	three.	Only	predicted	
values with an R2 ≥ .88	were	kept.

2.3  |  Genomic data

Exome	sequence	data	for	506	genets	were	obtained	via	sequence	
capture	 genotyping	 and	 the	 sequence	 data	 were	 aligned	 to	 the	
Populus tremula	v1.1.	genome	 (Lin	et	al.,	2018).	Complete	details	
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TA B L E  1 Description	of	tree	traits	surveyed.

Trait

Years 
data were 
collected Description of trait measurement Units

Phenology

Budbreak	dateb 2014– 2017 Bud	break	values	were	obtained	using	a	local	2-	degree	polynomial	regression	
to	predict	when	each	tree	had	reached	stage	three	on	a	5-	point	scale.	Then	
degree	day	was	calculated	using	a	base	temperature	of	4.4°C	and	rank	
transformed	to	account	for	year-	to-	year	environmental	variation

Degree	days

Reproduction

Flowering	densitya 2017–	2019 Number	of	flowering	twigs	were	counted	in	the	early	spring	each	year	between	
2017	and	2019,	representing	buds	formed	during	the	previous	year

Number	of	
flowering	twigs

Sexa NA Sex	of	each	genet	determined	through	genotyping	with	the	TOZ19	marker	
(Pakull	et	al.,	2015)

NA

Growth

Initial	volumea 2012 Volume	is	calculated	as	diameter2 × height	(d2h),	which	is	known	to	correlate	
well	with	biomass	(Stevens	et	al.,	2007).	For	2012,	when	the	trees	were	
too	small	for	a	diameter	at	breast	height	to	be	taken,	basal	diameter	(10 cm	
above	ground)	was	used

cm3

Volumea 2015–	2018 Volume	is	calculated	as	diameter2 × height	(d2h),	which	is	known	to	correlate	
well	with	biomass	(Stevens	et	al.,	2007).	For	all	four	measurement	years,	
diameter	at	breast	height	(DBH)	was	taken	at	a	standard	height	of	1.4 m

cm3

Basal	areaa 2015–	2018 Square	root	(best	transform)	of	area	for	a	given	measurement	year,	π(d/2)2 
where	d	is	the	mean	of	two	orthogonal	measurements	of	diameter.	For	all	
four	measurement	years,	diameter	at	breast	height	(DBH)	was	taken	at	a	
standard	height	of	1.4 m

cm2

Heighta 2015–	2018 Height	of	the	tallest	stem cm

Relative growth 
(volume)b

2015–	2018 Growth	represented	as	the	change	in	volume,	expressed	as	the	difference	in	the	
natural	logarithms	of	the	volumes	at	two	time	points

cm3

Relative growth 
(basal	area)a

2015–	2018 Growth	as	difference	in	natural	logarithms	of	the	basal	areas	at	two	time	points cm2

Basal	area	
incrementa

2015–	2018 Growth	as	basal	area	increment	or	the	difference	between	the	basal	areas	at	
two	time	points

cm2

Leaf	morphology

Specific	leaf	areaa 2014– 2017 Average	leaf	area	divided	by	dry	mass cm2/g

Individual	leaf	areaa 2014– 2017 Individual	average	leaf	area cm2

Growth-	related	phytochemistry

Nitrogena 2014– 2017 Concentration	of	foliar	nitrogen Percent	dry	weight

Carbon:nitrogena 2014– 2017 Ratio	of	foliar	carbon	to	foliar	nitrogen NA

Abscisic	acidc 2017 Concentration	of	foliar	abscisic	acid Percent	dry	weight

Defense-	related	phytochemistry

Jasmonic	acidc 2017 Concentration	of	foliar	jasmonic	acid Percent	dry	weight

Jasmonate	
isoleucinec

2017 Concentration	of	foliar	jasmonate-	isoleucine Percent	dry	weight

Benzyl	alcohol	
glucosidec

2017 Concentration	of	foliar	benzyl	alcohol	glucoside Percent	dry	weight

Salicylic	acidc 2017 Concentration	of	foliar	salicylic	acid Percent	dry	weight

Salicina 2014– 2017 Concentration	of	foliar	salicin. Percent	dry	weight

Salicortina 2014– 2017 Concentration	of	foliar	salicortin. Percent	dry	weight

Tremulacina 2014– 2017 Concentration	of	foliar	tremulacin. Percent	dry	weight

Tremuloidina 2014– 2017 Concentration	of	foliar	tremuloidin. Percent	dry	weight

Total phenolic 
glycosidesa

2014– 2017 Sum	of	salicin,	salicortin,	tremulacin,	and	tremuloidin. Percent	dry	weight
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    |  5 of 23RIEHL et al.

on	how	the	sequencing	and	alignment	were	performed	for	those	
506	genets	can	be	found	in	Barker	et	al.	(2019)	and	File	S1.	Subse-
quently,	genet	verification	via	microsatellite	analysis	revealed	that	
10	genets	had	no	sequence	data.	Those	genets,	plus	an	additional	
15	 genets	 that	were	 omitted	 by	Barker	 et	 al.	 (2019)	 because	 of	
poor-	quality	 sequencing,	 were	 sent	 for	 sequence	 capture	 geno-
typing	using	the	same	probes	and	methodology	as	the	original	506	
sequenced	 genets.	 Additionally,	 a	 subset	 of	 genets	 (N = 11)	 that	
had	 been	 sequenced	 previously	with	whole-	genome	 sequencing	
(for	 complete	details,	 see	Wang	et	 al.	 (2016))	were	 included	be-
cause	many	of	them	had	better	quality	sequencing	data	than	when	
sequenced	using	sequence	capture	genotyping.	A	joint	call	over	all	
samples	(N = 506 + 25 + 11 = 542)	was	conducted	using	GATK	Gen-
otypeGVCFs	with	a	standard	emit	confidence	of	10	and	a	standard	
call	confidence	of	20	resulting	in	the	discovery	of	6,827,282	SNPs.	
Variants	 were	 filtered	 for	 genotype	 quality	 and	 sample	 quality	
metrics	using	VCF	and	BCF	tools	 (Danecek	et	al.,	2011).	The	full	
variant	filtering	pipeline	is	provided	in	File	S1.	Duplicate	samples	
(including	clones)	were	removed	by	keeping	the	sample	with	the	
best	quality	sequencing	data	(N = 53	duplicate	samples	removed).	
An	additional	32	samples	were	removed	for	poor	sequence	quality	
(>20%	missing	 data)	 and	 two	were	 removed	 because	 they	were	
likely	F1	hybrids	of	P. tremuloides and grandidentata	(File	S2).	After	
variant	filtering,	missing	genotype	information	was	imputed	using	
LinkImpute	 (Money	 et	 al.,	 2015).	 The	 SNP	 filtering	 pipeline	 re-
sulted	 in	a	data	set	of	455	replicated	genets	with	291,069	SNPs	
distributed	across	5375	scaffolds	and	20,875	genes	with	10	SNPs	
per gene on average.

To	 assess	 the	 presence	 of	 population	 structure,	 we	 used	 AD-
MIXTURE	(Alexander	et	al.,	2009),	which	employed	maximum	like-
lihood	estimation	of	individual	ancestries	based	on	our	SNP	data	to	
determine	the	most	likely	number	of	populations	or	distinct	groups	
present	in	the	sample	set.	We	tested	values	1	through	5	for	k	 (i.e.,	

the	number	of	groups)	and	used	cross-	validation	to	validate	the	re-
sults.	ADMIXTURE	estimated	that	our	samples	most	likely	represent	
a	 single	population,	with	high	confidence	 (See	File	S1	 for	 full	AD-
MIXTURE	analysis	details).	Five	pairs	of	genets	exhibited	sibling	or	
parent-	offspring	relationships	 (see	File	S1).	These	genets	were	not	
excluded	to	maximize	sample	size	and	because	an	 initial	GWA	run	
with	and	without	 the	 sibling	pairs	excluded	showed	no	difference	
in	 results	 (data	 not	 presented).	 Additionally,	 as	 presented	 above,	
ADMIXTURE	did	not	identify	any	population	structure	with	the	five	
sibling	pairs	 included.	File	S2	contains	 further	details	about	all	 se-
quenced	samples	and	excluded	samples.

The	exome	capture	sequencing	data	were	aligned	to	the	Pop-
ulus tremula	genome	assembly	v1.1	(Potra	v1.1)	because	that	was	
the	 best	 available	 assembly	 at	 the	 time	 of	 the	 sequencing	 data	
processing.	During	the	analysis	of	the	GWA	results,	the	most	re-
cent	assembly,	Populus tremula	genome	assembly	v2.2	(Potra	v2.2)	
became	 available.	 In	 order	 to	 be	 able	 to	 estimate	 where	 candi-
date	 genes	 might	 be	 located	 within	 the	 genome,	 we	 developed	
an	ad	hoc	method	 to	connect	 the	Potra	v1.1	genes	 to	 the	Potra	
v2.2	genes.	We	performed	a	reciprocal	BLAST	on	gene	lists	from	
both	 assemblies.	 We	 matched	 only	 genes	 with	 a	 sum	 of	 ranks	
equal	to	zero	(i.e.,	the	genes	were	each	other's	best	match	in	both	
assemblies).

