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The infinite Viterbi alignment and decay-convexity

Nick Whiteley∗, Matt W. Jones †, Aleks Domanski‡

February 14, 2023

Abstract

The infinite Viterbi alignment is the limiting maximum a-posteriori estimate of the unobserved
path in a hidden Markov model as the length of the time horizon grows. For models on state-space
Rd satisfying a new “decay-convexity” condition, we develop an approach to existence of the infinite
Viterbi alignment in an infinite dimensional Hilbert space. Quantitative bounds on the distance to the
Viterbi process, which are the first of their kind, are derived and used to illustrate how approximate
estimation via parallelization can be accurate and scaleable to high-dimensional problems because
the rate of convergence to the infinite Viterbi alignment does not necessarily depend on d. The
results are applied to approximate estimation via parallelization and a model of neural population
activity.

1 Introduction

Let the signal (Xn)n≥0 be a Markov chain with state space Rd whose initial distribution and transition
kernel admit densities µ(x) and f(x, x′) with respect to d-dimensional Lebesgue measure. Let (Yn)n≥0,
called the observations, be each valued in a measurable space (Y,Y), conditionally independent given
(Xn)n≥0 and such that for any A ∈ Y, the conditional probability of {Yn ∈ A} given (Xn)n≥0 can be
written in the form

∫
A
g(Xn, y)ρ(dy), where g : Rd × Y → [0,+∞) and ρ is a measure on Y. Models

of this form, under the names hidden Markov models (HMMs) or state space models, are applied in a
huge variety of fields including econometrics, engineering, ecology, machine learning and neuroscience
[20, 9, 8]. With:

Un(x0, . . . , xn, y0, . . . , yn) := − logµ(x0)− log g(x0, y0)

−
n∑

m=1

log f(xm−1, xm)−
n∑

m=1

log g(xm, ym), (1)

the maximum a-posteriori path estimation problem given (y0, . . . , yn) is to find:

(ξn,0, . . . , ξn,n) := arg min
x0,...,xn

Un(x0, . . . , xn, y0, . . . , yn). (2)

The dependence of ξn,0, . . . , ξn,n on y0, . . . , yn is not shown in the notation. With y := (y0, y1, . . .) ∈ YN,
the infinite Viterbi alignment is a sequence ξ∞ = (ξ∞,n)n≥0 such that for any m ∈ N0,

(ξ∞,0, . . . , ξ∞,m) = lim
n→∞

(ξn,0, . . . , ξn,m), for PY -almost all y, (3)

where in general ξ∞ = (ξ∞,n)n≥0 is an unknown function of the infinite observation sequence y =
(y0, y1, . . .) and PY is some probability measure on Y⊗N. In the “well-specified” case, where PY is
the probability law of the observation process Y0, Y1, . . . induced by the same µ, f and g defining each
function Un in (1), the infinite Viterbi alignment as a function of Y0, Y1, . . . is called the Viterbi process.

Whilst the existence and uniqueness of the left hand side of (2) can be addressed directly in terms
of µ, f , and g, the existence and uniqueness of the infinite Viterbi alignment and Viterbi process are
less obvious. Studies and applications to date have mostly focused on the case where the state space of
the signal is a discrete finite set [2, 1, 12, 15, 14, 13] and there the convergence in (3) is with respect to
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the discrete metric. In this discrete setting the infinite Viterbi alignment and Viterbi process have been
also been studied recently for pairwise Markov models [16, 17]. However, the case of HMMs with signal
state-space Rd is considerably less well-understood: the only work known to the authors which considers
this case is [3], where convergence in (3) is with respect to Euclidean distance, and proofs are given only
for the case d = 1. The work [3] considered two approaches to existence of the Viterbi process, one based
on regeneration times which is reminiscent of ideas used in the discrete case, and one involving dynamic
programming operators.

The assumptions in the present work are most directly comparable to those used in the dynamic
programming approach of [3]—we shall discuss this in more detail in section 4.9—but our setup and
proof techniques are quite different: we develop a new framework in which the infinite Viterbi alignment
is an element of an infinite dimensional Hilbert space, l2(γ), where γ ∈ (0, 1] is a parameter related to
the rate of convergence to the infinite Viterbi alignment. This approach has several benefits. Firstly, it
allows interpretable quantitative bounds to be obtained which measure the distance to the infinite Viterbi
alignment in a norm on l2(γ) which gives a stronger notion of convergence than the pointwise convergence
in (3). Secondly, via a new “decay-convexity” condition our approach provides a new characterization
of the Viterbi process as the fixed point of an infinite dimensional ordinary differential equation which
arises in the limit n → ∞. Thirdly, our analysis conveniently allows us to handle misspecified hidden
Markov models: the situation in which the probability measure PY in (3) need not be the probability
law of Y0, Y1, . . . under the HMM specified by µ, f , g, nor necessarily of the law of the observation
process under any HMM. Misspecification is a topic of interest in the study of asymptotic properties
of maximum likelihood estimators [6] and forgetting of initial conditions [7][Remark 2] for HMMs. It
is important in the present context because in practice there is usually some modelling error, and one
computes maximum a-posteriori estimator as in (2) with little if any knowledge of the probability law of
the observation process.

A shortcoming of the present work is that we do not investigate ergodic or regenerative properties
of the Viterbi process, as conducted in the discrete case in, for example, [1]. We leave this as a topic
for future research. Another restriction of our approach is that we consider only situations in which the
infinite Viterbi alignment, when it exists, is unique, reflecting the fact that our conditions are related
to convexity of Un(·, y). The question of whether our approach can be extended to situations in which
there is non-uniqueness is left for future research.

Existence of the infinite Viterbi alignment can be understood as meaning that maximum a-posteriori
state estimates have vanishing dependence on the observations in the distant future. From a practical
point of view, this is important because it indicates that such future observations may be largely irrelevant
to estimation at the present time and so can be safely ignored, resulting in computational savings. This
idea can be extended to design a scheme for parallelized approximate computation of (ξn,0, . . . , ξn,n) to
which we shall apply our quantitative convergence results.

We start with definitions and Condition 1 concerning µ, f , g in section 2, leading to the statements
of Theorems 1 and 2, which establish quantitative bounds on the differences between maximum a-
posteriori estimators as a function of the observation sequence y = (y0, y1, . . .). Section 4 maps out and
demonstrates the two main steps involved in applying Theorem 1 or 2, and the use of these theorems
to establish the existence of the infinite Viterbi alignment. This is achieved via some intermediate
results for classes of HMMs, combined with example calculations for specific HMMs to illustrate the
reasoning involved. Section 4 also contains discussion of how the quantitative l2(γ) bounds can be used
to analyze the error associated with the aforementioned parallelized approximate estimation scheme, and
an application with numerical results for a model of neural population activity.

2 Definitions

With d ∈ N fixed throughout, when x is a point in RN, we associate with it the vectors x0, x1, . . ., each
in Rd, such that x = [xT

0 x
T
1 . . .]T. With 〈·, ·〉 and ‖ · ‖ the Euclidean inner product and norm on Rd,

define the inner product and norm on RN associated with a given γ ∈ (0, 1],

〈x, x′〉γ :=

∞∑
n=0

γn 〈xn, x′n〉 , ‖x‖γ = 〈x, x〉1/2γ :=

( ∞∑
n=0

γn‖xn‖2
)1/2

.

Let l2(γ) be the Hilbert space consisting of the set {x ∈ RN : ‖x‖γ <∞} equipped with the inner-product
〈·, ·〉γ and the usual element-wise addition and scalar multiplication of vectors over field R. For each
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n ≥ 0, ln2 (γ) denotes the subspace consisting of those x ∈ l2(γ) such that xm = 0 for m > n, with
the convention that l∞2 (γ) ≡ l2(γ). Note that for n < ∞ the set of vectors ln2 (γ) does not actually
depend on γ; the notation ln2 (γ) is used as a reminder that ln2 (γ) is a subspace of l2(γ). Let ‖x‖γ,n :=(∑∞

m=0 γ
|m−n|‖xm‖2

)1/2
. When y ∈ YN we shall identify y = (y0, y1, . . .) where each yn ∈ Y, stopping

short of explicitly regarding y as a vector since for our main results we shall not need to assume that Y
or YN is a vector space.

For x ∈ RN and y ∈ YN define

φn(x, y) := log f(xn−1, xn) + log f(xn, xn+1) + log g(xn, yn), n ≥ 1, (4)

φ̃n(x, y) :=

{
logµ(x0) + log f(x0, x1) + log g(x0, y0), n = 0,

log f(xn−1, xn) + log g(xn, yn), n ≥ 1.
(5)

and for each n ≥ 0 let ∇nφn(x, y) and ∇nφ̃n(x, y) be the vectors in Rd whose ith entries are the partial
derivatives of φn(x, y) and φ̃n(x, y) with respect to the ith entry of xn (the existence of such derivatives
is part of Condition 1 below).

