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Abstract –This work presents statistical models of the variability of plasma in the topside ionosphere based on
observations made by the European Space Agency’s (ESA) Swarm satellites. The models were developed in
the “Swarm Variability of Ionospheric Plasma” (Swarm-VIP) project within the European Space Agency’s
Swarm+4D-Ionosphere framework. The configuration of the Swarm satellites, their near-polar orbits and
the data products developed, enable studies of the spatial variability of the ionosphere at multiple scale sizes.
The statistical modelling technique of Generalised Linear Modelling (GLM) was used to create models of both
the electron density and measures of the variability of the plasma structures at horizontal spatial scales between
20 km and 100 km. Despite being developed using the Swarm data, the models provide predictions that are
independent of these data. Separate models were created for low, middle, auroral and polar latitudes. The mod-
els make predictions based on heliogeophysical variables, which act as proxies for the solar and geomagnetic
processes. The first and most significant term in the majority of the models was a proxy for solar activity. The
most common second term varied with the latitudinal region. This was the Solar Zenith Angle (SZA) in the
polar region, a measure of latitude in the auroral region, solar time in the mid-latitude region and a measure
of latitude in the equatorial region. Other, less significant terms in the models covered a range of proxies
for the solar wind, geomagnetic activity and location. In this paper, the formulation, optimisation and evalu-
ation of these models are discussed. The models show very little bias, with a mean error of zero to two decimal
places in 14 out of 20 cases. The models capture some, but not all, of the trends present in the data, with
Pearson correlation coefficients of up to 0.75 between the observations and the model predictions. The models
also capture some, but not all, of the variability of the ionospheric plasma, as indicated by the precision, which
ranged between 0.20 and 0.83. The addition of the thermospheric density as an explanatory variable in the
models improved the precision in the polar and auroral regions. It is suggested that, if the thermosphere could
be observed at a higher spatial resolution, then even more of the variability of the plasma structures could be
captured by statistical models. The formulation and optimisation of the models are presented in this paper. The
capability of the model in reproducing the expected climatological features of the topside ionosphere,
in supporting GNSS-based ionospheric observations and the performance of the model against the
Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), are provided in a com-
panion paper (Spogli L et al. 2024. J Space Weather Space Clim https://doi.org/10.1051/swsc/2024003).
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1 Introduction

The F-region of the ionosphere is a highly complex plasma
containing density structures with a wide range of spatial scales.
Large-scale structures with horizontal extents of tens to
hundreds of km exhibit variation with time of day, season, solar
cycle, geomagnetic activity, solar wind conditions and location.
Plasma is primarily created by ionisation of the upper atmo-
sphere by solar extreme ultraviolet (EUV) radiation and it
decays by recombination with neutral species in the atmosphere.
The intensity of the incident solar radiation is a function of the
solar zenith angle (SZA), therefore a diurnal and seasonal
variation in the production rate of ionisation is expected
(Pedersen, 1927). The solar EUV flux varies during the solar
cycle (Hinteregger, 1977) and a variation in the production rate
of ionospheric plasma is expected on these timescales. The bulk
properties of the ionosphere are also influenced by the neutral
atmosphere. Rishbeth & Setty (1961) and Wright (1963)
reported that the ionospheric density was greater during winter
than summer at mid-latitudes. This is known as the seasonal
anomaly, also referred to as the winter anomaly. These authors
attributed this effect to higher summer temperatures which
caused upwelling of the thermosphere in the summer hemi-
sphere. This led to lower O/N2 and O/O2 atomic/molecular con-
centration ratios, which increased the recombination rate and
consequently decreased the plasma density. The ionosphere
exhibits several other anomalies, which were summarised by
Hargreaves (1992). These include the annual anomaly and
semi-annual anomaly. The annual anomaly is that the global
average plasma density is greater in December than in June
by 20%. This can be partially explained by the annual variation
in the Sun-Earth distance. The semi-annual anomaly is that the
global average plasma density is greater at the equinox than at
the solstice. This is attributed to the temperature gradient
between the summer and winter poles at the solstice, driving
winds that transport molecular-rich air from the summer to
the winter pole, increasing the recombination rate of the plasma.

Plasma structures are commonly observed in the ionosphere.
At equatorial and low latitudes, the equatorial ionospheric
anomaly (EIA) arises due to the combined effects of the daytime
equatorial electrojet and the terrestrial magnetic field. The EIA
was first reported by Appleton (1946) and has been extensively
characterised since, as reviewed by Balan et al. (2018). The
decay of plasma by chemical recombination is faster at lower
altitudes, due to the neutral atmosphere density profile. There-
fore, after sunset, a steep vertical density gradient forms and
plasma structures grow due to instability processes and the
pre-reversal enhancement in equatorial vertical drift, driven by
the equatorial electrojet and F-region dynamo winds. Plasma
density irregularities are commonly observed in the low-latitude
ionosphere after sunset (Kil & Heelis, 1998), which can be iden-
tified as plasma density depletions known as equatorial plasma
bubbles (EPBs) (McClure et al., 1977). They affect radio sig-
nals, causing effects such as the range and frequency spread sig-
natures on high-frequency (HF) echoes known as equatorial
spread F (Woodman & La Hoz, 1976) and scintillation on
VHF-UHF and L-band signals (Basu & Basu, 1981).

At high latitudes, polar cap patches are commonly observed.
These were defined by Crowley (1996) to have a horizontal
extent of at least 100 km and a plasma density of at least twice
that of the surrounding background ionosphere. A polar cap

patch was first reported by Hill (1963) and was observed to drift
with the background plasma flow (Buchau et al., 1983). It was
proposed that such patches were produced on the dayside at
auroral or subauroral latitudes and then drawn into the polar
cap by the high-latitude convection pattern (Weber et al.,
1984). An individual patch was tracked for more than
3000 km (Weber et al., 1986). Patches have been observed to
drift out of the polar cap (Pedersen et al., 2000) and to be recon-
figured to form a boundary blob (Pryse et al., 2006; Jin et al.,
2016). Polar cap plasma exhibits seasonal variation (Foster,
1984), but plasma structures can persist in summer even if they
do not meet the formal definition of a polar cap patch (Wood &
Pryse, 2010). Polar cap patches can derive from transient bursts
of reconnection in the magnetosphere (Lockwood & Carlson,
1992), variations in the Interplanetary Magnetic Field (IMF)
altering the source region of plasma drawn into the polar cap
(Sojka et al., 1993), variations in the IMF determining whether
this plasma can enter the polar cap (Valladares et al., 1998) or
the fragmentation of the tongue of ionization (Rodger et al.,
1994; Valladares et al., 1994; De Franceschi et al., 2008).
Birkeland (1913) suggested that a stream of charged particles
from the Sun could be guided by the geomagnetic field to
impact the polar atmosphere and cause the aurora. The process
of particle precipitation also results in the ionisation of the upper
atmosphere (Rees, 1989; Brekke, 1997), which can result in the
formation of plasma structures (Walker et al., 1999) known as
“hot” patches (Zhang et al., 2017).

At mid-latitudes, plasma structures are observed, which
have propagated latitudinally to this region from lower or higher
latitudes (e.g. Fallows et al., 2020), or which result from vertical
coupling from lower altitudes (Rishbeth & Mendillo, 2001).
Travelling Ionospheric Disturbances (TIDs) are commonly
observed at these latitudes. These are horizontally propagating
waves which can result from auroral precipitation, heating from
ionospheric current systems and atmospheric gravity waves
propagating from the lower atmosphere, as reviewed by
Hunsucker (1982). TIDs are observed or inferred at a wide
range of scale sizes, with wavelengths ranging from of the order
of 1000 km (Francis, 1975) to less than 30 km (Boyde et al.
2022). Fallows et al. (2020) simultaneously observed large
and medium-scale TIDs in the mid-latitude ionosphere at differ-
ent altitudes propagating horizontally and approximately per-
pendicular to each other. Cherniak & Zakharenkova (2016)
and Cherniak et al. (2019) observed ionospheric plasma bubbles
at mid-latitudes which had propagated from the equatorial
region. Additionally, the atmospheric events induced by the
eruption at Hunga Tonga-Hunga Ha’apai have consolidated
the evidence about how natural hazards are major sources
of TIDs affecting the mid-latitude ionosphere through
Lithosphere-Atmosphere-Ionosphere coupling (e.g. Rajesh
et al., 2022; Sun et al., 2022; Themens et al., 2022; Wright
et al., 2022).