2.4  |  Transcriptomic data

We	used	an	extreme	phenotyping	sampling	scheme	to	select	genets	
from	the	WisAsp	common	garden	for	total	RNA	sequencing.	Using	
foliar	 salicinoid	 phenolic	 glycoside	 (PG)	 concentrations	 from	 June	
2016,	30	genets	with	high	constitutive	PG	concentrations	(10%–	16%	
leaf	dry	mass)	and	30	genets	with	 low	constitutive	PG	concentra-
tions	(1%–	2.5%)	were	sampled	for	a	total	of	60	genets.	Leaf	samples	

Trait

Years 
data were 
collected Description of trait measurement Units

Condensed 
tanninsa

2014– 2017 Concentration	of	foliar	condensed	tannins. Percent	dry	weight

Indirect	defense	and	damage

Extra-	floral	
nectariesa

2014– 2017 Mean	number	of	extrafloral	nectaries	per	leaf,	measured	using	digital	scans	of	
collected leaves.

Density/leaf

Diseasea 2014– 2017 Percent	of	leaf	area	lost	to	disease,	measured	using	digital	scans	of	collected	
leaves	and	the	leaf	morphology	assessment	program	Winfolia.

Percent	area

Herbivorya 2014– 2017 Leaf	area	damaged	by	leaf	scrapers	plus	holes	plus	leaf	margin	removed,	
measured	using	digital	scans	of	collected	leaves	and	the	leaf	morphology	
assessment	program	Winfolia.

Percent	area

Total	biotic	damage 2014– 2017 Leaf	area	damaged	by	both	herbivores	and	disease:	Disease	+	Herbivory. Percent	area

Resistance 2014– 2017 100-	total	biotic	damage. Percent	area

aSee	Cole	et	al.	(2021)	for	detailed	methodology.
bSee	Barker	et	al.	(2019)	for	detailed	methodology.
cSee	Cole	et	al.	(2021)	and	Boeckler	et	al.	(2013)	for	detailed	methodology.

TA B L E  1 (Continued)
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from	a	minimum	of	four	replicate	trees	per	genet	were	collected	on	
1 day	in	July	2017	(6–	7 year-	old	trees).	Extraction	of	total	RNA	was	
performed	using	 the	RNeasy	Plant	Mini	Kit	with	DNase	digestion	
(Qiagen,	Valencia,	CA),	and	quality	control	and	quantification	were	
performed	 on	 the	 Agilent	 2100	 BioAnalyzer	 (Agilent	 Technolo-
gies,	Santa	Clara,	CA)	at	the	University	of	Wisconsin	Biotechnology	
Center	(Madison,	WI,	USA).	Samples	were	sent	to	the	Michigan	State	
University	 RTSF	Genomics	 Core	 (East	 Lansing,	MI,	USA)	 for	 RNA	
library	preparation	and	sequencing.	TruSeq	stranded	mRNA	librar-
ies	were	divided	into	three	pools	and	each	run	in	a	separate	lane	of	
an	Illumina	HiSeq4000	flow	cell	(San	Diego,	CA,	USA)	in	2 × 150 bp	
paired-	end	mode	 to	an	average	depth	of	16	million	 read	pairs	per	
sample.

Raw	RNA	sequence	data	were	put	through	a	standard	filtering	
pipeline.	Ribosomal	RNA	removal	was	completed	using	default	set-
tings	in	SortMeRNA	(Kopylova	et	al.,	2012)	to	reduce	rRNA	alignment	
bias.	Trimmomatic	 (Bolger	et	al.,	2014)	was	used	to	remove	partial	
adaptor	 sequences	 within	 the	 sequenced	 reads	 and	 to	 perform	
quality-	based	 trimming.	 Quality-	based	 trimming	 works	 by	 “trim-
ming”	low-	quality	bases	from	the	3′	end	until	the	quality	reaches	a	
specified	Phred-	quality	threshold.	We	used	a	standard	Phred-	quality	
threshold	of	20	corresponding	to	a	base	call	error	of	1	in	100,	which	
is	 approximately	 the	 inherent	 technical	 error	 rate	 of	 the	 Illumina	
sequencing	platform.	FASTQC	(Andrews,	2010)	and	multiqc	(Ewels	
et al., 2016),	were	 used	 after	 each	 filtering	 step	 to	 assess	 sample	
quality	(e.g.,	per	base	sequence	quality,	per	sequence	quality	scores,	
per	base	sequence	content,	and	per	sequence	GC	content).	The	fil-
tered	RNA	sequences	were	then	quasi-	aligned	to	the	Populus tremula 
v.2.2	transcriptome	(see	Schiffthaler	et	al.	(2019);	assembly	files	are	
available	through	the	FTP	site	at	https://plant genie.org/)	using	the	
default	k-	mer	of	31	(optimized	for	reads	≥75 bp)	and	quantified	using	
Salmon	 (Patro	et	 al.,	2017).	Quasi-	alignment	can	 reduce	computa-
tional	time	and	provide	a	way	to	align	and	quantify	transcripts	for	
organisms	with	limited	genomic	resources.	As	performed	in	Salmon,	
it	uses	a	reference	index	created	from	a	given	reference	transcrip-
tome	by	evaluating	the	sequences	for	all	possible	unique	sequences	
of	length	k	(k-	mer)	in	the	transcriptome.	That	reference	index	is	then	
used	to	estimate	where	the	raw	sequencing	reads	best	align	without	
performing	base-	by-	base	alignment,	decreasing	computational	time	
substantially.	Then	the	final	transcript	abundance	estimates	are	gen-
erated	after	modeling	sample-	specific	biases	(e.g.,	GC	and	sequence	
biases),	which,	 if	not	accounted	for,	are	known	to	create	high	false	
positive	rates	in	differential	expression.	File	S3 contains a detailed 
description	of	the	RNA	filtering	and	quality	assessment	pipeline.

2.5  |  Genome- wide association analyses

The	first	step	of	our	genome-	wide	association	analyses	was	fitting	
the	linear	mixed	model	shown	in	Equation 1 to each trait in order to 
extract	 the	 genotypic	mean	effect	 for	 each	genet	 across	 all	 repli-
cates	(3.51	replicates	per	genet	on	average).	In	this	formulation,	xijky 
is	 the	 trait	 value	 during	 year	 y	 for	 individual	 i	 belonging	 to	 genet	

j	and	residing	 in	block	k, and μ	 is	 the	grand	mean	of	the	trait.	The	
independent	variables	in	the	model	include	block,	perimeter	mem-
bership	(pi),	age	at	the	time	of	sampling	(aiy),	initial	size	of	the	tree	(si ),	
and	their	fixed	effects	�, �1, �2, and �3,	respectively.	The	trait	value	
also	depends	upon	random	effects	for	genet	 (� j)	and	year	 (�y).	The	
random	effects	and	 the	 random	error	 term	 (�ijky)	 all	 follow	a	 zero-	
mean	Gaussian	distribution.	These	models	were	fit	using	the	lme4	R	
package	(Bates	et	al.,	2015).

Block	and	perimeter	positions	were	included	to	control	for	micro-
environmental	differences	and	edge	effects.	Tree	age	and	initial	size	
were	included	to	account	for	replanting	of	a	quarter	of	the	ramets	
in	2011	and	2012	due	to	vole	damage	(Cole	et	al.,	2021).	A	subset	
of	tree	traits	(salicylic	acid,	jasmonic	acid,	jasmonate-	isoleucine,	ab-
scisic	acid,	benzyl	alcohol	glucoside)	was	collected	at	only	one	time	
point,	so	survey	year	was	not	included	in	the	model	for	those	traits.	
Phenotypic	trait	data	were	transformed	to	meet	normality	assump-
tions	of	linear	mixed	models	as	needed	and	z-	scale	was	normalized	
to	standardize	effect	sizes	among	tree	traits.	From	these	models,	the	
estimated	best	linear	unbiased	predictors	(BLUP)	of	genet	effects	(� j )	
were	extracted.	These	BLUP	values	represent	the	average	effect	of	
each	genet	across	replicates	on	a	trait	that	is	attributable	to	genetic	
factors.	These	values	were	then	rank	transformed,	which	has	been	
shown	 to	 improve	 the	 sensitivity	 of	 GWA	 analyses	 when	 sample	
sizes	or	genetic	effects	are	small	(Goh	&	Yap,	2009),	and	regressed	
on	each	genetic	variant	(i.e.,	GWA).

Broad-	sense	heritabilities	were	calculated	by	dividing	the	genet-	
associated	 variance	 component	 (�2

�
)	 by	 the	 total	 variance	 (�2

x
)	 as	

shown in Equation 2.

Variance	components	were	extracted	using	the	VarCorr	function	
from	the	R	package	lme4	(Bates	et	al.,	2015).	Since	the	linear	mixed	
model	includes	repeated	measurements	for	the	same	individual	(i.e.,	
multiple	 survey	 years),	 we	 calculated	 the	 correlation	 between	 re-
peated	measurements	of	 the	same	 individual	 (i.e.,	 repeatability)	 to	
assess	 the	accuracy	of	our	broad-	sense	heritability	estimates	 (Fig-
ure S1)	(Falconer	&	Mackay,	1996).	Tables S1 and S2	display	model	
characteristics	and	variance	components	for	each	trait,	respectively.	
All	analyses	were	performed	in	R	v.	3.4.4,	3.5.1,	and	3.6.1	 (R	Core	
Team,	2018).

