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Abstract

Utilizing a data-driven approach, this study investigates modifier effects on compen-

sation voltage in differential mobility spectrometry–mass spectrometry (DMS-MS)

for metabolites and peptides. Our analysis uncovers specific factors causing signal

suppression in small molecules and pinpoints both signal suppression mechanisms

and the analytes involved. In peptides, machine learning models discern a relationship

between molecular weight, topological polar surface area, peptide charge, and proton

transfer-induced signal suppression. The models exhibit robust performance, offering

valuable insights for the application of DMS to metabolites and tryptic peptides anal-

ysis by DMS-MS.
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1 | INTRODUCTION

The integration of liquid chromatography with mass spectrometry

(LC–MS) and electrospray ionization (ESI) has facilitated the identifica-

tion and quantification of a large array of compounds of biological

interest. LC–MS analysis is essential in omics research, aiming to com-

prehensively study biological molecules, such as genes, peptides/pro-

teins, lipids, and metabolites, using high-throughput techniques to

decipher complex interactions within biological systems.1 However,

the multitude of identified exogenous and endogenous compounds

challenges LC–MS platforms, limited by LC's peak capacity and the

difficulty in distinguishing isobaric or isomeric analytes using MS or

even MS/MS.2 A popular solution is adding an additional, highly

orthogonal separation dimension, either through an additional LC col-

umn with a different separation mechanism (e.g., ion exchange chro-

matography and Hydrophilic Interaction Liquid Chromatography) or

coupling with techniques like gas chromatography. Yet these methods

have their drawbacks: LCxLC3,4 requires complex, time-consuming

parameter optimization; LCxGC5 demands intricate sample prepara-

tion and interface management, particularly for non-volatile analytes.

Ion mobility spectrometry (IMS),6,7 which separates ions in the gas

phase based on their mobility under an electric field, emerges as a

promising alternative. Relevant IMS variations for a secondary separa-

tion dimension include Drift Tube IMS,8 utilizing linear mobility
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dependence in a constant electric field; Field Asymmetric Ion

mobility Spectrometry (FAIMS),9–11 differentiating ions with contrast-

ing non-linear high-field and linear low-field mobilities in

alternating fields; Traveling Wave IMS,12,13 propelling ions through a

dynamically changing electric field, focusing on induced mobility varia-

tions; and Trapped Ion Mobility Spectrometry (TIMS),14,15 which bal-

ances the electric field force against a gas flow (ions trapping) and

then gradually decreasing the electric field (separation). All these

methods enable ion resolution in space and time enabling a wide

range of analytes to be separated without prior knowledge of their

properties, which is crucial for untargeted profiling. It is also important

to note that because of constant low field used, DTIMS allows for the

direct collision cross section (CCS) measurement but TWIMS and

TIMS also enable the derivation of CCS values under their operational

parameters.

On the other side of ion mobility spectrum, FAIMS9–11 differenti-

ates the ions with contrasting non-linear high-field and linear low-field

mobilities in alternating fields. Differential mobility spectrometry

(DMS),16 similar to FAIMS, applies an asymmetric electric field (sepa-

ration voltage, SV) between two planar electrodes, perpendicular to

ion movement. While high- and low-field waveform components have

equivalent but opposite areas, differential mobility arises as ion mobil-

ity exits the linear mode in high-field conditions. Since both FAIMS

and DMS introduce non-linear ion mobility, they are not so suitable

for accurate CSS measurements. To mitigate differential mobility

effects on ion trajectory, a compensating DC voltage (CoV) is applied

to select the ion of interet.17 The CoV acts as a critical control param-

eter, enhancing the selectivity and specificity of the ion filtering pro-

cess, which is key for its application in targeted analyses. Additionally,

the DMS environment, typically using N2 carrier gas, can be enhanced

with solvent vapors like polar protic (water and alcohols), polar-aprotic

(acetonitrile and acetone), or non-polar but highly polarizable (toluene)

modifiers, targeting specific analyte interactions. These modifiers can

be employed to fine-tune selectivity, especially valuable for separating

co-eluting isomeric compounds.17

In exploring the intricacies of IMS, particularly DMS, the focus

shifts to the microscopic interactions between analytes and modifiers.