Plasma structures can cause challenges for trans-ionospheric
radio signals. Variations in the plasma density result in changes
to the refractive index of the ionosphere (Hargreaves, 1992).
Trans-ionospheric radio waves undergo refraction and/or diffrac-
tion (Wernik et al., 2003). The interference of the scattered
waves can result in rapid variations in the phase and intensity
of the received signal, a phenomenon known as scintillation.
This was first reported by Hey et al. (1946) who conducted radio
astronomical observations of Cygnus-A at 64 MHz. Ionospheric
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scintillation has become of increasing concern in recent years
due to the increasing importance of practical navigation and
communication systems, such as Global Navigation Satellite
Systems (GNSS). A direct connection between gradients in the
Total Electron Content at the edge of a plasma stream and scin-
tillation has been observed (Mitchell et al., 2005) and plasma
structuring caused by auroral precipitation has been linked to
the loss of signal lock by a GNSS receiver (Smith et al., 2008;
Elmas et al., 2011; Jin & Oksavik, 2018). Statistical studies have
shown the climatology of ionospheric scintillation at GNSS
frequencies (Prikryl et al., 2015), that auroral emissions correlate
with GNSS signal scintillation (Kinrade et al., 2013), an agree-
ment between scintillation and the expected position of the cusp
and auroral oval boundaries, and between scintillation and large
scale plasma structures including polar cap patches and EPBs
(Spogli et al., 2009; Jin et al., 2014; De Franceschi et al.,
2019; Li et al., 2021). Plasma structures can occur without scin-
tillation (e.g. Jenner et al., 2020) and it has been suggested that
both a minimum gradient in electron density and a minimum
value of electron density are required for scintillation to occur
(Aarons, 1982). The nature of scintillation and its connection
with refractive and diffractive mechanisms causing the observed
amplitude and phase fluctuations have been recently debated
(see, e.g. McCaffrey & Jayachandran 2019; Ghobadi et al.,
2020; Spogli et al., 2021).

Plasma structuring in the ionosphere can be successfully
studied in situ with satellite missions, such as Swarm. Swarm
is the European Space Agency’s (ESA) first constellation
mission for Earth Observation (Friis-Christensen et al., 2006).
It initially consisted of three identical satellites (Swarm A,
Swarm B, and Swarm C) which were launched into Low Earth
Orbit in 2013. Initially, the spacecraft flew in a string-of-pearls
configuration before the final constellation of the mission was
achieved on 17th April 2014. Swarm A and C formed the lower
pair of satellites, which flew in close proximity at an altitude of
~462 km, whereas Swarm B was at ~511 km. Despite being
mainly conceived as a magnetic mission, Swarm also observes
the ionospheric plasma. A large number of papers have been
published in this field and these have been reviewed by Wood
et al. (2022). The configuration of the Swarm satellites, their
near-polar orbits and the data products developed, enable
studies of the spatial variability of the ionosphere at multiple
scale sizes (Kotova et al., 2022). A range of data products to
characterise this variability were developed from the Swarm
observations as part of the project “Ionospheric Plasma Irregu-
larities Characterized by the Swarm Satellites – IPIR”. IPIR
combines data from different instruments on board the Swarm
satellites, which act as proxies for the plasma density variations
in the ionosphere along the satellite’s trajectories at multiple
scale sizes (Jin et al., 2019, 2022). Multiscale analysis was used
to determine the dominant scales of the plasma structures when
observed at each of these scale sizes (Urbar et al., 2022). One of
the IPIR products is the IPIR index (IPIR_ix), a categorical
variable based upon both the rate of change and the standard
deviation of the electron density. The IPIR index can also be
an indicator of plasma variations, which can lead to scintillation
effects. This was demonstrated by Kotova et al. (2023), by
comparing data from 23 ground-based scintillation receivers at
polar, auroral and low latitudes with data from the Swarm
satellites. While these products are not produced fast enough

to provide operational nowcasting at present, they do lay the
foundations for such operational services in the future (Jin
et al., 2020).

The purpose of this paper is to describe the development of
a series of statistical models, which predict the variability of
ionospheric plasma. Such models are designed to advance the
physical understanding of the system and to lay the foundations
for an operational tool, which can infer the behaviour of the
ionosphere in regions scarcely covered by ground-based instru-
mentation. Additionally, as corroborated by the statistical work
of Kotova et al. (2022), modelling of the plasma quantities
available in the IPIR product can support GNSS-based studies
of ionospheric irregularities and their effect on L-band signals.
Two versions of the models are produced. The first version is
based solely upon data products which are available in either
real-time or near real-time, to move towards an operational
model and assess the performance of such a model. The second
version of the models includes other observations which are not
so readily available, to determine what product(s) may be useful
to develop for future operational services.

The paper is structured as follows: Section 1 gives an over-
view of the background literature, Section 2 describes the devel-
opment of the models and Section 3 describes the process of
model optimisation and evaluation. The results are discussed
in Section 4 and conclusions are drawn in Section 5. The com-
panion paper, Spogli et al. (2024), which is hereafter referred to
as Paper 2, assesses the performance of the models created
within the present paper.

2 Model development

2.1 Overview of method

The technique of Generalised Linear Modelling (GLM)
(McCullagh & Nelder, 1983) has been applied in numerous
fields including medical trials (e.g. Schwemer, 2000), road
safety (e.g. Wood et al., 2013) and ionospheric physics (e.g.
Dorrian et al., 2019). A special case of a GLM is a linear model,
whereby a dependent variable is predicted from an explanatory
variable using an equation of the form:

E yð Þ ¼ b0 þ b1 � x1; ð1Þ
E(y) is the expected value of dependent variable y, which is to
be predicted, x1 is the explanatory variable and b0 and b1 are
empirically determined constants known as the parameter esti-
mates. It is postulated that the explanatory variable influences
the dependent variable, and so the dependent variable can be
predicted from the explanatory variable. Many systems have
dependent variables which are influenced by multiple
explanatory variables and multivariate linear models, which
are another special case of a GLM, are commonly used in
such cases. In such models, the dependent variable is pre-
dicted from several explanatory variables, using an equation
of the form:

E yð Þ ¼ b0 þ b1 � x1 þ � � � þ bn � xn; ð2Þ
x1. . .xn are the explanatory variables and b1. . .bn are the asso-
ciated parameter estimates. A GLM is similar to that stated for
a multivariate linear model. The differences are that the
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dependent variable is not assumed to follow a normal
(Gaussian) distribution and that the link function (the
form of the equation) may also change. It is commonly
expressed as:

g E yð Þð Þ ¼ b0 þ b1 � x1 þ � � � þ bn � xn; ð3Þ
where g(E(y)) is a function of the expected value of the depen-
dent variable. In the present paper, GLMs were used to create
a series of statistical models of the ionospheric plasma and
measures of the variability of this plasma.

2.2 Choice of dependent variables

A number of dependent variables were chosen, as shown in
Table 1. |Grad_Ne@100km|, |Grad_Ne@50km| and |Grad_
Ne@20km| were selected as these act as proxies for the variabil-
ity of ionospheric plasma at spatial scales of 100 km, 50 km and
20 km respectively. These were taken from the Swarm level 2
data product IPDxIRR_2F (Jin et al., 2022), which is available
at: ftp://swarm-diss.eo.esa.int. The absolute value of these
values was used to ensure that this measure was not dependent
upon the direction in which the satellite was moving. The IPIR
index, which is a categorisation of fluctuations in the ionospheric
plasma density (0–3 low, 4–5 medium, and >6 high level), was
also selected. This is the product of the rate of change density
index in 10 s (RODI10s) and the standard deviation of the elec-
tron density in a running window of 10 s (A(ne)10s). Based on the
motion of the satellite, this corresponds to a horizontal spatial
scale of approximately 80 km. Finally, the plasma density was
also selected. This was also taken from the Swarm level 2 data
product IPDxIRR_2F, where the electron density was directly
copied from the Langmuir probe files and downsampled to
1 Hz to match the data rate of other data products which are
available in IPDxIRR_2F. The use of the electron density from
IPDxIRR_2F also ensured that all the dependent variables used
in the Swarm-VIP project were calculated from the same base-
line (baseline 3). It should be noted that, although these data
are labelled as electron density within the Swarm data products,
it is actually the ion current that is measured for this product as
this is the cleaner, more reliable measurement (Buchert, personal
communication). The ion density is estimated using Langmuir’s
orbital-motion-limited (OML) model (Mott-Smith & Langmuir,
1926) with the assumption of O+ being the dominant ion. The
plasma is assumed to be quasi- neutral, and the ion density is
currently used as a proxy for the electron density in the
Swarm level 1B and level 2 data products (Buchert, personal

communication). In the remainder of the paper, as global neu-
trality of the ionospheric plasma is assumed, the plasma density
is referred to as the electron density.

2.2 Choice of explanatory variables

A number of explanatory variables were chosen, and these
acted as proxies for the driving processes. For example, a com-
monly used proxy for solar activity is the F10.7cm solar radio
flux, and this was used as a proxy for solar activity. The full list
of explanatory variables trialled is given in Table S1 in the
Supplementary Material. In essence, these fall into several broad
categories:

� Solar activity: F10.7cm solar radio flux (observed) and
the sunspot number R.

� Solar wind: Bulk speed, density, pressure, Interplanetary
Magnetic Field (IMF) and Interplanetary Electric Field
(IEF).

� Geomagnetic activity: The aa, AE, am, AL, Ap, ASY-D,
ASY-H, AU, Dst, Kp, Polar Cap (North) index (PCN),
SYM-D and SYM-H indices.