A	multilocus	GWA	provides	a	way	to	understand	how	variation	
in	a	marker	set	is	associated	with	trait	variation.	It	does	so	by	mod-
eling	how	much	of	that	trait	variation	is	likely	explained	by	loci	with	
relatively	 larger	 effects	 as	 compared	 to	 the	 infinitesimal	 effects	
of	all	 loci.	 In	 short,	 it	models	 the	genetic	architecture	of	 the	 trait.	
GEMMA's	 Bayesian	 Sparse	 Linear	 Mixed	 Model	 (BSLMM)	 (Zhou	
et al., 2013)	combines	a	ridge	regression	(i.e.,	models	relatively	small	

(1)
xijky=�+�k+�1pi+�2aiy+�3si+� j+�y +�ijky

� j ∼N
(

0, �2
�

)

�y ∼N
(

0, �2
�

)

�ijky∼N
(

0, �2
)

(2)H2
=

�2
�

�2
x
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effect	variants)	and	a	Bayesian	variable	sparse	regression	(i.e.,	mod-
els	relatively	large	effect	variants)	to	associate	phenotypes	and	loci	
by	modeling	 all	 variants	 simultaneously.	 The	model	 estimates	 the	
amount	of	phenotypic	variance	explained	by	sparse	and	random	ef-
fects,	defined	as	PVE,	where	sparse	effects	are	relatively	large	effect	
loci	and	the	random	effects	are	the	relatively	small	effect	loci.	The	
estimated	value	of	the	sparse	effects	is	defined	as	PGE	or	propor-
tion	of	genetic	variance	and	indicates	what	proportion	of	PVE	is	ex-
plained	by	loci	with	relatively	large	effects.	Multiplying	PVE	by	PGE	
provides	an	estimate	of	the	proportion	of	total	phenotypic	variance	
explained	by	the	sparse	effects	(i.e.,	loci	with	large	effect	sizes	rel-
ative	to	all	the	loci	included	in	the	model)	for	each	trait,	also	known	
as	narrow-	sense	heritability,	h2	 (Bresadola	et	al.,	2019).	The	model	
also	generates	an	estimate	of	the	putative	number	of	sparse	effect	
loci	(e.g.,	 loci	with	large	effect	sizes	relative	to	all	the	loci	included	
in	 the	model)	 called	n_gamma,	which	 can	provide	 further	 context	
for	the	genetic	architecture	of	a	trait	of	interest	in	combination	with	
the	PVE	and	PGE	values.	Each	trait	was	run	through	the	BSLMM	for	
10	runs	with	a	two	million	burn-	in	followed	by	10	million	iterations	
(script	available	in	File	S4).	Values	for	PVE	and	PGE	were	evaluated	
across	all	10	runs	for	consistency	(Figure S2)	and	one	representative	
run	was	chosen	for	data	presentation.

All	GWA	analyses	were	carried	out	in	Plink	1.9	which	performs	
simple	linear	regression	using	the	Wald	statistic	to	generate	p-	values	
(scripts	available	in	File	S4).	We	did	not	correct	for	population	struc-
ture	 as	 our	 population	 was	 panmictic	 (Barker	 et	 al.,	 2019).	 Tradi-
tional	 single-	locus	GWA	was	performed	 for	 each	of	 the	30	 traits.	
Many	of	our	growth	and	defense	traits	are	likely	functionally	related	
(Cole	et	 al.,	2021; Cope et al., 2019, 2021)	 and	 significant	genetic	
correlations	were	shown	for	many	of	them	(using	Pearson's	correla-
tion	coefficient,	Figure S3).	Genetically	correlated	traits	 (and	even	
functionally	related	traits	in	the	absence	of	genetic	correlations)	can	
be	analyzed	simultaneously	 to	 improve	the	power	of	GWA	(Chhe-
tri et al., 2019;	Stephens,	2013).	We	conducted	multi-	trait	GWA	for	
growth	and	defense	traits	with	genetic	correlations	or	functional	re-
lationships	(for	a	full	list	of	trait	combinations	see	File	S5).	Multiple	
testing	was	accounted	for	by	applying	a	false	discovery	rate	correc-
tion,	specifically,	Storey's	q-	value	(Storey	&	Tibshirani,	2003)	using	a	
threshold	of	0.2.	Unlike	stringent	Bonferroni-	based	multiple	testing	
corrections,	 Storey's	q-	value	 corrects	 for	 false	positives,	while	 re-
ducing	the	number	of	false	negatives.

2.6  |  Transcriptomic analyses

To	identify	any	confounding	factors	such	as	batch	effects	and	to	de-
termine	if	conditions	were	sufficiently	separated,	quality	assessment	
of	the	count	data	was	performed	in	R	v.	3.6.1	(R	Core	Team,	2018)	as	
detailed in File	S3.	Differential	expression	was	carried	out	in	DESeq2	
(Love	et	al.,	2014),	which	fits	a	negative	binomial	generalized	linear	
model	and	automatically	normalizes	counts	by	library	size.	We	used	
an adjusted p-	value	cut-	off	of	.05	and	a	log	fold	change	cut-	off	of	0	
given	our	large	sample	size,	following	recommendations	by	Schurch	

et	al.	(2016).	We	analyzed	the	differentially	expressed	genes	through	
the	application	of	a	soft	clustering	method	in	the	function	Mfuzz	that	
uses	 a	 fuzzy	 c-	means	 algorithm	 (Futschik	&	Carlisle,	2005;	Kumar	
et al., 2007).	Soft	clustering	using	Mfuzz	is	more	robust	to	noise	than	
hard	clustering	methods	because	it	allows	genes	to	be	a	member	of	
more	 than	one	cluster,	 thus	providing	a	measure	of	how	well	 cor-
responding	clusters	represent	gene	expression	patterns.	This	attrib-
ute	allows	users	to	make	nuanced	inferences	about	the	role	genes	
may	play	 in	different	functional	clusters.	Additionally,	because	the	
method	minimizes	the	variation	of	genes	within	a	cluster,	genes	that	
poorly	cluster	will	have	less	influence	on	a	cluster	and	thereby	make	
the	clustering	process	less	sensitive	to	noise.	This	attribute	is	ben-
eficial	because	no	genes	were	filtered	out	to	reduce	noise,	enabling	
us	 to	 keep	 potentially	 important	 information.	 Clustering	 param-
eters	were	set	using	the	methodology	outlined	by	Schwämmle	and	
Jensen	 (2010).	Only	genes	with	a	membership	of	≥0.75	were	kept	
in	each	cluster.	A	gene	enrichment	analysis	was	performed	for	each	
cluster	of	genes	against	the	background	of	all	Populus tremula	(v2.2)	
genes	using	the	enrichment	analysis	tool	from	PlantGenIE	(https://
plant genie.org/).

3  |  RESULTS

3.1  |  Genetic architecture of tree traits

3.1.1  |  Broad-	sense	heritabilities

We	calculated	broad-	sense	heritabilities	for	all	of	our	tree	traits	to	
understand	what	proportion	of	the	variation	was	explained	by	genet	
identity	alone	and	to	compare	to	the	narrow-	sense	heritability	es-
timates	obtained	from	our	multilocus	GWA.	Sex	can	be	considered	
as	a	pseudo-	control	trait	as	it	would	be	expected	to	exhibit	a	broad-	
sense	heritability	at	or	approaching	1	given	 that	 it	 is	 a	genetically	
controlled	 trait	with	 limited	environmental	 influence	and	a	known	
genetic	architecture	 (Müller	et	al.,	2020).	Budbreak	date	displayed	
a	high	level	of	heritability	(H2 = 0.80)	expected	from	a	highly	geneti-
cally	 controlled	 trait	 (Frewen	 et	 al.,	2000).	 Flowering	 density	was	
moderately	heritable	(H2 = 0.37).	It	should	be	noted	that	only	about	
a	 third	of	 the	 trees	at	WisAsp	had	 reached	 reproductive	maturity	
at	 the	 time	of	 this	 study,	 so	 the	 sample	 size	was	 smaller	 than	 for	
the	other	traits.	In	general,	traits	associated	with	defense	(defense-	
related	phytochemistry	and	indirect	defense)	had	higher	heritability	
than	growth	traits	(growth,	growth-	related	phytochemistry,	and	leaf	
morphology)	 (Figure 1).	 The	 broad-	sense	 heritabilities	 were	mod-
erate	 to	 high	 (H2 = 0.15–	0.64)	 for	most	 defense	 traits	 and	 low	 to	
moderate	 (H2 = 0.01–	0.52)	 for	most	 growth	 traits.	Diseased	 tissue	
showed	a	moderate	level	of	heritability	(H2 = 0.38),	while	herbivory	
(i.e.,	foliar	tissue	damaged	by	insects	that	scrape	and/or	remove	leaf	
area)	exhibited	low	heritability	(H2 = 0.12).	Total	biotic	damage	and	
resistance	 (1-	total	 biotic	 damage),	which	 include	 area	damaged	by	
both	disease	and	herbivory,	also	showed	moderate	 levels	of	herit-
ability	(0.32	and	0.34	respectively).
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3.1.2  | Multilocus	GWA	results

The	 narrow-	sense	 heritabilities	 (h2)	 displayed	 in	 Figure 2 give an 
overview	of	 the	 genetic	 architecture	 of	 each	 trait.	 For	 the	major-
ity	of	tree	traits,	our	SNP	dataset	explained	very	little	variation,	ex-
cluding	sex	(mean = 0.10,	median = 0.09,	range = 0.05–	0.17).	In	other	
words,	most	of	the	phenotypic	variation	for	a	particular	trait	is	likely	
explained	by	many	loci	with	relatively	small	effects,	 indicative	of	a	
polygenic	 architecture.	 Budbreak	 date,	 a	 typically	 highly	 heritable	
trait in Populus	(Frewen	et	al.,	2000),	had	a	lower	narrow-	sense	her-
itability	(h2 = 0.16)	than	expected,	but	still	higher	than	the	majority	
of	other	traits.	Narrow-	sense	heritability	for	sex,	a	highly	genetically	
controlled	trait,	explains	phenotypic	variation	at	close	to	expected	
values	(i.e.,	broad-	sense	heritability).

