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Regular black holes (RBHs)—geometries free from curvature singularities—arise naturally in theories

of nonlinear electrodynamics. Here we study the absorption and superradiant amplification of a

monochromatic planar wave in a charged, massive scalar field impinging on the electrically charged

Ayón-Beato-García (ABG) RBH. Comparisons are drawn with absorption and superradiance for the

Reissner-Nordström (RN) black hole in linear electrodynamics. We find that, in a certain parameter regime,

the ABG absorption cross section is negative, due to superradiance, and moreover it is unbounded from

below as the momentum of the wave approaches zero; this phenomenon of “unbounded superradiance” is

absent in the RN case. We show how the parameter space can be divided into regions, using the bounded/

unbounded and absorption/amplification boundaries. After introducing a high-frequency approximation

based on particle trajectories, we calculate the absorption cross section numerically, via the partial-wave

expansion, as a function of wave frequency, and we present a gallery of results. The cross section of the

ABG RBH is found to be larger (smaller) than in the RN case when the field charge has the same (opposite)

sign as the black hole charge. We show that it is possible to find “mimics”: situations in which the cross

sections of both black holes are very similar. We conclude with a discussion of unbounded superradiance

and superradiant instabilities.

DOI: 10.1103/PhysRevD.109.064053

I. INTRODUCTION

General relativity (GR) is a geometric theory in which

gravity is associated with the spacetime curvature generated

by the presence of energy and momentum. For more than a

century, the physical predictions of this theory have been

scrutinized and tested experimentally in various ways [1–3].

In the last decade, for instance, two important verifications

of GR predictions in the strong-field regime were reported:

the Laser Interferometer Gravitational-Wave Observatory

Collaboration performed the first direct detection of gravi-

tational waves [4] from black hole (BH) coalescences, and

the Event Horizon Telescope (EHT) Consortium has

obtained the first image of a supermassive BH shadow [5].

BHs are among the most fascinating predictions of GR.

These objects are solutions of Einstein’s field equations

(EFEs) characterized by an event horizon (i.e., a nonreturn

surface) and typically formed by gravitational collapse [6].

Observational evidence indicates that BHs populate gal-

axies [7]; for example, the Milky Way Galaxy harbors a

supermassive BH (with 4.1� 0.4 × 106M⊙ [8,9]) at its

core, as well as myriad stellar-mass BHs.

In electrovacuum, the uniqueness theorems of GR [10]

determine that stationary BH solutions are described by

only three parameters: mass, charge, and angular momen-

tum. Despite this apparent simplicity, the stationary BHs of

GR are also paradoxical in nature: at their core is a

“curvature singularity,” where the classical field theory

breaks down.

Key theorems that support the formation of curvature

singularities in classical GR were established by Penrose

[11] and Hawking and Ellis [12]. These theorems show that

spacetimes can become geodesically incomplete in rather

general (i.e., nonsymmetric) collapse scenarios, within the

*
marco.paula@icen.ufpa.br

†
luiz.leite@ifpa.edu.br

‡
s.dolan@sheffield.ac.uk

§
crispino@ufpa.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 109, 064053 (2024)

2470-0010=2024=109(6)=064053(16) 064053-1 Published by the American Physical Society



classical field theory; and this, in turn, raises concerns

about the global breakdown of causality in such space-

times. As a remedy, the cosmic censorship hypothesis

asserts that [11] all curvature singularities must be shrouded

behind (apparent or event) horizons. Therefore, the space-

time outside this one-way membrane is not adversely

affected by the presence of these hidden singularities.

It can be argued that the formation of singularities

represents a flaw in classical field theory, and that the

paradoxes associated with singularities will be fully

resolved in a quantum theory of gravity. It is not necessary,

however, to await a complete quantum theory before

studying the properties of BH solutions that are free from

singularities. Recently, there has been increasing interest in

the properties of so-called regular black hole (RBH)

solutions.

The first RBH model was proposed in 1968 by

Bardeen [13]. In this model, as well as others [14–17],

the source term (i.e., the stress-energy tensor) in the EFEs

did not have a clear physical motivation or origin. In 1998,

Ayón-Beato and García found that a RBH could arise in a

physically well-motivated theory: nonlinear electrodynam-

ics (NED) minimally coupled to GR [18].

NEDmodels are, in essence, generalizations ofMaxwell’s

linear theory to strong electromagnetic fields [19–22]. Two

well-studied NED models are the Euler-Heisenberg model

[23], which provides an effective description of quantum

electrodynamics at the one-loop level, and the Born-Infeld

model [19,20], introduced to remove the infinite self-energy

of the electron. Among the features and applications of NED

models [19–32], there have recently been proposed several

electrically [33–38] and magnetically [39–45] charged RBH

solutions, in minimally coupled GR, as well as in alternative

theories of gravity [46–49]. For a review on NED and

applications to BH physics, see Refs. [50,51].

In general, RBH geometries violate at least the strong

energy condition in some region of the spacetime [52,53].

Furthermore, if the model satisfies the weak energy con-

dition, as in the Bardeen case, then the topology is different

from the Reissner-Nordström (RN) case [54]. Regarding

NED-based electrically charged RBH solutions, the validity

of theweak energy condition leads to de Sitter behavior in the

RBH core [36], providing an effective cutoff on the self-

energy density of the solution at the center.

Motivated in part by recent observational breakthroughs,

there is growing interest in discerning how the key proper-

ties of RBHs will differ from those of irregular (i.e.,

singular) BHs, particularly in the observable region exterior

to the horizon. A canonical example of the irregular class—

and a key point of comparison for this study—is the RN

spacetime: a spherically symmetric solution to the EFEs

for linear (i.e., Maxwell) electromagnetism minimally

coupled with GR, describing a BH of mass M and charge

Q with two horizons, at r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

, and a

curvature singularity, at r ¼ 0.

It is well known that the RN BH exhibits the phenome-

non of superradiance when interacting with a scalar field of

charge q. Field modes with a frequency ω > 0 satisfying

ω < qϕþ are amplified, rather than absorbed, by the BH,

where ϕþ is the electric potential at the outer horizon. In the

superradiant regime, the BH loses charge and mass (i.e., it

flows out of the BH into the field), and yet the area

of the BH (A ¼ 4πr2þ) increases. In the thermodynamic

interpretation, the horizon area is associated with the

entropy of the BH, and superradiance is then a necessary

consequence of the second law of thermodynamics. For

studies about charged superradiance in static BHs, see, e.g.,

Refs. [55–62]. Superradiance can also occur with neutral

fields if the BH is spinning. Superradiance has been studied

in a range of BH scenarios over the past fifty years, leading

to various interesting outcomes (see, e.g., Ref. [63] for a

comprehensive review).