This transition leads us to delve into the realm of in-silico tools, crucial

for gaining a deeper understanding of these interactions and correlat-

ing them with other molecular properties. The study by Ruskic and

Hopfgartner18 reveals how DMS selectivity for isomeric analytes is

influenced by factors like reduced mass and cluster binding energy,

with findings supported by density functional theory (DFT) calcula-

tions and molecular modeling. The paper by Walker et al.19 demon-

strates the use of DMS and machine learning (ML) to rapidly predict

key molecular properties of drug candidates, enhancing drug discov-

ery efficiency. Ieritano et al.20 developed a ML model using Random

Forest Regression to predict dispersion curves in DMS, achieving a

MAE of ≤2.4 V, which further improved to ≤1.2 V with guided train-

ing. This approach significantly enhances the efficiency of DMS

method development by accurately predicting ion behavior with mini-

mal input data. A very recent paper by Stienstra et al.21 demonstrates

the effective use of DMS and ML to predict water solubility (log S)

and water–octanol partition coefficient (log P) generated by the

OPERA package, highlighting the significance of integrating both

experimental DMS data and structural descriptors for improved accu-

racy. Bissonnette et al.22 used first-principles kinetics-based model,

together with MobCal-MPI and DFT/DLPNO-CCSD(T) to study

binary solvent mixtures in DMS, with conclusion that the differential

mobility of ions is predominantly influenced by the solvent binding

energies with a secondary contribution from solvent size. Chakrabort

et al.23 implemented convolutional neural networks and signal proces-

sing techniques like magnitude-squared coherence in DMS data analy-

sis, achieving high accuracy in identifying pure chemicals and their

mixtures, offering an efficient approach for chemical identification in

various applications.

In this project, we aim to encompass a multifaceted approach to

molecular analysis using advanced computational tools and data pro-

cessing techniques. The general goal is to demonstrate how we can

uniformly treat very different sets of data and provide an integrated

omics treatment that encapsulates singly charged metabolites and

multiply charged peptides. Besides gaining insight into the relationship

between various important physicochemical properties, the aim was

to demonstrate how we can apply data science tools even when we

have very little (n = 25) data points and also completely diverse sets

of molecular systems (metabolites and peptides) and, finally, gain clear

insight into microscopic mechanisms behind analyte modifier interac-

tion. The fully automated pipeline was created, which combines

python libraries for experimental data processing and relating it with

molecular structure and molecular modeling.

2 | MATERIALS AND METHODS

2.1 | Analysis of metabolites mix

A mix of 50 analytes, representative for urine and plasma metabolites

(Figure S1 and Table S1), was analyzed by LC-MS on a quadrupole

time-of-flight (QTOF) mass spectrometer (TTOF 6600+, Sciex, Con-

cord, ON, Canada) and was equipped with a differential ion mobility

device (SelexION, Sciex). All details about chemicals, sample prepara-

tion, LC, DMS and MS experiments can be found in published work.24

2.2 | Analysis of peptides mix

One-hundred eighty-five peptides (Table S2) representing 92 proteins

were selected for this study. Proteotypic peptides were synthesized

under unpurified conditions to produce 20 nmol of each peptide spe-

cies (JPT Peptide Technologies, Berlin, Germany).

A DMS cell (SCIEX SelexION device) was installed between the

ion source and the orifice of a 5500 QTRAP. The CoV was optimized

by infusing all the peptides individually by flow injection analysis (FIA)

on MRM mode (three transitions for each peptide). The flow rate was

set as 15 μl/min using a HTS-PAL autosampler (CTC Analytics, Zwin-

gen, Switzerland) and a micro-LC pump (LC-10ADVPμ, Shimadzu,

Kyoto, Japan). The injection volume was 100 μl. A SV of 3500 V was

used, and the CoV was ramped from �50 to 50 V (steps of 0.2 V)
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TABLE 1 Annotation of mix 50 analytes with the respective retention time, CoV values, and selected molecular properties