The	narrow-	sense	heritabilities	(h2)	are	calculated	from	PVE	and	
PGE	estimates,	values	that	can	provide	a	more	nuanced	view	of	trait	
genetic	architecture	(Figure 3 and Figure S4).	PVE	is	the	proportion	of	
phenotypic	variation	explained	by	all	loci	and	PGE	is	the	proportion	of	
PVE	explained	by	loci	with	relatively	large	effects.	The	proportion	of	
relatively	large	effect	loci	(PGE)	is	less	than	~0.40	for	all	traits	except	
sex	(mean = 0.26;	range	0.14–	0.41).	This	pattern	holds	true	for	traits	
such	 as	 initial	 volume	 and	 jasmonate-	isoleucine,	where	 our	marker	
set	explains	a	large	amount	of	phenotypic	variation	(PVE > 0.70)	(Fig-
ure 3).	 Posterior	probability	density	distributions	 indicate	 that	PGE	

values	for	the	majority	of	loci	are	less	than	0.25	across	almost	all	traits	
(Figure S5).	Thus,	for	many	of	our	traits,	most	of	the	loci	affecting	trait	
variation	likely	have	relatively	small	effects	(random	effects	portion	
of	PVE).	Consistent	with	this	finding,	estimated	effect	sizes	were	ex-
tremely	low	for	most	loci	across	all	traits	(Table 2).

Sex	shows	that	PVE	and	PGE	are	both	high,	approaching	1	(i.e.,	
99%	 phenotypic	 variance	 explained	 by	 genomic	 data,	 with	 98%	
of	 that	 variance	 attributable	 to	 relatively	 large	 effect	 loci).	 Sex	
also	has	the	lowest	n_gamma	value	of	all	the	traits	(n_gamma = 17)	
(Table 2).	Together,	these	estimates	reveal	that	the	genetic	archi-
tecture	for	sex	is	highly	heritable	underlain	by	a	few	loci	with	rela-
tively	large	effects,	consistent	with	its	known	genetic	architecture	
(Müller	et	al.,	2020).	Traits	 like	budbreak	date	and	 jasmonic	acid	
display	a	highly	heritable	genetic	architecture	(PVE > 0.60)	where	
some	loci	of	relatively	large	effect	(i.e.,	PGE > 25%)	exist	within	a	
polygenetic	 background.	 Both	 budbreak	 date	 and	 jasmonic	 acid	
have	 relatively	 high	 n_gamma	 values	 of	 70	 and	 75,	 respectively	
(Table 2).	 In	contrast,	traits	such	as	total	phenolic	glycosides	and	
initial	 volume	 also	 have	 a	 highly	 heritable	 genetic	 architecture	
(PVE > 0.60)	 but	 are	 largely	 explained	 by	 relatively	 small	 effect	
loci	(i.e.,	PGE < 15%).	N_gamma	values	are	48	and	87	for	phenolic	
glycosides	and	initial	volume,	respectively	(Table 2).	All	multilocus	
GWA	parameters	and	corresponding	estimates	for	each	trait	can	
be	found	in	File	S6.

F I G U R E  1 Broad-	sense	heritabilities	for	ecologically	important	traits	in	aspen	(Populus tremuloides).	Values	calculated	by	dividing	the	
genet-	associated	variance	component	by	the	total	random	variance	component	extracted	from	linear	mixed	models	(variance	components	in	
Table S1).
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    |  9 of 23RIEHL et al.

F I G U R E  2 Narrow-	sense	heritabilities.	Values	calculated	by	multiplying	PVE	by	PGE	(Bresadola	et	al.,	2019)	estimates	generated	by	
GEMMA's	BSLMM	model;	PVE = proportion	of	phenotypic	variance	explained	by	sparse	and	random	effects,	PGE = proportion	of	phenotypic	
variation	explained	by	sparse	effects	only	(i.e.,	relatively	large	effect	loci).

F I G U R E  3 Hyperparameter	PVE	from	GEMMA's	BSLMM	model;	PVE = proportion	of	phenotypic	variance	explained	by	sparse	and	
random	effects	(relatively	large	and	small	effect	loci).
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3.2  |  Candidate genes: Single- locus GWA results

Our	single-	locus	genome-	wide	association	analyses	used	a	marker	
data	set	of	291,069	SNPs	and	found	38	significant	SNPs	in	22	genes	
across	15	 traits.	Budbreak	date	accounted	 for	six	of	 the	22	genes	
identified	(Table 3).	An	additional	40	SNPs	and	15	genes	were	asso-
ciated	with	sex.	One	candidate	gene	was	associated	with	flowering	
density.	Growth	 traits	were	 associated	with	 four	 genes.	Defense-	
related	phytochemical	 traits	were	associated	with	eight	genes.	 In-
direct	defense	and	damage	(i.e.,	total	biotic	damage,	diseased	foliar	
tissue,	and	herbivory)	accounted	for	six	identified	genes.	More	de-
tailed	information	for	each	candidate	gene	can	be	found	in	Files	S5 

and S7.	Except	for	sex,	candidate	genes	for	any	particular	trait	were	
spread	across	the	genome	(Figure 4).	Genomic	positional	annotation	
through	snpEff	found	most	of	the	candidate	genes	having	regulatory	
roles	 (Table 3).	 Effect	 sizes	of	 the	 significant	SNPs	 for	most	 traits	
were	low	to	moderate	(β < ±0.4)	excluding	sex	(File	S7).	Minor	allele	
frequencies	were	also	low	to	moderate	(0.005–	0.3)	excluding	bud-
break	date	and	sex	(File	S7).

Budbreak	date	exhibited	the	highest	number	of	significant	SNPs	
for	a	single	trait	excluding	sex.	Nineteen	SNPs	across	six	genes	were	
associated	with	budbreak	date.	A	notable	gene	encodes	for	a	pen-
tatricopeptide	 repeat-	containing	 protein	 (PPR).	 Proteins	 with	 PPR	
regulate	 the	 expression	 of	 genes	 involved	 in	 organelle	 biogenesis	
and	 have	 an	 impact	 on	 plant	 growth	 and	 development	 (Barkan	&	
Small,	2014).	Another	gene,	encoding	a	MYB108	transcription	factor,	
is	potentially	involved	in	phenological	maturation,	chloroplast	devel-
opment,	 and	 response	 to	 abiotic/biotic	 stress	 in	Arabidopsis	 (Am-
bawat	et	al.,	2013;	Mandaokar	&	Browse,	2009; Zhao et al., 2020).	
Three other candidate genes have potential roles in transport 
across	the	chloroplast	 thylakoid	membrane,	chlorophyll	biogenesis	
(Adam,	2013),	and	transporting	hormones	and	other	compounds	es-
sential	for	plant	growth	and	development	across	various	biological	
membranes	(Hwang	et	al.,	2016;	Martinoia	et	al.,	2002).	The	remain-
ing	two	candidate	genes	for	budbreak	date	have	not	been	studied	
well or at all in plants to date.

As	 expected,	 the	 sex-	determining	 gene	 ARR-	17	 (Bräutigam	
et al., 2017;	Müller	et	al.,	2020)	was	discovered	as	one	of	the	genes	
with	a	significant	SNP	for	the	sex	trait.	For	sex,	the	majority	of	signif-
icant	SNPs	and	associated	genes	were	located	on	chromosome	19,	
which	is	thought	to	be	where	the	sex-	determining	region	is	located	
for	Populus	species.	These	GWA	results	are	consistent	with	the	ge-
netic	architecture	suggested	by	our	multilocus	GWA,	highly	herita-
ble	with	a	 few	 loci	 contributing	 to	 the	majority	of	 the	phenotypic	
variation	(see	Figures 2 and 3).	Flowering	density	exhibited	a	single	
association,	 located	within	 an	O-	fucosyltransferase	 family	 protein	
gene,	which	 is	known	to	be	 involved	 in	the	regulation	of	the	plant	
circadian	clock	(Liu	&	Gendron,	2020; Zentella et al., 2017).

Few	significant	associations	were	found	for	growth	and	growth-	
related	 phytochemical	 traits,	 consistent	 with	 their	 narrow-	sense	
heritabilities	being	generally	low	(Figure 2).	Univariate	GWA	found	
three	 significant	 SNPs	 in	 three	 genes,	 all	 associated	 with	 volume	
metrics.	A	tubulin	beta	chain	gene	and	a	probable	polyol	transporter	
are	involved	in	morphogenesis	(Snustad	et	al.,	1992)	and	sugar	trans-
port	(Johnson	et	al.,	2006),	respectively.	The	third	gene	encodes	a	
chromosome	condensation	regulator	family	protein,	with	no	known	
direct	connections	to	plant	growth.	Multi-	trait	GWA	discovered	only	
one	association	for	multi-	trait	group	MT29	including	individual	and	
specific	leaf	area,	volume,	and	nitrogen	concentration.	The	SNP	was	
located	in	a	circadian	clock	regulatory	gene,	with	known	function	in	
animals,	but	not	well-	defined	in	plants	(Liu	&	Gendron,	2020).

For	 defense-	related	 phytochemical	 traits,	 only	 the	 plant	 hor-
mone	 jasmonic	 acid	 and	 its	 derivative	 jasmonate-	isoleucine	 have	
significant	associations	in	the	univariate	GWA,	consistent	with	the	
PGE	estimate	suggesting	a	genetic	architecture	of	being	polygenic	

TA B L E  2 Effect	sizes	for	multi-	SNP	GWA.

