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Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The

immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in

ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an
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increase in Treg number in ALS patients following the administration of low-dose

(ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher

metabolic modifications occurring in patients treated with ld-IL-2 and its relationship

withTreg response. BloodmetabolomicprofilesweredeterminedondaysD1,D64, and

D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo

(n = 12). We discriminated the three time points for the treatment group (average

error rate of 42%). Among the important metabolites, kynurenine increased between

D1 and D64, followed by a reduction at D85. The percentage increase of Treg num-

ber from D1 to D64, as predicted by the metabolome at D1, was highly correlated

with the observed value. This study provided a proof of concept for metabolic char-

acterization of the effect of ld-IL-2 in ALS. These data could present advances toward

a personalized medicine approach and present pharmacometabolomics as a key tool

to complement genomic and transcriptional data for drug characterization, leading to

systems pharmacology.

KEYWORDS

amyotrophic lateral sclerosis, interleukin-2, kynurenine pathway, metabolomics, pharma-

cometabolomics

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately

fatal motor neuron disease.1 Drug discovery for this disease has

been characterized by successive failures in clinical trials.2,3 Multi-

ple pathological mechanisms have been identified in ALS, including

the aggregation and accumulation of ubiquitinated protein inclu-

sions in motor neurons, alterations in mRNA processing, glutamate-

mediated excitotoxicity, oxidative stress, mitochondrial dysfunction,

and neuroinflammation.1,4–8

Regulatory T-lymphocytes (Tregs) are CD4+CD25+FoxP3+ cells

that may act as negative regulators of inflammation. For example,

they may play this key role by inhibiting effector cell activation.9

Treg immunosuppressive functions were found to be impaired in ALS

patients, and a reduction in their levels was correlated to disease

progression.8,10–13 Interleukin-2 (IL-2) is crucial for the maintenance

and function of Tregs.14

IL-2 therapy has been shown to be capable of restoring Treg

immunosuppressive functions in vitro.15 Based on the safety and the

protective role of Tregs inALSpatients,16 the administrationof IL-2has

been proposed as a new therapeutic strategy. The pharmacodynamics

and safety of low-dose (ld) IL-2 was reported in the IMODALS study

(NCT02059759)17 and showed a significant increase in Treg number

with no serious adverse events. This phase 2a study was not designed

to ascertain the efficacy of ld-IL-2 (1 or 2 MIU) on disease progres-

sion.However,we suspect a beneficialmolecular effect associatedwith

the changes in Treg number that merit further exploration. To achieve

personalized medicine, the known heterogeneity of phenotypic char-

acteristics and drug response of ALS patients requires an adaptation

of the treatment strategy from initiation of treatment administration

to real-time adaptation. Relying solely on clinical characteristics for

subgroup analysis to determine specific treatment protocols reveals

insufficient sensitivity and robustness. Similarly, conventionalmethods

to predict prognosis in treated patients are disappointing and prob-

ably inadequate. Interestingly, Giovannelli et al. attempted to answer

the same question in a subgroup analysis in the same IMODALS cohort

by performing microarray gene expression profiling. They identified

transcripts associated with lipid metabolism that were linked to drug

response.18

Pharmacometabolomics studies use metabolomic profiles to pro-

vide insight into the response to drug treatment. This approach can

complement transcriptional studies by providing a deeper understand-

ing of biochemical parameters associated with drug administration,

which would assist in the characterization of a drug response and even

disease heterogeneity.19,20

Here, we describe a pilot study applying a pharmacometabolomics

approach to plasma samples from the IMODALS cohort to provide

new insight and contribute to efforts toward personalized medicine

in neurology. To our knowledge, this study is the second pharma-

cometabolomics study performed in ALS patients.21 Our primary

objective was to characterize the metabolic profile of patients treated

with ld-IL-2 and its relationship with the changes in Tregs. The second

objective was to explore the ability of baselinemetabolomic profiles to

predict Treg increase after treatment.