N2 Ch IPA Ch_IPA EtOH Tol ACN Name Gb MW logP RT logp TPSA Ar

4 3 �31 �39 L-lysine �34.29 146 �0.47 1.09 �3 89 0

1 �1 �38 �46 L-Histidine �31.89 155 �0.64 1.12 �3.2 92 1

7 6 �16 �41 �20 �29 Carnosine �36.07 226 �1.13 1.13 �4 121 1

5 3 �2 �42 �7 1-methylhistidine �28.59 169 �0.63 1.14 �3.3 81 1

9 8 �21 6 �7 3 �31 Glycerophosphocholine �27.83 257 �1.45 1.18 �2.3 99 0

7 5 �9 �40 �15 �37 Homo-L-arginine �41.58 188 �1.16 1.19 �3.7 128 0

�1 �3 4 8 L-Glutamine �30.95 146 �1.34 1.19 �3.1 106 0

8 6 �39 3 �19 �4 L-carnitine �32.25 161 �1.81 1.21 �0.2 60 0

7 6 �49 �11 �39 �5 �25 N-acetylneuraminic_acid �20.45 309 �3.87 1.25 �3.5 177 0

�10 7 5 3 Creatinine �25.85 113 �1.23 1.25 �1.8 59 0

2 �1 �10 �21 �2 �22 Trigonelline �26.54 137 �1.13 1.26 1.2 44 1

�1 �3 4 Creatine �39.35 131 �1.10 1.29 �1.2 90 0

�10 �11 L-Proline �30.52 115 �0.18 1.3 �2.5 49 0

4 2 �12 �31 �2 �42 �43 Homocitrulline �29.27 189 �0.76 1.34 �3.9 118 0

3 1 �50 �37 �46 N-acetylputrescine �33.2 130 �0.14 1.34 �0.7 55 0

10 8 �22 6 �8 3 �39 L-acetylcarnitine �29.83 203 �1.24 1.4 0.4 66 0

3 1 10 �47 4-guanidinobutanoic_acid �42.13 145 �0.88 1.69 �1.5 102 0

2 1 �41 0 �41 �7 �30 3-methyladenine �40.56 149 �0.22 1.76 �0.2 70 2

�2 �2 �44 4 �50 �19 Urocanic_acid �25.89 138 0.51 1.85 0 66 1

1 �1 �32 �10 �25 1 7-methylguanine �26.09 165 �0.76 2.76 �1.1 90 2

�6 �7 �41 Niacinamide �25.17 122 0.18 2.84 �0.4 56 1

�4 �5 �42 �34 �42 �27 Tyramine �31.24 137 0.89 3.01 1.1 46 1

0 �2 �23 �19 �22 �36 �22 Cotinine �26.32 176 1.37 4.1 �0.3 33 1

5 4 �32 �22 �30 �33 �21 Guanosine �27.3 283 �2.69 4.59 �1.9 160 2

�2 �4 �36 �36 �35 �38 N-methylnicotinamide �25.48 136 0.44 4.71 0 42 1

5 5 �36 �9 �28 �13 �21 Cyclic_AMP �26.18 329 �0.82 5.12 �2.6 155 2

5 5 �13 �18 �14 �19 �16 Ethenodeoxyadenosine �29.14 275 �0.28 5.53 0.7 98 3

1 0 �36 �21 �37 �27 �24 3-chlorotyrosine �24.66 216 1.00 5.57 �1.8 84 1

7 6 �17 �43 �11 �34 Pantothenic_acid_ �12.98 219 �1.04 6.82 �1.1 107 0

0 �2 �36 �29 Acetaminophen �11.12 151 1.35 6.85 0.5 49 1

4 2 �30 �13 �33 Theobromine �19.73 180 �1.04 7.16 �0.8 73 2

6 6 �34 2 �18 �2 �31 1-methyladenosine �36.82 281 �2.14 7.48 �1 129 2

1 �1 �23 �30 Isovalerylglycine �12.52 159 0.23 8.18 1.5 66 0

7 6 �40 �15 �34 �32 �20 L-Aspartyl-L-

phenylalanine

�25.08 280 �0.40 8.33 �3.3 130 1

2 0 �26 �37 �30 Hippuric_acid �11.93 179 0.50 9.06 0.3 66 1

3 1 1,3,7-trimethyluric_acid �11.74 210 �1.74 9.16 �0.4 82 2

7 6 �11 5 Chlorogenic_acid �17.91 354 �0.65 9.23 �0.4 165 1

6 5 �24 4 �11 �26 �14 5-methylthioadenosine �23.22 297 �0.61 9.27 �0.3 119 2

3 1 �37 �16 �48 Quinaldic_acid �24.21 173 1.93 9.34 1.6 50 2

4 2 �18 �41 �35 Phenylacetylglycine �9.74 193 0.43 10.07 0.7 66 1

6 6 �24 4 �11 �7 �18 Riboflavin �25.43 376 �1.72 11.49 �1.5 162 1

8 6 �18 �39 �27 �23 N-acetyl-L-phenylalanine �10.08 207 0.82 12.27 0.6 66 1

4 2 �31 Indoleacetic_acid �10.48 175 1.80 13.55 1.4 53 2

14 13 12 Furosemide �6.6 331 1.89 15.2 2 123 2

6 4 Azelaic_acid 1.4 188 1.89 15.27 1.6 75 0

7 6 �18 �27 �17 Phloretin �10.19 274 2.32 16.99 2.6 98 2

(Continues)
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during optimization. The optimization of CoV for each peptide was