Trait

Median 
sparse effect 
size

Mean 
sparse 
effect size n_gamma

Budbreak 0.000004 0.00003 70

Flowering	density 0.000002 0.000009 58

Sex 0 0.00002 18

Initial	volume 0.000004 0.00002 87

Volume 0.000003 0.00001 132

Basal	area 0.000004 0.00002 90

Height 0.000003 0.000009 97

Relative growth 
(volume)

0.000002 0.000009 98

Relative growth 
(basal	area)

0.000003 0.000009 97

Basal	area	increment 0.000005 0.00002 98

Specific	leaf	area 0.000002 0.000008 54

Individual	leaf	area 0.000002 0.000006 89

Nitrogen 0.000003 0.00001 68

Carbon:nitrogen 0.000004 0.00001 75

Abscisic	acid 0.000003 0.00001 59

Jasmonic	acid 0.000005 0.00002 75

Jasmonate-	isoleucine 0.000004 0.00001 59

Benzyl	alcohol	
glucoside

0.000002 0.000007 68

Salicylic	acid 0.000003 0.00001 41

Salicin 0.000002 0.000008 57

Salicortin 0.000004 0.00001 111

Tremulacin 0.000005 0.00002 60

Tremuloidin 0.000004 0.00001 69

Total phenolic 
glycosides

0.000004 0.00001 48

Condensed tannins 0.000002 0.00009 104

Extra-	floral	nectaries 0.000005 0.00002 58

Disease 0.000002 0.00001 50

Herbivory 0.000004 0.00001 88

Total	biotic	damage 0.000004 0.00002 25

Resistance 0.000003 0.00001 42
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    |  11 of 23RIEHL et al.

TA B L E  3 Summary	table	for	single-	locus	genome-	wide	association	analysis	results	(See	Files	S5	[multi-	trait	GWA]	and	File	S8 [univariate 
GWA]	for	more	details).

Trait
Gene ID and description (using Potra 
v1.1 assembly on popge nie.org) GO annotation(s)

SNPeff annotation(s) 
(number of SNPs)

Phenology

Budbreak	date Potra003338g21388:	DNA	repair	
protein	REV1	isoform	X1

Damaged	DNA	binding,	
nucleotidyltransferase	
activity,	error-	prone	
translesion	synthesis

Synonymous	gene	variant	
(1),	missense	gene	
variant	(1)

Budbreak	date Potra000831g06663:	
pentatricopeptide	repeat-	
containing	protein	At1g71490

Chloroplast	thylakoid	membrane Synonymous	gene	variant	
(3),	missense	gene	
variant	(2),	splice	region	
variant	&	intron	variant	
(2),	stop	lost	(1),	3′	UTR	
variant	(1)

Budbreak	date Potra002372g18071:	transcription	
factor	MYB108-	like

DNA	binding 5′	UTR	variant	(1)

Budbreak	date Potra003956g23750:	ABC	
transporter	B	family	member	
15-	like

ATP	binding,	integral	component	
of	membrane,	ATPase	activity,	
coupled	to	transmembrane	
movement	of	substances,	
transmembrane	transport

5′	UTR	variant	(1)

Budbreak	date Potra003186g20936:	transmembrane	
protein 53

Integral	component	of	
membrane,	hydrolase	activity

Downstream	gene	variant	(4)

Budbreak	date Potra000419g02166:	membrane-	
bound	transcription	factor	site-	2	
protease	homolog	isoform	X1

Metalloendopeptidase	activity,	
proteolysis,	membrane

3′	UTR	variant	(1)

Reproduction

Flower	density Potra004072g24439:	O-	
fucosyltransferase	family	protein

Cytoplasm,	fucose	metabolic	
process,	transferase	activity,	
transferring	glycosyl	groups

5′	UTR	variant	(1)

Growth

Relative	growth	(volume)	
between	2016	and	2017

Potra000177g00680:	probable	polyol	
transporter 4

Integral	component	of	
membrane,	transmembrane	
transporter	activity,	
transmembrane	transport

Synonymous	variant	(1)

Initial	volume Potra002519g19030:	chromosome	
condensation	regulator	family	
protein

Metal	ion	binding Intron	variant	(1)

Initial	volume Potra000790g06258:	tubulin	beta	
chain

GTPase	activity,	structural	
constituent	of	cytoskeleton,	
GTP	binding,	microtubule,	
microtubule-	based	process

Upstream	gene	variant	(1)

Growth,	leaf	morphology,	growth-	related	phytochemistry

MT29:	individual	leaf	area,	
specific	leaf	area,	volume,	
nitrogen

Potra001566g12942:	circadian	
locomoter	output	cycles	protein	
kaput	isoform	X1

Protein	binding Synonymous	variant	(1)

Defense-	related	phytochemistry

Jasmonic	acid Potra000530g03683:	cation/H(+)	
antiporter	15-	like

Cation transport, solute:proton 
antiporter	activity,	integral	
component	of	membrane,	
transmembrane	transport

Synonymous	variant	(1)

Jasmonate-	isoleucine Potra002923g20319:	long-	chain-	
alcohol	oxidase	FAO4A

Long-	chain-	alcohol	oxidase	
activity,	flavin	adenine	
dinucleotide	binding,	
oxidation–	reduction	process

Missense	variant	(1)

(Continues)
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with	 some	 relatively	 large	 effect	 loci.	 The	 candidate	 genes	 were	
a	 cation/H(+)	 antiporter	 gene	 and	 a	 long-	chain-	alcohol	 oxidase	
FAO4A	gene.	A	transcriptome	analysis	in	switchgrass	revealed	that	
a	vacuolar	Na+(K+)/H+	antiporter	gene	upregulated	JA	when	over-
expressed	(Huang	et	al.,	2018).	There	is	little	functional	information	
for	the	gene	encoding	a	long-	chain-	alcohol	oxidase	FAO4A,	making	
its	association	with	jasmonate-	isoleucine	unclear	at	this	time.	Multi-	
trait	GWA	 identified	a	F-	box/kelch-	repeat	protein	associated	with	
two	defense-	related	multi-	trait	groups,	including	MT10	(benzyl	alco-
hol	glucoside,	total	biotic	damage,	salicylic	acid)	and	MT30	(abscisic	
acid,	jasmonic	acid,	salicylic	acid).	A	multi-	trait	GWA	including	all	four	
salicinoid	phenolic	glycoside	constituents	 (multi-	trait	group	MT27)	

resulted	in	six	significant	SNPs	within	five	genes.	Two	genes	encode	
serine/threonine-	protein	kinases,	which	are	known	 to	be	 involved	
in	the	regulation	of	plant	defense	(Afzal	et	al.,	2008; Hardie, 1999).	
Another	two	encode	genes	that	seem	more	related	to	growth	than	
to	 defense.	One	 encodes	 a	 gibberellin	 3-	beta-	dioxygenase,	which	
may	be	involved	in	the	negative	regulation	of	jasmonate	to	repress	
defense	response	and	promote	growth	(Bhattacharya	et	al.,	2012).	
The	other	encodes	a	 leucine-	rich	 repeat	extensin-	like	protein	 that	
is	 involved	 in	 cell	wall	 sensing	 indirectly	 relaying	 extracellular	 sig-
nals,	including	biotic	stimuli,	to	the	cytoplasm	(Herger	et	al.,	2019).	
The	last	gene	encodes	a	nudix	hydrolase	belonging	to	a	large	fam-
ily	of	genes	that	help	regulate	diverse	biological	processes	through	

Trait
Gene ID and description (using Potra 
v1.1 assembly on popge nie.org) GO annotation(s)

SNPeff annotation(s) 
(number of SNPs)

Indirect	defense	&	damage

Disease Potra001342g11489:	DNA-	
dependent	metalloprotease	
WSS1-	like

NA Upstream	gene	variant	(1)

Total	biotic	damage
Disease
Resistance

Potra004005g24127:	F-	box/kelch-	
repeat	protein	At1g55270

Protein	binding Downstream	gene	variant	(1)

Resistance Potra000464g02731:	GATA	zinc	
finger	domain-	containing	protein	
8-	like

NA Downstream	gene	variant	(1)

Defense-	related	phytochemistry,	indirect	defense	&	damage

MT27:	salicin,	salicortin,	
tremulacin,	tremuloidin

Potra002739g19881:	nudix	hydrolase	
18,	mitochondrial-	like

Hydrolase	activity 5′	UTR	variant	(2)

MT27:	salicin,	salicortin,	
tremulacin,	tremuloidin

Potra003968g23830:	gibberellin	
3-	beta-	dioxygenase	1-	like

Oxidoreductase	activity,	
oxidation–	reduction	process

Intron	variant	(1)

MT27:	salicin,	salicortin,	
tremulacin,	tremuloidin

Potra002382g18137:	serine/
threonine-	protein	kinase	STY8	
isoform	X1

Protein	kinase	activity,	
ATP	binding,	protein	
phosphorylation

Intron	variant	(1)

MT27:	salicin,	salicortin,	
tremulacin,	tremuloidin

Potra001164g10107:	serine/
threonine-	protein	kinase	HT1-	like

Protein	kinase	activity,	
ATP	binding,	protein	
phosphorylation

Intron	variant	(1)

MT27:	salicin,	salicortin,	
tremulacin,	tremuloidin

Potra001654g13571:	leucine-	rich	
repeat	extensin-	like	protein	4

Protein	binding Missense	variant	(1)

MT10:	benzyl	alcohol	
glucoside,	total	biotic	
damage,	salicylic	acid

MT30:	jasmonic	acid,	abscisic	
acid,	salicylic	acid

Potra004005g24127:	F-	box:	/kelch-	
repeat	protein	At1g55270

Protein	binding Downstream	gene	variant	(1)

MT23:	disease,	jasmonic	acid,	
specific	leaf	area,	budbreak	
date,	herbivory

MT24:	herbivory,	salicylic	acid,	
disease, total phenolic 
glycosides

Potra004005g24127:	F-	box:	/kelch-	
repeat	protein	At1g55270

Protein	binding Downstream	gene	variant	(1)

MT24:	herbivory,	salicylic	acid,	
disease, total phenolic 
glycosides

Potra001342g11489:	DNA-	
dependent	metalloprotease	
WSS1-	like

NA Upstream	gene	variant	(1)

MT24:	herbivory,	salicylic	acid,	
disease, total phenolic 
glycosides

Potra000572g04244:	expansin-	like	
A2

Extracellular	region,	sexual	
reproduction

Missense	variant	(1)

TA B L E  3 (Continued)
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cytosolic	 and	 organellar	 housecleaning	 and	maintain	 physiological	
homeostasis	(Huang	et	al.,	2012; Ogawa et al., 2008).