It is natural to ask whether superradiance persists for

RBHs—and if so, whether it is enhanced or diminished. In

the far-field region, r ≫ M, where the electromagnetic

field is weak, NED models are expected to reduce to linear

electromagnetism, and thus, NED RBHs to be locally

equivalent to RN BHs. Conversely, in the near-horizon

region, where the electromagnetic field is strong, NED

models are likely to differ substantially from their linear

counterparts, and ϕþ may differ substantially from ϕRN
þ ¼

Q=rþ. Consequently, we would expect the condition for

superradiance to depend on the precise form of the NED

model in question and, potentially, for certain models, to

display enhanced versions of superradiance and new phe-

nomenology. Some recent works addressed superradiance in

the background of rotating regular spacetimes, considering

massive scalar fields [64,65], but works considering charged

scalar fields and superradiance in static RBH geometries are

still lacking in the literature.

In this paper, we study the absorption of a charged

massive test scalar field in the background of a RBH

solution, namely, the first proposed exact charged RBH

solution of Ayón-Beato and García (ABG) [18]. Here

we are particularly interested in characterizing the effect

of superradiance on the absorption cross section (ACS).

Over the last fifty years, much effort has been made

to compute absorption and scattering in different BH

scenarios (cf., e.g., Refs. [66–74] and references therein).

Although several works have been dedicated to chargeless

test fields, few have dealt with the absorption of charged

scalar fields [57,58]. Recently, the absorption of chargeless

test fields has been investigated for RBHs [75–78], but the

absorption of charged massive scalar waves is still to be

properly quantified.

The remainder of this paper is organized as follows. In

Sec. II, we review the main aspects of the ABG RBH

spacetime proposed in Ref. [18], and in Sec. III we

investigate the dynamics of a massive and charged scalar

field on this spacetime. In Sec. III B, we present an
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expression to compute the ACS via a sum over partial

waves. In Sec. III C, we partition the parameter space, and

in Sec. III D we describe a high-frequency approximation.

Our numerical results concerning the absorption and super-

radiance properties of the ABG RBH solution are presented

in Sec. IV, and we also compare them with those obtained

in the RN case. We conclude with our final remarks in

Sec. V. Throughout the paper we use the natural units, for

which G ¼ c ¼ ℏ ¼ 1, and metric signature −2.

II. FRAMEWORK

The action associated with NED minimally coupled to

GR can be written as [18]

S ¼ 1

4π

Z

d4x

�

1

4
R − LðFÞ

�

ffiffiffiffiffiffi

−g
p

; ð1Þ

where R is the Ricci scalar, LðFÞ is a gauge-invariant

electromagnetic Lagrangian density, and g is the determi-

nant of the metric tensor gμν. The electromagnetic invariant

F and the standard electromagnetic field tensor are given by

F ¼ 1

4
FμνF

μν and Fμν ¼ 2∇½μAν�; ð2Þ

respectively, where Aν is the electromagnetic four-potential.

It is possible to represent NED in a different framework

by introducing an auxiliary antisymmetric tensor

Pμν ≡ LFFμν; ð3Þ

where LF ≡ ∂L=∂F; and also a structural function HðPÞ
through a Legendre transformation [79], namely,

HðPÞ≡ 2FLF − LðFÞ: ð4Þ

The invariant associated with Pμν is defined as

P≡
1

4
PμνP

μν: ð5Þ

Among its applications [22,79], this framework is useful to

obtain electrically charged NED-based RBH solutions [37].

With the help of Eqs. (2)–(5), one can show that

P ¼ ðLFÞ2F; HPLF ¼ 1; and Fμν ¼ HPPμν; ð6Þ

whereHP ≡ ∂H=∂P. By varying the action (1) with respect
to the inverse metric tensor gμν and using Eqs. (6), it is

possible to obtain

G
μ
ν ¼ −T

μ
ν ¼ 2½HPPναP

μα − δ
μ
νð2PHP −HÞ�; ð7Þ

which are Einstein-NED field equations, and where G
μ
ν is

the Einstein tensor and T
μ
ν is the energy-momentum tensor.

The variation of the action (1) with respect to Aμ leads to

∇μP
μν ¼ 0 (in the absence of electromagnetic sources).

For the solution proposed in Ref. [18], from now on

simply referred to as the ABG solution, the structural

function (the NED source) is

HðPÞ ¼ P

�

1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Q2P
p

�

�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Q2P
p

�

3
−

3M

jQjQ2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Q2P
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Q2P
p

�5

2

;

ð8Þ

with Q and M being the electric charge and mass of the

central object, respectively. Considering a spherically sym-

metric and static line element as an ansatz for the spacetime,

together with Eqs. (7) and (8), one can obtain the ABG line

element in spherical coordinates (xμ ¼ ft; r; θ;φg),

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ sin2 θdφ2Þ; ð9Þ

where

fðrÞ ¼ fABGðrÞ≡ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 ð10Þ

is the metric function of the ABG spacetime.

In the asymptotic limit r → ∞, the metric function (10)

has the following behavior:

fABGðrÞ ¼ fRNðrÞ þOðr−3Þ; ð11Þ

where fRNðrÞ is the metric function of the RN space-

time [80],

fRNðrÞ≡ 1 −
2M

r
þQ2

r2
: ð12Þ

As argued earlier, this is expected because, in the far-field

region, the electromagnetic field is weak and thus in the

linear (i.e., Maxwell) regime. On the other hand, expanding

the ABG metric function in powers of Q yields

fABGðrÞ ¼ fRNðrÞ þ 3MQ2

r3
þOðQ4Þ: ð13Þ

When the condition jQj≤Qext≈0.6341M is fulfilled

[18], the line element (9) describes an ABG RBH. For

jQj < Qext, the ABG RBH possesses an inner (Cauchy)

horizon at r− and an outer (event) horizon at rþ, given by

the real positive roots of fABGðrÞ ¼ 0. For jQj ¼ Qext, we

have the so-called “extreme” ABG RBH, with rþ ¼ r−.
For jQj > Qext, we have horizonless solutions. The

ABG causal structure is similar to the RN one (for which

QRN
ext ¼ M).
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Throughout this work, we shall restrict our analysis to

BH solutions ðjQj ≤ QextÞ and exhibit our results in terms

of the normalized electric charge

α≡
Q

Qext

; ð14Þ

which satisfies 0 ≤ jαj ≤ 1 for BH geometries.