MATERIALS AND METHODS

Population

The study was performed using samples collected during the ran-

domized (1:1:1), placebo-controlled, double-blind, parallel group trial
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evaluating the safety and efficacy of ld-IL-2 in 36 ALS patients

(NCT02059759). In this study, two doses of ld-IL-2 (1 and 2 MIU IL-2

perday)were testedand comparedwithplacebowith anoverall follow-

up of 6 months and multiple regular blood collections performed over

a 3-month period. According to previously published studies on this

cohort, particularly the one reporting on Tregs, we decided to focus

on (i) two groups of patients (the treatment group that received 2

MIU of IL-2, and the placebo group that received an injection of a

5% glucose solution) as 2 MIU of IL-2 was associated with more pro-

nounced immune regulation and (ii) three time points for which blood

samples were available: baseline (D1), 3 days after the last treatment

cycle (D64), and 24 days after the last treatment (D85). All details

concerning participants have previously been described in publications

that reported the results of this clinical trial.17,18 The study proto-

col was submitted by the sponsor (Centre Hospitalier Universitaire

de Nîmes) and approved by an independent ethics committee (Comité

de Protection des Personnes Sud Méditerranée III; reference number:

2014.09.01-ter).

The following demographic and clinical data were documented: age

of onset of first symptoms, site of symptom onset, disease duration

from onset of symptoms to the first visit, sex, ALS revised Functional

Rating Scale score, slow vital capacity, and body mass index (BMI). The

clinical immunophenotyping that provided results of Tregs (defined as

CD4+CD25+CD127low/−FoxP3+ cell population) has been described

in apreviouslypublished study.17 The increase inTregnumberbetween

D1 and D64 was calculated as follows: (Tregs at D64) − (Tregs at

D1)/Tregs at D1.

Metabolomics analysis

Blood samples were collected at D1, D64, and D85 from all patients.

After centrifugation at 3000×g for 10 min at room temperature,

plasma samples were stored at −80◦C until analysis. To explore the

metabolomic profile, we used a targeted, quantitative approach via the

AbsolutIDQ p180 kit (Biocrates) using flow injection analysis (FIA) and

high-performance liquid chromatography (HPLC) mass spectrometry.

This kit was chosen as it covers relevant pathways in our research

fields. Importantly, it is a quantitative approach that may help in the

specific routine for monitoring the relevant metabolites in the event

of high relevance. It also uses a limited volume of samples with a high

interlaboratory reproducibility, and its successful application has been

consistently reported in the literature. This strategy allows for the

quantification of 188 metabolites22; 146 hydrophobic molecules via

FIA and 42 polar metabolites via HPLC. The Biocrates Kit is based on

the use of isotope-labeled internal standards for calibration curves and

quality controls (QCs). Plasma samples were loaded onto filter paper

and dried in a stream of nitrogen. Chemical derivatization was per-

formed with a solution of 5% phenyl-isothiocyanate. Dried residues

were extracted with methanol containing 5 mM ammonium acetate.

The analysis was performed on a QTRAP 5500 System (AB Sciex) with

an FIA method or coupled to HPLC using a 5 µmAscentis Express C18

(4.6 × 250 mm) column. TheMetIDQ software (Biocrates) was used to

calculate concentrations of individual metabolites. Calibration curves

andQCswere used to validate the analysis batch.

Statistical analysis

Baseline characteristics between the placebo and 2 MIU groups of

patients were compared usingWilcoxon or chi-square tests.

First, metabolomics profiles were compared between the two

groups at each visit. Variations between D1, D64, and D85 were

then analyzed within each group. Since Treg analyses had previously

revealed a high discrimination between groups at D64, we evaluated

the relationship between Treg number and metabolite levels at D1

and their variation at D64 in both groups. Finally, we performed an

analysis to estimate the ability of themetabolomic profile at D1 to pre-

dict the percent Treg number increase at D64 within the treatment

group.

Given the limited number of patients, univariate analyses were

basedonnonparametricWilcoxonandSpearman rank tests to evaluate

metabolite differences between qualitative (treatment group) or quan-

titative (Treg number) variables, respectively. Friedman or Wilcoxon

signed-rank tests were performed to compare quantitative values

between three or two visits, respectively. p-Values for multiple com-

parisons were adjusted using the false discovery rate (FDR) method

but due to the limited number of patients, and raw p-values were also

considered to discuss trends.

For multivariate exploration, an unsupervised analysis via princi-

pal component analysis (PCA) was performed prior to the use of a

supervised machine learning approach: sparse partial least-squares

discriminant analysis (sPLS-DA) for a qualitative predicted variable or

partial least squares regression (PLS) for a quantitative predicted vari-

able. The MixOmics package was used to perform PLS and sPLS-DA

analyses. A paired sPLS-DAwas used to evaluatemetabolomic changes

between visits. The sPLS-DA models were tuned to select the optimal

number of components and features. Concerning PLS, only those fea-

tures with a variable importance in projection (VIP) value >0.8 were

retained to build the final model. The quality of the models built was

assessed by prediction accuracy following cross-validation (CV), and

the significance was assessed by permutation tests (100 permutations

using the functionMVA.test of the RVAideMemoire package).We then

used this fitted model to predict the percent Treg number increase

at D64. The predicted values were compared to the observed values

using linear regression. We chose these methods as they are particu-

larly relevant when the number of observations is lower than that of

the explanatory variables, which was the case here, and when the lat-

ter are correlated. To the best of our ability, we also limited the number

of variables used in ourmodels to avoid overfitting.