Four	SNPs	within	three	genes	were	associated	with	indirect	mea-
sures	of	defense	and	damage	(i.e.,	disease,	total	biotic	damage,	and	
resistance).	The	F-	box/kelch-	repeat	protein	associated	with	defense	
traits	was	also	associated	with	disease,	total	biotic	damage,	and	re-
sistance.	 A	 metalloprotease	 WSS1-	like	 gene	 was	 associated	 with	
disease	and	is	involved	in	DNA-	protein	crosslink	repair,	damage	that	
often	happens	due	to	reactive	oxygen	species	in	the	cell	during	regu-
lar	metabolic	processes	or	in	response	to	a	pathogen	attack	(Enderle	
et al., 2019).	Finally,	a	GATA	zinc	 finger	domain-	containing	protein	
like-	8	was	associated	with	resistance.	This	specific	gene	has	not	been	
characterized	well,	but	studies	characterizing	families	of	genes	with	
GATA	zinc	 finger	domains	have	connected	them	to	circadian	clock	
regulation	and	plant	development	in	Arabidopsis	and	rice	(Behringer	&	
Schwechheimer,	2015;	Reyes	et	al.,	2004),	and	a	variety	of	potential	
regulatory	roles	in	Populus	including	circadian	clock,	phytohormone,	

plant	development,	and	stress	response	(An	et	al.,	2020).	Multi-	trait	
GWA	 resulted	 in	 only	 one	 new	 association	 for	 multi-	trait	 group	
MT24	 (herbivory,	 salicylic	 acid,	 disease,	 total	 phenolic	 glycosides),	
located	 in	an	expansin-	like	A2	gene	potentially	 involved	 in	growth	
and	defense	(Abuqamar	et	al.,	2013; Yang et al., 2014).

3.3  |  Differential expression and soft 
cluster analyses

Differential	 expression	 revealed	 1243	 differentially	 expressed	
genes,	with	587	upregulated	and	656	downregulated	in	the	high	PG	
genets	relative	to	the	low	PG	genets,	out	of	a	total	of	30,249	genes	
with	non-	zero	total	read	counts.	The	volcano	plot	(Figure 5)	shows	
that	most	of	 the	 significantly	 (FDR = 0.05)	 differentially	 expressed	
genes have log2	fold	changes	of	less	than	1.5.	In	other	words,	they	
are	up-		or	down-	regulated	~3×	 (21.5)	 or	 less	 in	 the	high	PG	group	

F I G U R E  4 Distribution	of	candidate	genes	across	Populus tremula	genome	assembly	v2.2	using	a	reciprocal	BLAST	to	match	Potra	v1.1	
genes	to	Potra	v2.2	genes	(see	Methods	for	details);	chromosomes	are	indicated	by	the	white	bars	on	a	gray	background;	colored	vertical	
lines	represent	genes	associated	with	significant	SNPs,	with	different	colors	corresponding	with	the	specific	trait	associated	with	the	
significant	SNP	as	notated	in	the	legend.
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as	compared	with	the	low	PG	group.	Differentially	expressed	genes	
were	spread	across	the	genome	(Figure 6).

We	identified	a	large	number	of	differentially	expressed	genes,	
so	we	used	soft	clustering	methods	to	group	them.	We	identified	13	
gene	 clusters,	 of	which	 seven	 clusters	were	 significantly	 enriched	
for	GO	terms	(Table 4, File	S8).	Most	of	the	enriched	clusters	con-
tained	groups	of	genes	that	were	associated	with	general	biological	
processes	such	as	photosynthesis	or	protein	synthesis.	Interestingly,	
clusters	with	growth-	related	 functions	were	downregulated	 in	 the	
high	PG	group	as	compared	with	the	low	PG	group.

Three	clusters	(C4,	C11,	C13)	contained	genes	of	clear	 interest	
because	of	their	association	with	phenylpropanoid	biosynthesis	and	
regulation	(Table 4),	one	(C11)	of	which	was	enriched	for	GO	terms	
in	 secondary	 metabolism	 and	 regulation.	 Genes	 in	 two	 of	 those	
clusters	 (C4	 and	 C11),	 containing	 69	 and	 128	 genes	 respectively,	
were	upregulated	in	the	high	PG	group.	The	third	cluster	(C13)	with	
44	genes	exhibited	genes	that	were	downregulated	in	the	high	PG	
group.	These	three	clusters	contained	several	transcription	factors	
(MYB,	WRKY,	NAC)	and	enzymes	(caffeoyl	shikimate	esterase-	like,	
cinnamoyl-	CoA	 reductase	 1-	like)	 associated	with	 phenylpropanoid	
biosynthesis,	most	of	which	were	upregulated	in	the	high	PG	group.

4  |  DISCUSSION

Forest	tree	genomics	research	in	the	last	decade	has	revealed	that	
the	 genetic	 architecture	 of	 most	 ecologically	 important	 traits	 re-
mains	 largely	 unexplained	 using	 traditional	 GWA	 methods	 (Lind	
et al., 2018).	Moreover,	what	has	been	ascertained	is	that	most	eco-
logically	 important	traits	 likely	have	a	polygenic	basis	where	many	
loci	 of	 small	 to	 moderate	 effect	 explain	 much	 of	 the	 phenotypic	
variance	(Lind	et	al.,	2018).	While	it	is	likely	that	there	are	multiple	

non-	mutually	exclusive	explanations	behind	this	“missing	heritabil-
ity”,	 it	 is	undeniable	that	a	mismatch	exists	between	the	polygenic	
architectures	 of	 most	 ecologically	 important	 traits	 and	 the	 tradi-
tional	methods	 currently	 used	 to	 characterize	 their	 genetic	 archi-
tectures	(Josephs	et	al.,	2017; Lind et al., 2018).	Consequently,	our	
understanding	of	what	genes	underly	ecologically	 important	 traits	
remains	poor.	Studies	such	as	this	that	 incorporate	modified	GWA	
and	complementary	methods	 to	characterize	 the	genetic	architec-
ture	 of	 ecologically	 important	 traits	will	 provide	 a	more	 complete	
picture.

4.1  |  Most aspen growth and defense traits have a 
polygenic architecture

Our	exploration	of	the	underlying	genetic	architecture	of	important	
traits	 in	 aspen	 (P. tremuloides)	 reveals	 that	 many	 of	 them	 are	 likely	
polygenic.	We	found	relatively	few	trait-	SNP	associations	across	the	
30	growth	and	defense	traits	analyzed,	despite	most	of	our	traits	dis-
playing	high	broad-	sense	heritabilities.	Most	of	the	significant	SNPs	
had	low	effect	sizes	and	low	to	moderate	frequency	alleles	(File	S7).	
Furthermore,	22	candidate	genes	identified	across	all	traits,	excluding	
sex,	are	spread	across	 the	genome	 (Figure 4)	and	many	of	 the	can-
didate	genes	have	regulatory	roles	(e.g.,	transcription	factors	or	en-
zymes)	and	are	multi-	functional.	Almost	all	of	the	12	candidate	genes	
associated	with	 defense-	related	 phytochemistry	 and	 damage	 traits	
have	regulatory	roles	in	growth,	defense,	or	response	to	stress.	Often	
these	regulatory	genes	were	members	of	gene	families	that	regulate	
multiple	cellular	and	biological	processes	(e.g.,	Potra002739g19881,	
a	nudix	hydrolase	18).	One	gene	(Potra004005g24127,	F-	box/kelch-	
repeat	protein	At1g55270)	was	also	associated	with	both	damage	and	
phytochemistry	traits.	The	multi-	functional	nature	of	these	candidate	

F I G U R E  5 Volcano	plot	of	results	from	the	differential	expression	analysis	with	an	adjusted	p-	value	cut-	off	of	.05	and	log2	fold	change	
cut-	off	of	0.	Each	dot	represents	a	gene.	The	horizontal	dashed	line	is	the	adjusted	p-	value	cut-	off	of	.05,	shown	in	negative	log10	scale.	The	
center vertical dashed line is the log2	fold	change	cut-	off	of	zero	and	the	two	vertical	dot-	dash	lines	represent	the	cut-	off	where	the	majority	
of	differentially	expressed	genes	fell	(log2	FC = ±1.5).	Only	those	genes	that	meet	both	the	log2	fold	change	and	adjusted	p-	value	cut-	offs	are	
considered	as	significantly	differentially	expressed	(blue	dots).	Log2	FC:	significant	by	log2	fold	change	cut-	off	only	(orange	dots),	adjusted	
p-	value	and	log2	FC:	significant	by	both	adjusted	p-	value	and	log2	fold	change	cut-	offs	(blue	dots).
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genes	emphasizes	how	interconnected	the	gene	regulatory	networks	
are	likely	to	be	for	quantitative	traits.