For each n ≥ 0, define the vector field ∇Un : RN × YN → RN,

∇Un(x, y) :=

− [∇0φ̃0(x, y)T, ∇1φ1(x, y)T, · · · ∇n−1φn−1(x, y)T, ∇nφ̃n(x, y)T, 0, 0, · · · ]T. (6)

With these definitions, the first d(n+ 1) elements of the vector ∇Un(x, y) are the partial derivatives of
Un(x0, . . . , xn, y0, . . . , yn) with respect to (x0, . . . , xn), whilst the other elements of the vector ∇Un(x, y)
are zero. Treatment of ∇Un(x, y) as an infinitely long vector allows us to consider (∇Un(·, y))n≥0 as a
sequence of vector fields on the common Hilbert space l2(γ). Define also

αγ,n(y) :=

n∑
m=0

γn−mβm(y), βm(y) := ‖∇mφm(0, y)‖2 ∨ ‖∇mφ̃m(0, y)‖2, (7)

ηn(r, y) := sup
‖x‖2γ,n≤r

‖∇nφn(x, y)‖2 ∨ ‖∇nφ̃n(x, y)‖2. (8)

3 Quantitative l2(γ) bounds for maximum a-posteriori estima-
tors

Condition 1.
a) µ, f , and g(·, y) for all y ∈ Y, are everywhere strictly positive and continuously differentiable.
b) there exist constants ζ, ζ̃, θ such that 0 ≤ θ < ζ/2 ∧ ζ̃, and for all x, x′ ∈ RN and all y ∈ YN,

〈xn − x′n,∇nφn(x, y)−∇nφn(x′, y)〉
≤ −ζ‖xn − x′n‖2 + θ‖xn − x′n‖

(
‖xn−1 − x′n−1‖+ ‖xn+1 − x′n+1‖

)
, ∀n ≥ 1,〈

xn − x′n,∇nφ̃n(x, y)−∇nφ̃n(x′, y)
〉

≤

{
−ζ̃‖x0 − x′0‖2 + θ‖x0 − x′0‖‖x1 − x′1‖, n = 0,

−ζ̃‖xn − x′n‖2 + θ‖xn − x′n‖‖x′n−1 − x′n−1‖, ∀n ≥ 1.

Theorem 1. Assume that Condition 1 holds, and with ζ, ζ̃, θ as therein, let γ be any value in (0, 1] such
that:

ζ > θ
(1 + γ)2

2γ
, ζ̃ > θ

(1 + γ)

2γ
. (9)

Then with any λ such that:

0 < λ ≤
{
ζ − θ (1 + γ)2

2γ

}
∧
{
ζ̃ − θ (1 + γ)

2γ

}
, (10)

and any n ≥ 0,

〈x− x′,∇Un(x, y)−∇Un(x′, y)〉γ ≥ λ‖x− x
′‖2γ , ∀x, x′ ∈ ln2 (γ), y ∈ YN. (11)
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For any y ∈ YN, amongst all the vectors in ln2 (γ) there is a unique vector ξn such that ∇Un(ξn, y) = 0,
and

sup
m∈N0,m≥n

‖ξn − ξm‖2γ ≤
γn

λ2
ηn
(
λ−2αγ,n(y), y

)
+
γn+1

λ2
ηn+1

(
γλ−2αγ,n(y), y

)
+

1

λ2

∞∑
k=n+2

γkβk(y). (12)

The proof of Theorem 1 is in appendix B. We pass several remarks on this result.

• To connect Theorem 1 with the setup from section 1, note that since ∇Un(ξn, y) = 0, the first
d(n + 1) elements of the vector ξn solve the estimation problem (2), and since ξn ∈ ln2 (γ), the
remaining elements of ξn are zero. Note that the dependence of ξn on y is not shown in the
notation.

• When Condition 1 holds, there always exists γ ∈ (0, 1) satisfying (9) and λ satisfying (10) because
limγ→1(1 + γ)2/2γ = limγ→1(1 + γ)/γ = 2 and Condition 1 requires 0 ≤ θ < ζ/2 ∧ ζ̃.

• If the right hand side of (12) converges to zero as n → ∞, then (ξn)n≥0 is a Cauchy sequence in
l2(γ). Whether or not this convergence occurs depends on value of γ, the ingredients µ, f and g of
the HMM and the y in question, and we shall return this topic in section 4.

From hereon (11) will be referred to as “decay-convexity” of Un. Note that when γ = 1, (11) says ex-
actly that p(x0, . . . , xn|y0, . . . , yn) is λ-strongly log-concave in (x0, . . . , xn) in the sense of [18], which guar-
antees that p(x0, . . . , xn|y0, . . . , yn) has a unique maximiser. This begs the question, if (ξn,0, · · · , ξn,n) is
a maximiser of p(x0, . . . , xn|y0, . . . , yn), then can ξ∞ be characterized as a maximiser of some function?
As we shall see next, the answer is to this question appears to be “no”, but an alternative and closely
related interpretation of ξ∞ is available if one introduces the vector field ∂U : RN × YN → RN,

∂U(x, y) := −[∇0φ̃0(x, y)T, ∇1φ1(x, y)T, ∇2φ2(x, y)T, · · · ]T. (13)

Condition 2. For some given y ∈ YN,
a) there exists a finite constant χ such that for all n and x ∈ l2(γ),

‖∇nφn(x, y)‖2 ∨ ‖∇nφ̃n(x, y)‖2 ≤ βn(y) + χ
(
‖xn−1‖2 + ‖xn‖2 + ‖xn+1‖2

)
,

b)
∑∞
n=0 γ

nβn(y) <∞,
c) x 7→ ∂U(x, y) is continuous in l2(γ).

Theorem 2 below shows that, under the assumptions of Theorem 1 and additionally Condition 2, ξ∞
is the fixed point of an infinite dimensional ODE, associated with the vector field ∂U(·, y). It is important
to note here that the vector ∂U(x, y) ∈ RN is the element-wise limit as n→∞ of the vector ∇Un(x, y).
Indeed it can be read off from (6) that for any given x and y, each element of the vector ∇Un(x, y) is
constant in n for all n large enough. However, in general for some given x, y, the limit limn→∞ Un(x, y)
does not exist, so it is a characterization of ξ∞, as a fixed point of an ODE, rather than a maximiser of
some function which is fruitful.

Theorem 2. In addition to the assumptions of Theorem 1 and with γ as therein, assume that for some
given y ∈ YN Condition 2 holds. Then with λ as in Theorem 1,

〈x− x′, ∂U(x, y)− ∂U(x′, y)〉γ ≥ λ‖x− x
′‖2γ , for all x, x′ ∈ l2(γ). (14)

There exists a globally defined and unique flow Φ : (t, x) ∈ R+ × l2(γ) 7→ Φ(t, x) ∈ l2(γ) which solves the
Fréchet ordinary differential equation,

d

dt
Φ(t, x) = −∂U(Φ(t, x), y), Φ(0, x) = x, (15)

this flow has a unique fixed point, ξ∞ ∈ l2(γ), and this point satisfies ∂U(ξ∞, y) = 0. With (ξn)n≥0 as
in Theorem 1,

sup
m∈N0∪{∞},m≥n

‖ξn − ξm‖2γ ≤
1

λ2

(
γn−1αγ,n(y)

2χ

λ2
+

∞∑
k=n

γkβk(y)

)
, (16)

and ‖ξn − ξ∞‖γ → 0 as n→∞.
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The proof of Theorem 2 is in appendix B. In summary, the assumptions a)-b) of Condition 2 ensure
that ∂U(·, y) maps l2(γ) to itself. Combined with the continuity in assumption c) in Condition 2 and
(14), this allows an existence and uniqueness result of [4] for dissipative ordinary differential equations
on Banach spaces to be applied. It is from here that the Fréchet derivative (15) arises. Background
information about Fréchet derivatives is given in appendix A.1.

4 Discussion

4.1 A roadmap for applying Theorems 1 and 2

Our next objective is to set out and demonstrate mathematical tools which enable application of Theo-
rems 1 or 2. For Theorem 1 there are two main tasks in such an application: firstly verifying Condition
1 and secondly proving that the right-hand side of (12) converges to zero as n → ∞. Addressing these
two tasks separately allows us to accommodate naturally the case of misspecified HMMs, in which the
observation sequence y = (yn)n≥0 appearing in (12) need not be a realization from the HMM specified
by µ, f , g, nor in fact any HMM. In sections 4.2 and 4.3 we give intermediate and generic results to help
tackle these two main tasks for classes of HMMs, with calculations for a specific example in section 4.4.

In order to apply Theorem 2, one must additionally verify Condition 2, and calculations for a specific
example are given in 4.5. In section 4.6 we address the use of Theorem 2 to quantify the error associated
with parallelized approximation to MAP estimators, demonstrated with numerical results in the context
of a model of neural population activity in section 4.7.

4.2 Verifying Condition 1

Lemma 1 focuses on a class of models with linear and Gaussian signals together with conditional dis-
tributions of the observations given signals which are not necessarily log-concave as a function of the
signal. By contrast, Lemma 2 addresses a class of nonlinear, non-Gaussian signal models, combined with
conditional distributions of observations given signal which are strongly log-concave. Here the minimum
and maximum eigenvalues of a real, symmetric matrix, say B, are denoted ρmin(B), ρmax(B).