From F01 ¼ EðrÞ ¼ HPQ=r2, one can show that the

radial electrostatic field EðrÞ of the ABG solution is

given by

EABGðrÞ ¼ Qr4
�

r2 − 5Q2

ðr2 þQ2Þ4 þ
15M

2ðr2 þQ2Þ7=2
�

; ð15Þ

which is finite at the origin and asymptotically behaves as

the electrostatic field in the RN case, given by

ERNðrÞ ¼ Q

r2
: ð16Þ

A detailed analysis of the metric function, electric field, and

geodesics of massless particles of ABG and RN BHs is

presented in Refs. [78,81].

The covariant components of the electromagnetic four-

potential are given by

Aμ ¼ ðϕðrÞ; 0; 0; 0Þ; ð17Þ

where ϕ is the electrostatic potential, which can be obtained

using ϕðrÞ ¼ −
R

r
∞
E · dl and Eq. (15), to obtain

1

ϕABGðrÞ ¼ r5

2Q

�

3M

r5
þ 2Q2

ðQ2þ r2Þ3−
3M

ðQ2þ r2Þ5=2
�

: ð18Þ

In Fig. 1, we plot the ABG electrostatic potential

ϕABGðrÞ alongside the electrostatic potential of the RN BH,

ϕRNðrÞ ¼ Q

r
: ð19Þ

Notably,ϕABGðrÞ is finite at r ¼ 0, whereasϕRNðrÞ diverges
as r → 0. In the far field (r → ∞), ϕABG

→ ϕRN. At

the (outer) horizon, ϕðrþÞABG > ϕðrþÞRN, and thus an

enhanced superradiant regime may be anticipated.

III. ANALYSIS

A. Scalar fields and superradiance

We are interested in investigating a scalar field Φ with

mass μ and charge q, propagating in a static (electric) RBH
spacetime. Therefore, we shall consider the Klein-Gordon

equation

ð∇ν þ iqAνÞð∇ν þ iqAνÞΦþ μ2Φ ¼ 0: ð20Þ

Exploiting the separability of Eq. (20), we can write a

particular mode of Φ as

Φ≡
ΨωlðrÞ

r
Plðcos θÞe−iωt; ð21Þ

where ΨωlðrÞ are radial functions and Plðcos θÞ are the

Legendre polynomials. The indexes ω and l denote the

frequency and the angular momentum of the scalar wave,

respectively. Inserting Eq. (21) into Eq. (20) leads to the

radial equation

d2

dr2⋆
Ψωl ¼ VðrÞΨωl; ð22Þ

where r⋆ is the “tortoise coordinate” defined by

dr⋆ ¼ dr=fðrÞ, and the potential function VðrÞ reads

VðrÞ≡ fðrÞ
�

μ2 þ 1

r

dfðrÞ
dr

þ lðlþ 1Þ
r2

�

− ðω − qA0ðrÞÞ2:

ð23Þ

From the form of Eq. (22), it is clear that Φ is propagative

(i.e., oscillatory) in regions where VðrÞ < 0 and evanescent

(i.e., exponential) in regions where VðrÞ > 0.

As the angular momentum l increases, the height of the
potential barrier increases commensurately (as in the

massless case [78]). Figure 2 shows VðrÞ as a function

of the parameter qM for the particular case l ¼ 0, ω ¼ μ,

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

FIG. 1. Comparison between the electrostatic potentials of

ABG and RN BHs, considering different values of α.

1
We choose the infinity as the reference point at which the

electrostatic potential is zero. If one adopts such reference point
of the electrostatic potential at r ¼ 0, it follows an expression
for ϕABGðrÞ that does not behave asymptotically as the RN
electrostatic potential [82].
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and α ¼ 0.5 [defined in Eq. (14)]. The height of the local

maximum value of VðrÞ increases with qM. As we increase

α, the peak of VðrÞ increases (decreases) for qM > 0

(qM < 0). This is anticipated from the Lorentz force:

particles with the same charge sign of the BH are repelled,

and consequently less absorbed, than particles with the

opposite charge, which are attracted. Note also that, for

some values of qM, μM, and α, the peak of the radial

function VðrÞ becomes negative (cf. curve qM ¼ −0.3 in

Fig. 2) [83].

In the (planar-wave) scattering problem, the wave

satisfies the ingoing boundary conditions

Ψωl ∼

	

Tωle
−iζr⋆ ; r⋆ → −∞;

Iωle
−iκr⋆ þ Rωle

iκr⋆ ; r⋆ → þ∞;
ð24Þ

where ζ≡ω−qϕþ [withϕþ ≡ ϕðrþÞ], and κ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − μ2
p

.

The quantities Tωl, Iωl, and Rωl are complex coefficients.

Justification for the ingoing boundary condition in (24)

runs as follows. In the near-horizon region, the general

solution for the fieldΦ is a superposition of two terms, with

behaviors e−iðωt�ζr⋆Þ. We seek fields Φ and Aμ which are

regular on the future horizon in a suitable gauge. Noting

that, for Aμ in Eq. (17), the Lorentz invariant AμA
μ is

divergent, we can make a “gauge transformation,” Aμ →

A0
μ ¼ Aμ þ q−1∇μχ and Φ → Φ

0 ¼ eiχΦ, such that A0
μ ¼ 0

on the horizon. This corresponds to the choice χ ¼ qϕþt.
Hence, the general solution for Φ0 is a superposition of two
terms with behaviors e−iζðt�r�Þ. The term with upper sign

choice (þ) is regular (irregular) on the future (past) horizon,

and the term with the lower sign (−) is regular (irregular)

on the past (future) horizon. The boundary condition in

Eq. (24) then follows from the requirement that Φ
0 is

regular on the future horizon.

