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ARTICLE

Topological atom optics and beyond with knotted
quantum wavefunctions
Maitreyi Jayaseelan 1,2✉, Joseph D. Murphree 1,2, Justin T. Schultz 2,3, Janne Ruostekoski 4 &

Nicholas P. Bigelow1,2,3✉

Atom optics demonstrates optical phenomena with coherent matter waves, providing a

foundational connection between light and matter. Significant advances in optics have fol-

lowed the realization of structured light fields hosting complex singularities and topologically

non-trivial characteristics. However, analogous studies are still in their infancy in the field of

atom optics. Here, we investigate and experimentally create knotted quantum wavefunctions

in spinor Bose–Einstein condensates which display non-trivial topologies. In our work we

construct coordinated orbital and spin rotations of the atomic wavefunction, engineering a

variety of discrete symmetries in the combined spin and orbital degrees of freedom. The

structured wavefunctions that we create map to the surface of a torus to form torus knots,

Möbius strips, and a twice-linked Solomon’s knot. In this paper we demonstrate close con-

nections between the symmetries and underlying topologies of multicomponent atomic

systems and of vector optical fields—a realization of topological atom-optics.
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Topology has enabled many recent advances in diverse fields
of physics, from microscopic quantum systems to cos-
mology and elementary particle physics. One important

framework within topology is the theory of knots. These struc-
tures have long been of interest in science and mathematics, an
early example of which was Lord Kelvin’s vortex atom theory of
1867 in which linked vortex strings in the aether formed the
structure of atoms1. Circuit topology has led to a systematic
mathematical study and classification of knots, and ideas from
knot topology have opened the door to the appearance of knots in
a variety of different contexts in physics2,3. Important examples
include the knotted solitons in the Skyrme–Faddeev model of
field theory4–8 and analogous structures in atomic systems9,10, in
light11,12, and in liquid crystals13–16. Knot topologies have also
been explored in classical and quantum fluids17–19, plasmas20,
acoustics21, biology22, chemistry23,24, and quantum computing25.
The rapid advances in engineering structured light fields26 have
allowed for the preparation of singular electromagnetic field lines
in the form of links and knots27–31 and the creation of complex
topological features in optical polarization. These singular optical
fields reflect the vector nature of light and demonstrate exotic
symmetry properties of the electromagnetic field including with
the creation of Möbius strips and ribbons32,33 and knots in
polarization rotations34. In our work, these innovations are ele-
vated by transfer to coherent atomic media. In our system, the
ability to tailor the complex multicomponent wavefunction and
to manipulate both internal and external degrees of freedom
offers a path to forming topologically non-trivial knots and to
reaching far beyond what is possible in optics.

We report on the creation of non-trivial knotted quantum
wavefunctions of a quantum degenerate spinor Bose gas. By
coupling the internal symmetries of the spinor wavefunction with
its external orbital angular momenta (OAM) using Raman laser
fields, we cause the wavefunction to display spin-orbit invariance
in coordinated rotations of the spinor symmetry and phase. We
create spin-orbit invariant wavefunctions within the spin-1 and
spin-2 hyperfine manifolds of an atomic 87Rb spinor
Bose–Einstein condensate (BEC). In many optical and fluid
investigations, knots are formed as real space objects of singular
lines27,29. In contrast, our knotted matter-wave structures appear
in their parameter space and therefore do not undergo vortex
reconnections, providing a close analogy with condensed matter
and field theory models, where the knots are formed in the
mappings between the order-parameter space and real
space4,6,8,10,13. Additionally, because our knotted structures are
imprinted on dilute atomic clouds, they are long-lived and retain
their characteristics as the cloud ballistically expands outside a
trap. The approach is versatile, requiring only different config-
urations of polarization and optical orbital angular momenta to
realize a variety of knots and links in the quantum atomic
wavefunction. Our results will enable emulation of more general
optical phenomena in atomic systems35,36 which offer advantages
—including tunable interactions and the availability of higher-
spin manifolds—unique to the ultracold atomic platform.