� Location: Geographic latitude (LAT), magnetic latitude
(MLAT), local solar time (ST) and magnetic local time
(MLT).

� Complementary observations from Swarm: The thermo-
spheric density and current systems.

� Miscellaneous: Solar zenith angle (SZA), a function based
on the ST to represent the diurnal variation and a function
based on day of year (DOY) to represent the seasonal
variation.

Two versions of the models for each dependent variable were
produced. The first version was based solely upon data products
which are available in either real-time or near real-time, to move
towards an operational model and assess the performance of
such a model. The second version of the models included other
observations which are not so readily available, to give a deeper
understanding of the physical system and to determine which
product(s) may be useful to develop for future operational
services. The complete list of which explanatory variables were
trialled in which version of the models is given in Table S1 in
the Supplementary Material. Many of these are taken from, or
calculated from, the OMNI dataset (https://spdf.gsfc.nasa.gov/
pub/data/omni/). These included the clock angle and a number
of solar wind coupling functions, which are summarised in

Table 1. The dependent variables selected to represent the plasma density and the variability of this plasma. These were all taken from the
Swarm level 2 data product IPDxIRR_2F.

Dependent variable Description Units

|Grad_Ne@100km| The electron density gradient in a running window calculated via linear regression
over 27 data points for the 2 Hz electron density data.

cm�3 m�1

|Grad_Ne@50km| The electron density gradient in a running window calculated via linear regression
over 13 data points for the 2 Hz electron density data.

cm�3 m�1

|Grad_Ne@20km| The electron density gradient in a running window calculated via linear regression
over 5 data points for the 2 Hz electron density data.

cm�3 m�1

IPIR_ix The product of the rate of change density index in 10 s (RODI10s) and the standard
deviation of the electron density in a running window of 10 s (A(ne)10s).

None

Ne Electron density. cm�3
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Newell et al. (2007). The clock angle, hc, shows the relative
importance of the y- and z-components of the IMF and is
defined as:

hc ¼ arctan
By

�� ��
Bz

: ð4Þ

A clock angle of 0� is purely IMF Bz positive with a By compo-
nent of zero, 180� is purely IMF Bz negative with a By compo-
nent of zero and 90� is completely dominated by |By| with a Bz
of zero. Three solar wind coupling functions were trialled. The
first of these was introduced by Newell et al. (2007) and was
given by:

EN ¼ v4=3 � B2=3
T � sin8=3 hc

2

� �
; ð5Þ

where EN is the solar wind coupling function, v is the solar
wind velocity and BT is the magnitude of the IMF. The second
of these was Akasofu’s e parameter (Akasofu, 1996). This is
proportional to:

e / vBT
2 sin4

hC
2

� �
: ð6Þ

This can also be expressed as e ¼ vBT
2 sin4 hC

2

� �
l20 where l0 is

an empirically determined scale factor with units of length
(Koskinen & Tanskanen, 2002). In the present study, it is an
association between e and the dependent variable which is of
interest. The numerical value of e is irrelevant and the scale fac-
tor l0 has not been used. The third and final of the solar wind
coupling functions, ELYA, resulted from a student summer pro-
ject (Daniel Elliot, personal communication) where the powers
in equation (6) were varied and the version which had the most
significant statistical relationship to the measure of the variabil-
ity of polar cap plasma defined by Wood & Pryse (2010) was
selected. ELYA was given by:

ELYA ¼ vBT
1
2 sin2

hC
2

� �
: ð7Þ

The version of the F10.7cm solar radio flux (Tapping, 2013)
present within the OMNI dataset is the adjusted version, which
is corrected for variations in the Sun-Earth distance. As the
present study is concerned with ionospheric plasma, the flux
incident on the Earth is the value of primary interest. Therefore,
the observed version was used (data are available at: https://
lasp.colorado.edu/lisird/). Also trialled as explanatory vari-
ables were the LAT, the MLAT, the ST, the MLT, the SZA
and a sine function based on the DOY, going from �1 at
midwinter to +1 at midsummer in the northern hemisphere.
The purpose of this sine function was to act as a proxy for
the annual anomaly.

In the model development, no measure of longitude (geo-
graphic or geomagnetic) was trialled as an explanatory variable
due to the characteristics of the Swarm orbit. During a year,
Swarm samples all local time and longitude sectors. However,
it only samples a given local time sector in a given longitude
sector once every 131 days, which corresponds to two or three
intervals per year. It is not feasible to trial both local time and
longitude using a dataset that spans 2 years and, at the time
of writing, it was not currently feasible to extend this dataset
without compromising the ability of the model to consider
times of higher solar activity. However, as the Swarm mission

continues during solar cycle 25, then it will be possible to
extend the dataset and to trial both longitude and local time
as explanatory variables.

As well as observing the ionospheric plasma, the Swarm
mission can infer the thermospheric density, the magnitude of
the field-aligned currents and the magnitude of the radial
currents. These were trialled as explanatory variables within
the second version of the models. As the geomagnetic indices
AE, AL and AU were only available in the OMNI dataset until
28th February 2018, these were also only trialled within the sec-
ond version of the models. Two additional geomagnetic indices,
aa and am, which describe the mid-latitude ionosphere were
also trialled in the second version of the models.

2.3 Dataset

Two years of data were used for model development,
covering 16th July 2014–15th July 2015 and 1st January
2017–31st December 2017. The first of these intervals covered
a time of higher solar activity, while the second interval covered
a time of lower solar activity. The first interval began on the first
date at which the IPDxIRR 2F data product was publicly avail-
able at ftp://swarm-diss.eo.esa.int. Whole years of data were
used to ensure that all local times and longitude sectors were
sampled. The dataset was restricted to 2 years to avoid the times
of higher solar activity being under-represented in the dataset.
This would have resulted in a reduction of the statistical signif-
icance of the relationship between proxies for solar activity and
the dependent variable, potentially removing information about
this driver from the models.

It was postulated that different driving processes may
dominate in different latitudinal regions. Therefore, the dataset
was broken into four subsets, to represent the polar, auroral,
mid-latitude and equatorial regions respectively. Data were
assigned to the appropriate region using the ionospheric region
flag in the IPDxIRR 2F data product. The methodology used to
determine the ionospheric region was described by Jin et al.
(2022). A small amount of data could be misclassified based
on the ionospheric region flag alone. Therefore, data were
excluded from a particular region if the modulus of the magnetic
latitude was outside of the following limits:

� Polar latitudes: 50�–90� MLAT.
� Auroral latitudes: 50�–90� MLAT.
� Mid latitudes: 30�–70� MLAT.
� Equatorial latitudes: 0�–40� MLAT.

The points in the dataset from which the models were developed
need to be independent. To ensure the independence of data
points, the largest spatial scales commonly observed in |Grad_
Ne@100km| were identified. Thirty three days were selected,
to cover a range of seasons, geomagnetic activities and local
time sectors. All orbits on each day were inspected and the
largest plasma structures, defined as the distance between
successive times when the conditions Grad_Ne@100km = 0
and Grad_Ne@100km � 0 occurred simultaneously, i.e. when
Grad_Ne@100km was zero but also increasing, were identified.
This analysis was conducted in four different regions (polar,
auroral, mid-latitude and equatorial), with the observations
split into each region using the ionosphere region flag in the
IPDxIRR 2F data product.
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At polar, auroral and mid-latitudes, the largest intervals
corresponding to this definition of plasma structure were
142 s, 117 s and 297 s respectively. The latter two of these were
rounded up to give intervals of 142 s, 120 s and 300 s respec-
tively. This did not mean that plasma structures of these sizes
routinely occur in the ionosphere (the time interval of 300 s
in the mid-latitude region corresponds to some 20� of latitude),
merely that using these intervals gave confidence that the data
are independent. The equatorial region was dominated by the
EIA, which spans these latitudes (Rishbeth 1971). Data points
within this region are very different from one another.
However, based on the criteria by which the independence of
|Grad_ Ne@100km| was assessed, they are not independent of
one another. A time interval of 75 s (roughly corresponding
to 5� of latitude) was selected for this region.

In order to create the database for the polar region, the first
142 s of data in this region during each day were taken and a
point was randomly selected for inclusion in the database.
Points every 142 s from this point were then selected. The same
method (with different time intervals) was used in the other
regions.

The databases in the polar, auroral, mid-latitude and equato-
rial regions comprised 34,404, 65,358, 78,097 and 116,519
points respectively. Datasets for model optimisation and evalu-
ation were also created, using data which was not included in
the training dataset. Data from the following dates were used
for these datasets:

� 1st January 2014–15th July 2014: Optimisation and
evaluation.

� 16th July 2014–15th July 2015: Training.
� 16th July 2015–31st December 2016: Optimisation and
evaluation.

� 1st January 2017–31st December 2017: Training.
� 1st January 2018–28th February 2018: Optimisation and
evaluation.