All analyses were performed using R studio software (version

2022.02.3). A p-value <0.05 was considered significant. Pathway anal-

ysis was conducted using the MetaboAnalyst software (https://www.

metaboanalyst.ca/).
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TABLE 1 Baseline characteristics of included patients.

Placebo (N=12) 2MIU (N=12) Raw p-value

Sex 1

Female 3 (25%) 3 (25%)

Male 9 (75%) 9 (75%)

Age of onset (years) 0.86

Mean± SD 56.5± 9.6 57.7± 12.9

Median (interquartile) 56.20 (48.78−63.85) 61.25 (46.57−64.75)

ALSFRS-r 0.86

Mean± SD 38.83± 3.35 37.67± 5.25

Median (interquartile) 38.5 (36.5−41.0) 39.0 (36.0−40.5)

BMI (kg/m2) 0.18

Mean± SD 26.80± 5.60 24.39± 1.71

Median (interquartile) 25.10 (24.05−27.27) 24.35 (22.95−26.02)

Disease duration (year) 0.40

Mean± SD 2.21± 1.44 1.96± 1.44

Median (interquartile) 1.75 (1.30−3.20) 1.45 (1.10−2.12)

Treg number (cells/µL) 0.21

Mean± SD 52.17± 17.59 66.04± 29.65

Median (interquartile) 48.25 (37.25−64.88) 64 (45.75−87.00)

Abbreviations: ALSFRS-r, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; BMI, bodymass index.

RESULTS

Population

The 12 patients receiving two MUI of IL-2 and the 12 control subjects

had similar baseline characteristics (sex, age at onset, BMI, and site

of onset; summarized in Table 1),) as previously described17. Briefly,

the mean (± SD) age was 57.7 ± 12.9 years old in the treatment

group compared to 56.5 ± 9.6 years old in the placebo group. Treg

number (cells/µL) was the same at baseline D1 (66.0 ± 29.7) in the

treatment group as in the placebo group (52.2 ± 17.6) (Figure 1A).

The increase in Treg number from D1 to D64 was significant in the

treatment group (mean ± SD), with an increase of 265 ± 133% (z =

−3.49, p<0.001). The percent decrease in Treg number between D64

and D85 was significant in the treatment group (mean ± SD), with an

decrease of 60 ± 19% (z = −3.49, p<0.001) but not in the placebo

group. To summarize, the change in Treg cell number over 85 days is

represented in Figure 1B, and these findingswereused formultivariate

models.

Distinct change in metabolomic profiles over time

between groups

A total of 181 metabolites (listed in Table S1) were analyzed in the

bloodof the24 subjects,withpathways involvingmainly thoseof amino

acids and lipid metabolism.

Following univariate analysis (Wilcoxon test including FDR and p-

values) at baseline, we did not find any significant difference between

metabolites across the two groups. Metabolomic profiles showed no

differences between the two groups as demonstrated by the PCA

plot (Figure S1). Moreover, the sPLS-DA model showed poor perfor-

mance (average error rate of 50%), and the permutation test was not

significant.

At D64, phosphatidylcholine (PC) aa C32:3, C12:1, lysoPC a C26:1,

PCae42:0, kynurenine, andPCaaC32:2differed significantly between

the two groups via raw p-values. Significant differenceswere not found

with FDR correction. The model’s ability to distinguish the two groups

was not satisfactory (average error rate of 42%), although the per-

mutation test was significant. Metabolites retained after adjusting the

model were PC aa C32:3, lysoPC a C26:1, PC ae 42:0, PC aa C32:2, PC

aa C34:4, PC aa C36:4, and kynurenine. Details about fold change and

VIPvalues are given inTable S2.AtD85, themodel remained significant

but with a nonsatisfactory performance (average error rate of 62.5%).