Unlike	 single-	locus	 GWA,	 multilocus	 GWA	 is	 not	 subject	 to	
the	Winner's	Curse,	resulting	in	inflated	effect	sizes	for	significant	
loci	(Josephs	et	al.,	2017).	Multilocus	GWA	also	often	explains	far	
more	 phenotypic	 variation	 in	 traits	 than	 single-	locus	 GWA	 (Jo-
sephs et al., 2017).	Furthermore,	they	can	provide	a	more	nuanced	
view	of	 the	 complex	genetic	 architectures	of	quantitative	 traits,	
which	 can	 be	 used	 to	 adapt	 study	 design	 and	 analysis	methods	
to	 better	 detect	 candidate	 genes	 underlying	 these	 traits	 mov-
ing	 forward.	Our	multilocus	 GWA	 results	 revealed	 that	most	 of	
our	 traits	 exhibited	 a	 polygenic	 architecture,	with	 generally	 low	
narrow-	sense	heritability	(h2)	values	and	relatively	high	n_gamma	
values.	For	example,	 the	genetic	architecture	of	defense-	related	
phytochemistry	traits	showed	that	most	of	the	variation	explained	
by	our	marker	set	originates	from	 loci	with	polygenic	 (i.e.,	 infini-
tesimal)	effects.

The	 one	 other	 study	 that	 used	 the	 multilocus	 GWA	 model,	
BSLMM,	in	a	closely	related	Populus	species	found	similar	polygenic	
architecture	of	six	comparable	traits,	including	the	main	Populus de-
fense	phytochemicals.	Bresadola	et	al.	(2019)	performed	a	multilocus	
GWA	using	RAD	sequence	data	from	a	hybrid	zone	between	closely	
related species to P. tremuloides: P. tremula and P. alba.	Six	traits	were	
comparable	between	their	study	and	ours,	including	the	four	salici-
noid	phenolic	glycosides	 (salicin,	 salicortin,	 tremulacin,	and	 tremu-
loidin),	individual	leaf	area,	and	height.	They	found	similar	polygenic	
architectures	 for	 all	 six	 comparable	 traits	 (posterior	 distributions	

for	our	study	(Figure S5)	were	compared	to	posterior	distributions	
available	in	Bresadola	et	al.	(2019)	(Figure	S8).	Both	Bresadola's	and	
our	study	present	a	genetic	architecture	for	these	phytochemicals	
where	most	of	 the	phenotypic	variation	 is	accounted	 for	by	many	
loci	of	small	effects	that	are	not	likely	to	be	detected	by	traditional	
GWA	methods.	 The	 genes	 underlying	 the	 salicinoid	 phenolic	 gly-
coside	biosynthesis	pathway	have	been	 largely	elusive	 (Fellenberg	
et al., 2020).	Recent	studies	that	have	identified	and	validated	can-
didate	 genes	 underlying	 salicinoid	 phenolic	 glycosides	 have	 used	
methods	that	can	better	account	for	a	polygenic	architecture	(Fel-
lenberg	et	al.,	2020;	Gordon	et	al.,	2022).	Taken	together,	our	work	
and	these	studies	underscore	the	importance	of	accounting	for	the	
polygenic	nature	of	most	ecologically	important	traits	in	character-
izing	their	genetic	architectures	accurately.

4.2  |  Differentially expressed genes are associated 
with defense- related phytochemistry

Transcriptomics	is	fast	becoming	a	complementary	method	to	tra-
ditional	GWA	to	identify	candidate	genes	in	quantitative	traits	be-
cause	of	increasingly	affordable	sequencing	costs	and	no	need	for	
extensive	species-	specific	genomic	resources	(Lind	et	al.,	2018).	Our	
study	 used	 differential	 expression	 analysis	 to	 explore	 expression	
patterns	in	low	growth-	high	defense	and	high	growth-	low	defense	
genotypes,	 identifying	 197	 upregulated	 and	 44	 downregulated	
genes	 of	 interest.	 Specifically,	 genes	 encoding	 enzymes	 from	 the	

F I G U R E  6 Distribution	of	differentially	expressed	genes	across	Populus tremula	genome	assembly	v2.2.	Dots	represent	differentially	
expressed	genes,	with	blue	dots	being	upregulated	and	red	dots	being	downregulated.
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phenylpropanoid	biosynthesis	pathway,	upstream	of	 the	branches	
that	 produce	 salicinoid	 phenolic	 glycosides	 and	 condensed	 tan-
nins,	 are	present.	Several	 transcription	 factors	 (e.g.,	WRKY,	MYB,	
and	NAC	transcription	factors)	that	are	potentially	involved	in	phy-
tochemical	 defense	 and	 lignin	 formation	 were	 also	 differentially	
expressed	between	the	low	and	high	PG	groups.	Recent	literature	in-
dicates	potential	co-	regulation	of	lignin	and	phytochemical	defense	
via	interconnected	expression	networks	in	plants	(Xie	et	al.,	2018; 
Zhang et al., 2018).

Other	 enzymes	 and	 transcription	 factors	 within	 our	 differen-
tially	 expressed	 candidate	 gene	 list	 may,	 upon	 post-	GWA	 valida-
tion,	 prove	 to	 play	 a	 role	 in	 the	 still	 poorly	 understood	 salicinoid	
phenolic	glycoside	biosynthesis	pathway.	For	example,	 (Fellenberg	
et al., 2020)	 used	 transcriptomics	 to	 identify	 candidate	 genes	 in-
volved	in	the	salicinoid	biosynthesis	pathway	in	P. trichocarpa.	They	
identified	a	UDP-	glycosyltransferase	gene	and	validated	 its	essen-
tial	 role	 in	 the	 synthesis	 of	major	 salicinoids	 through	 a	 CRISPER/
Cas9-	engineered	knockout	experiment	(Gordon	et	al.,	2022).	Three	
UDP-	glycosyltransferase	 genes	 were	 identified	 in	 our	 differential	
expression	analysis	that	warrant	further	investigation.

Most	of	the	differentially	expressed	genes	 identified	have	reg-
ulatory	roles	as	transcription	factors	or	enzymes	that	are	often	in-
volved	in	more	than	one	biological	process.	For	example,	one	of	the	
differentially	expressed	genes	 from	the	cluster	enriched	for	genes	
involved	in	secondary	metabolite	regulation	included	a	WRKY	tran-
scription	 factor	 40	 (Potra000926g07521)	 that	was	 upregulated	 in	
the	high	PG	group.	This	 gene	has	 a	 putative	 function	 in	 response	
to	salicylic	acid	and	regulation	of	biotic	defense.	As	a	group,	WRKY	
transcription	 factors	 are	 often	 involved	 in	 response	 to	 biotic	 and	
abiotic	stress	 (Jiang	et	al.,	2014)	and	also	 in	regulation	of	 lignifica-
tion	(Wang	et	al.,	2010).	More	recently,	a	WRKY	transcription	factor	

was	shown	to	coregulate	lignin	biosynthesis	and	defense	response	
in Populus trichocarpa	(Zhang	et	al.,	2018).	These	results	emphasize	
how	complex	and	intertwined	the	genetic	architectures	of	ecologi-
cally	important	defensive	traits	likely	are.

4.3  |  Relevance to “community genetics” and 
“genes- to- ecosystems” science

The	framework	proposed	by	Whitham	et	al.	 (2008)	 for	 identifying	
genes	with	community-		and	ecosystem-	level	effects	is	similar	to	the	
original	concept	of	using	GWA	analyses	to	identify	genes	underlying	
traits	of	interest	in	target	organisms.	Both	had	implicit	assumptions	
that	most	 traits	 of	 interest	 would	 be	 controlled	 by	 relatively	 few	
genes—	assumptions	bolstered	by	moderate	to	high	predicted	herit-
abilities	for	traits	of	interest.	In	reality,	most	variants	associated	with	
these	highly	heritable	traits	have	exhibited	small	effect	sizes	indicat-
ing	that	the	genetic	architecture	of	most	quantitative	traits	 (which	
most	ecologically	important	traits	are)	is	likely	polygenic	(Bresadola	
et al., 2019; Chhetri et al., 2019; de la Torre et al., 2021, 2022; Lind 
et al., 2018).	This	may	also	be	true	for	extended	phenotypes,	such	
as	associated	insect	communities.	In	work	concurrent	with	that	re-
ported	here,	Morrow	(2022)	found	that	several	community	metrics	
for	herbivorous	 insects	at	 the	WisAsp	common	garden	 likely	have	
undetected	 genetic	 associations—	indicating	 that	 extended	 pheno-
types	themselves	may	exhibit	polygenic	architectures.

Our	 results	 provide	 gene-	level	 information	 about	 ecologically	
important	 traits	 that	 have	been	 connected	 to	 associated	 commu-
nities	and	ecosystems.	Genotype-	mediated	growth-	defense	trade-	
offs	are	well	established	in	aspen	(Cole	et	al.,	2021; Cope et al., 2019; 
Osier	 &	 Lindroth,	 2006)	 and	 have	 been	 shown	 to	 differentially	

Cluster Description
Number of 
genes

Expression pattern 
relative to the low PG 
group

C1a DNA	and	RNA	processes 67 Down

C2a Photosynthesis 41 Down

C3 Enzymes	related	to	sugar	metabolism	
and other processes

53 Down

C4 Phenylpropanoid	biosynthesis 69 Up

C5a Protein	synthesis	and	catabolism 89 Up

C6 Enzymes 62 Up

C7a Protein	synthesis	and	transport,	
enzymes

119 Down

C8a Tetrapyrrole	biosynthesis 34 Down

C9 Growth 58 Down

C10 Growth 52 Down

C11a Secondary	metabolism	and	regulation 128 Up

C12a RNA	and	ribosome	processes 94 Up

C13 Biosynthesis	and	regulation 44 Down

aDisplayed	significant	enrichment	for	GO	annotations	(See	File	S8	for	more	details).