Results
Spin-orbit invariant wavefunctions. A simple dilute-gas scalar
BEC can be well described by a macroscopic wavefunction
characterized by a spatially dependent amplitude and phase. If the
condensate has internal degrees of freedom, such as a spin-F
spinor BEC, then a spin-F macroscopic wavefunction can be
described by a multicomponent spinor ζðrÞ ¼ ðζF ; ζF�1; :::; ζ�FÞT ,
with ζmF

representing each F;mF

�� �
state. The spinor condensate

can exist in a variety of phases characterized by different sets of
relationships between ζmF

terms37. If we consider transformations

that include rotations of the internal spin, F̂z , and the macro-
scopic wavefunction orbital angular momentum, L̂z , we can
transform the wavefunction between states in a given magnetic
phase. For spinor BECs, the magnetic phases that are stable
solutions of the nonlinear mean-field dynamics display non-
trivial discrete symmetries (see Supplementary Fig. 1)37. These
symmetries reveal themselves under spin rotation around an n-
fold internal symmetry axis through an angle 2πm/n (for integer
m) that, together with the rotation of the global phase, leaves the
wavefunction unchanged. Consider the following transformation
of an n-fold-symmetric atomic spinor ζ0 as we traverse a closed
loop in space:

ζ ¼ eiðjλ�λF̂zÞϕζ0; ð1Þ
where ϕ denotes the azimuthal angle. The single-valuedness of the
wavefunction constrains the possible parameter values (λ, jλ) for
the rotation of the spin state and global phase, respectively. For a
spinless scalar condensate, jλ can only take integer values reflecting
the quantization of angular momentum of the condensate, and the
solutions admit topological defects such as quantized vortex lines.
In the spinor case, for coordinated rotations of the spin state and
the orbital part, λ and jλ can be fractional, while keeping the entire
wavefunction single-valued. This coupled spin-orbit invariance
represents the symmetry that, in spinor BECs, permits a rich
phenomenology of fractional vorticity37–39.

Consider the case where two spin states, F;mF

�� �
and F;m0

F

�� �
,

are populated with angular momenta ℓ and ‘0, respectively. Then
jλ− λmF= ℓ and jλ � λm0

F ¼ ‘0, and

λ ¼ ‘0 � ‘

mF �m0
F
; jλ ¼

mF‘
0 �m0

F‘

mF �m0
F

: ð2Þ

These expressions, along with specific values for the spinors ζ0 in
Eq. (1) will be used to compute the different spin-orbit invariant
wavefunctions ζ that we will discuss in later sections of this work.
Different allowed combinations of λ and jλ, and of mF and m0

F ,
characterize a complex phenomenology of solutions including
defects and knots. Note that λ and jλ also determine the spin and
mass flows in the condensate.

Torus knot topology. The fractional spin rotations of the spin-
orbit invariant states are associated with a non-trivial topology.
The two coordinates ϕ (the azimuthal angle) and ~ϕ (the angle of
spin rotation) each parameterize a circle S1= {eiθ: θ∈ [0, 2π)}.
Together they represent the parameterization of the torus
T2= S1 × S1, points on the surface of which are specified by the
pair ðei~ϕ; eiϕÞ. In this case, the single-valuedness requirement
imposes ~ϕ ¼ λϕ, where λ=m/n is the ratio of the number m of
fractional spinor rotations through angle 2π/n of the wavefunc-
tion around an n-fold symmetry axis on a full azimuthal traversal.
This in turn defines paths on the surface of the torus, through the
coordinates (eimϕ, einϕ), that traverse the meridional direction on
the torus m times and the longitudinal direction n times. Here, λ
is a rational fraction, and this path is a closed space curve that
defines the torus knot Km,n. Notice that the torus knots Km,n are
topologically equivalent to the knots Kn,m, since the choice of
longitudinal or meridional coordinate can be reversed, while the
knot Km,−n is the mirror image of the knot.

Using the torus representation we can identify distinct
wavefunctions with linked and knotted topologies differing in
their spin and OAM configurations. Specifically, when (m, n) are
co-prime, the knot Km,n consists of a single path on the torus.
This path may or may not be truly knotted; indeed some of the
simplest torus knots K1,n, known as unknots or trivial knots, are
topologically equivalent to a circle. Non-trivial knots are realized
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for m, n ≠ 1. When (m, n) are not co-prime, the pair of
coordinates instead describes a torus link, which consists of d-
many possibly interlinked torus knots Km/d,n/d where
d= gcd(m, n)40–43.

Experimental system: creating spin-orbit invariant states. Our
principal results are knotted wavefunctions and Möbius bands
within specific spinor magnetic phases: the spin-1 polar and spin-
2 cyclic and biaxial-nematic phases (Supplementary Note 1) that
provide different discrete internal symmetries. In the laboratory,
we create selected, knotted spin-orbit invariant states in the spin-
1 or spin-2 electronic ground state manifolds of a rubidium
spinor BEC. Both manifolds support states with unique non-
trivial topologies, and the higher-order symmetries of the spin-2
manifold enable us to realize particularly complex topologies.