We then explored the metabolomic changes at the different time

points within each group. Contrary to the findings for the placebo

group, the paired sPLS-DA model was able to discriminate the three

times points within the treatment group. This can be seen in the PCA

plot with a correct separation of the metabolomes at the different

time points (Figure 2A). The model was significant with modest accu-

racy (average error rate of 42%). The metabolites included in the

model and their VIP values within each component are listed in Table

S3. Among these metabolites, kynurenine had the highest VIP value

in each component and the smallest p-value in univariate analysis
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F IGURE 1 Effect of IL-2 treatment on Treg number. (A) Box plots

representing the number of Tregs (cells/µL) in the treatment group

(blue) and the placebo group (gray box) at D1, D64, and D85. (B)

Change in Treg number (cells/µL) over time and between the

treatment group (blue) and the placebo group (gray). Black lines

connect the data points of a single patient. ns, p>0.05; * p<0.05; ****

p<0.0001.

(χ2 = 13.5, raw p-value= 0.001, FDR-adjusted p-value= 0.13). Its level

increased betweenD1 andD64 in almost all treatment group patients,

followed by a reduction betweenD64 andD85 (Figure 2B).

Based on the metabolome response between D1 and D64 in the

treatment group, a Wilcoxon signed rank test revealed significant

changes in 16 metabolites (raw p-value < 0.05) but not after FDR

correction. Among these, 12 corresponded to significant decreases

in PCs (Table S4). Kynurenine and histidine increased and decreased

significantly (raw p-value≤0.001; FDR-adjusted p-value<0.1), respec-

tively. D1 and D64 were separated in the paired PCA (Figure 2C). The

paired PLS-DAmodel was significant with good accuracy (overall error

rate of 17%), with three metabolites retained to build the final model

(kynurenine, PC aa C36:3, and PC aa C36:6).

Relationship between metabolomic profile and Treg

response throughout treatment

With regard to the entire population, univariate analysis revealed that

no metabolites were correlated with Treg number at baseline after

FDR correction; however, five had a raw p-value <0.05 (Spearman test

[dfs = 22]: C14:2-OH, C14:2, PC aa C40:2, SM C26:1, and C5-DC

(C6-OH). The permutation test of the PLS model built to explain the

F IGURE 2 Change of metabolomic profiles over time in the

treatment group. (A) Principal component analysis (PCA) plot of the

sPLS-DAmodel built to discriminate the three time points in the

treatment group. D1, D64, and D85 are in blue circles, orange

diamonds, and gold triangles, respectively. Ellipses represent the 95%

confidence interval for each time point. (B) Change in kynurenine

levels (µmol/L) over time (D1, D64, and D85) in the treatment group.

Black lines connect the different time points of a single patient. (C)

PCA plot for D1 (blue circles) and D64 (orange diamonds) for the

treatment group. Ellipses represent the 95% confidence interval for

each time point.

Treg number was significant (Q2 = 0.51, p = 0.01). Eight metabolites

were selected to build this model: C14:2, C14:2-OH, C5-DC (C6-OH),

L-DOPA, spermidine, spermine, lysoPC a C18:2, and PC ae C44:3.

As the Treg number was not modified within the placebo group, we

focused on the treatment group for the correlation between Treg num-

ber and metabolites at D64. Three metabolites were correlated with

the Treg number at D64 in the treatment group: C12:1 (r = 0.80(10),

raw p-value = 0.002), PC aa C32:0 (r = 0.69(10), raw p-value = 0.013),

and PC aa C34:3 (r = 0.59(10), raw p-value = 0.044). We also found a

significant PLSmodel (Q2 =0.42, p=0.001) that included: alanine, argi-

nine, glutamine, lysoPC a C20:4, PC aa C32:0, PC aa C32:1, and PC aa

C34:3.
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F IGURE 3 Association between baselinemetabolome and the percent increase of Treg count in the treatment group. (A) Correlations

between the percentage increase of Treg number andmetabolite levels at D1. Raw p-value<0.05. Red lines show the line of best fit. Gray bands

represent the 95% confidence level intervals. (B) Correlation between the observed percent increase in Treg number and the predicted percent

increase determined using PLSmodel. The green line shows the line of best fit. Gray band represents the 95% confidence level interval. The blue

dashed line represents a perfect correlation (r= 1). Abbreviation: ADMA, asymmetric dimethylarginine.