Lemma 1. Assume a) and b):
a) The signal satisfies the following vector autoregressive model:

Xn = AXn−1 + b+Wn, (17)

where for n ∈ N, Wn ∼ N (0,Σ) is independent of other random variables, X0 ∼ N (b0,Σ0) , Σ and Σ0

are positive definite, A is a d× d matrix and b and b0 are length-d vectors.
b) For each y ∈ Y, g(·, y) is strictly positive, continuously differentiable and there exists λg ∈ R such
that for all x, x′ ∈ Rd, y ∈ Y,

〈x− x′,∇x log g(x, y)−∇x log g(x′, y)〉 ≤ λg‖x− x′‖2. (18)

If the inequality θ < ζ/2 ∧ ζ̃ is satisfied by:

ζ =
1 + ρmin(ATA)

ρmax(Σ)
− λg, (19)

ζ̃ =
1

ρmax(Σ)
∧
{

1

ρmax(Σ0)
+
ρmin(ATA)

ρmax(Σ)

}
− λg, (20)

θ =
ρmax(ATA)1/2

ρmin(Σ)
, (21)

then Condition 1 holds.

The proof is in section appendix C. We pass the following remarks on this result:

• The condition (18) is called semi-log-concavity of x 7→ g(x, y), generalizing log-concavity by allowing
λg ∈ R, rather than only λg ≤ 0.
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• The condition θ < ζ/2∧ ζ̃ can be interpreted as balancing the magnitude of temporal correlation in
(17) against the fluctuations of Wn and the degree to which the mapping x 7→ g(x, y) is informative
about x. As λg → −∞ the mapping x 7→ g(x, y) becomes more strongly log-concave, and by

inspection of (19)-(21) the condition θ < ζ/2 ∧ ζ̃ can always be achieved if λg takes a negative
value large enough in magnitude, with other quantities on the right of the equations (19)-(21) held
constant. On the other hand, if ρmax(Σ)−1 ∧ ρmax(Σ0)−1 > λg, which implies ζ ∧ ζ̃ > 0 for any

value of ρmin(ATA), the condition θ < ζ/2 ∧ ζ̃ can be achieved if ρmax(ATA) is small enough.

• The fact that ζ, ζ̃ and θ in (19)-(21) depend only on eigenvalues of A, Σ and Σ0 and the semi-
concavity parameter λg means they, and consequently λ and γ, do not necessarily depend on
dimension. As a simple example consider the case: λg ≤ 0, A = aId and Σ = σ2Id, with |a| < 1

and σ2 > 0. In this situation θ < ζ/2 ∧ ζ̃ holds, and γ and λ can be chosen to depend only on |a|
and σ2 and be such that (10) holds.

Lemma 2. Assume:
a) the signal satisfies

Xn = A(Xn−1) +Wn, (22)

where for n ∈ N, Wn is independent of other random variables and has density proportional to e−ψ(w),
and µ(x) ∝ e−ψ0(x), where ψ,ψ0 : Rd → R are continuously differentiable and have bounded, Lipschitz
gradients in the sense that:

sup
w
‖∇ψ0(w)‖ ∨ ‖∇ψ(w)‖ ≤ Lψ,

‖∇ψ(w)−∇ψ(w′)‖ ∨ ‖∇ψ0(w)−∇ψ0(w′)‖ ≤ L∇ψ‖w − w′‖,

A is continuously differentiable, and has bounded, Lipschitz gradient in the sense that:

sup
x
‖∇A(x)‖op ≤ LA, ‖∇A(x)−∇A(x′)‖op ≤ L∇A‖x− x′‖,

where ∇A(x) is the Jacobian matrix of x 7→ A(x), and ‖ · ‖op is the Euclidean operator norm.
b) for each y ∈ Y, x 7→ g(x, y) is strictly positive, continuously differentiable and there exists λg < 0
such that for all x, x′ ∈ Rd, y ∈ Y,

〈x− x′,∇x log g(x, y)−∇x log g(x′, y)〉 ≤ λg‖x− x′‖2. (23)

If θ < ζ/2 ∧ ζ̃ is satisfied with:

ζ = ζ̃ = −(L∇ψ + L2
AL∇ψ + LψL∇A)− λg,

θ = L∇ψLA,

then Condition 1 holds.

The proof is in section appendix C.

4.3 Behaviour of αγ,n(y) and βn(y) as n→∞
Lemma 3 and Lemma 4 are intermediate results which will be applied to bound the right hand sides of
(12) and (16). The proofs of these two lemmas are in appendix C.

Lemma 3. For any nonnegative random variables (Zn)n≥0 , if there exists p > 0 and s > 0 such that

sup
n≥0

E[Zsn]

(n+ 1)p
<∞,

then for any ρ ∈ (0, 1),
sup
n≥0

ρnZn <∞, a.s.

Lemma 4. If Y = (Yn)n≥0 is any Y-valued stochastic process with law denoted PY such that for some
s ∈ (0, 1] and p > 0

sup
n≥0

1

(n+ 1)p
E
[
‖ ∇x log g(x, Yn)|x=0 ‖

2s
]
<∞,

6



then for any ρ ∈ (0, 1) and any γ > 0,

sup
n≥0

ρnαγ,n(y) <∞ and sup
n≥0

ρnβn(y) <∞, for PY -almost all y.

For any ρ̃ ∈ (ρ, 1), there exist C(y) and D(y) such that C(y) ∨D(y) <∞ for PY -almost all y, and

ρnαγ,n(y) ≤ ρ̃nC(y), and

∞∑
k=n

ρkβk(y) ≤ ρ̃nD(y), for all n and PY -almost all y.

4.4 An example with a Gaussian signal and heavy-tailed observations

In this section we consider an instance of the model class addressed in Lemma 1 and the application of
Theorem 1 to it. With d = 1 and Y = R we consider

Xn = AXn−1 +Wn, Yn = Xn + Vn, (24)

where A ∈ R, |A| < 1, Wn ∼ N (0, 1), and Vn follows a Student’s-t distribution with one degree of
freedom:

g(x, y) = π−1/2{1 + (y − x)2}−1. (25)

The mapping x 7→ g(x, y) is not log-concave, so (18) is not satisfied with any λg ≤ 0, but it is satisfied
for some λg > 0. Indeed we have:

∂

∂x
log g(x, y) =

−2(x− y)

1 + (x− y)2
,

∂2

∂x2
log g(x, y) = −2

1− 2(x− y)2

[1 + (x− y)2]2
,

from which follows that ∂2

∂x2 log g(x, y) ≤ 2, uniformly in x and y, and in turn that (18) holds with
λg := 2.

For (24) with d = 1, the matrix A in the signal model (17) is reduced to a single real-valued number
and ρmax(ATA) = A2. Thus in accordance with the discussion following Lemma 1, if we take the scalar
|A| < 1 small enough, then θ < ζ/2∧ ζ̃ is achieved and thus by Lemma 1, Condition 1 holds and Theorem
1 may be applied.

Our next step is to obtain a simplified bound for the right-hand side of the bound (12) from Theorem
1. By direct calculations we find: [

∂

∂x
log g(x, y)

∣∣∣∣
x=0

]2

≤ 4|yn|2, (26)

there exists a finite constant χ such that:

|∇nφn(x)|2 ∨ |∇nφ̃n(x)|2 ≤ χ(|xn−1|2 + |xn|2 + |xn+1|2) + 4|yn|2

and
βn(y) ≤ 4|yn|2, ηn(r, y) ≤ r

γ
+ 4|yn|2.

From (12) we obtain:

sup
m∈N0,m≥n

‖ξn − ξm‖2γ ≤
γn

λ2

(
χλ−2αγ,n(y)

γ
+ 4|yn|2

)
+
γn+1

λ2

(
χλ−2αγ,n(y) + 4|yn+1|2

)
+

1

λ2

∞∑
k=n+2

γkβk(y). (27)

We now seek assumptions on the observations under which the right hand side of (27) converges to
zero as n→∞, in which case (ξn)n≥0 is a Cauchy sequence. We first consider the case of a well-specified
model, where PY is the law of the random variables (Yn)n≥0 distributed according to (24). We approach
this using Lemma 4 and Lemma 3.

From (24), using |A| < 1 and the distributional assumptions on (Wn)n≥0 and (Vn)n≥0, we have for
any s ∈ (0, 1/2), (|a|+ |b|)2s ≤ |a|2s + |b|2s,

sup
n≥0

E[|Yn|2s] ≤ sup
n≥0

E[|Xn|2s] + E[|V0|2s] <∞,
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and using (26)

sup
n≥0

E

[(
∂

∂x
log g(x, Yn)

∣∣∣∣
x=0

)2s
]
≤ 4s sup

n≥0
E[|Yn|2s] <∞. (28)

Having established (28) we may apply Lemma 4 to bound αγ,n(y) and
∑
k≥n+1 γ

kβk(y) and Lemma 3

with there Zn = |Yn|2 to bound γn|Yn|2. We thus find that for any γ̃ ∈ (γ, 1) there exists C(y) such that
C(y) <∞ for PY -almost all y, and the right hand side of (27) is bounded by C(y)γ̃n for PY -almost all
y. This implies that there exists a set in Y?γ ⊂ YN such that under (24), PY (Y?γ) = 1, for any y ∈ Y, the
right hand side of (27) converges to zero as n→∞, and ξn is thus a Cauchy sequence.