Experimentally creating knotted wavefunctions in the atomic
cloud requires tailoring the spin state populations jζmF

j2 and their
spatially varying relative phases to control local spin state
orientation and to thereby realize specific coupled symmetries.
We use a coherent optical Raman imprinting technique to
engineer a target atomic wavefunction starting from a pure
F;mF

�� �
spin state (Fig. 1). In its simplest form, this method

provides amplitude and phase controlled two-photon coupling
between two states F;mF

�� �
and F;m0

F

�� �
in an effective three-level

Λ system44,45. The coupling can be described by the unitary
evolution operator

UðtÞ ¼ eiΩt=2 exp i
Ωt
2

n!� σ!
� �

; ð3Þ

where n!¼ ðsin 2α cos ϕ; sin 2α sinϕ; cos 2αÞT , σ!¼ ðσx; σy; σzÞ
is the vector of Pauli matrices, ϕ is the relative phase between the
Raman fields, and the parameters Ω and α are related to the total
and relative intensities of the optical fields (see “Methods”)46,47.

When one of the Raman beams has a Laguerre–Gaussian mode,
this beam carries OAM. If the other Raman beam is Gaussian,
a spatially varying population transfer takes place leaving a
central core of atoms in the initial state F;mF

�� �
while transferring

a ring-shaped population to F;m0
F

�� �
. The OAM of the

Laguerre–Gaussian beam is also imprinted on the transferred
population as an azimuthal phase twist. The handedness of the
twist is determined by the beam polarizations. The Raman process
therefore couples spin and OAM. Multipulse Raman sequences
combine with coherent rf population transfer to generalize the
two-state Raman coupling to control the spin populations, the
relative phases, and the OAM, j‘0j, of multiple m0

F states. We
thereby create magnetic (spinor) states and phases with specific
discrete symmetries including fractional spin rotations.

Polar phase: Möbius strip topologies. We consider a prototype

spin-1 polar phase wavefunction ζP0 � 1ffiffi
2

p 1 0 1
� �T

. If ℓ and ‘0

are the orbital angular momenta of 1; 1j i and 1;�1j i, from
Eq. (2) λ ¼ ð‘0 � ‘Þ=2 and jλ ¼ ð‘0 þ ‘Þ=2. With ℓ=− 1 and
‘0 ¼ 0, we have a state with (λ= 1/2, jλ=− 1/2) using ζ0 = ζP0 in
Eq. (1):

ζP ¼ 1ffiffiffi
2

p
e�iϕ

0

1

0
B@

1
CA: ð4Þ

Fig. 1 Creating and detecting knotted quantum wavefunctions.We begin with a spin-pure, spin-polarized condensate in a magnetic trap. The black arrow
depicts the experimental time τ. The cloud is released from the trap at τ= 0. a We create spin-orbit invariant wavefunctions with a coherent Raman
process using optical fields with Rabi frequencies ΩA and ΩB, and Gaussian (G) and Laguerre--Gaussian (LG) spatial modes. The process transfers a ring-
shaped region of the cloud to the final spin state and imprints an azimuthal relative phase between the spinor components, leaving a non-rotating core in
the initial state. b We measure state populations with a time-of-flight Stern--Gerlach process using an inhomogeneous magnetic field (depicted by ∇j B!j).
c An absorption image of the cloud reveals spatially resolved spin state population. d Multipulse Raman sequences with optical and rf fields allow more
complex couplings (see “Methods”). We show an example sequence to create a spin-orbit invariant state where the spin state 2; 2j i has an orbital angular
momentum ℓ= 1 and a donut-shaped intensity profile as shown in e, while the state 2;�1j i is a non-rotating Gaussian core as shown in f. g The profile of
the order-parameter symmetry across the cloud, illustrated through the spherical harmonics (see “Methods”), can reveal the spin-orbit invariance due to
the coupling between the spin and orbital angular momentum. The color bar depicts phases in panels a, e, and g.
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We describe the specific Raman configuration that creates this
atomic wavefunction in the Methods section. This wavefunction
is invariant under the coupled transformation of the spin-rotation
angle ~ϕ ¼ λϕ and external phase φ= jλϕ as
ðφ; ~ϕÞ7!ðφ� π; ~ϕþ πÞ. This symmetry is a signature of half-
quantum vortices that have been observed in
superconductors48,49, superfluid 3He50, and atomic BECs51,52.