first achieved without modifiers (only N2 as the separation gas). Then,

three organic modifiers (acetonitrile, isopropanol, and methanol) were

added separately at 1.5% in the separation gas to optimize the CoV

for each modifier for all the peptides.

2.3 | Computational details

All DFT calculations were performed with the Amsterdam Density

Functional (ADF) program package, within the Amsterdam Modelling

Suite (AMS2021) modeling suite.25 Initial structures were optimized

with PBE DFT method26 using full electron TZ2P Slater type orbitals

basis, Grimme G4 dispersion correction.27 The nature of the station-

ary points is confirmed by calculating analytical Hessians. Since the

nature of protonation during ESI in DMS analyses—whether kinetically

or thermodynamically controlled—remains uncertain with existing lit-

erature provides evidence supporting both mechanisms,28,29 we have

included the later one. It is very straightforward to account for it using

a simple difference between COSMO (IPA) PBE-D4 Gibbs free energy

of protonated and neutral molecule as a qualitative measure of basic-

ity and will be called Differential Proton Affinity in the rest of the

manuscript.

2.4 | Data analysis pipeline

2.4.1 | Small molecules

Data in Table S1 are directly imported into pandas data frame, after

which we converted molecular names to SMILES using pubchempy

and then to RDKit mol objects, which were a starting point for all fur-

ther property calculations. The obtained mol objects were then used

to calculate MW, logP, TPSA, number of aromatic rings in a molecule,

and a starting point (by providing 3D structure) for the proton affinity

DFT calculations, labeled as Gb (Table 1). Thus, although this is only a

50 molecules mixture, all steps are fully automated and can be applied

to datasets containing much larger number of molecules.

2.4.2 | Peptides

Data in Table S1 are directly imported into pandas data frame, after

which we converted peptide sequences to their 3D structure using

alphafold, as implemented with ColabFold. The obtained .pdb files are

then easily converted to RDKit mol objects, which were a starting

point for all further property calculations. The obtained mol objects

were then used to calculate MW, logP, and TPSA. Sum of Ser/Thr

(ST) AAs, sum of Hys/Arg/Lys (basic) AAs, sum of Asp/Glu (acid),

length of peptide, and ccs are calculated directly from peptide

sequence. All steps are fully automated and can be applied to datasets

containing a significantly larger number of molecules.

3 | RESULTS AND DISCUSSION

3.1 | DMS analysis of metabolites

In this subsection, we analyze our recent results24 for a 50 analytes

mixture (Figure S1 and Table 1), representative for urine and plasma

metabolites, Figure 1. The data include respective LC retention time

(RT) and CoV values for pure N2, 1.5% mole ratio of cyclohexane (Ch),

ethanol (EtOH), isopropanol (IPA), toluene (Tol), acetonitrile (ACN),

and one binary modifier: 0.05% mole ratio IPA in Ch.

The utilization of a binary modifier is very closely related to one

of the subjects of this manuscript—signal suppression with interacting

modifiers. IPA of 1.5% is one of the most utilized modifiers due to its

large CoV range (peak capacity). Unfortunately, it is usually coupled

with analyte signal suppression (25 out of 50 metabolites could not

be detected from our small molecules dataset; Figure 2), presumably

due to gas-phase proton transfer reactions with IPA or a possible out-

of-range CoV value. By mixing IPA with cyclohexane and lowering the

concentration to 0.05%, the created binary modifier retains a reason-

able peak capacity, with 45/50 analytes being detectable.17

3.2 | Relationship between various properties

One of the most useful steps to capture various (linear) relationships

between many data variables is construction of correlation matrix,

Figure 3A. As the name implies, this is the matrix consisting of correla-

tion coefficients (r), giving the direct information about the strength

and direction of a linear relationship. If we are more interested about

the portion of a variance explain by the variable, the coefficient of

determination (r2) gives a better insight. For that reason, we will most

focus on “R2 matrix,” given in Figure 3B. Beside properties seen in

Table 1 and Figure 3, CCS was also calculated, using graph neural net-

work approach implemented in SigmaCCS.30 Given the exceptionally

TABLE 1 (Continued)