Within this optimisation and evaluation dataset, dates where the
DOY was an even number were used for optimisation and dates
where the DOY was an odd number were used for evaluation.
It was intended that each of the optimisation and evaluation
datasets would contain one calendar year of data, to cover all
seasons, local times and longitude sectors. Data gaps in some
of the Swarm data products in early 2014 resulted in the deci-
sion to include an additional 2 months of data from early
2018 in these datasets. The final constellation of the mission
for science operations was achieved on 17th April 2014. The
decision to include data from before this date in the optimisation
and evaluation datasets ensured that times of higher solar activ-
ity were well represented in these databases. However, as these
data were from higher altitudes than those within the training
database, this will worsen the model performance. Therefore,
the “true” model performance at the altitude of Swarm A is
likely to be slightly better than stated in the statistics reported
in this paper.

2.4 Choice of distribution for the dependent variables

An appropriate distribution needed to be chosen to represent
the dependent variable. Those commonly used to represent
continuous data in GLM are the Gaussian (normal), Gamma,

lognormal and inverse Gaussian distributions. However, in this
study, a greater range of distributions were trialled. These were
the Birnbaum Saunders, Burr, Exponential, Extreme Value,
Gamma, Inverse Gaussian, Logistic, Loglogistic, Lognormal,
Nakagami, Normal, Rician, tLocationScale and Weibull distri-
butions. These distributions were trialled for the dependent vari-
ables shown in Table 1, and the ability of these distributions to
represent the dependent variable was evaluated by visual inspec-
tion of quantile-quantile (QQ) plots. A QQ plot shows the quan-
tiles of the data on the y-axis and the quantiles of the modelled
values on the x-axis. If, for example, a normal distribution was
trialled, then a mean and standard deviation would be estimated
from the data. A distribution of points would then be estimated
from the mean and the standard deviation, and the quantiles of
these values would be shown on the x-axis. Ideally, the points
should be on the x = y line.

None of the distributions trialled adequately represented the
data. The example shown in Figure 1 is for |Grad_Ne@100km|
in the polar region. For all distributions in all latitudinal regions,
the trend shown by the points deviated substantially from the
x = y line. In the case of the Gamma distribution (right-hand
panel), the higher values of the observations are consistently
greater than the model. This suggests that the model will strug-
gle to predict the observations associated with the largest values.
Therefore, instead of modelling the dependent variable, the data
were transformed to model a function of the dependent variable.
Logarithms (natural, base 2 and base 10), ex, 2x, 10x, the nth
power and (up to n = 5), the nth root (up to n = 9) were all
trialled, and the resulting QQ plots were manually inspected.
The purpose of this exercise was to find a good distribution
to represent the dependent variable. It was more important to en-
sure some measure of consistency between the models than to
obtain the very best possible choice of distribution in every case.
Inspection of the QQ plots, of which examples are shown in
Figures 1 and 2, led to the choice of the nth root. The gamma
distribution was used for models of |Grad_Ne@100km|, |Grad_
Ne@50km| and |Grad_Ne@20km|. The normal distribution was
used for models of electron density. IPIR_ix is a categorical
variable taking discrete values, so this was modelled assuming
a Poisson distribution. The transformations and distributions
chosen are shown in Table 2.

2.5 Choice of link function

There are three link functions which are commonly used
with the Gamma distribution. These are the identity link
function:

E yð Þ ¼ b0þb1 � x1 þ � � � þ bn; ð8Þ
the inverse link function:

E yð Þ ¼ 1
b0þb1 � x1 þ � � � þ bn

; ð9Þ

and the log link function:

E yð Þ ¼ exp b0þb1 � x1 þ � � � þ bnð Þ: ð10Þ

In order to establish which to use for the dependent variables
which were represented by the Gamma distribution, the statisti-
cal significance of the relationship between the dependent vari-
able and each explanatory variable was tested for each link
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function in each latitude range (polar, auroral, mid and equato-
rial). A score was assigned based on the significance of this
relationship:

� If the significance, s, was 0.01% or better, then the score
was 4.

� If 0.01% < s � 0.1%, then the score was 3.
� If 0.1% < s � 1%, then the score was 2.
� If 1% � s < 5%, then the score was 1.

For each link function, the average score across all parame-
ters was then found, and the link function with the highest
value was selected. On this basis, the log link function was
chosen.

The link function commonly used with a normal distribution
is the identity link function. In the case of the Poisson distribu-
tion, the commonly used choice is the log link function. These
were selected for the models of the electron density and IPIR_ix
respectively.

2.6 Model fitting procedure

Models were developed for each dependent variable
separately. The first step of this process was to fit a single-term
GLM for each explanatory variable (i.e. if the database
contained n explanatory variables, then n single-term models
were fitted). This was conducted using the statistical computing
software “R” (version 4.1.1). The glmfit command from the
MASS (Modern Applied Statistics with S) package was used.
The statistical significance of the relationship between the
explanatory variable and the dependent variable was established
in each case. The explanatory variable with the most statistically
significant relationship to the dependent variable was chosen
(“explanatory variable 1”). The statistic used to assess the
statistical significance of this relationship was the p-value.

If models using different explanatory variables had the same
p-value, and if this was the lowest p-value for the explanatory
variables tested, then a secondary criterion was needed to
choose between this subset of explanatory variables. The sec-
ondary criterion was the highest correlation between the depen-
dent variable and the explanatory variable. The explanatory
variable chosen was added to the main (overall) model for the
dependent variable considered. This model, containing explana-
tory variable 1, explained some, but not all, of the variability in
the dependent variable.

Two term models were then trialled, using a subset of the
remaining explanatory variables. The technique of GLM
requires explanatory variables to be independent. Therefore, if
the correlation between the explanatory variable trialled and
any other explanatory variable in the main (overall) model
was greater |0.25|, then this explanatory variable was excluded
from this analysis. This does not mean that a correlation of
0.26 was considered to be important, but rather a correlation
of 0.25 was not considered to be important. The remaining
subset of possible explanatory variables was used to create
two-term models. Each of these included the dependent vari-
able, explanatory variable 1 and another explanatory variable,
with each possible variable considered in turn. The explanatory
variable from the two-term model with the greatest statistical
significance (lowest p-value) was added to the main (overall)
model for this dependent variable. If models using different
explanatory variables had the same p-value, and if this was
the lowest p-value for the explanatory variables tested, then a
secondary criterion was needed to choose between this subset
of models. In this case, the secondary criterion was the lowest
correlation between explanatory variable 1 and the explanatory
variable trialled. The explanatory variable chosen was added to
the main (overall) model for the dependent variable considered.
The combination of these two explanatory variables explained
some, but not all, of the variability in the dependent variable.

Figure 1. Quantile-quantile (QQ) plots for |Grad_Ne@100km| in the polar region when different distributions are trialled to represent these
data. The distributions trialled were: First row, left to right: Birnbaum Saunders, Burr, Exponential and Extreme Value. Second row, left to
right: Half normal, Inverse Gaussian, Logistic and Loglogistic. Third row, left to right: Lognormal, Nakagami, Normal and Rician. Fourth row,
left to right: tLocation Scale and Weibull distributions. Right-hand panel: Gamma.
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This process was repeated until no further explanatory vari-
ables were statistically significant at the 5% level when added to
the model. The model produced shows which combination of
the explanatory variables tested best explained the variability
in the dependent variable.

2.7 Model optimisation

The models fitted using the process outlined in Section 2.6
contains a large number of terms. As an example, the polar
model of |Grad_Ne@100km| was:

Figure 2. Quantile-quantile (QQ) plots for |Grad_Ne@100km| in the polar region assuming a Gamma distribution when different
transformations are trialled to these data. The transformations are 2nd root (upper left panel), 3rd root (upper right panel), 4th root (lower left
panel) and 5th root (lower right panel).

Table 2. The transformations applied to the dependent variables used to represent the ionospheric plasma and the variability in this plasma,
together with the distributions chosen.

Dependent variable Distribution Transformation applied to dependent variable

Polar Auroral Mid-latitude Equatorial

|Grad_Ne@100km| Gamma 3rd root 3rd root 7th root 4th root
|Grad_Ne@50km| Gamma 3rd root 8th root 7th root 8th root
|Grad_Ne@20km| Gamma 3rd root 2nd root 2nd root 2nd root
IPIR_ix Poisson NA NA NA NA
Ne Normal 4th root 4th root 4th root 6th root
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GradNe@100kmj j3

p
¼ exp b0 þ b1 � F10:781 þ b2 � SZAð

þ b3 � fDOYþ b4 � Kpþ b5 � MLATj j þ b6 � Bx

þ b7 � SWDenþ b8 � SYMDÞ: ð11Þ

An explanation of the terms in the model is given in Table S1 in
the Supplementary Material. The process of model optimisation
was undertaken to determine whether all of the terms in such
equations were justified.