Figure 2a, b show the spherical harmonic representation (see
“Methods”) of ζP, highlighting the coupling between the spinor
(through the orientation of the spherical harmonics) and the
phase (through the color of the lobes). The experimental
absorption image and lineout through the centers of the spin
components of ζP are shown in Fig. 2c. The order-parameter
alignment is given by the nematic axis (Supplementary Note 1).
The Möbius strip topology of the wavefunction is visualized using
a construction (see “Methods”) that maps the spin-orbit invariant
structures from the 2D space of the physical wavefunction—seen
in Fig. 2a, onto a torus in 3D—seen in Fig. 2b. The associated
structures are traced as the lobe-tip path of the two lobes of the
spherical harmonics, and are naturally colored by the phase jλϕ,
providing a simultaneous representation of both λ and jλ. The
topology of ζP is that of the torus (un)knot K1,2, which forms the
edges of a Möbius band surface with a single half-twist (Fig. 2d).
The nematic axes form a continuous surface bounded by the lobe-
tip path. Starting from one of the lobe tips (say green at ϕ= 0)
and making a single 2π traversal, we find that the path connects
with the opposite lobe (purple), necessitating a further 2π
traversal to complete the return to the original point. This is
precisely the behavior of a Möbius band surface and its edge: a
point on the edge of a Möbius band must complete a 4π traversal
to return to itself, while the band surface itself is continuous.

For general values of ℓ and ‘0 the associated topological
structures are Möbius strips with ‘0 � ‘ half-twists, with edges of
torus knots or links K‘0�‘;2. The Hopf link, with two singly linked
loops, may be realized as the knot K2,2 in a configuration with
ð‘ ¼ �2; ‘0 ¼ 0Þ.

A spin-F atomic system can possess multipole components up
to 2F, with complex angular distributions reflected in the
symmetries of the wavefunction’s spherical harmonic representa-
tion. Spin-1 wavefunction combines a discrete two-fold symmetry
with a condensate phase, resulting in the polar order-parameter
symmetry of the unoriented axis and the 2π phase. Discrete
polytope symmetries can be found in higher-spin systems that
support more complex topological structures, as experimentally
illustrated for vortex creation53.

Trefoil knots in the cyclic phase. The wavefunction of spin-2

cyclic magnetic phase ζC0 � 1ffiffi
3

p 1 0 0
ffiffiffi
2

p
0

� �T
combines a

three-fold internal symmetry under spin state rotation about the
atomic quantization axis with the condensate phase. If ℓ and ‘0

are the orbital angular momenta of spin states 2; 2j i and 2;�1j i,
Eq. (2) gives λ ¼ ð‘0 � ‘Þ=3 and jλ ¼ ð2‘0 þ ‘Þ=3. The associated
knot structures are K‘0�‘;3. With ℓ= 1 and ‘0 ¼ 0 we create a state

with (λ=− 1/3, jλ= 1/3) using ζ0 ¼ ζC0 in Eq. (1):

ζC ¼ 1ffiffiffi
3

p

eiϕ

0

0ffiffiffi
2

p

0

0
BBBBBB@

1
CCCCCCA
: ð5Þ

This state is invariant under a transformation of the spin state
rotation angle ~ϕ ¼ λϕ and phase φ= jλϕ, as
ðφ; ~ϕÞ7!ðφþ 2π=3; ~ϕ� 2π=3Þ.

Figure 3a shows a spherical harmonic representation of this
spin-orbit invariant state, and the lobes of the spin alignment are
tracked in Fig. 3b. Figure 3c shows the associated torus knot
structure K−1,3. The experimental realization of this cyclic phase
wavefunction is shown in Fig. 3d (see details in the “Methods”
section).

Fig. 2 Spin-orbit invariant polar phase wavefunction ζP. a Spherical harmonic representation of ζP shows the coupled transformation of spin-rotation angle
and external phase on an azimuthal traversal of the wavefunction: a rotation of the spherical harmonics by π is accompanied by a corresponding
transformation of the overall phase by π, leaving the wavefunction single-valued. The 3D spherical harmonics are projected onto a plane (gray disk) to
represent the topology of the wavefunction in 2D. b Torus knot topology associated with the lobe-tip path of the spherical harmonics is seen through a
mapping (see “Methods”) from the 2D space onto a 3D torus. c Experimental absorption image and a lineout through the centers of the cloud spin
components showing a donut-shaped intensity profile in 1; 1j i and a Gaussian core in 1;�1j i shows a realization of ζP. The red trace overlaid on the absorption
image of the atomic cloud indicates regions where the atomic populations are within 1% of the ideal polar phase. d Reconstruction of the experimentally
realized Möbius band formed by the nematic axes, showing a single half-twist of the surface. The color bar depicts the phase in panels a, b, and d.
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As a result of the higher-order symmetry of the wavefunction,
the spin-2 cyclic phase also hosts truly knotted structures that
cannot be untangled to produce the simple loop or unknot
without cutting the strands. The simplest of these true knots is the
trefoil knot, which is of fundamental interest in knot theory. The
trefoil knot possesses a definite handedness which makes the knot
and its mirror image distinct. The two distinct trefoil knots, K2,3