Concerning the misspecified case, suppose that Y = (Yn)n≥0 does not necessarily follow (24) but
rather is any R-valued stochastic process, with law denoted PY , such that for some p > 0 and s > 0:

sup
n≥0

E[|Yn|2s]
(1 + n)p

<∞.

Then by Lemma 3, supn≥0 γ
n|yn|2 <∞, for PY -almost all y; via (26),

sup
n≥0

E

[(
∂

∂x
log g(x, Yn)

∣∣∣∣
x=0

)2s
]
<∞,

and Lemma 4 can be applied to again show that the right hand side of (27) is a bounded by C(y)γ̃n for
all n ≥ 0, PY -almost all y, γ̃ ∈ (γ, 1) and some C(y) <∞.

4.5 An example with a nonlinear, nonstationary, non-Gaussian signal

In this section we consider an instance of the model class addressed in Lemma 2 and the application of
Theorem 2 to it. With Y = Rd, the model of interest is:

Xn = A(Xn−1) +Wn Yn = Xn + Vn, (29)

where A and (Wn)n≥0 are taken to satisfy the assumptions of Lemma 2 and Vn ∼ N (0, σ2
yIn), so that in

Lemma 2 we can take λg = −σ−2
y .

In the case d = 1, an example of a function ψ (or ψ0) which is continuously differentiable and has a
bounded, Lipschitz gradient in the sense of Lemma 2 is the Huber function, with some c > 0:

ψ(x) =

{
1
2cx

2, |x| ≤ c
|x| − c

2 , |x| > c.

By taking σ2
y small enough the condition θ < ζ/2∧ ζ̃ in Lemma 2 is satisfied and therefore Condition

1 holds. We now turn to verification of Condition 2. By direct calculation:

βn(y) = ‖ ∇x log g(x, yn)|x=0 ‖
2 = ‖yn‖2/σ4

y. (30)

and, using the same estimates as in the proof of Lemma 2, there exists a finite constant c such that for
any y ∈ Y,

‖∇nφn(x, y)−∇nφn(x′, y)‖ ∨ ‖∇nφ̃n(x, y)−∇nφ̃n(x′, y)‖
≤ c

(
‖xn−1 − x′n−1‖+ ‖xn − x′n‖+ ‖xn+1 − x′n+1‖

)
, (31)

and assumption a) of Condition 2 holds for all y ∈ YN.
Now let Y?γ := {y = (y0, y1, . . .) ∈ YN :

∑
n γ

n‖yn‖2 < ∞}. Considering (30), clearly assumption b)
of Condition 2 holds for any y ∈ Y?γ . It remains to verify assumption c) of Condition 2. To do so we
combine the following identity:

‖∂U(x, y)− ∂U(x′, y)‖2γ = ‖∇0φ̃0(x, y)−∇0φ̃0(x′, y)‖2

+
∑
n≥1

γn‖∇nφn(x, y)−∇nφn(x′, y)‖2

with (31).
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We have thus established that Condition 2 holds and hence Theorem 2 holds for any y ∈ Y?γ . Our
next objective is to exhibit conditions under which PY (Y?γ) = 1 and establish the rate at which the
right hand side of the bound (16) from Theorem 2 converges to zero exponentially hast as n → ∞, for
PY -almost all y.

Consider the well-specified case, that is where PY is the law of the observations (Yn)n≥0 corresponding
to (29). To control the growth of moments of ‖Yn‖ over time and apply Lemma 3 we shall assume that
‖A(x)−A(x′)‖ ≤ ‖x− x′‖, in which case ‖A(x)‖ ≤ ‖A(0)‖+ ‖x‖,

‖Xn‖ ≤ ‖A(Xn−1)‖+ ‖Wn‖ ≤ ‖A(0)‖+ ‖Xn−1‖+ ‖Wn‖ ≤ n‖A(0)‖+

n∑
m=1

‖Wn‖+ ‖X0‖

and for any s ∈ (1/2, 1), by Minkowski’s inequality,

E[‖Yn‖2s]1/2s ≤ E[‖Xn‖2s]1/2s + E[‖V0‖2s]1/2s

≤ n‖A(0)‖+ nE[‖W1‖2s]1/2s + E[‖X0‖2s]1/2s + E[‖V0‖2s]1/2s. (32)

This estimate allows us to apply Lemma 3 with Zn there taken to be ‖Yn‖2, and combined with (30) we
obtain for any γ̃ ∈ (γ, 1),

∞∑
n=0

γnβn(y) ≤ σ−4
y

∞∑
n=0

γn‖yn‖2

≤ σ−4
y

(
sup
n≥0

γ̃n‖yn‖2
) ∞∑
n=0

γn

γ̃n
<∞, for PY -almost all y.

Therefore under (29), PY (Y?γ) = 1. The bound (32) also allows Lemma 4 to be applied, and we conclude
that there exists C(y) such that C(y) < ∞ for PY -almost all y, and the right hand side of (16) is
bounded by C(y)γ̃n for all n ≥ 0 and PY -almost all y.

Again using Lemma 4, we reach the same conclusion in the misspecified case if PY is the law of any
Rd-valued stochastic process Y = (Yn)n≥0 such that for some p > 0 and s > 0,

sup
n≥0

E[‖Yn‖s]
(1 + n)p

<∞.

4.6 Parallelized approximate optimization

The existence of the limit in (3), as has been verified via Theorems 1 and 2 in the preceeding sections,
suggests that (2) can be solved approximately using a collection of optimization algorithms which process
data segments in parallel. With ∆ and ` = (n+ 1)/∆ assumed to be integers, consider the partition:

{0, . . . , n} =
⋃̀
k=1

Ak, Ak := {(k − 1)∆, . . . , k∆− 1},

and for an integer δ > 0 consider the δ-enlargement of each Ak,

Ak(δ) := {m ∈ {0, . . . , n} : ∃a ∈ Ak : |m− a| ≤ δ}. (33)

Suppose the ` optimization problems:

arg max
xAk(δ)

p(xAk(δ)|yAk(δ)), k = 1, . . . , `, (34)

where xAk(δ) = (xm;m ∈ Ak(δ)), yAk(δ) = (ym;m ∈ Ak(δ)), are solved in parallel. Then in a post-
processing step, for each k, the components indexed byAk(δ)\Ak of the solution to arg maxxAk(δ)

p(xAk(δ)|yAk(δ))

are discarded, and what remains concatenated across k to give an approximation to the solution of (2).
If it takes T (n) time to solve (2) the speed-up from parallelization could be as much as a factor of
T (n)/T (∆ + 2δ). The Euclidean norm of the approximation error associated with the first segment in
the parallelization scheme can be bounded using (12) or (16). The following is an immediate corollary
of (16).

9



Corollary 1. If the assumptions of Theorem 2 hold for some given y ∈ YN,

sup
n≥∆+δ

∆∑
m=0

‖ξ∆+δ,m − ξn,m‖2 ≤ γ−∆ sup
n≥∆+δ

‖ξ∆+δ − ξn‖2γ

≤ 1

λ2

(
γδ−1 2χ

λ2
αγ,∆+δ(y) +

∞∑
k=δ

γkβ∆+k(y)

)
. (35)

The right hand side of this bound can be controlled using the same tools and techniques demonstrated
in sections 4.4 and 4.5 to analyse its convergence to zero as δ →∞.

4.7 Application to a model of neural population activity

State-space models are used in neuroscience to examine time-varying dependence in the firing activity of
neural populations and have been advocated for use in detecting cell assemblies in the brain – ensembles
of neurons exhibiting coordinated firing – thought to play a key role in memory formation and learning
[19, 5]. Neural spiking data in the form of multivariate binary time series are commonly modelled using

random fields with time-dependent parameters. Here yn = (y
(i)
n,k, 1 ≤ i ≤ N, 1 ≤ k ≤ R) ∈ {0, 1}NR =: Y,

where y
(i)
n,k ∈ {0, 1} indicates absence or presence of spiking activity of the i’th of N neurons during the

n’th time bin of the k’th of R replicated experimental trials.
Similarly to [19] we consider a random field model for yn given xn, where the latent state has

components xn = (x
(i,j)
n , 1 ≤ i < j ≤ N) ∈ RN(N−1)/2, that is d = N(N − 1)/2., and:

g(xn, yn) = exp

∑
j>i

x
(i,j)
n

R

R∑
k=1

(y
(i)
n,k − c

(i))(y
(j)
n,k − c

(j))− C(xn)

 . (36)

Where c(i) is the average firing rate of the ith neuron over the R trials. The interest in this model is that

the variables x
(i,j)
n can be interpreted as a time-dependent statistical coupling between the firing activity

of neurons i and j. The normalizing factor C(xn) is too expensive to compute for anything more than
a handful of neurons and following [5] we consider the pseudo-likelihood approximation:

g̃(xn, yn) =

N∏
i=1

R∏
k=1

exp(y
(i)
n,kz

(i)
n,k)

1 + exp(y
(i)
n,kz

(i)
n,k)

, (37)

z
(i)
n,k =

1

R

∑
j<i

x(j,i)
n (y

(j)
n,k − c

(j)) +
∑
i<j

x(i,j)
n (y

(j)
n,k − c

(j))

 .