Each model was refitted using the optimisation database.
Any terms which were no longer significant at the 5% level
or better, were removed. When implementing this method, the
least significant term was removed first. The model was then
refitted, and the next least significant term was removed if it
was not significant at the 5% level. This iterative process con-
tinued until the only terms left in the model were significant
at the 5% level or better. In this example, namely, the polar
model of |Grad_Ne@100km|, two terms (Bx and SYM_D) were
removed due to this process. One of the dangers of a statistical
model is that there is always the possibility of spurious results.
When working at the 95% confidence level (5% significance),
there is a 5% chance that a result is spurious. The purpose of
this first optimisation step is to reduce the chance of spurious
results appearing in the models. An explanatory variable must
be statistically significant at the 5% level in both the training
and optimisation datasets, thus reducing the chance of a spuri-
ous term in the model to, at most, 0.25%. This does not guaran-
tee that any terms removed during this process are spurious, it
simply means that the statistical relationship between this term
and the dependent variable is not strong enough to warrant
inclusion in the model. In this example, equation (11) became:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GradNe@100kmj j3
p

¼ exp b0 þ b1 � F10:781 þ b2 � SZAð
þ b3 � fDOYþ b4 � Kpþ b5 � MLATj j þ b7 � SWDenÞ: ð12Þ

As a next step, Akaike’s An Information Criterion (AIC) was
used to test the remaining terms (Barlow, 1989). The AIC is
a statistic used to evaluate the trade-off between model perfor-
mance and model complexity. It is calculated from the maxi-
mum value of the likelihood function for the model (L̂) and
the number of fitted parameters (k) and is given by:

AIC ¼ 2 � k � 2 � ln L̂
� �

: ð13Þ
The optimum solution within a series of nested models is the
one with the lowest AIC. For example, if there are (for example)
five independent variables in a model, then this can be thought
of as five nested models. The first model contains only the first
independent variable, the second model contains only the first
two independent variables etc.

The AIC is commonly used to determine whether additional
complexity in the models is justified, but this is a tool which
needs to be carefully interpreted. There are several decades of
research work showing that the variability of ionospheric
plasma is influenced by solar activity, geomagnetic activity/
solar wind, latitude and local time. Therefore, a limit was
imposed on what terms could be removed based on the AIC,
to ensure that each of these drivers were represented (provided
that they were statistically significant). Terms were tested and

removed, starting with the nested model with the largest number
of terms. This process was stopped when the removal of the
term considered would completely remove a key driver (i.e. if
the process would remove all proxies for any of the following:
Solar activity, geomagnetic activity/solar wind, latitude or local
time). In the example of the polar model of |Grad_Ne@100km|,
another term was removed as a result of this process. In
this case, the complexity added to the model by including
SW_Den was not justified based on the model performance
and equation (12) became:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GradNe@100kmj j3
p

¼ exp b0 þ b1 � F10:781 þ b2 � SZAð
þ b3 � fDOYþ b4 � Kpþ b5 � MLATj jÞ: ð14Þ

This process was undertaken for all the models fitted.

2.8 Models created

The models created are summarised in Tables S2, S3 and S4
of the Supplementary Material. Table S2 shows version 1 of the
models, based upon independent variables which are available
in near real-time. In Tables S2 and S3, two versions of the equa-
torial models are shown. Version 1 (Table S2) underwent the
process of optimisation and evaluation using a subset of the data
points within the optimisation and evaluation database. Version
1 of the equatorial models used 116,519 data points, which was
greater than the number of data points in any other latitudinal
region. All solar, local time and geomagnetic conditions were
sampled. After this product was created, further model develop-
ment activities were undertaken, one of which involved splitting
the equatorial database by local time. To maintain a large data
volume for optimisation and evaluation, this process used all
available data from the years considered. In the interests of
completeness, the equatorial model was revised using this larger
database, as shown in Table S3. This made relatively little
difference to the choice of model terms, their parameter esti-
mates and the model performance.

During the process of assessing the performance of the
models in reproducing the known climatological features of
the topside ionosphere (reported in Paper 2), it was shown that
the equatorial models did not adequately represent EPBs. It is
possible that these were not well represented as the model
was dominated by variations between day and night. Therefore,
it was decided to create three additional categories of model in
the equatorial region, one to represent daytime, one to represent
nighttime and one to represent the evening when EPBs were
more likely to be present. Plots showing the mean, median
and standard deviation of |Grad_Ne@100km|, |Grad_
Ne@50km|, |Grad_Ne@20km| and the electron density in
one-hour blocks were produced (Fig. 3). Inspection of these
plots suggested that the three different local time sectors could
be set separately as 01-08 LT (night), 08-18 LT (day) and 18-01
LT (bubbles). Table S3 in the Supplementary Material shows
the resulting models, with the “all day” equatorial model
included for reference. In each case, an appropriate transforma-
tion of the data was selected using the method outlined in
Section 2.4. The transformation selected is also shown in
Table S3 in the Supplementary Material.

Table S4 in the Supplementary Material shows version 2 of
the models, which includes additional explanatory variables.
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The primary purpose of this second version of the models was
to investigate how the inclusion of the thermospheric density
affected the model performance. The thermospheric density
was determined by precise orbit determination (POD; van den
IJssel et al., 2020). If the thermospheric density was not
included within a model, then no new model is presented here.
In two cases, both within the mid-latitude region, no new
model is presented, as the thermospheric density observed by
Swarm was correlated with an explanatory variable which
became the first term in the model. In the case of the model
of |Grad_Ne@20km|, the first term in the model was the
F10.7cm solar flux, which had a correlation of 0.73 with the
thermospheric density. In the case of the model of IPIR_ix,
the first term in the model was the MLT, which had a correla-
tion of 0.26 with the thermospheric density. In both cases, this
led to the exclusion of the thermospheric density from the
model.

Version 2 of the models also trialled a greater range of
explanatory variables than the thermospheric density alone, as
summarised in Table S1 in the Supplementary Material. The
same model fitting procedure that was used for version 1 of
the models was applied. The only additional explanatory vari-
ables that became part of version 2 of the models were the
thermospheric density, the field-aligned currents (FAC) and
the ionospheric radial currents (IRC), which are available as
Swarm data products. FAC and IRC only appeared in two
models; those of the electron density in the polar and equatorial
regions. To allow a clear discussion of the impact of adding
the thermospheric density as an explanatory variable, these

two models were also re-created without considering FAC
and IRC as explanatory variables. The overall purpose of this
paper is to build a model capable of reproducing the ionospheric
variability at all places and in all geospace conditions, which
can potentially be used for operations and nowcasting. Such a
model needs to be based on readily available proxies for the
physical processes, such as those contained in the OMNI
dataset. The purpose of version 2 of the models is to provide
a deeper understanding of the underlying physical processes
and to identify missing variabilities that affect the model
performance.

3 Model evaluation

The models were used to predict the data observed in the
evaluation database. A comparison between the predictions
and the observations using several goodness-of-fit statistics
was used to determine the model performance. However, prior
to discussing these statistics, it was useful to examine plots of a
subset of the data to illustrate the strengths and limitations of the
models. Figure 4 shows a statistical comparison between
observations and predictions from the Swarm-VIP models in
the 0�–15� longitude sector. This sector was chosen as it covers
the European region at mid-latitudes, which is one of the
regions used for assessing the model performance in Paper 2.
Figure 4 shows comparisons of average values in bins spanning
5� of latitude for |Grad_Ne@100km|, |Grad_Ne@50km|,

Figure 3. The mean, median and standard deviation of |Grad_Ne@100km|, |Grad_Ne@50km|, |Grad_Ne@20km| and the electron density in
one-hour blocks in the equatorial region.
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|Grad_Ne@20km|, the IPIR index and the electron density.
Observations are indicated by the blue lines and predictions
by the red lines. Most points within the evaluation database
were used for this comparison, although 339 data points were
excluded due to missing data for one or more of the explanatory
variables, which prevented predictions from being made. This
left exactly 3000 data points which were used for this
comparison.

It is immediately apparent from Figure 4 that there are
regions of agreement and regions of disagreement between
the observations and the model predictions. The comparison
for |Grad_Ne@100km| shows that the model captures the vari-
ations of this variable at high and mid-latitudes, and also one
crest of the EIA. The other crest of the EIA is not captured.
A similar pattern is observed for |Grad_Ne@50km|. Models
of |Grad_Ne@20km| and the electron density capture the lower
values of these variables but not the higher values, particularly
in the equatorial region. The IPIR index shows similarities
between the predictions and the observations at equatorial
latitudes and disagreements elsewhere.