Prediction of Treg increase after ld-IL-2

administration from baseline metabolome

As we found a correlation between Treg number and metabolites at

each time point, we evaluated the ability of the metabolome at D1

to predict the percent increase in Treg number from D1 to D64. Five

metaboliteswere correlatedwith theTreg increase before FDRcorrec-

tion: SM C20:2, PC ae C44:4, asymmetric dimethylarginine (ADMA),

PCaeC38:1, andmethionine (Figure3A). Thepermutation testwas sig-

nificant, and theCVshowedanR2 andQ2 of0.52and0.51, respectively,

within the first component. Forty-four metabolites were selected to

build the model after keeping only features with a VIP value >0.8

within the first component (see details and VIP values in Table S5). We

then used this model to predict the percent increase of Treg number

from D1 to D64. The predicted values were highly correlated with the

observed values (R2 = 0.88 (10), p<0.0001) (Figure 3B).

DISCUSSION

Ld-IL-2 has emerged as a therapeutic candidate, and its safety and tol-

erance have been reported in ALS patients in our phase 2a IMODALS

trial.17 To explore the variability of drug response in this cohort and

complement the study by Giovannelli et al.18 we proposed a phar-

macometabolomics approach to provide new insight into metabolic

changes occurring in patients treated with ld-IL-2 and their relation-

ship with the Treg response.

Benefit of pharmacometabolomics

Understanding pharmacometabolomics20 can be particularly impor-

tant in ALS due to the failure of numerous clinical trials for drugs to

treat this disease, and the high heterogeneity of treatment responses

could mask potential efficacy in some patients. One of the strengths of

the IMODALS cohort is the opportunity it provides to explore different

biomarkers from patient material (e.g., biological fluids, RNA, etc.) that

may complement standard biological and clinical findings. We charac-

terized the metabolome at different time points in both the treatment

and placebo groups at baseline (D1), the peak of treatment (D64), and

the end of treatment (D85). Thus, the design of this trial allowed for

the identification of specificmetabolic changes caused by ld-IL-2 treat-

ment, as suggested by the ability of our models to discriminate the

different time points in the treatment group.
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Metabolic alterations associated with ld-IL-2

administration

Among the ld-IL-2–induced metabolite modifications, kynurenine dis-

played an interesting pattern. Kynurenine is formed by the catabolism

of tryptophan by indoleamine 2,3 dioxygenase 1 (IDO-1).23 The

kynurenine pathway (KP) is activated during inflammation to pro-

vide NAD+ to immune cells, and some of its intermediates have

immunomodulatory (pro- and anti-inflammatory depending on the

intermediates) effects.24,25 KP represents a link between inflam-

mation and metabolic alterations26 and is one of the promising

pathways recently investigated in neurodegenerative disease, includ-

ing ALS.27–30 Our results are consistent with the literature as IL-2

has long been reported to induce IDO-1 activity,31 which could

explain the elevation of kynurenine found in the treatment group

following administration of ld-IL-2. Moreover, in the same cohort,

Giovannelli et al. reported an upregulation of IDO1 transcription

between D1 and D64 in the treatment group, reinforcing the reli-

ability of our results and underlining the value of a combined

metabolomic and transcriptional approach to explore the drug’s

mechanism of action.18 In regard to the emerging role of this path-

way, we can take advantage of the upregulation of kynurenine

levels induced by ld-IL-2. Indeed, we could attempt to modulate

its metabolism toward the formation of neuroprotective interme-

diates, such as kynurenic acid, with kynurenine monooxygenase

inhibitors.32 These findings could open new therapeutic opportunities

for ALS.

Among the alterations of othermetabolites inducedby ld-IL-2 treat-

ment, we observed a decreasing trend for various PCs (Table S4). This

could be explained by the reported role of IL-2 in the activation of pro-

tein kinase C (PKC).33,34 This activation would appear to be mediated

by the hydrolysis of PCs by phospholipase C.34

Promising prediction of Treg increase from baseline

metabolome

Although an elevation of Treg number was observed for all patients in

the treatment group,17 the scale of this elevation was heterogeneous.

It is, therefore, important to identify factors influencing this variabil-

ity, as done with transcription expression.18 Baseline metabolome was

able to predict the increased number of Tregs at D64 in the treatment

group. Among the important metabolites for our model, methionine

uptake by the SLC43A2 transporter has recently been reported to be

crucial for Treg viability upon IL-2 deprivation.35We found an inverse

correlation between methionine levels at baseline and the increase in

Tregnumber.Wecanhypothesize thatwith less circulatingmethionine,

Tregs would bemore prone to respond to ld-IL-2 treatment.