Both (36) and (37) are log-concave functions of xn. Combining either with a prior model for the signal
process as in (17) with b = 0, A = aIN(N−1)/2, |a| < 1, Σ = σ2IN(N−1)/2, where IN(N−1)/2 is the identity
matrix of size N(N − 1)/2 and the prior distribution for X0, µ, set to the stationary distribution of (17)
hence by Lemma 1, Condition 1 holds and one may take γ, λ in Theorem 1 independently of d and hence
N .

For both (36) and (37) the fact that Y = {0, 1}NR is a set with finitely many elements, combined
with the linear-Gaussian nature of the signal implies that for any y = (yn)n≥0 ∈ YN, supn βn(y) < ∞,
supn αn,γ(y) <∞, and supn ηn(r, y) <∞ for any r. Therefore applied to either of these two models, for
any y ∈ YN, the right hand side of the bound (12) from Theorem 1 converges to zero as n→∞.

4.8 Numerical results

We consider neural recordings of action potential spike trains from 30 medial prefrontal cortical neurons.
The data were recorded using a 384-electrode Neuropixels probe [11] while an adult male rat navigated
a 3-arm maze. Each recording was over a duration 35 seconds, from -15 to +20 seconds around the rat’s
arrival at particular location on the maze called the “reward point”. The presence or absence of spiking
per neuron was recorded in bins of width 10 millisecond, so that n = 3500. The data were divided in
two subsets. The first consisted of R = 76 replicates of “correct” trials in which the rat navigated a
particular route on the maze and consequently received a sweet reward at the reward point. The second
data subset consisted of R = 22 “error” trials, in which the rat did not take that route and consequently
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Figure 1: Relative error in the parallelization scheme vs. the overlap parameter δ. N = 5 neurons (dash),
N = 30 neurons (solid), ` = 4 cores (�), ` = 8 cores (×) and ` = 6 cores (◦).
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Figure 2: Left: relative error vs. overlap parameter δ as in figure 1 but on logarithmic scale. Right:
Relative execution time vs. number of cores. δ = 100 (solid), δ = 10, (dashed).

received no reward. The scientific objective in analyzing these data is to study time-varying statistical
interactions across the population of neurons as the rat approaches and passes through the reward point,
and to identify differences in these interactions between the “correct” and “error” trials. We consider
the pseudo-likelihood (37) combined with signal model described below that equation, and since there
are N = 30 neurons we have d = 435.

Our first objective is to numerically evaluate the error and speed-up associated with the parallelization
scheme. For this purpose, gradient-descent was used to approximately solve each of the ` optimization
problems (34) for the neural model described above applied to the data subset of “correct” trials. The `
instances of gradient-descent were implemented in parallel using MATLAB’s “parfor” command across
` Intel Sandy Bridge cores, each running at 2.6 Ghz, on a single blade of the University of Bristol’s
BlueCrystal Phase 3 cluster. 1.5×104 iterations of gradient descent were performed with a constant step
size 10−8 in each instance. Let {ξ̂n,0(`, δ), . . . , ξ̂n,n(`, δ)} be the resulting approximation to (2) obtained
by combining the approximate solutions to (34) as described in section 1. Figure 1 shows the relative
error: √∑n

m=0 ‖ξ̂n,m(`, δ)− ξ̂n,m(1, 0)‖2√∑n
m=0 ‖ξ̂n,m(1, 0)‖2

(38)

against the overlap parameter δ. Results are shown for the full data set from N = 30 neurons and also for
a subset consisting of the first N = 5 neurons. Here ∆ is determined by ∆ = (n+ 1)/`. The parameters
of the state-space model were set to a = 0.95 and σ = 10−4.

Corollary 1 suggests that (38) should decay to zero exponentially fast as δ grows. This is apparent
in figure 1. A reduction in error as ` decreases can also be observed. The plot on the left of figure 2
shows the same results as figure 1 but with relative error on a logarithmic scale. Since the lines in figure
2 are close to parallel it appears that there is no degradation with N (hence d) in the exponential rate
at which the relative error decays as δ grows. The plot on the right of figure 2 also shows the relative
execution time of the parallelized scheme, that is the time taken to compute {ξ̂n,m(`, δ), . . . , ξ̂n,n(`, δ)}
using ` = 2, 4, . . . , 16 cores divided by the time to compute {ξ̂n,0(1, 0), . . . , ξ̂n,n(1, 0)}. Moving from 1 to
2 and 4 cores results in a roughly linear speed-up. Beyond 4 cores the speed-up is sublinear, which may
be due to communication overhead associated with parallelization. From figure 2, δ = 100 and ` = 4
results in a relative error of less that 0.1% and a speed-up from parallelization of 1/0.32 = 3.125.

Our next objective is to interpret the state-estimates obtained for the two data subsets. Figure 3
shows maximum a-posteriori state estimates of the pairwise coupling parameters xijn for the two data
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Figure 3: First and second rows: “correct” trials, third and fourth rows: “error” trials. Second and
third row show {ξ̂n,0(4, 100), . . . , ξ̂n,n(4, 100)} with time on the horizontal axis in seconds relative to the

reward delivery time. First and fourth rows display ξ̂n,m(4, 100) as a heat map, for m corresponding
left-to-right to: 3 and 1 seconds before reward delivery, delivery time itself, and 1 and 3 seconds after
reward delivery. These times are marked by the vertical blue lines in the second and third row plots.

subsets, consisting respectively of “correct” and “error” trials. The first and fourth rows in figure 3
display ξ̂n,m(4, 100) as a heat map, for five different time steps: m corresponding to 3 (t = −3) and 1
(t = −1) seconds before arrival at the reward point; at the reward point (t = 0), and 1 (t = 1) and 3
(t = 3) seconds after pass the reward point. These times are marked by vertical blue lines in the second
and third row plots in figure 3.

Signatures of neural population interaction emerge from the estimates of pairwise coupling parame-
ters: on correct trials, the red coloring on the heat-maps corresponds to strong positive influence from
a small minority of neurons onto a larger pool, at t = −3, t = 1, t = 0 and extending to t = 1. Such
anticipatory activity could reflect reward expectancy. Conversely, on “error” trials the predominantly
blue colouring on the heatmaps at t = −1, t = 0 and t = 1 indicates negative pairwise interactions shortly
before, during and after the reward point. The estimates on the “error” trials also present greater varia-
tion over time than in the “correct” trials, possibly reflecting an error signal or the consolidation of trial
outcome-related information.

4.9 Comparison to the assumptions of [3]

The assumptions of [3, Thm 3.1] require that x 7→ µ(x) and (x, x′) 7→ f(x, x′) are log-concave, and that
x 7→ g(x, y) is strongly log-concave, uniformly in y. As per section 4.2, our Condition 1b) does not
require all these conditions to hold simultaneously. Assumption (a4) (sic.) of [3, Thm 3.1] is that with
f(x, x′) ∝ e−α(x,x′), there is a non-decreasing function g : R+ → R+ growing to +∞ not faster than
polynomially, such that for all M > 0,

α(x, x′) ≤M =⇒
∣∣∣∣ ∂2

∂x∂x′
α(x, x′)

∣∣∣∣ ≤ g(M), for all x, x′. (39)

Putting aside the issue of once versus twice differentiability, this assumption is related to the terms
multiplied by θ in our Condition 1b), but allows greater generality because g(M) can grow with M ,
where as our Condition 1b) requires a value of θ uniform in x, x′. [3, Thm 3.1] also places an assumption
on the asymptotic behaviour of n−1Un(X0, . . . , Xn, Y0, . . . , Yn) as n → ∞ which may be regarded as a
counterpart to the assumptions of Lemma 4.
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A Fréchet derivatives and differential equations

A.1 Fréchet derivatives

The following definitions can be found in [10, App. A]. For Banach spaces V,W over R, with respective
norms ‖ · ‖V , ‖ · ‖W , a function ϕ : V → W has a directional derivative at x ∈ V in direction v ∈ V if
there exists ∂ϕ(v;x) ∈W such that

lim
ε→0

∥∥∥∥ϕ(x+ εv)− ϕ(x)

ε
− ∂ϕ(v;x)

∥∥∥∥
W

= 0.

The function ϕ is Gâteaux differentiable at x if ∂ϕ(v;x) exists for all v ∈ V and Dϕ(·;x) : v 7→ ∂ϕ(v;x)
is a bounded linear operator from V to W , in which case Dϕ(·;x) is called the Gâteaux derivative at x.
The function ϕ is additionally Fréchet differentiable at x if

lim
ε→0

sup
v:‖v‖V =1

∥∥∥∥ϕ(x+ εv)− ϕ(x)

ε
− ∂ϕ(v;x)

∥∥∥∥
W

= 0, (40)

in which case the operator Dϕ(·;x) is called the Fréchet derivative at x.