TA B L E  4 Soft	clustering	analysis	of	
differentially	expressed	gene	results;	
genes	included	must	display	a	membership	
value	of	0.75	or	higher	(See	File	S9	for	
more	details).
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affect	population	genetic	composition	in	contrasting	environments	
(Cope	et	al.,	2021).	Moreover,	divergent	growth	and	defense	phe-
notypes	 in	 aspen	 influence	 the	 community	 metrics	 of	 associated	
insect	assemblages	(Barker	et	al.,	2019;	Morrow,	2022).	For	exam-
ple,	 a	 gibberellin	 3-	beta-	dioxygenase	 gene	 (Potra003968g23830)	
associated	with	salicinoid	phenolic	glycosides	in	our	GWA	analyses	
has	 also	 been	 linked	 to	 the	 regulation	 of	 growth	 and	 defense	 re-
sponses in Solanum and Nicotiana	spp.	 (Bhattacharya	et	al.,	2012).	
We	also	identified	197	genes	upregulated	in	genets	with	high	foliar	
concentrations	 of	 salicinoid	 phenolic	 glycosides,	 including	 several	
genes	involved	in	the	potential	regulation	of	phytochemical	defense	
and	lignin	biosynthesis.

4.4  |  On the omnigenic model of polygenic 
architecture

A	current	expectation	of	genetic	architecture	is	that	the	genes	un-
derlying	trait	variation	would	all	cluster	in	key	pathways	related	to	
the	trait.	Many	polymorphisms	are	often	found	in	non-	coding	and	
regulatory	regions	of	the	genome	and	the	omnigenic	model	(Boyle	
et al., 2017)	suggests	that	a	vast	number	of	highly	connected	regu-
latory	genes	may	explain	most	of	the	heritability	of	a	trait	through	
their	modulation	of	the	expression	of	a	relatively	smaller	number	of	
core	genes.	In	other	words,	if	gene	regulatory	networks	are	highly	
interconnected,	 then	 even	 a	 peripheral	 gene	 is	 likely	 to	 have	 a	
non-	zero	effect	on	the	expression	of	the	trait.	In	this	case,	the	ex-
pression	of	these	peripheral	genes	will	vastly	outnumber	the	core	
genes	and	small	effects	of	peripheral	genes	will	quickly	add	up	to	
account	for	far	more	trait	variation	than	the	core	genes	alone.	As	
an	example,	Boyle	et	al.	(2017)	demonstrate	that	~100,000 causal 
variants	affect	human	height,	and	most	are	located	in	gene	regula-
tory	regions.

Many	forest	tree	GWA	results	exhibit	a	similar	pattern,	finding	
mostly	 regulatory	 genes	 that	 often	 have	 vague	 known	 biological	
connections	 to	 the	 trait	of	 interest	 (Barker	et	 al.,	2019;	Bresadola	
et al., 2019; Chhetri et al., 2019; de la Torre et al., 2019, 2021, 2022; 
Fahrenkrog	et	al.,	2017;	Hallingbäck	et	al.,	2019;	Mähler	et	al.,	2017, 
2020;	McKown	 et	 al.,	 2018).	 In	 particular,	 a	 recent	 co-	expression	
network	 analysis	 of	 budbreak	 in	 a	 closely	 related	 species,	P. trem-
ula,	 found	 a	 negative	 relationship	 between	 eQTL	 effect	 size	 and	
network	 connectivity,	 and	 that	 genes	with	 low	 connectivity	were	
enriched	 for	eQTLs	 (Mähler	et	al.,	2017).	That	work	suggests	 that	
selection	on	peripheral	genes	was	more	relaxed	than	on	core	genes	
and	 provides	 a	way	 to	 allow	 potentially	 adaptive	mutations	while	
buffering	 the	 core	 genes	 from	 potentially	 deleterious	 mutations.	
If	this	is	the	case	for	other	quantitative	tree	traits,	then	most	phe-
notypic	variation	in	polygenic	traits	will	be	explained	by	peripheral	
genes	 that	will	be	difficult	 to	connect	 to	 traits	of	 interest	without	
a	deeper	understanding	of	the	gene	networks	controlling	them.	 In	
fact,	one	study	has	recently	used	a	system	genetics	approach	(e.g.,	
co-	expression,	 eQTL	 analysis,	 gene	 regulatory	 network	 inference;	

Fagny	&	Austerlitz,	2021)	 to	show	that	the	genetic	architecture	of	
leaf	shape	variation	in	the	closely	related	P. tremula	follows	the	om-
nigenic	model	(Mähler	et	al.,	2020).

Our	GWA	results	 share	many	of	 the	characteristics	associated	
with	 the	 omnigenic	model	 of	 polygenic	 architecture.	Most	 of	 our	
candidate	 genes	 have	 regulatory	 roles,	 exhibit	 low	 effect	 sizes,	
and	are	 spread	across	 the	genome.	Furthermore,	multilocus	GWA	
revealed	most	 traits	 exhibited	a	polygenic	 architecture	with	many	
small	effect	loci	explaining	most	of	the	phenotypic	variation.	While	
our	results	are	likely	impacted	by	our	sample	size	and	lack	of	whole-	
genome	coverage	as	detailed	below,	they	are	consistent	with	other	
studies	in	similar	species	that	have	more	complete	genome	coverage	
(Chhetri	et	al.,	2019;	Escamez	et	al.,	2021;	McKown	et	al.,	2018;	PK	
Ingvarsson	unpublished	data).	Still,	it	must	be	noted	that	other	fac-
tors	such	as	sample	size	(Lind	et	al.,	2018),	effect	size	biases	(Josephs	
et al., 2017),	and	accounting	for	effects	of	other	non-	coding	variants	
(e.g.,	structural	variants;	Holliday	et	al.,	2017)	need	to	be	considered	
as	the	field	progresses.

4.5  |  Study limitations

Like	many	forest	tree	GWA	studies,	our	sampling	and	genomic	re-
sources	have	limitations.	Our	sample	size	(N = 455)	was	sufficiently	
large	for	most	GWA	studies.	However,	recent	studies	in	forest	trees	
have	 shown	 that	 alleles	 for	 large-	effect	 loci	 are	 likely	 to	 be	 rare,	
requiring	 sample	 sizes	 in	 the	 thousands	 to	 detect	 them	 (Josephs	
et al., 2017;	Mähler	et	al.,	2017).	Thus,	we	 likely	are	unable	to	de-
tect	rare	variants	of	large	effects.	We	sequenced	the	exome,	so	our	
marker	dataset	did	not	cover	the	entire	genome.	Additionally,	some	
genes	could	not	be	sequenced	if	the	probe	did	not	map	to	a	unique	
genomic	 location,	an	 issue	common	 in	species,	 like	Populus	 (Berlin	
et al., 2010),	with	whole-	genome	duplications	in	their	evolutionary	
history.	Thus,	we	are	likely	missing	some	genes	as	well	as	the	non-	
coding	regions.	We	believe,	however,	that	our	incomplete	genomic	
coverage	does	not	adversely	affect	our	main	interpretations.	Several	
studies in Populus	species	using	whole-	genome	sequence	data	have	
similarly	found	fewer	than	expected	associations	for	highly	heritable	
traits	when	using	traditional	GWA	methods	(Chhetri	et	al.,	2019;	Es-
camez	et	al.,	2021;	McKown	et	al.,	2018;	PK	Ingvarsson	unpublished	
data).	In	short,	finding	associations	that	explain	a	substantial	amount	
of	phenotypic	variation	seems	to	be	the	exception,	rather	than	the	
rule,	for	most	quantitative	traits	in	forest	trees.

4.6  |  Conclusions

Despite	the	challenges	presented	over	the	last	couple	of	decades	
in	applying	genomics	to	understanding	fundamental	molecular	and	
ecological	processes,	we	have	come	a	 long	way	 in	understanding	
the	complexity	of	the	genetic	architecture	underlying	ecologically	
important	 traits.	 Traditional	 single-	locus	 GWA	 studies	 in	 forest	
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trees	have	had	 limited	success	 in	uncovering	 the	genomic	under-
pinnings	of	many	ecologically	important,	quantitative	traits.	Stud-
ies	of	both	plants	and	humans	reveal	that	the	genetic	architecture	
of	most	quantitative	 traits	 is	 likely	polygenic	 and	 that	 regulatory	
genes	 in	 the	 periphery	 of	 gene	 networks	 may	 play	 a	 large	 role	
in	 controlling	 trait	 variation	 (Fagny	 &	 Austerlitz,	 2021;	 Visscher	
et al., 2017).	Our	study	 is	one	of	very	 few	to	 incorporate	several	
years	of	phenotypic	data	across	many	ecologically	important	traits	
from	a	 large	common	garden	for	a	species	with	 little	to	no	popu-
lation	structure.	Additionally,	our	study	 is	one	of	 the	 first	 to	em-
ploy	multilocus	GWA	for	a	forest	tree	species	(also	see	Bresadola	
et al., 2019; de la Torre et al., 2021).	This	work	adds	to	a	growing	
body	of	evidence	that	many	ecologically	important	traits	in	forest	
trees	are	polygenically	controlled,	with	many	genes	of	small	effect	
underlying	phenotypic	variation.
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