For a propagating wave at infinity (unbounded modes),

the condition κ > 0 holds, i.e., ω2 > μ2. The transmission

and reflection coefficients are defined, respectively, as

jT ωlj2 ≡
jTωlj2
jIωlj2

and jRωlj2 ≡
jRωlj2
jIωlj2

: ð25Þ

From the conservation of the flux, or using the

Wronskian of Eq. (22), one can derive

jRωlj2 þ
ζ

κ
jT ωlj2 ¼ 1: ð26Þ

The “amplification factor” [63] is

Zωl ≡ jRωlj2 − 1 ¼ −
ζ

κ
jT ωlj2: ð27Þ

This measures the fractional gain (or loss) of energy in a

scattered wave, with positive values of Zωl corresponding

to superradiant amplification. Clearly, the sign of Zωl is

determined by the sign of ζ. Hence the “critical frequency”

for superradiant scattering is

ωc ¼ qϕþ: ð28Þ

For frequencies ω > ωc, the wave is absorbed; conversely,

for frequencies 0 < ω < ωc, the wave is amplified.

In Fig. 3, we show ϕþ, the electric potential at the

horizon, for ABG and RN BHs. We note that (for α > 0)

ϕþ is always positive and increases monotonically with α.

As a consequence, superradiance occurs whenever qϕþ > 0.

We also observe that ϕABG
þ is always greater than ϕRN

þ .

Therefore, for the same values of qM and α, the critical

frequency of the ABG RBH is always larger than that of the

RN BH. This implies a greater capacity for superradiant

scattering in the ABG case.

1 2 3 4 5 6 7
�5

0

5

10

15

20

25

30

FIG. 2. The function VðrÞ of charged massive scalar waves in

the background of the ABG RBH, as a function of r=rþ,
considering different values of qM. In this figure, we have

chosen l ¼ 0, ωM ¼ μM ¼ 0.1, and α ¼ 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

1.5

FIG. 3. Electrostatic potential at the event horizon,

ϕþ ≡ ϕðrþÞ, as a function of the normalized charge α, for

ABG and RN BHs.
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B. Absorption cross section

The ACS σ, for a plane-wave incident upon a spherically

symmetric BH, can be expanded in partial waves as follows:

σ ¼
X

∞

l¼0

σl; ð29Þ

where the partial ACS is

σl ¼
π

κ2
ð2lþ 1Þð1 − jRωlj2Þ: ð30Þ

Hence, using Eq. (26),

σl ¼
π

κ3
ð2lþ 1Þðω − ωcÞjT ωlj2: ð31Þ

For superradiant modes (with 0 < ω < ωc ¼ qϕþ), σl takes
negative values, as the wave is amplified rather than

absorbed.
In the limit ω → μ (from above), the momentum of

the wave tends to zero, κ → 0. Hence σl in Eq. (31) will

diverge in this limit, unless limω→μ jT ωlj2=κ3 exists. In

other words, σl will diverge unless the transmission factor

jT ωlj2 approaches zero at least as rapidly as the cube

of the momentum, κ3. We will call the divergent case

“unbounded” and the finite case “bounded.”

It is clear that there are four possibilities to consider

in the limit ω → μ, namely: (i) bounded absorption,

(ii) bounded superradiance, (iii) unbounded absorption,

and (iv) unbounded superradiance. Cases (i)–(iii) have been

observed in absorption by a RN (irregular) BH [58]. The

fourth possibility, unbounded superradiance, does not appear

to occur for RN BHs, but it does arise for the regular ABG

BH, as we demonstrate in Sec. IV. To understand why this

arises,wenow turn attention to the properties of the potential.

C. The parameter space

In this section, we argue that it is possible to divide the

parameter space into regions where behaviors (i)–(iv) occur

(see above) by examining the behavior of an effective

potential function. Considering Eq. (23) in the limit μ → ω,

we define

UðrÞ≡ −VðrÞjμ¼ω;

¼ ðμ − qϕðrÞÞ2 − fðrÞ
�

μ2 þ 1

r

dfðrÞ
dr

þ lðlþ 1Þ
r2

�

:

ð32Þ

In Fig. 4, we present the typical behavior of the function

UðrÞ in the ABG RBH spacetime. In the region whereUðrÞ
is positive, the wave is propagative. The plot makes it clear

that the existence of a propagative region extending to

spatial infinity depends critically on the parameter values.

For the uncharged massive scalar field case, Jung and

Park [83] defined the critical case as that in which the local

maximum of UðrÞ is exactly zero. This idea extends

naturally to absorption of a charged field: the critical case

is shown as the blue dashed line in Fig. 4, and this case

defines a critical charge αc (for fixed l, μM, and qM). For

α < αc, a propagative region extends from a certain radius

rc out to infinity [i.e., the region r∈ ðrc;∞Þ], whereas for
α > αc, the only propagative region is close to the horizon.

It is natural to anticipate qualitatively different absorption

properties in the limit ω → μ, with the former (latter) case

corresponding to unbounded (bounded) behavior.

In fact, to determine the existence of a propagative region

that extends to infinity, it is sufficient to examine the large-r
expansion of UðrÞ, given by

UðrÞ ¼ 2μ
ðμM − qQÞ

r
þOðr−2Þ: ð33Þ

At leading order, the expansion is identical for the RN and

ABG BHs (as one might expect in the weak-field/linear

regime). For μM > qQ, Newtonian attraction dominates

over the Coulomb repulsion and the propagative region

exists; for μM < qQ, Coulomb repulsion is dominant and

the propagative region does not exist. The critical case is

at μM ¼ qQ.

We can now divide the parameter space into regions

using two separatrices: μM ¼ qQ (the bounded/unbounded

boundary) and μ ¼ qϕþ (the absorption/amplification

boundary).

Figure 5 shows the anticipated behavior of the ACS in

the limit ω → μ (i.e., κ → 0), in the parameter space. The

horizontal blue line (μM ¼ qQ) separates the bounded and

unbounded regions. The solid red line demarcates the onset

of superradiance. In the RN case, there is no overlap

between the unbounded and superradiant regions (though

the boundaries meet in the extremal case, Q ¼ M). This

is consistent with an observed absence of unbounded

1 3 5 7 9 11 13 15 17
�4

�3

�2

�1

0

1

FIG. 4. The function UðrÞ of charged massive scalar waves in

the background of the ABG RBH, as a function of r=rþ, consi-
dering l ¼ 0, μM ¼ 0.2, and qM ¼ 0.8 for distinct values of α.

In this case, superradiance occurs whenever α > 0.2702 ¼ αc.