A.2 Ordinary differential equations on the Hilbert space

In the following proposition the operator of orthogonal projection from l2(γ) to ln2 (γ) is written Πn.

Proposition 1. For a given triple (γ, F, n) consisting of a constant γ ∈ (0, 1], a mapping F : l2(γ) →
l2(γ) and n ≥ 0 ∪ {∞}, assume that a)-c) hold:
a) F is continuous with respect to the norm ‖ · ‖γ on l2(γ),
b) there exists λ > 0 such that for all x, x′ ∈ ln2 (γ),

〈x− x′, F (x)− F (x′)〉γ ≤ −λ‖x− x
′‖2γ ,

c) F (x) = F ◦Πn(x) and F (x) ∈ ln2 (γ) for all x ∈ l2(γ).
Then there exists a globally defined and unique flow Φ : (t, x) ∈ R+ × l2(γ) 7→ Φ(t, x) ∈ l2(γ) solving

the Fréchet differential equation,

d

dt
Φ(t, x) = F (Φ(t, x)), Φ(0, x) = x.

This flow has a unique in ln2 (γ) fixed point, ξ, and this point satisfies F (ξ) = 0 and ‖Φ(t, x) − ξ‖γ ≤
e−λt‖x− ξ‖γ for all x ∈ ln2 (γ) and t ≥ 0.

The proof is postponed.
The term d

dtΦ(t, x) in Proposition 1 is an application of the Fréchet derivative of Φ(t, x) with respect
to t, that is in (40), V is R equipped with the Euclidean norm, W is the Hilbert space l2(γ), and ϕ is
the map t 7→ Φ(t, x), where in the latter the x argument is regarded as fixed. Similarly with x fixed,
and denoting the Fréchet derivative of t 7→ Φ(t, x) at t by DΦ(·; t, x), the quantity d

dtΦ(t, x) is precisely
DΦ(1; t, x). Thus in particular,

lim
δ↘0

∥∥∥∥Φ(t+ δ, x)− Φ(t, x)

δ
− d

dt
Φ(t, x)

∥∥∥∥
γ

= 0,

which, in general, is stronger than the element-wise convergence of [Φ(t+ δ, x)−Φ(t, x)]/δ to d
dtΦ(t, x).

The following lemma will be used in the proof of Proposition 1.

Lemma 5. If a triple (γ, F, n) satisfies the assumptions of Proposition 1, then with Φ as therein and
any x, x′ ∈ l2(γ),

d

dt
‖Φ(t, x)− Φ(t, x′)‖2γ = 2 〈Φ(t, x)− Φ(t, x′), F (Φ(t, x))− F (Φ(t, x′))〉γ . (41)

Proof. In the case n <∞, assumption c) of Proposition 1 implies that only the first d(n+ 1) elements of
the vector Φ(t, x) depend on t, and in that case the lemma can be proved by the chain rule of elementary
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differential calculus. The following proof is valid for any n ≥ 0∪ {∞} and uses the chain rule of Fréchet
differentiation.

Pick any x, v ∈ l2(γ), write them as x = [xT
0 x

T
1 · · · ]T, v = [vT

0 v
T
1 · · · ]T with each xk, vk ∈ Rd. The

first step is to prove that the mapping ϕ(x) = ‖x‖2γ is Fréchet differentiable everywhere in l2(γ), with
Fréchet derivative Dϕ(v;x) = 2 〈v, x〉γ .

Consider the existence of directional derivatives. For m ∈ N let em denote the vector in l2(γ) whose
mth entry is 1 and whose other entries are zero. The directional derivative ∂ϕ(em;x) clearly exists.

We now need to check the existence of directional derivatives of ϕ in arbitrary directions in l2(γ). To
do so we shall validate the following four equalities:

lim
ε→0

ϕ(x+ εv)− ϕ(x)

ε
= lim
ε→0

lim
m→∞

ϕ(x+ εΠm(v))− ϕ(x)

ε
(42)

= lim
m→∞

lim
ε→0

ϕ(x+ εΠm(v))− ϕ(x)

ε
(43)

= lim
m→∞

2

m∑
k=0

γk 〈vk, xk〉 (44)

= 2 〈v, x〉γ . (45)

For (42), we have for any ε > 0,

|ϕ(x+ εΠm(v))− ϕ(x+ εv)| ≤
∑

k≥m+1

γk
∣∣‖xk‖2 − ‖xk + εvk‖2

∣∣
≤ 3

∑
k≥m+1

γk‖xk‖2 + ε2
∑

k≥m+1

γk‖vk‖2

→ 0, as m→∞, (46)

where the convergence holds since x and v are members of l2(γ).
Let ∇kϕ(x) be the vector in Rd whose ith entry is the partial derivative of ϕ(x) with respect to

the ith element of xk, that is ∇kϕ(x) = 2xk. Since ϕ(x) =
∑∞
k=0 γ

k‖xk‖2, the directional derivative in
direction Πm(v) at x is given by:

∂ϕ(Πm(v);x) = lim
ε→0

ϕ(x+ εΠm(v))− ϕ(x)

ε
=

m∑
k=0

〈vk,∇kϕ(x)〉 = 2

m∑
k=0

γk 〈vk, xk〉 . (47)

Let us now check that the convergence in (47) is uniform in m in order to verify the equality in (43). By
the mean value theorem of elementary differential calculus, for any ε > 0 there exists ym,ε on the line
segment between x and x+ εΠm(v) (so ym,εk = xk for k > m) such that

sup
m

∣∣∣∣ϕ(x+ εΠm(v))− ϕ(x)

ε
− 2 〈Πm(v), x〉γ

∣∣∣∣
= sup

m

∣∣∣∣∑m
k=0 ε 〈vk,∇kϕ(ym,ε)〉

ε
− 2 〈Πm(v), x〉γ

∣∣∣∣
= 2 sup

m

∣∣∣〈Πm(v), ym,ε − x〉γ
∣∣∣

≤ 2 sup
m
‖Πm(v)‖γ‖ym,ε − x‖γ

≤ 2‖v‖2γε, (48)

so the convergence in (47) is indeed uniform in m. Therefore (43) holds.
For the two remaining equalities, (44) is already proved in (47), and (45) holds by Cauchy-Schwartz

combined with the facts that x, v ∈ l2(γ) and that absolute convergence of a series in R implies its
convergence.

We have established that the directional derivative of ϕ at an arbitrary x in an arbitrary direction v
exists and is given by 2 〈v, x〉γ . To prove that ϕ is everywhere Gâteaux differentiable, we also need to
show that for each x, Dϕ(·;x) : v 7→ 2 〈v, x〉γ is a bounded operator from l2(γ) to R. This follows from
Cauchy-Schwartz:

sup
v 6=0

2| 〈v, x〉γ |
‖v‖γ

≤ 2‖x‖γ < +∞, for all x ∈ l2(γ).
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To prove that ϕ is Fréchet differentiable everywhere in l2(γ), it suffices, by [10, App A, Prop A.3],
to check that Dϕ(·;x) is operator-norm continuous in x. This follows again by the Cauchy-Schwartz
inequality:

sup
v 6=0

2| 〈v, x〉γ − 〈v, x′〉γ |
‖v‖γ

= sup
v 6=0

2| 〈v, x− x′〉γ |
‖v‖γ

≤ 2‖x− y‖γ , for all x, x′ ∈ l2(γ).

We have proved that ϕ(x) = ‖x‖2γ is Fréchet differentiable everywhere in l2(γ), with Fréchet derivative
in direction v given by Dϕ(v;x) = 2 〈v, x〉γ .

The proof is completed by an application of the chain rule of Fréchet differentiation:

d

dt
‖Φ(t, x)− Φ(t, x′)‖2γ = Dϕ

(
d

dt
{Φ(t, x)− Φ(t, x′)}; Φ(t, x)− Φ(t, x′)

)
= 2 〈F{Φ(t, x)} − F{Φ(t, x′)},Φ(t, x)− Φ(t, x′)〉γ .

Proof of Proposition 1. Let n ≥ 0∪{∞} be as in the statement of the proposition. Applying assumptions
b) and c) of the proposition, we have for any x, x′ ∈ l2(γ),

〈F (x)− F (x′), x− x′〉γ = 〈F ◦Πn(x)− F ◦Πn(x′),Πn(x)−Πn(x′)〉γ
+ 〈F ◦Πn(x)− F ◦Πn(x′), x−Πn(x)− x′ + Πn(x′)〉γ
≤ −λ‖Πn(x)−Πn(x′)‖2γ + 0

≤ 0.

This global dissipation condition, combined with assumption a) of the proposition allows the application
of [4, Thm 3.4, p.41] on the Hilbert space l2(γ) to give the existence and uniqueness of the globally
defined flow as required.