One of the dangers of a statistical comparison of average
values of the form shown in Figure 4 is that it can average
out regions where substantial variations occur in either the
observations or model predictions. In essence, the averages
may match but the ranges may not. As an illustration, a compar-
ison of observations and model predictions for a half orbit of the
Swarm A satellite was made between 08:09 UT and 08:56 UT
on 16th July 2015. This interval was chosen as it is the first half
orbit contained within the evaluation dataset, which also sampled
the 0�–15� longitude sector and for which the IPDxIRR 2F data
product was publicly available at ftp://swarm-diss.eo.esa.int.
The start and stop times were determined by the highest
latitudes in geographic coordinates. The average geographic
longitude of this half orbit was 3.42�. The satellite was moving
northwards during this interval. Observations and predictions
are presented at a temporal resolution of 1 s, to match the

temporal resolution of the IPDxIRR 2F data product.
These are shown in Figure 5 while the trajectory of the Swarm
A orbit, together with the regions sampled according to the
ionospheric region flag in the IPDxIRR 2F data product, are
shown in Figure 6. Figure 5, shows that models capture some,
but not all, of the trends present in the observations. In all cases,
there are observed values that exceed those predicted. A series
of sharp discontinuities are present in the model predictions,
corresponding to the boundaries between different regions of
the ionosphere, as identified by the ionosphere region flag in
the IPDxIRR 2F data product. In the southern hemisphere, these
boundaries are located at 79.8� S (auroral–mid-latitude bound-
ary) and 19.5� S (mid-latitude-equatorial boundary). In the
northern hemisphere, the boundaries are located at 36.7� N
(equatorial-mid-latitude boundary), 76.5� N (mid-latitude-
auroral boundary) and 82.3� N (auroral-polar boundary). The
polar region in the southern hemisphere is not sampled within
this half orbit as the boundary between the polar and auroral
regions was located at 73.5�MLAT, which, in geographic coor-
dinates, was in the previous half orbit, as illustrated in Figure 6.
Figure 5 illustrates some of the successes and limitations of
statistical models. The model predictions vary at the same rate
as the variations of the explanatory variables, which are used
as proxies for the driving conditions. For example, the model
of |Grad_Ne@100km| (Eq. (14)) includes SZA and |MLAT|
as explanatory variables, which vary slightly between adjacent
data points, contributing to capturing a smooth, underlying
trend. Another explanatory variable in this model is Kp. This
variable has a temporal resolution of 3 h, so a single value of
Kp = 2 is used for all of the predictions in Figure 5. This
low-to-moderate value of Kp is associated with variable values
of |Grad_Ne@100km| in the polar region. The model
can go some way towards capturing the average value of
|Grad_ Ne@100km| in this region but cannot capture the vari-
ability due to the temporal resolution of the relevant explanatory
variable (Kp). The other explanatory variables in this model,

Figure 4. A statistical comparison between observations and predictions from the Swarm-VIP models in the 0�–15� geographic longitude
sector for |Grad_Ne@100km| (left panel), |Grad_Ne@50km| (upper middle panel), |Grad_Ne@20km| (upper right panel), the IPIR index
(lower middle panel) and the electron density (lower right panel) as a function of latitude. This comparison shows average values in bins
spanning 5� of latitude. Negative values of latitude indicate the southern hemisphere. Observations are indicated by the blue lines and
predictions by the red lines.

A.G. Wood et al.: J. Space Weather Space Clim. 2024, 14, 7

Page 11 of 19



F10.781 and fDOY, take one value for this day, so they influ-
ence the average value of the model prediction shown in
Figure 5, but not the short-term variations present in the obser-
vations. A more detailed discussion of model performance and
the drivers is given in Paper 2, however, it is clear that model
evaluation needs to be based on a range of goodness-of-fit

statistics. These statistics need to compare not just the average
values of the observations and model predictions, but also eval-
uate whether the models can capture the trends and ranges of
values present within the observations.

Liemohn et al. (2021) have discussed goodness-of-fit statis-
tics and their application to statistical models in detail. Four key

Figure 5. As figure 4, but for a half orbit of the Swarm A satellite between 08:09 UT and 08:56 UT on 16th July 2015. Observations and
predictions are presented at a temporal resolution of 1 second, to match the temporal resolution of the IPIR data product. The average
geographic longitude of this half orbit was 3.42�.

Figure 6. The trajectory of the Swarm A orbit on 16th July 2015 between 07:56 UT–08:25 UT (left-hand panel) and 08:45 UT–09:08 UT
(right-hand panel). The plots are centred on the geomagnetic south pole (left-hand panel) and the geomagnetic north pole (right-hand panel).
The direction of the satellite motion is shown by the pink arrow. The satellite tracks are colour coded based on the ionospheric region flag in the
IPDxIRR 2F data product, with blue representing region 1 (mid-latitude), green representing region 2 (auroral latitudes) and red representing
region 3 (polar latitudes).
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measures of the goodness-of-fit of the model predictions to the
data were used in the present study.

3.1 Accuracy

This is a measure of the closeness of the model predictions
to the observed values. The measures of the accuracy selected in
the present study are the relative Root Mean Square Error
(rRMSE, the RMSE divided by the median of the observed
values) and the Median Symmetric Accuracy (MSA). The
RMSE and the MSA are given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � d

XN
i¼1

Mi � Oið Þ2
vuut : ð15Þ

MSA ¼ 100 � exp Median ln
Mi

Oi

� �����
����8i

� �� 	
� 1

� �
: ð16Þ

Model values are denoted byM, with individual values with the
number set listed asMi. Observational values are given the vari-
able O, with individual data points called out by Oi. The total
number of pairs in the data-model set is N and d is the number
of degrees of freedom in the model configuration. The RMSE
values are not comparable between models of different latitude
regions as this statistic scales with the value of the dependent
variable, which spans a different range of values at different
latitudes. The rRMSE is more useful as this is comparable
between the different models. It is also more intuitive; if rRMSE
> 1 then the errors are larger than the predictions. However, in
both RMSE and rRMSE, larger values of predictions or obser-
vations have a disproportionately greater effect on the statistics.
A small number of very large outliers can be responsible for the
very large values of rRMSE (i.e. model performance can be
good everywhere, apart from a few isolated cases, but the
rRMSE suggests that the model performance is poor).

The MSA avoids this drawback, by weighting all points
equally and expressing them as a percentage. If this is greater
than 100%, then the errors are larger than the predictions. The
disadvantage of the MSA is that it can hide issues with the
model under particular conditions. A small number of very large
outliers have almost no effect on the MSA i.e., the model may
not represent some extreme conditions well at all, but the MSA
could suggest that model performance is good. Therefore, the
rRMSE and MSA in combination give a good assessment of
the accuracy of a model.

3.2 Bias

This is a measure of whether the model consistently over-
predicts or underpredicts the observations. The statistic used
to evaluate this in the present study is the Mean Error (ME),
which is given by:

ME ¼ �M � �O: ð17Þ
If the ME is close to zero, then the models are not significantly
biased. If it is greater than zero, then the model consistently
overpredicts. If it is less than zero, then the model consistently
underpredicts. As with the RMSE, the bias is shown on a rela-
tive scale to enable comparisons between different models.

3.3 Precision

This compares the spread of the observations and model
predictions and is given by the ratio of the standard deviations
of the model and observed values:

P r;ratio ¼ rM

rO
: ð18Þ

If the precision is substantially greater than 1, then the spread of
the model predictions is larger than expected (it is likely that the
model is too noisy). If the precision is substantially less than 1,
then the spread of the model values is lower than the spread of
the observations (it is likely that the model is overfitted).

3.4 Association

This measures the association of the observations and pre-
dictions, i.e. whether the trends in the observations are captured
by the model. In this study, the Pearson Linear Correlation
Coefficient was used. This is given by:

R ¼
P

Oi � �Oð Þ � Mi � �Mð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Oi � �Oð Þ2 �P Mi � �Mð Þ2

q : ð19Þ

This shows what proportion of the trends in the observations are
captured by the model on a scale of 0–1, where 0 indicates that
none of the trends in the observations are captured by the model
and 1 indicates that the trends are perfectly captured.

The goodness-of-fit of the models are shown in Tables 3–5.
The statistics for versions 1 and 2 of the models (Tables 3 and 5)
can be directly compared with one another and comparisons are
drawn in the following section of this paper. The statistics for
the equatorial models in the three local time sectors (Table 4)
are all evaluated against different datasets (depending on the
local time sector considered), so are not comparable. The
purpose of the evaluation in Table 4 was to determine whether
the local time sector model could capture the variability associ-
ated with EPBs, rather than to draw comparisons to the other
models themselves. The ability of the models to capture this
variability is discussed in detail in Paper 2.

4 Results and discussion

Collectively, the models show the overwhelming impor-
tance of a measure of solar activity as an explanatory variable.
In version 1 of the models (Table 3), the 81-day average of the
F10.7cm solar radio flux is the first term in 13 out of 20 models,
with the daily version of this index selected in a further three
cases. These results indicate that this proxy for the driving
process is the single most effective term in explaining the
observed variability. The modelling approach used within this
study builds up the model one term at a time and is particularly
appropriate for such a situation. The importance of the F10.7cm
solar radio flux could be due to the direct effect of variations in
photoionisation, or changes to the chemical composition of the
atmosphere. A measure of the position of the observation (LAT
or MLAT) or the relative position of the Sun and the observa-
tion (DOY_fn, ST_fn or SZA) feature as the first or second term
in each of the models. It is interesting to note that proxies for the
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Table 3. Goodness-of-fit statistics for version 1 of the models. The goodness-of-fit statistics chosen are the root mean square error (RMSE) on
a relative scale (rRMSE, RMSE divided by the median of the observed values), the median symmetric accuracy (MSA), the mean error (ME) on
a relative scale (rME, ME divided by the median of the observed values), the precision and the correlation.