DE PAULA, LEITE, DOLAN, and CRISPINO PHYS. REV. D 109, 064053 (2024)

064053-6



superradiance. Conversely, for the ABG BH, the super-

radiant region is significantly larger than in the RN case

(even for Q → 0), due to the increase in ϕþ (see Fig. 3).

Consequently, the unbounded region overlaps with the

superradiant region, and hence we should anticipate

unbounded superradiance (that is, unbounded amplifica-

tion) to occur in the limit ω → μ, in this region of the

parameter space. These conclusions are supported by the

numerical evidence presented in Sec. IV C.

D. High-frequency approximation

We now turn our attention to absorption in the regime of

high frequencies and short wavelengths. In this regime, the

characteristics of the charged massive scalar wave can be

associated with the trajectories of charged particles subject

to the Lorentz force imparted by the electric background

field. In order to obtain the equations of motion associated

with our problem, we consider the following Lagrangian:

Lcp ¼
1

2
gμνẋ

μẋν þ qcp

m
Aμẋ

μ; ð34Þ

where the overdot stands for the derivative with respect to

the proper time, and qcp andm are the charge of the particle

and mass of the particle, respectively. From Eq. (34), one

can introduce the conserved quantities

E ¼ m
∂Lcp

∂ṫ
; ð35Þ

L ¼ −m
∂Lcp

∂φ̇
; ð36Þ

which are related to the energy and the angular momentum

of the particle and, in the semiclassical limit, are associated

with ω and lþ 1=2, respectively. Using Eqs. (34)–(36)

together with gμνẋ
μẋν ¼ 1 (the condition that a massive

particle follows a timelike path, parametrized by its proper

time [84]), one can show that

ṙ2
�

m2

L2

�

¼ ðE − qcpA0Þ2
L2

− fðrÞ
�

m2

L2
þ 1

r2

�

; ð37Þ

in which, due to the spherical symmetry, we considered the

motion in the equatorial plane ðθ ¼ π=2Þ.
By defining the impact parameter b≡ L=vE and

KðrÞ≡ ṙ2ðm2=L2Þ, we can rewrite Eq. (34) as

KðrÞ ¼ 1

b2v2

�

1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p qcp

m
A0ðrÞ

�

2

− fðrÞ
�

1 − v2

b2v2
þ 1

r2

�

; ð38Þ

where v is a dimensionless parameter defined by

v≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
m2

E2

r

: ð39Þ

Since we are interested in the unbounded timelike paths,

i.e., κ > 0, this parameter is limited by 0 < v ≤ 1.

Considering that KðrÞ and its first derivative vanish at

the critical radius rc, namely,

KðrcÞ ¼ 0; ð40Þ

dKðrcÞ
dr

¼ 0; ð41Þ

we may find the critical impact parameter bc,

b2c ¼
r2c

m2v2fðrcÞ
½m2ð1þðv2− 1ÞfðrcÞÞ

þqcpA0ðrcÞðqcpA0ðrcÞð1−v2Þ− 2m
ffiffiffiffiffiffiffiffiffiffiffiffi

1−v2
p

Þ�; ð42Þ
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FIG. 5. Absorption parameter space for ABG (left) and RN (right) BHs, as functions of Q=M. The solid red curve corresponds to the

superradiance threshold and the solid blue curve to the attractive/repulsive threshold in Eq. (33). Left: the red line meets the vertical axis

at μM=qQ ¼ 23=16. The points highlight situations in which we have unbounded superradiance. The total ACS corresponding to these

situations is exhibited in Fig. 10.
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and an equation that gives the values of rc,

2fðrcÞðm2zfðrcÞ − ðm − qcp
ffiffiffi

z
p

A0ðrcÞÞðm − qcp
ffiffiffi

z
p ðrcA0

0
ðrcÞ þ A0ðrcÞÞÞÞ þ rcf

0ðrcÞðm − qcp
ffiffiffi

z
p

A0ðrcÞÞ2
m2zfðrcÞ − ðm − qcp

ffiffiffi

z
p

A0ðrcÞÞ2
¼ 0; ð43Þ

where we defined z≡ 1 − v2 and the prime ( 0) denotes

derivative with respect to the radial coordinate r. For

qcp ¼ 0, we recover the bc and rc of the massive chargeless

case, which are given by [69]

b2c ¼
r2cð1þ ðv2 − 1ÞfðrcÞÞ

v2fðrcÞ
; ð44Þ

2ð1þ ðv2 − 1ÞfðrcÞÞ ¼ rc
f0ðrcÞ
fðrcÞ

; ð45Þ

respectively. In the limit m → 0, which implies in v → 1,

we obtain the results for the massless case [78]. The high-

frequency absorption cross section, also called geometric

cross section (GCS), σgcs, is given by [84]

σgcs ¼ πb2c: ð46Þ

IV. RESULTS

A. Numerical analysis

We can obtain the reflection and transmission coeffi-

cients, given by Eqs. (25), by numerically integrating

Eq. (22) from very close to rþ up to far from the BH,

with the boundary conditions given by Eqs. (24) and their

derivatives. Then we compute the total ACS using Eq. (29).

The oscillatory character of the ACS is related to the partial

waves contributions [see Eq. (30)]. We have chosen, in

general, to perform the summation in Eq. (29) up to l ¼ 20.

The GCS is obtained numerically through Eq. (46), using

Eqs. (42) and (43).

B. ABG regular black hole cross sections

Figures 6 and 7 show the total ACS for different values

of the charge (qM) and mass (μM) couplings, respectively.

Generically, we can see that the total ACS oscillates around

the GCS (black dotted lines), with good agreement in the

high-frequency regime. Moreover, for a fixed value of μM
and α, we observe that the absorption increases (dimin-

ishes) as we consider smaller (higher) values of qQ, as a

consequence of the Lorentz force. As shown in Fig. 7, the

total ACS increases as we increase μM, so that the increase

of μM leads to a higher absorption of planar scalar waves.

For massive planar scalar waves, the effective potential

typically admits an (inner) local maximum and an (outer)

local minimum; as we increase μM, the stationary points

move closer together and the maximum of the potential

decreases, until the stationary points eventually merge and

the potential barrier vanishes. Hence, increasing μM leads

to strongly absorbed unbounded modes, similar to the RN

BH case [69].