Under assumption c) of the proposition, F (x) ∈ ln2 (γ) for any x ∈ l2(γ).Then, since Φ(t, x) =

x+
∫ t

0
F (Φ(s, x))ds,we find that if x ∈ ln2 (γ), then Φ(t, x) ∈ ln2 (γ) for all t > 0. Now fix any x, x′ ∈ ln2 (γ)

and define a(t) := ‖Φ(t, x)−Φ(t, x′)‖2γ . Lemma 5 combined with assumption b) of the proposition gives:

d

dt
a(t) ≤ −2λa(t),

from which it follows that
a(t) ≤ a(0) exp(−2λt).

We have thus proved that ‖Φ(t, x) − Φ(t, x′)‖γ ≤ e−λt‖x − x′‖γ for all x, x′ ∈ ln2 (γ). An application of
the Banach fixed point theorem to the restriction of Φ to the Hilbert space ln2 (γ) then gives the existence
of the unique (in ln2 ) fixed point ξ. Since ξ is a fixed point we have for all t > 0

ξ = Φ(t, ξ) = ξ +

∫ t

0

F (Φ(s, ξ))ds = ξ + F (ξ)t,

which implies F (ξ) = 0.

B Proofs for section 3

In Lemma 6 and the proof of Theorem 1 below we shall need the following generalization of the inner-
product 〈·, ·〉γ and norm ‖ · ‖γ , for n ≥ 0,

〈x, x′〉γ,n =

∞∑
m=0

γ|m−n| 〈xm, x′m〉 , ‖x‖γ,n = 〈x, x〉1/2γ,n , x, x′ ∈ l2(γ). (49)

Lemma 6. Assume that Condition 1 holds, and with ζ, ζ̃, θ as therein and γ ∈ (0, 1] assume the following
inequalities hold:

ζ >
θ

2γ
(1 + γ)2, ζ̃ >

θ

2γ
(1 + γ). (50)
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Then for any λ such that:

0 < λ ≤
{
ζ̃ − θ

2γ
(1 + γ)2

}
∧
{
ζ − θ

2γ
(1 + γ)

}
, (51)

any n ≥ 0 and m = 0, . . . , n,

〈x− x′,∇Un(x, y)−∇Un(x′, y)〉γ,m ≥ λ‖x− x
′‖2γ,m, for all x, x′ ∈ ln2 (γ).

Proof. For any x, x′ ∈ ln2 (γ) we have:

〈x− x′,∇Un(x, y)−∇Un(x′, y)〉γ,m
= −γ|m|

〈
x0 − x′0,∇0φ̃0(x)−∇0φ̃0(x′)

〉
−
n−1∑
k=1

γ|k−m| 〈xk − x′k,∇kφk(x)−∇kφk(x′)〉

− γ|n−m|
〈
xn − x′n,∇nφ̃n(x, y)−∇nφ̃n(x′, y)

〉

≥ γm
{
ζ̃‖x0 − x′0‖2 − θ‖x0 − x′0‖‖x1 − x′1‖

}
+

n−1∑
k=1

γ|k−m|
{
ζ‖xk − x′k‖2 − θ‖xk − x′k‖

(
‖xk−1 − x′k−1‖+ ‖xk+1 − x′k+1‖

)}
+ γn−m

{
ζ̃‖xn − x′n‖2 − θ‖xn − x′n‖‖xn−1 − x′n−1‖

}
≥ γm

{
(ζ̃ − θ

2
)‖x0 − x′0‖2 −

θ

2
‖x1 − x′1‖2

}
+

n−1∑
k=1

γ|k−m|
{

(ζ − θ)‖xk − x′k‖2 −
θ

2
‖xk−1 − x′k−1‖2 −

θ

2
‖xk+1 − x′k+1‖2

}
+ γn−m

{
(ζ̃ − θ

2
)‖xn − x′n‖2 −

θ

2
‖xn−1 − x′n−1‖2

}
(52)

= γm
{

(ζ̃ − θ

2
)‖x0 − x′0‖2 −

γ|1−m|

γm
θ

2
‖x0 − x′0‖2

}
n−1∑
k=1

γ|k−m|
{

(ζ − θ)‖xk − x′k‖2 −
γ|k−1−m|

γ|k−m|
θ

2
‖xk − x′k‖2 −

γ|k+1−m|

γ|k−m|
θ

2
‖xk − x′k‖2

}

γn−m
{

(ζ̃ − θ

2
)‖xn − x′n‖2 −

γ|n−1−m|

γn−m
θ

2
‖xn − x′n‖2

}
≥ γm{ζ̃ − θ

2
(1 + γ−1)}‖x0 − x′0‖2

+ {ζ − θ − θ

2
(γ + γ−1)}

n−1∑
k=1

γ|k−m|‖xk − x′k‖2

+ {ζ̃ − θ

2
(1 + γ−1)}γn−m‖xn − x′n‖2

≥ λ
n∑
k=0

γ|k−m|‖xk − x′k‖2, (53)

where the first equality and inequality are due to (6) and Condition 1b); the second inequality uses a
re-arrangement of the terms in the summation and the fact that for any a, b ∈ R, 2|a||b| ≤ |a|2 + |b|2;

the third inequality uses γ|1−m|

γm ∨ γ|n−1−m|

γn−m ≤ 1
γ for 0 ≤ m ≤ n and γ|k−1−m|

γ|k−m|
+ γ|k+1−m|

γ|k−m|
≤ 1

γ + γ ; and the

final inequality holds under the conditions on λ, ζ, ζ̃, θ and γ given in (9) and (10).

Proof of Theorem 1. Throughout the proof, n ≥ 0 and γ ∈ (0, 1] are fixed. Considering (γ,−∇Un, n),
let us validate the assumptions of Proposition 1 in the order: c), then a), then b). Assumption c) of
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Proposition 1 holds due to the definition of ∇Un in (6). Validating assumption a) of Proposition 1
requires that if x → x′ in l2(γ) then ‖∇Un(x, y) − ∇Un(x′, y)‖γ → 0. But we have already validated
assumption c) of Proposition 1, so ∇Un maps l2(γ) into ln2 (γ), and

‖∇Un(x, y)−∇Un(x′, y)‖2γ = ‖∇0φ̃0(x, y)−∇0φ̃0(x′, y)‖2

+

n−1∑
m=1

γm‖∇mφm(x, y)−∇mφm(x′, y)‖2

+ γn‖∇nφ̃n(x, y)−∇nφ̃n(x′, y)‖2.

Also by assumption c) of Proposition 1, ∇Un(x, y) depends on x only through (x0, . . . , xn). These
observations together with Condition 1a) validate assumption a) of Proposition 1. Assumption b) of
Proposition 1 holds by an application of Lemma 6. This completes the verification of the assumptions
of Proposition 1 for (γ,−∇Un, n) and thus establishes the existence of the fixed point ξn.

Our next step is to obtain bounds on ‖ξn‖2γ,n and ‖ξn‖2γ,n+1. An application of Lemma 6 and
Cauchy-Schwartz gives:

‖ξn‖2γ,n ≤
1

λ
〈0− ξn,∇Un(0, y)− 0〉γ,n ≤

1

λ
‖ξn‖γ,n‖∇Un(0, y)‖γ,n,

hence

‖ξn‖2γ,n ≤
αγ,n(y)

λ2
and ‖ξn‖2γ,n+1 = γ‖ξn‖2γ,n ≤ γ

αγ,n(y)

λ2
, (54)

where the equality uses the fact that ‖ξn,m‖ = 0 for m > n.
Now fix any m > n . An application of Lemma 6 and Cauchy-Schwartz gives:

‖ξn − ξm‖2γ,0 ≤
1

λ
〈ξn − ξm,∇Um(ξn, y)− 0〉γ,0 ≤

1

λ
‖ξn − ξm‖γ,0‖∇Um(ξn, y)‖γ,0. (55)

Observe ∇Un(ξn, y) = 0 implies ∇0φ̃0(ξn, y) = ∇kφk(ξn, y) = 0 for all k < n. Combining this fact with
ξn ∈ ln2 (γ),(6), (8) and the bound (54) gives:

‖∇Um(ξn, y)‖2γ,0 =

m−1∑
k=n

γk‖∇φk(ξn, y)‖2 + γm‖∇φ̃m(ξn, y)‖2

≤
n+1∑
k=n

γk‖∇φk(ξn, y)‖2 +

∞∑
k=n+2

γkβk(y)

≤ γnηn
(
αγ,n(y)

λ2
, y

)
+ γn+1ηn+1

(
γ
αγ,n(y)

λ2
, y

)
+

∞∑
k=n+2

γkβk(y). (56)

The proof of the theorem is completed by combining this bound with (55).