N2 Ch IPA Ch_IPA EtOH Tol ACN Name Gb MW logP RT logp TPSA Ar

5 5 0 �12 �1 Cortisone �16.15 360 1.99 17.07 1.5 92 0

6 6 6 6 6 7 Clotrimazole �29.8 345 5.38 19.76 5 18 4

8 7 �13 1 �9 5 �10 Taurocholic_acid �25 516 2.37 20.7 2.2 144 0

9 8 �10 3 �6 4 �6 Glycocholic_acid �25 466 2.56 21.9 2.9 127 0
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F IGURE 1 Structure of selected 12 analytes (6 smallest and 6 largest) with the respective retention time and CoV values (N2, 1.5% mole ratio
cyclohexane [Ch], ethanol [EtOH], isopropanol [IPA], toluene [Tol], acetonitrile [ACN], and one binary modifier: 0.05% mole ratio IPA in Ch)
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high correlation with MW (R2 > 0.98; Figure S2), it was concluded

that, essentially, the same information is captured by CCS and is no

longer discussed as a predictor for mixture 50 dataset.

Inspection of Figure 3B highlights significant variance in data. The

correlation between CoV (EtOH) and CoV (IPA) stands out, with an R2

value of 0.81. There is a distinguishable variance between Cyclohex-

ane and N2, showing an R2 of 0.68. Molecular weight correlates with

several parameters: CoV(N2), CoV (cyclohexane), CoV (ACN), reten-

tion time, and TPSA. Additionally, retention time shows links to logP,

molecular weight, CoV (ACN), proton affinity (Gb), and CoV (IPA).

Regarding CoV for non-clustering modifiers, the relationship is

essentially linear, with one outlier (Creatinine). By removing it, R2 goes

from 0.68 to 0.97, Figure S3. This is a very strong indicator that there

is a problem with CoV (cyclohexane) value for creatinine.

Strong correlation and captured variance for CoV (EtOH) and

CoV (IPA) is expected since they are both alcohols differing by only

one carbon atom, Figure S4.

Only moderate correlation CoV for non-clustering modifiers with

MW (and CCS, Figure S2) having R2 = 0.4–0.44 is not surprising and

clearly demonstrates the point made in the introduction that the low-

field limit ion mobility technologies represent much more natural

choice for CCS extraction.

Observed correlations naturally lead toward an attempt to con-

nect some of the values mentioned in a functional relationship. This

task is greatly facilitated by the further reduction of initially small

dataset as a consequence of signal suppression by polar modifiers

(vide infra). This makes application of any more complex ML regres-

sion model, beside linear regression (LR), a task doomed to produce

large overfitting (noise captured) because of a high model complexity,

very limited amount of data and highly complicated relationship

between measured quantities and chemical structure. Even with LR,

high generatability should not expected since there are, for example,

only 25 data points available for CoV (IPA).

Still, it is instructive to show that by only using simply calculated

properties like MW, logP, and proton affinities, we capture retention

time with R2 = 0.9.

RT¼1:72 � logPþ0:035 �MWþ0:198 �Gbþ3:95, R2 ¼0:9

If we allow the utilization of obtained CoV values, by replacing

Gb with CoV (IPA), the fit improves to R2 > 0.92. All of this by using

no more than three features, to reduce the possibility of overfitting.

RT¼1:64 � logPþ0:042 �MW�0:004 �CoV IPAð Þ�4:1, R2 ¼0:92

While the relationships in our study primarily highlight linear cor-

relations, capturing non-linear patterns with such a limited dataset

poses a challenge. For example, in Figure 2B, the “Ar” column, indicat-

ing the number of aromatic rings, shows negligible correlation (R2 ≈ 0)

with CoV (Toluene). This lack of correlation is surprising, as π-π inter-

actions are expected. However, Figure S5 reveals a trend: most mole-

cules without aromatic rings (marked with zeros) correspond to

smaller CoV (Toluene) values. An exception is homocitrulline, posi-

tioned lower in the plot, with a significantly negative CoV

(Acetonitrile). This suggests homocitrulline's proton donor potential,

possibly facilitating strong cation-π interactions with Toluene.