Figure 8 shows the total ACS together with the partial

ACS for two choices of qM, with the normalized BH

charge α ¼ 0.5 and the field mass coupling μM ¼ 0.2. The

plots show that the oscillatory pattern in the total ACS is

related to the sequential contributions from partial ACSs

l ¼ 0; 1; 2;…. The monopole (l ¼ 0) dominates the behav-

ior of the total ACS in the low-frequency regime. Note that,

although the values of α and μM are equal in both panels of
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FIG. 6. Total ACS of charged massive scalar waves in the

background of the ABG RBH, as a function of ω=μ, for different
choices of qM, considering α ¼ 0.5 and μM ¼ 0.2. The ACS is

compared with the geometric cross section (dashed black lines).

0 0.5 1 1.5 2 2.5 3
40

80

120

160

200

FIG. 7. Total ACS of charged massive scalar waves in the

background of the ABG RBH, as a function of ωM for α ¼ 0.5,

qM ¼ 0.1, and different values of μM.
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Fig. 8, superradiance occurs only in the bottom panel

case. We observe that the ACS is negative in the range

μ < ω≲ 2μ. Physically, a negative cross section implies

that the stimulation from the plane wave causes the BH to

transmit mass-energy and charge into the field.

In Fig. 9, we present the amplification factor of massive

charged scalar fields in the background of an ABG RBH.

[We exhibit the amplification factor (27) in percentage,

i.e., Zωl½%�≡ 100Zωl, and restricted to the regions where

Zωl½%� ≥ 0]. As we can see, the maximum superradiant

amplification increases with the charge of the scalar field,

for fixed values of the BH mass and (positive) charge.

C. Unbounded superradiance

from a regular ABG black hole

In the previous section, we presented some typical

absorption properties of charged massive scalar waves in

the background of the ABG RBH. In the limit ω → μ

we saw two types of behavior: unbounded absorption

(Figs. 6–8, upper plot) and bounded superradiance

(Fig. 8, lower plot). In this section, we show that the ABG

RBH can also display unbounded superradiance for parameter

choices informed by Fig. 5 and the discussion in Sec. III C.

Figure 10 shows the ACS of the ABG RBH for a

selection of parameter choices (informed by Fig. 5) for

which we would expect to see unbounded superradiance.

As we can see, the results are consistent with the expect-

ations of Fig. 5: in all cases, the cross section σ is negative

(indicating superradiant amplification) and it grows without

bound as ω → μ.

The results in Fig. 10 reveal a remarkable implication of

the electromagnetic fields associated with (electrically

charged) NED-based RBH geometries: they generate a

superradiant divergence in the ACS of a charged, massive

scalar field. That is, an ABG BH stimulated by a massive

planewave of lowmomentum has an ACS that is unbounded
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FIG. 8. Partial and total ACSs of charged massive scalar waves

in the background of the ABG RBH, as functions of ω=μ, for
α ¼ 0.5 and μM ¼ 0.2, in two distinct scenarios: (top) qM ¼ 0.2

and (bottom) qM ¼ 0.8. The inset in the bottom panel empha-

sizes superradiance that occurs for 1 < ω=μ≲ 1.924.
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FIG. 10. Total ACS of charged massive scalar waves in the

background of the ABG RBH, as a function of ω=μ, considering
situations in which we have unbounded superradiance (the points

in the left panel of Fig. 5). We focus on the region near the limit

ωM → μM to emphasize the divergent behavior of the total ACS

in the superradiant regime.
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FIG. 9. Superradiant amplification of massive charged scalar

fields by anABGRBHwithα ¼ 0.5, as a function ofω=μ. Herewe
consider the mode l ¼ 0, μM ¼ 0.2, and distinct values of qM.
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from below. This is in stark contrast to the RNBH, where the

cross section cannot obtain arbitrary negative values.

D. Comparison with the Reissner-Nordström BH

In this section, we compare the absorption properties of

ABG RBHs with those of RN BHs [58].

Figure 11 shows a comparison between the total ACSs of

ABG RBHs and RN BHs for α ¼ 0.4, qM ¼ 1.6, and two

values of μM. We see that, for a fixed value of μM, the total

ACSof theABGRBHis smaller than the totalACSof theRN

BH, across the frequency range. We also observe that, for

μM ¼ 0.4, the ABG RBH exhibits superradiant scattering

(i.e., σ < 0 in some range ofω), whereas theRNBHdoes not

(for these parameters). This feature is due to the higher

threshold frequency (ωc ¼ qϕþ) for superradiance in the

ABG case [see Sec. III, in particular, Eq. (28) and Fig. 3] and

the condition for unbounded modes, namely, ω2 > μ2. For

μM ¼ 0.4, both systems show unbounded absorption as

ω → μ. Conversely, for μM ¼ 0.8, the RN shows bounded

absorption, whereas the ABG RBH shows bounded super-

radiance, in this limit.

Referring again to the parameter space shown in

Fig. 5, in the RN BH case the unbounded region and the

superradiant region of the parameter space are disjoint.

Therefore, we do not expected to observe unbounded super-

radiance (asω → μ) in the RN case. In this sense, absorption

by the RN BH is qualitatively different to absorption by

the ABG RBH, for which it is possible to find a set of field

and RBH parameters that leads to unbounded superradiance

(see Fig. 10). A further notable feature of Fig. 5 is that

bounded absorption does not occur in the ABG case (since

the bounded case is necessarily superradiant), whereas it

does in the RN case; see Fig. 11 for an example.

Figure 12 shows results for the ACSs in two distinct sets:

(i) for α ¼ 0.4; μM ¼ 0.4, and different values of qM
(top panel); and (ii) for μM ¼ 0.2, qM ¼ 0.4, and different

values of α (bottom panel). We note that, similar to the

behavior presented in Fig. 11, for a given set of parameters,

superradiance might occur only for the ABG RBH. We see

again that the propagating waves are more absorbed in the

RN case, when qQ > 0; however, for qQ < 0, we observe

the opposite behavior.

Figure 13 compares the partial ACSs of ABG and RN

BHs. In this case, for the chosen parameters we have

superradiance for both BH types. The range of frequency in

which σ < 0 is larger in the ABG case than in the RN case.

The dominant contribution to superradiance comes from

the monopole mode, l ¼ 0.