ADMA, generated from the methylation of arginine residues, is an

endogenous inhibitor of nitric oxide production.36 Due to its function,

this molecule has been largely investigated in cardiovascular diseases

and has emerged as a risk factor of cardiovascular events via endothe-

lial dysfunction.37 Moreover, this molecule would also appear to play

a role in inflammation.38 ADMA can upregulate IL-6 production, as

reported in an in vitro study,39 but the opposite has also been found in

a ratmodel.40 As IL-6 is known to inhibit Treg differentiation,41 it could

explain the inverse correlationwe found here betweenADMA levels at

D1 and the percent increase in Treg number.Of note, ADMAwas found

to be correlated with IL-2 levels in a cohort of patients suffering from

periodontal disease.42 In our cohort, we found a modest increase fol-

lowing the administration of ld-IL-2 (nonsignificant fold change = 1.14

betweenD1 andD64).

Sphingomyelins are structural phospholipids that can be hydrolyzed

into ceramides through sphingomyelinase activity.43 We suggest that

the inverse correlation between baseline SM C20:2 and the increase

in Tregs could be explained by an increase in ceramide production as

ceramide can negatively regulate Tregs via intracellular signaling.44,45

As for the positive correlation between Treg number and PC, we could

suggest that PKC activation following hydrolysis of PCs could con-

tribute to Treg induction.46 Determining the intracellular levels of

thesemetaboliteswould beof interest to explore their correlationwith

the ld-IL-2 response.

Limitations and future directions

Our pharmacometabolomic approach was limited to the biological

response to ld-IL-2, so we will consider the clinical response as an

endpoint in future studies as there was a lack of significant deteri-

oration of clinical features over the phase 2a trials in all groups.17

Another limitation of our study is the use of a targetedmetabolomic kit

focused on amino acids and lipids, which, therefore, does not cover all

metabolic pathways. For example, based on our results, exploration of

ceramides and KP intermediates would have been relevant. This study

was performed under the optimum conditions for a metabolomics

approachwith an extensively validated, quantitativemetabolomics kit.

This method provides confidence and gives us an overview of the key

mechanisms that we must continue to examine in further studies and

leads us to utilize an untargeted approach.

The major limitation of our study is the limited number of patients,

which is due to the nature of the phase 2a IMODALS study. To reduce

this limitation,weused component-based approaches such as sPLS-DA

and PLS that are suitable when the number of explanatory variables

is much greater than the number of observations. These approaches

reduce the dimensionality of a multivariate dataset to a few principal

components with minimal loss of information. They are also suitable

when there is a lot of collinearity between variables. However, the

selection process used cannot guarantee the absence of confounding

variables.With the lack of external validation and statistical power, our

models are prone to overfitting. Thus, our results can highlight poten-

tial metabolites involved in the ld-IL-2 response, but mainly serve as

a proof of concept for a subsequent study involving more patients.

The IMODALS study was followed by the phase 2b MIROCALS study

(NCT03039673), which included a greater number of patients with

a longer follow-up. It would be interesting to conduct a pharma-

cometabolomics approach (covering a higher number of metabolites,
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including ceramides and KP intermediates) on this cohort to (i) repli-

cate and increase the robustness of this study and (ii) exploremetabolic

changes linked to the clinical response to ld-IL-2. The replication of our

results and the determination of an optimal threshold target for the

rising number of Tregs could provide an opportunity to evaluate the

benefits of a pharmacometabolomics-guided ld-IL-2 dose in the con-

text of ALS. Our study also prompts for further studies evaluating the

intracellular metabolome of Tregs and its interaction with the tran-

scriptomeandproteomeof these cells following the response to ld-IL-2

in ALS.

CONCLUSION

Our pilot study provided proof of concept of a pharmacometabolomics

approach to elucidate the metabolic effects ld-IL-2 in the ALS environ-

ment. We identified alterations associated with ld-IL-2 administration,

particularly in PCs and the KP. The changes in the KP are supported by

the upregulation of genes involved in this pathway that have previously

been reported in the same cohort. These findings underscore the intri-

cate interplay between immunemodulation andmetabolic pathways in

ALSpathogenesis and treatment response.Wealso identified potential

biomarkers associated with treatment response, such as methionine,

ADMA, SMC20:2, andPCs. These data could result in advances toward

personalized medicine in ALS based on patient-specific metabolomic

profiles, but also contribute to the understanding of ALS heterogene-

ity. Pharmacometabolomics could be a complementary tool to genomic

and transcriptional data for drug characterization and lead to a systems

pharmacology approach. We believe multi-omics profiling is ready for

consideration as a secondary outcome in clinical trials in ALS and other

neurodegenerative diseases.
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