and its mirror image K−2,3, are realized when j‘0 � ‘j ¼ 2.
Figure 4a shows a cyclic phase wavefunction hosting a trefoil
knot: the state undergoes a rotation λ=− 2/3 that combines the
three-fold symmetry of the internal state with a coordinated
change of phase. The associated torus knot shown in Fig. 4b is a
true knot.

Solomon’s knot in the biaxial-nematic phase. In a highlight of
our work, we have created a non-trivial linked structure in the
spin-2 manifold: the torus knot K2,4, which is topologically
equivalent to a K4,2 Solomon’s link.

The spherical harmonic representation of the biaxial-nematic

wavefunction ζBN0 � 1ffiffi
2

p 1 0 0 0 1
� �T

combines a four-fold

symmetry under spin state rotation around the atomic quantiza-
tion axis with a condensate phase. This is the highest order of
internal symmetry hosted in the spin-2 manifold. When ℓ and ‘0

are the OAM of states 2; 2j i and 2;�2j i, Eq. (2) yields λ ¼
ð‘0 � ‘Þ=4 and jλ ¼ ð‘0 þ ‘Þ=2, with associated knots K‘0�‘;4. With
ℓ= 0 and ‘0 ¼ 2 we create a state with (λ= 2/4, jλ= 1) using

Fig. 3 Knotting states of three-fold symmetry. a The spin-orbit invariant wavefunction ζC ¼ ðζ2eiϕ 0 0 ζ�1 0ÞT shows a rotation of the spherical
harmonics by− 2π/3 on a full azimuthal traversal while the overall phase changes by 2π/3. In the inset box mF denotes the magnetic sublevels of the
hyperfine states. We depict the populations and phases of the wavefunction components F;mF

�� �
, showing the azimuthal phase of the component in 2; 2j i

and the uniform phase of the component in 2;�1j i. b We show a head-on view of the three-fold symmetric spin alignment in terms of spherical harmonics
using lines depicting the alignment measure for the cyclic phase wavefunction. c K−1,3 is visualized in 3D following a mapping of the coupled rotation of spin
and orbital angular momentum onto the 3D torus. d The experimentally realized atomic wavefunction shows the rotation of the spin state on an azimuthal
traversal. We show a 3D reconstruction of the K−1,3 torus knot from the experimental data. The color bar depicts the phase in all panels.

Fig. 4 Knotting true knots: the trefoil knot. The cyclic phase also hosts more complex knots. a, b We show a cyclic phase wavefunction with ℓ= 2 and
‘0 ¼ 0 the orbital angular momentum of spin states 2; 2j i and 2;�1j i. This wavefunction has the topology of a trefoil knot. The trefoil knot is the simplest
non-trivial knot. a The planar projections of the spherical harmonic lobes show a spin rotation by−4π/3 accompanied by a coordinated transformation of
the overall phase. b The associated knot structure, represented on the 3D torus by tracking the spherical harmonic lobes, is the trefoil knot. In the inset box
mF denotes the magnetic sublevels of the hyperfine states. We depict the populations and phases of the wavefunction components F;mF

�� �
, showing the

ℓ= 2 azimuthal phase of the component in 2; 2j i and the uniform phase of the component in 2;�1j i. The color bar depicts phase in both panels.
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ζ0 ¼ ζBN0 in Eq. (1):

ζBN ¼ 1ffiffiffi
2

p

1

0

0

0

ei2ϕ

0
BBBBBB@

1
CCCCCCA
: ð6Þ

A spherical harmonic visualization of this state is shown in
Fig. 5a. The four-fold symmetry of the lobes of the spherical
harmonics shows a rotation by π through an azimuthal traversal
while the phase changes by 2π. The associated torus knot is K2,4.
In contrast to the previous two examples, this is a torus link
consisting of a pair of disjoint paths (shown as solid and dashed
curves in the figures) that are the K1,2 knot and its linked image.
The Möbius strip topology of each is visible in a map of the
directors tracking the spin wavefunction (Fig. 5b). The linked
nature of the two paths is evident in the 3D construction (Fig. 5c).

The local spin state reconstructed from experimental data, and
the experimentally realized knot K2,4, are shown in Fig. 5d. The
experimental techniques for the realization of this torus link are
outlined in the Methods section.