A comparison of the amplification factors in the ABG

and RN geometries is exhibited in Fig. 14. The superradiant

amplification in the background of the ABG RBH, for the

same values of α, μM, and qM, is typically larger than that

in the corresponding RN geometry, in agreement with the

results presented in Figs. 11–13.
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FIG. 11. Comparison between the total ACSs of charged

massive scalar waves in the background of ABG and RN

BHs, as functions of ω=μ, considering α ¼ 0.4, qM ¼ 1.6,

and different choices of μM. Inset: highlights the range of

frequency ð1 < ω=μ ≲ 1.5, for μMðABGÞ ¼ 0.4) for which the

ACS becomes negative, denoting superradiance.
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FIG. 12. Comparison between the total ACSs of charged

massive scalar waves in the background of ABG and RN

BHs, as functions of ω=μ, in two different scenarios: (i) for

α ¼ 0.4, μM ¼ 0.4, and different values of qM (top); and (ii) for

μM ¼ 0.2, qM ¼ 0.4, and distinct values of α (bottom).
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We end this section by noting that all results presented

here, as well as those not shown, are consistent with the

parameter space for ABG and RN BHs introduced in Fig. 5.

E. Mimic configurations

In this section, we show that it is possible to find

combinations of the normalized charge of the BH solution,

and the parameters (charge and mass) of the scalar field

such that the ACSs of ABG and RN BHs are very similar.

We start by computing the values of α for which the GCS

(see Sec. III D) of the ABG RBH is equal to that of the RN

BH, for fixed values of the charged massive particle

parameters EM, qcpM, and mM. Next, we compute the

ACSs using the corresponding values of α, qM, and μM.

Figure 15 shows the total ACSs for specific pairs

ðαABG; αRNÞ with μM ¼ 0.6 and qM ¼ 0.2. As we can

see, the total ACSs of the two types of BHs (regular ABG

and irregular RN) can be very similar in the middle- to

high-frequency range, particularly for low-to-moderate

values of α, but distinguishable in the low-frequency regime.

Figure 16 shows that, for a neutral field (qM ¼ 0), the

ACSs of the two types of BHs can be very similar across

the whole frequency range, particularly for small-to-

moderate values of α. Here we consider two pairs of

choices of ðαABG; αRNÞ that lead to the same GCS.

The field charge q increases the differences between

the absorption pattern of ABG and RN BHs, particularly

at lower frequencies.

It is possible to find configurations for which a massive

and charged scalar field has the same value of the critical

frequency ωc of superradiance in the two spacetimes,

that is,
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FIG. 13. Comparison between the partial ACSs of charged

massive scalar waves in the background of ABG and RN BHs, as

functions of ω=μ, with α ¼ 0.8, μM ¼ 0.4, and qM ¼ 0.8.
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FIG. 14. Superradiant amplification of charged massive scalar

fields by ABG and RN BHs, as a function of ω=μ. Here we

consider α ¼ 0.8, l ¼ 0, μM ¼ 0.3, and qM ¼ 0.8 in both

geometries.
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FIG. 15. Total ACSs of charged massive scalar waves for the

pairs ðαABG;αRNÞ¼ð0.2;0.1794Þ and ðαABG;αRNÞ¼ð0.5;0.4498Þ
as functions ofω=μ. In both cases,we setμM ¼ 0.6 andqM ¼ 0.2.
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FIG. 16. Total ACSs of chargedmassive scalar fields for the pairs

ðαABG;αRNÞ¼ð0.2;0.1794Þ and ðαABG;αRNÞ¼ð0.5;0.4498Þ, as
functions of ω=μ. In both cases, we set μM ¼ 0.4 and qM ¼ 0.
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ωABG
c ¼ ωRN

c : ð47Þ

Figure 17 shows the values of the pair ðαABG; αRNÞ for

which the critical frequency is the same in both back-

grounds, considering a fixed value of qM. These configu-

rations can be found up to αABG ≲ 0.8716.

Figure 18 shows the total ACS for pairs ðαABG; αRNÞ
with the same critical frequency ωc. We see that the

effect of superradiance is enhanced in the ABG case, as

one would expect given the stronger amplification shown

in Fig. 14.

It is also possible to find situations in which scalar

fields with different masses and charges have the same

critical frequency ωc in the background of ABG and

RN BH spacetimes. In Fig. 19, we consider a scalar

field with qM ¼ 1 and μM ¼ 0.2 in the ABG spacetime

and a scalar field with qM ¼ 1.4 and μM ¼ 0.4 in the

RN geometry. As we can see, the distinct scalar fields

are superradiantly scattered whenever ωM < 0.7.

Figure 20 shows the amplification factors for the same

parameters, highlighting once again that superradiance

amplification is enhanced for the ABG BH relative to

the RN BH.
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FIG. 17. Values of the pair ðαABG; αRNÞ for which a fixed choice
of qM presents the same critical frequency in the background of

ABG and RN BHs.
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FIG. 18. Example of situations in which a massive and charged

scalar field presents the same critical frequency in the back-

ground of ABG and RN BHs. The small disks denote the

values of the critical frequency, namely, ωc ¼ 1.3333 (left disk)

and ωc ¼ 2.5071 (right disk).
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FIG. 19. Total ACS for qM ¼ 1 and μM ¼ 0.2 in the ABG

geometry and for qM ¼ 1.4 and μM ¼ 0.4 in the RN spacetime.

Superradiance occurs when ωM < ωcM ¼ 0.7 in both scenarios.
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FIG. 20. Superradiant amplification of massive charged

scalar fields, as a function of ωM, considering the same

parameters used in Fig. 19, for which the critical frequency

is ωcM ¼ 0.7.
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V. CONCLUDING REMARKS

Within GR, the standard BH solutions (Schwarzschild,

Reissner-Nordström, Kerr, and Kerr-Newman) possess a

common feature in their core: a curvature singularity

hidden by an event horizon. On the other hand, certain

regularBH solutions, i.e., objects with an event horizon but

with no curvature singularity, can be obtained by minimally

coupling NED models to GR. Much work is underway to

determine the properties of RBHs. Contributing to this

effort, we have scrutinized the absorption properties of

charged massive scalar fields in the background of the

electrically charged RBH solution proposed by Ayón-Beato

and García [18].