Model Goodness of fit

Region Dependent variable rRMSE MSA rME Precision Correlation

Polar |Grad_Ne@100km| 0.47 135 0.00 0.37 0.36
|Grad_Ne@50km| 0.49 136 0.00 0.37 0.35
|Grad_Ne@20km| 0.58 141 0.00 0.31 0.30
IPIR_ix 0.24 115 0.00 0.46 0.45
Ne 0.16 110 0.00 0.76 0.75

Auroral |Grad_Ne@100km| 0.47 135 0.00 0.31 0.31
|Grad_Ne@50km| 0.18 112 0.00 0.28 0.28
|Grad_Ne@20km| 0.98 168 0.01 0.26 0.24
IPIR_ix 0.24 115 0.00 0.37 0.36
Ne 0.15 110 0.00 0.76 0.75

Mid-latitude |Grad_Ne@100km| 0.19 112 0.00 0.24 0.23
|Grad_Ne@50km| 0.19 113 0.00 0.22 0.21
|Grad_Ne@20km| 0.98 158 0.00 0.20 0.20
IPIR_ix 0.30 126 0.00 0.33 0.34
Ne 0.16 111 0.00 0.73 0.68

Equatorial version A |Grad_Ne@100km| 0.41 131 0.00 0.32 0.32
|Grad_Ne@50km| 0.20 114 0.00 0.34 0.30
|Grad_Ne@20km| 1.15 169 �0.01 0.46 0.26
IPIR_ix 0.32 122 0.00 0.27 0.26
Ne 0.15 111 0.00 0.55 0.55

Equatorial version B |Grad_Ne@100km| 0.43 131 �0.05 0.57 0.30
|Grad_Ne@50km| 0.21 114 �0.02 0.56 0.29
|Grad_Ne@20km| 1.16 170 �0.12 0.61 0.28
IPIR_ix 0.34 123 �0.04 0.48 0.19
Ne 0.16 111 �0.03 0.83 0.53

Table 4. As Table 3, but for equatorial models in three local time sectors. These are dayside (08-18 LT), bubbles (18-01 LT) and nightside
(01-08 LT).

Model Goodness of fit

Region Dependent variable rRMSE MSA rME Precision Correlation

Equatorial |Grad_Ne@100km| 0.43 131 �0.05 0.57 0.30
|Grad_Ne@50km| 0.21 114 �0.02 0.56 0.29
|Grad_Ne@20km| 1.16 170 �0.12 0.61 0.28
IPIR_ix 0.34 123 �0.04 0.48 0.19
Ne 0.16 111 �0.03 0.83 0.53

Equatorial: Dayside |Grad_Ne@100km| 2.76 246 �0.01 0.47 0.36
|Grad_Ne@50km| 2.75 246 �0.01 0.46 0.35
|Grad_Ne@20km| 0.79 156 �0.05 0.44 0.40
IPIR_ix 0.27 116 0.00 0.35 0.35
Ne 0.32 123 0.01 0.72 0.74

Equatorial: Bubbles |Grad_Ne@100km| 0.36 126 0.00 0.45 0.42
|Grad_Ne@50km| 0.24 116 0.00 0.42 0.40
|Grad_Ne@20km| 0.32 121 0.00 0.39 0.37
IPIR_ix 0.33 118 0.01 0.33 0.33
Ne 0.25 117 0.00 0.66 0.61

Equatorial: Nightside |Grad_Ne@100km| 0.23 115 0.00 0.30 0.30
|Grad_Ne@50km| 0.23 115 0.00 0.29 0.29
|Grad_Ne@20km| 0.41 125 0.00 0.27 0.27
IPIR_ix 0.29 126 0.00 0.28 0.29
Ne 0.16 112 0.00 0.42 0.43
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solar wind or geomagnetic activity do not appear in version 1 of
the models until term 3 at the earliest, which shows that these
proxies are not the dominant variables for explaining the
observed variations.

The rRMSE values for all versions of the models fitted
(Tables 3–5) are, for the most part, substantially less than 1.
This suggests that a reasonable degree of accuracy is obtained
by these models. However, the values of the MSA are all greater
than 100%, suggesting that the accuracy of the models is poor.
This apparent discrepancy can be explained by understanding
the differences between rRMSE and MSA. The MSA weights
all points equally, while the rRMSE weights larger differences
more heavily. The rRMSE suggests that the models represent
disturbed conditions reasonably well, providing that they occur
reasonably frequently in the dataset. A statistical model of this
type cannot capture extreme events that only occur rarely.
The large values of the MSA are attributed to substantial
percentage differences between predicted and observed values
during quiet conditions, but these do not correspond to large
absolute differences. The models show relatively little
bias. The only model where the bias is substantial is that of
|Grad_Ne@20km| in the equatorial region, where the model
consistently underpredicts the observations. The precision of
most models is substantially less than 1, so the spread of model
values is less than the observations. This indicates that the
models do not capture the full range of values which are
observed. The variations which are not modelled may be due
to rarely occurring extreme events or variations driven by a
process that is not included in the models. The correlations
are substantially less than 1 in most cases, indicating that the
trend observed in the data is only partially captured by the
models. As the precision indicates that the models do not
capture the full range of values observed, likely this is also
the reason for the low values of the correlation.

The goodness-of-fit statistics for the equatorial models
which are broken into LT sectors show relatively little improve-
ment compared to the equatorial model which covers the entire
day. The performance of these models is discussed in detail in
Paper 2.

A comparison of the goodness-of-fit statistics between ver-
sions 1 and 2 of the models is shown in Table 6. The changes in
the measures of accuracy (rRMSE and rME) and correlation
were found from simple differences; the changes in the measure
of bias (rME) were found by taking the absolute difference com-
pared to zero and the changes in the precision were found by
taking the absolute difference relative to one. The purpose of
calculating the changes in this way was so that improved model
performance in version 2 of the models, which include observa-
tions from Swarm, would be indicated by positive values.

In most cases, changes to the accuracy and the bias of the
models were small. However, in a number of cases, the use
of observations from Swarm as explanatory variables improved
other measures of the model performance. In the polar and
auroral regions, the addition of the thermospheric density
improved the precision of models of ionospheric variability
(|Grad_Ne@100km|, |Grad_Ne@50km|, |Grad_Ne@20km|
and IPIR_ix). This suggested that, for these models, the addition
of the thermospheric density as an explanatory variable led to
more of the variability of the system being captured by the
models. In the equatorial region, the correlation of almost all
of the models improved when observations from Swarm were
included, the exception being the model of |Grad_Ne@20km|.
This suggested that, in this region, more of the trend in the
observations was being captured by the models. The inclusion
of current systems in addition to the thermospheric density
did not substantially improve the model performance. Current
systems were only included in two models, which were the
models of electron density in the equatorial and polar regions.

Table 5. As Table 3, but for version 2 of the models.

Model Goodness of fit

Region Dependent variable Version rRMSE MSA rME Precision Correlation

Polar |Grad_Ne@100km| 0.50 136 0.00 0.57 0.38
|Grad_Ne@50km| 0.52 137 0.00 0.44 0.36
|Grad_Ne@20km| 0.61 143 �0.02 0.38 0.32
IPIR_ix 0.25 116 �0.01 0.66 0.45
Ne With currents 0.72 112 �0.03 2.88 0.16

Without currents 0.18 111 �0.02 0.70 0.73
Auroral |Grad_Ne@100km| 0.45 134 0.00 0.48 0.23

|Grad_Ne@50km| 0.17 112 �0.01 0.45 0.24
|Grad_Ne@20km| 0.96 168 �0.07 0.49 0.18
IPIR_ix 0.20 114 �0.03 0.63 0.32
Ne 0.15 112 0.06 0.74 0.64

Mid-latitude |Grad_Ne@100km| 0.20 113 0.01 0.20 0.14
|Grad_Ne@50km| 0.21 114 0.01 0.18 0.13
|Grad_Ne@20km| No model fitted
IPIR_ix No model fitted
Ne 0.17 112 0.03 0.64 0.71

Equatorial |Grad_Ne@100km| 0.87 146 �0.49 2.02 0.40
|Grad_Ne@50km| 0.30 119 �0.17 1.29 0.43
|Grad_Ne@20km| 2.88 210 �1.28 2.84 0.27
IPIR_ix 0.35 119 �0.08 0.54 0.28
Ne With currents 0.13 111 �0.06 0.85 0.66

Without currents 0.23 116 �0.16 1.35 0.70
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In the equatorial region this slightly improved model perfor-
mance in four out of five of the goodness-of-fit statistics. How-
ever, the model performance worsened in the polar region.