In mapping the spin rotation and the azimuthal angles onto a
torus to reveal torus knots, the two directions on the torus may be
interchanged, which interchanges the number of longitudinal
and meridional windings. Thus, the knots K2,4 and K4,2 are
topologically equivalent, but geometrically distinct, knots. The
torus link K4,2, known as Solomon’s knot (Fig. 6), displays two
doubly interlinked rings and four crossings, in contrast to the
simpler Hopf link. Solomon’s knot K4,2 can be more directly
realized by choosing a configuration where ‘0 � ‘ ¼ 8. Consider
the specific example where ð‘ ¼ �2; ‘0 ¼ 6Þ are the OAM of
2; 2j i and 2;�2j i, so that λ= 8/4. The doubly-linked structure
again appears as a pair of paths traced by the lobe tips of
the spherical harmonics on an azimuthal traversal (Fig. 7). The
full knot structure consists of two linked Solomon’s knots K4,2.

Fig. 5 Tying Solomon’s knot and a discrete four-fold symmetry. a We show the spherical harmonic representation of the spin-orbit invariant
wavefunction ζBN ¼ ðζ2 0 0 0 ζ�2e

i2ϕÞT that shows a rotation by π on an azimuthal traversal. In the inset box mF denotes the magnetic sublevels of the
hyperfine states. We depict the populations and phases of the wavefunction components F;mF

�� �
, showing the uniform phase of the component in 2; 2j i

and the ‘0 ¼ 2 azimuthal phase of the component in 2;�2j i. b Visualizing the orientation of the atomic wavefunction that combines a discrete four-fold
symmetry with a condensate phase in terms of two disjoint Möbius-type topological structures. A pair of disjoint lobe-tip paths must be constructed to
fully visualize the topology of the fractional spin state rotation. c The two disjoint paths are represented with solid and dashed curves. The 3D
representation shows that these paths are interlinked. The associated knot is the torus link K2,4. d We reconstruct the local spin state and the torus link
from experimental data. The color bar depicts the phase in all panels.

Fig. 6 Topologically equivalent knots.We show the knots K2,4 and K4,2, which are geometrically distinct but topologically equivalent knots differing only in
the choice of meridional and longitudinal coordinate in mapping the coordinated rotation of the wavefunction onto the torus. The knot structure is a torus
link that consists of two disjoint paths, represented with solid and dashed curves. a The knot K2,4 and the topologically equivalent knot b K4,2 which is
Solomon’s knot. The color bar depicts the phase in both panels.
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Discussion
The topological atom-optics studied here are reminiscent of
knotted structures of optical polarization in monochromatic and
bichromatic optical fields. Our constructions most closely map to
studies in paraxial optical fields34,54, where the spin and OAM of
light, Ŝz and L̂z , are separable degrees of freedom.

The symmetries of optical polarization are visualized as the
path traced in time by the tip of the electric field vector in a fixed
plane perpendicular to the direction of propagation. In mono-
chromatic fields, this path is the familiar polarization ellipse.
Bichromatic fields show a richer variety of polarization structures,
with polarization symmetries represented by Lissajous curves that
are traced when a pair of orthogonal sinusoidal signals of fre-
quencies (pω, qω) combine. Consider the field

EðtÞ ¼ Re Epþe
�ipωteþ þ Eq�e

�iqωte�
h i

; ð7Þ
where e± ¼ � 1ffiffi

2
p ðex ± ieyÞ; and e0 ¼ ez relate the spherical and

Cartesian bases. Ep+ and Eq− are complex amplitudes of field
components at frequencies pω and qω. Stable optical polarization
Lissajous figures are traced for specific choices of (p, q) with p/q
rational, for appropriate field amplitudes, and for stationary
relative phase55,56. These can display (p+ q)-fold discrete sym-
metries under spin rotation (see Supplementary Note 2). A
coupling with the optical OAM in these fields realizes spin-orbit
invariant optical fields that are invariant under transformations
generated by an operator of the form Ĵγ ¼ L̂z þ γŜz , identified
simply as the torus knot angular momentum, that rotates the
polarization by an angle γϕ as the beam spatial profile is trans-
formed through an angle ϕ34,54. For fields with OAM ðm;m0Þ
associated with frequency components (pω, qω) (in Eq. (7)), the
Lissajous figures display internal spin rotations by an angle γϕ on
a full azimuthal traversal, with γ ¼ ðm0p�mqÞ=ðpþ qÞ34. This
non-trivial internal polarization rotation by a fraction 2πγ around
a closed loop realizes torus knots in the optical case34.