The most intriguing result of our study is that

regular ABG BHs, unlike their RN counterparts, exhibit

unbounded superradiance (as ω → μ) in massive scalar

fields, within a certain parameter range. More precisely,

the cross section σ is unbounded from below as ω → μ; this

is shown clearly in Fig. 10. The region of parameter space

in which unbounded superradiance occurs is clarified in

Sec. III C and Fig. 5.

Some care is needed in interpreting the physical meaning

of the divergence of the cross section σ as ω → μ. In the

particle picture, a divergence arises naturally because

particles of low momentum and large impact parameters

are attracted by the BH, with bc → ∞ as κ → 0. In the wave

picture, a divergence in σ arises if the transmission factor

does not go to zero as rapidly as the cube of the momentum

κ in the denominator of Eq. (31); and if this occurs in the

superradiant regime ω < ωc, then the unbounded super-

radiance phenomenon occurs. Notably, the amplification

factor, Zωl in Eq. (27), does not diverge in our numerical

results.

In principle then, by stimulating the BH with a planar

wave of low momentum (κ → 0) in a massive charged field,

one can extract (via superradiance) unbounded quantities

of mass and charge from the ABG BH (within the

limitations of the linearized regime of weak scalar fields).

It is important to stress, however, that the divergence in σ is

related to the fact that the BH is interacting with a planar

wave of infinite lateral extent (and bc → ∞ as κ → 0).

Therefore, one should not expect unbounded extraction of

energy to be possible (even in principle) for a stimulating

wave of finite width and duration.

Some further interesting aspects of the ACS are sum-

marized below:

(i) Massive scalar waves are typically more absorbed

than massless ones, and absorption increases with

the value of μM. This result is expected since

larger field masses lead to larger GCSs, and large

field masses are associated with strongly absorbed

modes [69,83].

(ii) In the case of a charged scalar field, due to the

Lorentz force, the absorption for qQ < 0 is typically

larger than for qQ > 0.

(iii) Low-frequency waves satisfying the condition

ω < ωc [cf. Eq. (28)] can have a negative ACS.

This occurs due to the superradiant amplification of

low multipoles of the field (principally, in the l ¼ 0

mode) [55].

(iv) The absorption of scalar waves by ABG RBHs is

typically larger than for RN BHs (for equivalent q,
M, and α), when the value of the charge coupling qQ

is negative. Conversely, σRN > σABG when qQ > 0.

(v) The critical superradiant frequency of the ABG

BH is always larger than that of the RN BH, for

equivalent parameters. Moreover, superradiant am-

plification is stronger for the ABG BH. Both aspects

are due to the enhanced electrostatic potential at the

horizon, ϕþ, in the ABG case (i.e., ϕABG
þ > ϕRN

þ ).

We showed in Sec. IV E that, for certain parameter

choices, the ABG RBH solution can mimic the RN

solution, from the point of view of absorption spectrum,

reinforcing the results presented in Refs. [78,81]. It is also

possible to find configurations for which scalar fields with

different masses and charges, in the background of ABG

and RN BHs, have the same critical superradiant frequency.

Several avenues for further investigation are open. First,

we note that superradiant scattering is, in some sense, the

wave analog of the Penrose process. In light of the results

here, it could be worth studying the Penrose process for the

ABG BH in detail; that is, the scenario of a charged

particle, incident from infinity, that splits into two parts in

the vicinity of the BH, with one part ejected to infinity and

the other absorbed.
2
In a Penrose process, the escaping

particle has more mass-energy than the incident one. It

would be interesting to compare the regions of parameter

space in which energy extraction can occur, again drawing

a comparison between the RN BH and the ABG BH.

Second, the existence of the unbounded superradiance

region in Fig. 5 strongly hints at the existence of super-

radiantly unstable quasibound states in the spectrum of the

massive charged scalar field on the ABG spacetime.

Previous investigations on the RN spacetime have sug-

gested that it is not possible to form quasibound states that

are also superradiant in the RN case. Heuristically, the

reason is clear: for bound states one needs an attractive

potential in the far field, which necessitates μM > qQ; then

modes with ω < μ do not lie in the superradiant regime

ω < qϕRN
þ ¼ qQ=rþ of the RN BH. Conversely, as shown

in Fig. 5, modes satisfying μM=qQ > 1 can also be

superradiant on the ABG spacetime, due to the increase

in the electric potential at the horizon, ϕþ. This implies that

certain quasibound modes of the massive charged scalar

field will grow exponentially with time and thus that the

ABG BH suffers a superradiant instability. This is under

active investigation [86].

2
In Ref. [85], the authors studied the Penrose process in the

ABG RBH, but considered neutral particles.
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Third, the ABG BH is just one example in the regular

class in NED. It would be interesting to clarify whether

other solutions in this class also exhibit a stronger electro-

magnetic field at the horizon and thus an enhanced region

of superradiance with associated phenomena, or whether

the ABG BH stands alone in this respect.

Finally, real astrophysical BHs are known to be

rotating. Future studies of absorption by spinning RBHs

would clarify the interplay between charged superradiance

(studied here) and rotational superradiance.

We conclude this paper by discussing some potential

observational impacts. In recent years, the EHT Con-

sortium has provided the first images of the shadows of

the supermassive BHs M87* [5] and Sgr A* [87]. In

principle, observations of BH shadows probe the geometry

of the spacetime near the light ring, and thus there should

be observable differences between regular and singular

BHs, as well as between the charged and uncharged

scenarios. The area of the shadow is closely linked to

the ACS in the high-frequency limit, that is, to the geo-

metric capture cross section σgcs [see Eq. (46)]. This is

influenced by the charge of the spacetime and by its

causal structure, but we do not expect σgcs to be signifi-

cantly affected by unbounded superradiance. However,

unbounded superradiance may provide an efficient mecha-

nism for the BH to deplete its charge (in addition to the

Schwinger effect) and, moreover, a superradiant instability

in the same region of the parameter space could lead to

the formation of a scalar field cloud, with its own

observational signatures. Another arena to explore is the

effect of charge and NED on gravitational waves from

two-body coalescences; for instance, using the merger-

ringdown signal for charged BHs, one may seek to

constrain the charges of the progenitors and the product

of the merger [88]. In certain astrophysical scenarios, scalar

fields are used to model dark matter candidates (see

Ref. [89] and references therein), and dark matter models

can support a small amount of charge [90] (though several

orders lower than that of an electron). Further study is still

needed to understand the role of superradiant scattering in

such scenarios, including on RBH spacetimes.
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