While the inclusion of the thermospheric density improved
model performance in some cases, there are some substantial
limitations in this dataset. The temporal resolution of this dataset
is 30 s, which, when the motion of the satellite is considered,
corresponds to a spatial resolution of ~2� of latitude. However,
the temporal resolution of the densities themselves is ~20 min
(van den IJssel et al., 2020), which corresponds to approxi-
mately 80� of latitude. The thermospheric density is highly cor-
related with the F10.7cm solar flux, with correlation coefficients
of 0.73, 0.72, 0.69 and 0.65 in the polar, auroral, mid-latitude
and equatorial regions, respectively. This indicates that the
thermospheric density product used in these models is primarily
capturing the large-scale bulk properties of the thermosphere,
not smaller-scale structures. Smaller-scale structures in the
thermosphere can influence the ionosphere, for example, gravity
waves are associated with TIDs (Hunsucker, 1982). There is a
Swarm thermospheric density product calculated from non-
gravitational accelerations which is available at a higher tempo-
ral (and hence spatial) resolution (Bezděk et al., 2018). This is
available at a 10-second resolution, corresponding to a horizon-
tal spatial distance of ~80 km, which is similar to the scale sizes
of many of the plasma density variations considered in the
present paper. This data product may lead to improvements in
model performance however, at present, it is only available
for Swarm C and contains significant gaps in the usable data.
It is hoped to trial this data product as an explanatory variable
in a subsequent study. This will require careful and substantial
work to ensure that the data gaps do not introduce a selection
effect based on local time or latitude into the models and go
beyond the scope of the present study.

A perfect fit of the models to the data is neither expected nor
observed. These models of the plasma structures are determin-
istic. However, there are also random variations in the iono-
spheric structures which cannot be captured by these models.
Furthermore, the explanatory variables are proxies for the
driving processes. These proxies approximate these processes,
rather than exactly replicating them, resulting in a discrepancy.
In addition, it could be argued that some of the proxies, such as
geomagnetic indices, better represent conditions in the E-layer/
around the F-layer peak rather than in the topside ionosphere.
Finally, there is no good proxy within the models produced
within this paper which could be used for the effect of
atmospheric waves and their impact upon ionospheric plasma.
Nevertheless, it seems likely that the model performance could
be improved by a better specification of the thermosphere.

The statistical models created in this paper test a range of
explanatory variables, which are proxies for the driving pro-
cesses. If a driving process is missing, then this will reduce the
performance of the models. In a previous statistical modelling
study of the high-latitude ionosphere, Dorrian et al. (2019)
showed that the thermospheric temperature was a key term in
models which predict the variability of ionospheric plasma.
The Gravity Recovery and Climate Experiment (GRACE) and
GRACE Follow-on (GRACE-FO; Landerer et al., 2020) mis-
sion observes both temperature andwinds, which could be tested
as explanatory variables within statistical models.

Another limitation of statistical models is that their ability to
respond to changes in the driving conditions is determined by
the temporal resolution of the explanatory variables which have
been used as proxies for the driving processes. For example, the
model of |Grad_Ne@100km| (Eq. (14)) included Kp as an
explanatory variable. Kp was a better choice than any of the
other proxies for geomagnetic activity based on the model

Table 6. Differences in goodness-of-fit statistics between versions 1 and 2 of the models. Positive values indicate larger values of the goodness-
of-fit statistics in version 2 of the models.

Model Goodness of fit

Region Dependent variable Version DrRMSE DMSA DrME DPrecision DCorrelation

Polar |Grad_Ne@100km| �0.03 �1.3 0.00 0.19 0.02
|Grad_Ne@50km| �0.03 �1.2 0.00 0.07 0.01
|Grad_Ne@20km| �0.03 �2.0 �0.02 0.08 0.02
IPIR_ix �0.02 �0.8 �0.01 0.20 0.00
Ne With currents �0.57 �2.0 �0.02 �1.64 �0.59

Without currents �0.02 �0.7 �0.01 �0.06 �0.02
Auroral |Grad_Ne@100km| 0.01 0.6 0.00 0.17 �0.08

|Grad_Ne@50km| 0.00 0.3 �0.01 0.17 �0.04
|Grad_Ne@20km| 0.02 �0.3 �0.06 0.23 �0.06
IPIR_ix 0.03 1.1 �0.03 0.26 �0.05
Ne 0.00 �1.3 �0.06 �0.02 �0.10

Mid-latitude |Grad_Ne@100km| �0.01 �0.8 �0.01 �0.03 �0.09
|Grad_Ne@50km| �0.01 �0.8 �0.01 �0.04 �0.08
|Grad_Ne@20km| No version 2 model fitted
IPIR_ix No version 2 model fitted
Ne �0.01 �0.4 �0.03 �0.09 0.03

Equatorial |Grad_Ne@100km| �0.44 �15.5 �0.44 �0.60 0.10
|Grad_Ne@50km| �0.09 �4.9 �0.15 0.15 0.14
|Grad_Ne@20km| �1.72 �40.1 �1.16 �1.45 �0.01
IPIR_ix �0.01 3.4 �0.04 0.06 0.10
Ne With currents 0.03 0.3 �0.03 0.02 0.13

Without currents �0.06 �5.4 �0.13 �0.18 0.17
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fitting procedure, however, the model cannot respond to
changes in the driving process on a timescale of less than the
temporal resolution of this variable. As shown in Figure 5,
the model can go some way towards capturing the average
value of |Grad_Ne@100km| in the polar region but cannot cap-
ture the variability. A potentially useful avenue for future
research would be to use quantile regression which essentially
uses a proxy for the upper boundary of the observed variations
as the dependent variable. Quantile regression would allow par-
ticular quantiles to be modelled, hence the likely range of the
dependent variable to be predicted. The critical discussion of
the model’s capabilities to reproduce the expected climatologi-
cal features of the topside ionosphere, in supporting GNSS-
based ionospheric observations and its performance against
TIE-GCM, is provided in a companion paper (Paper 2).

5 Conclusions

This paper presents a series of statistical models which
predict the variability of ionospheric plasma in the topside
ionosphere. These models were created by applying the tech-
nique of GLM, where measures of the ionospheric plasma
and structures within this plasma, were used as the dependent
variables. Proxies for the driving processes were used as
explanatory variables. Two versions of these models were pro-
duced, shown in Tables S2, S3 and S4 in the Supplementary
Material. The first version (Tables S2 and S3) is based solely
upon data products which are available in either real-time or
near real-time, to move towards an operational model and assess
the performance of such a model. The first and most significant
term in the majority of the models was a proxy for solar activity.
The most common second term varied with the latitudinal
region. The second term was the SZA in the polar region, a
measure of latitude in the auroral region, solar time in the
mid-latitude region and a measure of latitude in the equatorial
region. Other, less significant terms in the models covered a
range of proxies for the solar wind, geomagnetic activity and
location. The models are not biased with a mean error of zero
to two decimal places in 14 out of 20 cases. The models show
a reasonable degree of accuracy with rRMSE as low as 0.15 in
particular cases. However, based on measures of the precision
and the association, these models do not fully capture the
variability present within the observations (Tables 3 and 4).

The second version (Table S4 in the Supplementary Mate-
rial) of the models includes trialling the thermospheric density
and the ionospheric current systems as explanatory variables.
The inclusion of the thermospheric density improves the ability
of the models to capture the variability observed within the
ionosphere in some cases, however, the thermospheric density
product only captures the bulk properties of the neutral atmo-
sphere. These models are shown in Table 5. It would be advan-
tageous to use a measure of thermospheric density at a higher
temporal, and hence spatial, resolution, and to trial other
measures of the thermosphere, such as the temperature and/or
velocity. The ability of statistical models to respond to changes
in the driving conditions is determined by the temporal resolu-
tion of the explanatory variables which have been used as
proxies for the driving processes. If the process for which the
explanatory variable acts as a proxy results in variability in
the dependent variable, then the model can go some way

towards capturing the average value of the dependent variable,
but not the variability. For example, Kp has a temporal resolu-
tion of three hours and it is well known that elevated values of
Kp are associated with variability of ionospheric plasma in the
polar region. An elevated value of Kp can result in an elevated
value of the dependent variable in a statistical model, but create
variability in that model on a timescale of less than three hours.
A potentially useful avenue for future research would be to use
quantile regression to model a proxy for the upper boundary of
the likely values.

During a year, Swarm samples all local time and longitude
sectors, however, it only samples a given local time sector in a
given longitude sector once every 131 days, which corresponds
to two or three intervals per year. In the present study, it was not
feasible to trial both local time and longitude as explanatory
variables within the models without compromising the ability
of the model to capture variations in solar activity. The contin-
uation of the Swarm mission into solar cycle 25, makes it
possible to extend the dataset and to trial both longitude and
local time as explanatory variables and it is anticipated that this
will improve the model performance.
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uncertainties in the parameter estimates (DPE) for the version 1 of the models
fitted. An explanation of the terms in the model is given in Table S1.

Table S3: As Table S2, but with separate models in the equatorial region for
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