In the work reported here, our optical imprinting technique
has allowed us to create a rich variety of stable and non-
equilibrium structures in spin-1 and spin-2 atomic wavefunctions
of a 87Rb spinor BEC. In the future, a range of torus knots can be
created in higher-spin manifolds with our techniques: the spin-3

manifold for example supports torus knot Kℓ,5 structures. In the
future, we plan to employ analytic and geometric properties of
torus knots, and their relationship to braid groups and non-
Abelian vortex algebra (see Supplementary Note 3), to investigate
the local and global behaviors that are consequences of these
knot-topological structures.

Methods
Experimental details. We begin with a cigar-shaped 87Rb BEC
prepared in a magnetic trap. The cloud is spin-polarized within
the electronic ground state manifold 52S1/2 in state F;mF

�� � ¼
1;�1j i or 2; 2j i. The initial BEC is released from the magnetic
trap and undergoes free fall for 9 ms, expanding to ≈ 50 μm such
that inter-atomic interactions can be neglected on the time-scales
of the experiment. The Raman interaction is then applied. The
optical fields including the Raman beams and the imaging beam
all propagate along the long axis of the cloud, which is also the
atomic quantization axis. The experimental configuration is
described in more detail in previous publications35,44,45,47.

The Raman interaction. A fundamental building block of our
state preparation technique is coherent two-photon optical
Raman coupling of a three-level Λ system with ground states jψ"i
and jψ#i and excited state ej i (Supplementary Fig. 2). Raman-
optical fields with Rabi frequencies ΩA and ΩB and phases ϕA and
ϕB couple the transitions jψ"i ! jei and jψ#i ! jei and have
polarizations (σ+, π, σ−) allowing transitions with ΔmF= (+ 1,
0,− 1) between ground and excited states. In order to lift the
degeneracy of the spin states a small bias magnetic field ≈ 11
Gauss is used. The Raman pulses are 5–10 μs long square pulses
that can be variably detuned from the excited F0 ¼ 1 or F0 ¼ 2
manifolds within the D1 line of 87Rb. The frequencies and tem-
poral profiles are controlled with acousto-optic modulators. In
the limit of large detuning Δ of the optical fields from the excited
state, ej i can be adiabatically eliminated. The effective dynamics is
then described by the two-level system fjψ"i; jψ#ig through a
unitary evolution of an initial state jψii ¼ c"jψ"i þ c#jψ#i to
final state jψf i ¼ Ujψii. For the square, diabatic pulses used in
our experiment, the interaction parameters remain constant in
time for the duration of the optical pulses, and the evolution can
be computed simply by Eq. (3). The parameters
Ω= (∣ΩA∣2+ ∣ΩB∣2)/4Δ, α ¼ tanðjΩAj=jΩBjÞ, ϕ= (ϕA− ϕB) are
experimentally controlled parameters related to the total and
relative intensities of the optical fields, and their relative
phase46,47. The spatial mode and OAM of the beams are con-
trolled with a spiral phase plate that creates a Laguerre–Gaussian
mode of charge ℓ= 1 or ℓ= 2. An interferometer is used to flip
the mode handedness as necessary35,44,45,47. Coherent population
transfer is achieved using rf pulses of 100–150 μs tuned to reso-
nance between adjacent Zeeman sublevels.

To create the polar phase wavefunction of Eq. (4), we begin
with a spin-polarized BEC in 1;�1j i, and use a pair of (σ+, σ−)
Raman beams with orbital angular momenta ℓA= 0 and ℓB= 1 to
transfer atomic population to state 1; 1j i, while also imprinting
OAM ℓ=− 1 on the atoms. The non-rotating core (‘0 ¼ 0) is in
state 1;�1j i. Regions of the cloud where these two spin
components have equal densities are in the polar magnetic phase.

To create the cyclic phase wavefunction of Eq. (5), we begin
with a spin-polarized BEC in 2; 2j i, and use a coherent rf transfer
of atomic population from 2; 2j i to 2; 1j i followed by a multipulse
Raman sequence. A pair of (π, σ−) Raman beams with vortex
charges (ℓA= 0, ℓB=− 1) creates a phase winding in 2; 2j i,
leaving a non-rotating Gaussian core in 2; 1j i (such that ð‘ ¼
1; ‘0 ¼ 0Þ are the OAM associated with spin states 2; 2j i and