Proof of Theorem 2. The first step is to apply Proposition 1 to (γ,−∂U(·, y),∞). From its definition
(13) combined with assumptions b) and c) of Condition 2, it is clear that ∂U(·, y) maps l2(γ) into itself
and Π∞ = Id by definition, so assumption c) of Proposition 1 is satisfied. Assumption c) of Condition 2
is exactly what is required for assumption a) of Proposition 1 to hold. Let us now verify assumption b)
of Proposition 1. For anyx, x′ ∈ l2(γ) and n ≥ 0,

〈x− x′, ∂U(x, y)− ∂U(x′, y)〉γ = 〈x− x′,∇Un(x, y)−∇Un(x′, y)〉γ + ∆n(x, x′) (57)

where

|∆n(x, x′)| = | 〈x− x′, ∂U(x, y)−∇Un(x, y) +∇Un(x′, y)− ∂U(x′, y)〉γ |
≤ ‖x− y‖γ{‖∇Un(x, y)− ∂U(x, y)‖γ + ‖∇Un(x′, y)− ∂U(x′, y)‖γ}. (58)

Using the facts that ∇Un(·, y) = ∇Un(·, y) ◦ Πn and ∇Un(·, y) maps l2(γ) into ln2 (γ), then applying the
instance of assumption b) of Proposition 1 which has already been verified for (γ,−∇Un(·, y), n) in the
proof of Theorem 1, we have for any x, x′ ∈ l2(γ),

〈x− x′,∇Un(x, y)−∇Un(x′, y)〉γ
= 〈Πn(x)−Πn(x′),∇Un(·, y) ◦Πn(x)−∇Un(·, y) ◦Πn(x′)〉γ
≥ λ‖Πn(x)−Πn(x′)‖2γ
→ λ‖x− x′‖2γ as n→∞. (59)
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By (6), (13) and assumptions a) and b) of Condition 2, we have for any x ∈ l2(γ),

‖∇Un(x, y)− ∂U(x, y)‖2γ = γn‖∇nφ̃n(x, y)−∇nφn(x, y)‖2

+

∞∑
k=n+1

γk‖∇nφn(x, y)‖2 → 0 as n→∞. (60)

Combining (57)–(60) gives:

〈x− x′, ∂U(x, y)− ∂U(x′, y)〉γ ≥ λ‖x− x
′‖2γ , (61)

which completes the verification of assumption b) of Proposition 1 for the triple (γ,−∂U(·, y),∞).
The existence of ξ∞ ∈ l2(γ) such that ∂U(ξ∞, y) = 0, together with (61) implies, via the same

arguments as in the proof of Theorem 1, that equations (55) and (56) hold not only for m ∈ N0 but also
for m = ∞. Under assumption a) of Condition 2, the bound: ηn(r, y) ≤ βn(y) + χr/γ holds using (8),
and plugging in this bound completes the proof of (16).

To see that ‖ξn − ξ∞‖γ → 0 as n→∞, applying the Cauchy-Schwarz inequality to (11),

‖x− x′‖2γ ≤
1

λ2
‖∇Un(x, y)−∇Un(x′, y)‖2γ , ∀x, x′ ∈ ln2 (γ).

Choosing x = ξn and x′ = Πn(ξ∞),

‖ξn − ξ∞‖2γ = ‖ξ∞ −Πn(ξ∞)‖2γ + ‖ξn −Πn(ξ∞)‖2γ

≤ ‖ξ∞ −Πn(ξ∞)‖2γ +
1

λ2
‖∇Un(Πn(ξ∞), y)‖2γ .

Combining with (60), ξ∞ ∈ l2(γ) and parts a) and b) of Condition 2 we find that indeed ‖ξn− ξ∞‖γ → 0
as n→∞.

C Proofs for section 4

Proof of Lemma 1. In the setting described in section 4,〈
xn − x′n,∇n log f(xn−1, xn)−∇n log f(x′n−1, x

′
n)
〉

+
〈
xn − x′n,∇n log f(xn, xn+1)−∇n log f(x′n, x

′
n+1)

〉
= −(xn − x′n)T(Σ−1 +ATΣ−1A)(xn − x′n) + (xn − x′n)TΣ−1A(xn−1 − x′n−1)

+ (xn − x′n)TATΣ−1(xn+1 − xn+1),〈
xn − x′n,∇n log f(xn−1, xn)−∇n log f(x′n−1, x

′
n)
〉

= −(xn − x′n)TΣ−1(xn − x′n) + (xn − x′n)TΣ−1A(xn−1 − x′n−1),

〈x0 − x′0,∇0 logµ(x0)−∇0 logµ(x′0)〉
= −(x0 − x′0)TΣ−1

0 (x0 − x′0),

〈x0 − x′0,∇0 log f(x0, x1)−∇0 log f(x′0, x
′
1)〉

= −(x0 − x′0)TATΣ−1A(x0 − x′0) + (x0 − x′0)TATΣ−1(x1 − x′1).

Combining these expressions with (18), (4)-(5) and applying the following bounds:

inf
u6=0

uT(Σ−1 +ATΣ−1A)u

‖u‖2
≥ ρmin(Σ−1) + ρmin(ATA)ρmin(Σ−1)

= ρmax(Σ)−1{1 + ρmin(ATA)}, (62)

inf
u6=0

uTΣ−1u

‖u‖2
∧ inf
u6=0

uT(Σ−1
0 +ATΣ−1A)u

‖u‖2

≥ ρmin(Σ−1) ∧ {ρmin(Σ−1
0 ) + ρmin(ATA)ρmin(Σ−1)}

= ρmax(Σ)−1 ∧ {ρmax(Σ0)−1 + ρmin(ATA)ρmax(Σ)−1},
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sup
u,v 6=0

∣∣uTATΣ−1v
∣∣

‖u‖‖v‖
≤ ρmax(ATA)1/2ρmax(Σ−1) = ρmax(ATA)1/2ρmin(Σ)−1,

gives the expressions for ζ, ζ̃, θ in the statement of the lemma.

Proof of Lemma 2. From the Lipschitz assumptions we have:

‖∇n log f(xn−1, xn)−∇n log f(x′n−1, x
′
n)‖

= ‖∇ψ{xn −A(xn−1)} − ∇ψ{x′n −A(x′n−1)}‖
≤ L∇ψ‖xn − x′n‖+ L∇ψLA‖xn−1 − x′n−1‖,
‖∇n log f(xn, xn+1)−∇n log f(x′n, x

′
n+1)‖

≤ ‖∇A(xn)‖op‖∇ψ{xn+1 −A(xn)} − ∇ψ{x′n+1 −A(x′n)}‖
+ ‖∇ψ{x′n+1 −A(x′n)}‖||∇A(xn)−∇A(x′n)‖op

≤ LAL∇ψ‖xn+1 − x′n+1‖+ L2
AL∇ψ‖xn − x′n‖

+ LψL∇A‖xn − x′n‖
= (L2

AL∇ψ + LψL∇A)‖xn − x′n‖+ L∇ψLA‖xn+1 − x′n+1‖,
‖∇ logµ(x0)−∇ logµ(x′0)‖ = ‖∇ψ0(x0)−∇ψ0(x′0)‖ ≤ L∇ψ‖x0 − x′0‖.

The proof is completed by combining these estimates with assumption b) of the Lemma and (4)-(5).

Proof of Lemma 3.

∞∑
n=0

P (ρnZn ≥ 1) =

∞∑
n=0

P
(
|Zn|s ≥ ρ−sn

)
≤
∞∑
n=0

ρsnE [|Zn|s]

≤
(

sup
n≥0

E[|Zn|s]
(n+ 1)p

) ∞∑
n=0

(n+ 1)pρsn <∞, (63)

where the first inequality is Markov’s inequality. The result follows from the Borel-Cantelli lemma.

Proof of Lemma 4. From (7) and (4)-(5), there exists a finite constant c such that

βn(y) ≤ c+ ‖ ∇x log g(x, yn)|x=0 ‖
2. (64)

The claim of the lemma that supn≥0 ρ
nβn(Y ) < ∞ a.s. then follows from the fact that for a ≥ 0 and

s ∈ (0, 1], the function a 7→ as is subadditive, combined with Lemma 3.
Using the same subadditivity again, and (64),

αγ,n(y)s ≤
n∑

m=0

γs(n−m)βm(y)s ≤ cs

1− γs
+

n∑
m=0

γs(n−m)‖ ∇x log g(x, ym)|x=0 ‖
2s.

Combining this bound with the assumption of the lemma and the fact that
∑n
m=0m

p grows no faster
than np+1 as n→∞, there exists a finite constant c′(p) such that:

E[αγ,n(Y )s] ≤ cs

1− γs
+

n∑
m=0

E
[
‖ ∇x log g(x, Ym)|x=0 ‖

2s
]

≤ cs

1− γs
+ c′(p)np+1.

The claim of the lemma that supn≥0 ρ
nαγ,n(Y ) <∞ a.s. then follows by applying Lemma 3. The proof

is completed via bounds:

ρnαγ,n(Y ) = ρ̃n
(
ρ

ρ̃

)n
αγ,n(Y ) ≤ ρ̃n sup

m≥0

(
ρ

ρ̃

)m
αγ,m(Y )

and
∞∑
k=n

ρkβk(Y ) =

∞∑
k=n

ρ̃k
(
ρ

ρ̃

)k
βk(Y ) ≤ ρ̃n

1− ρ̃
sup
m≥0

(
ρ

ρ̃

)m
βm(Y ).
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