Fig. 7 Direct realization of Solomon’s knot. a We show a direct realization
of Solomon’s knot and a four-fold symmetry in the biaxial-nematic phase
with ð‘ ¼ �2; ‘0 ¼ 6Þ the orbital angular momentum in states 2; 2j i and
2;�2j i with a spin state rotation parameter λ= 8/4. Tracing the lobe-tip
paths of the spherical harmonics on an azimuthal traversal shows the
appearance of the doubly-linked Solomon’s knot structure K4,2. In the inset
box mF denotes the magnetic sublevels of the hyperfine states. We depict
the populations and phases of the wavefunction components F;mF

�� �
,

showing the ℓ=− 2 phase of the component in 2; 2j i and the ‘0 ¼ 6
azimuthal phase of the component in 2;�2j i. The two disjoint paths that
form the twice-linked Solomon’s knot are represented with solid and
dashed curves.
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2; 1j i). A second (σ+, σ−) Gaussian Raman pulse pair transfers
the non-rotating core from 2; 1j i to 2;�1j i. In the cyclic
magnetic phase the two spin components 2;�1j i and 2; 2j i satisfy
jζ�1j=jζ2j ¼

ffiffiffi
2

p
.

To create the biaxial-nematic phase wavefunction of Eq. (6), we
begin with atomic population in 2; 2j i. A single pulse pair of
(σ−, σ+) Raman beams with vortex charges (ℓA= 1, ℓB= 0) and
experimental parameters favoring a four-photon process transfer
atomic population to 2;�2j i. This is accomplished by tuning the
two-photon transfer from 2; 2j i to 2; 0j i off resonance. The
transferred atomic population picks up two units of OAM leaving
behind a non-rotating core, thus creating the target spin-orbit
invariant state ð‘ ¼ 0; ‘0 ¼ 2Þ.

Spherical harmonics representation. To visualize the symme-
tries of the spinor wavefunction we show the surface of ∣Z(θ, ϕ)∣2
and color indicating arg Zðθ; ϕÞ	 


where

Zðθ; ϕÞ ¼ ∑
F

m¼�F
ζmYF;mðθ; ϕÞ ð8Þ

expands the spinor ζ ¼ ðζF ; ζF�1; :::; ζ�FÞT in terms of the
spherical harmonics YF,m(θ, ϕ), such that (θ, ϕ) defines the local
spinor orientation in spherical coordinates and color represents
the phase.

Imaging. In our time-of-flight Stern–Gerlach absorption imaging
process an inhomogeneous magnetic field is briefly pulsed at
13 ms after the cloud is released, followed by a time of flight
tf ≈ 13 ms. A resonant, collimated, imaging beam illuminates the
cloud, casting an absorption shadow in the transmitted beam
which is then imaged on a CCD camera.

Stern–Gerlach imaging gives spatially resolved density infor-
mation within each spin component. The donut-shaped intensity
profiles of the Laguerre–Gaussian beams result in the spatially
dependent population transfer, determining radially-dependent
magnetic phases (i.e., we achieve different populations in the mF

levels that remain constant during the expansion of the atom
cloud and characterize the local magnetic phase). The spherical
harmonics are reconstructed using the imaged spin state
amplitudes.

The relative phases of the Raman fields are imprinted onto the
spin states by the Raman transfer, thus defining the relative
phases of the atomic spin states after transfer. In particular, we
have shown experimentally how the phases of the Raman fields
and hence the OAM from the optical beams are transferred onto
the spin states of the BEC with this process by using matter-wave
interferometry44,45. The relative phases of the atomic spin states
are therefore experimentally known from our calibration of the
Raman beam OAM transfer for each of the data sets shown here,
and are used to reconstruct the orientation of the local spin state
of the cloud (see Supplementary Note 4 and Supplementary
Note 5).

For the n-fold symmetry, we construct the 2D torus knot
structures by following the n lobe-tip paths of spherical
harmonics on a full 2π traversal of the azimuthal coordinate.
Both coordinates ϕ, the azimuthal angle, and ~ϕ, the angle of spin
rotation (as defined in the Torus knot topology section), define
angles in the 2D space transverse to the quantization axis
(Fig. 2a). To represent these structures in 3D, we use a mapping
that re-orients the coordinate ~ϕ at each azimuth to define the
meridional direction of a 3D torus, and then the azimuthal
coordinate ϕ defines the longitudinal direction (Fig. 2b). This is
equivalent to performing rotations of the local spherical
harmonics: first a rotation by π/2 about the x-axis and then a

rotation by ϕ about the z-axis. The n lobe tips of the spherical
harmonics then describe structures in 3D.

Data availability
The data used in this work are publicly archived in the Zenodo repository at https://doi.
org/10.5281/zenodo.8239421.

Code availability
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