F IGURE 2 Box plot showing the effect of adding modifiers with different proton affinities (PAs) on CoV values. The modifiers were sorted
based on their PA values from lowest (left) to highest (right).
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3.3 | Metabolites and signal suppression

After noting some simple relationships and correlations, the main part of

the analysis will be to provide microscopic insight into signal suppression

with polar modifiers. Out of the 50 analytes used, with non-clustering

modifiers, all 50 are observed, while with IPA, cycloxehane/IPA, EtOH,

Toluene, and ACN, we detect 25, 45, 29, 35, and 34, respectively.

It seems plausible to assume that the missing values are due two

main factors: gas-phase proton transfer reactions with IPA and a pos-

sible out-of-range CoV value. The goal of this section is to investigate

these mechanisms and try to gain more insight using only data science

perspective.

Since we cannot use CoV (Tol) on the axis and see its missing

values, we decided to plot MW vs TPSA, and color the points on

whether was the signal for CoV (Tol) detected (blue) or not (yellow),

Figure 4A. It is clear that all the missing values are in a small MW

range, which is not surprising since they are most affected with clus-

tering/delustering mechanism. When we take a look at non-detected

CoV signal for EtOH, IPA, and ACN (Figure 4B–D), similarly to CoV

(Tol), we see a small MW cluster (presumably) from out of range CoV

F IGURE 3 Linear relationship quantifiers
among the various experimental and calculated
properties from mix 50 dataset: (A) correlation
matrix and (B) R2 matrix
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values. Furthermore, with these modifiers that have some proton

acceptor properties, we also observe a second group of missing

values, at medium MW values, presumably originating from proton

transfer reactions with modifier. Further inspection confirms that all

these systems indeed have a small basicity, as expected for proton

transfer participant.

To provide the clearest evidence that the observed initial

grouping of low molecular weight (MW) compounds primarily signifies

signals undetected due to being out of range, a novel approach is

adopted. This involves leveraging the high correlation between the

coefficients of variation for ethanol (CoV [EtOH]) and isopropanol

(CoV [IPA]), alongside the observation that certain missing IPA values

are actually present in EtOH data. By plotting MW against CoV

(EtOH) and coloring the data points based on CoV (IPA) values,

Figure 5, we establish a direct correlation between CoV (EtOH) on the

x-axis and the CoV (IPA) indicated by the colors of the points.

F IGURE 4 TPSA versus MW, points are colored in accordance with the presence (blue)/absence (yellow) of CoV signal. (A) Presence/absence
of CoV (Tol), (B) presence/absence of CoV (EtOH), (C) presence/absence of CoV (IPA), and (D) presence/absence of CoV (ACN)

F IGURE 5 CoV (EtOH) versus MW,
points are colored in accordance with
CoV (IPA) signal (the gradient is explained
on the legend), and the back points do not
have detected CoV (IPA).
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Notably, at the extreme left of the plot—adjacent to the boundary of

the CoV (EtOH) range—a significant number of points appear in black,

indicating the absence of CoV (IPA) values. These points are

conclusively identified as part of the “yellow cluster” of low MW

Figure 4, thereby confirming their characterization as signals not

detected due to being beyond the detection range.

3.4 | DMS analysis of peptides

In section, we analyze the results for a mixture of 185 small to

medium sized peptides with 6–20 amino-acids (AAs). List of all

experimental data can be found in Table S2. As will be explained in

the data analysis pipeline below, the steps were almost identical to

the small molecule section, and the portion of the final table

(because the full one is too large) with additional properties is given

below (Table 2).

3.5 | Relationship between various properties

“R2 matrix” for the 185 peptides is presented in Figure 6, which

reveals significant variance among clusters of chemical properties. As

predicted, properties like CSS, MW, charge, TPSA, and peptide length

are interconnected. MW, along with the previously mentioned attri-

butes, shows a strong correlation with the CoV for all polar modifiers.

F IGURE 6 “R2 matrix” for the various experimental and
calculated properties from 185 peptides dataset

F IGURE 7 Box plot showing the effect of adding modifiers with different proton affinities (PAs) on CoV values. The modifiers were sorted
based on their PA values from lowest (left) to highest (right).
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Interestingly, the correlation between CoV(N2) and MW, CCS, or pep-

tide length is nearly zero. The CoV for IPA closely matches with

MeOH (R2 = 0.53) and ACN (R2 = 0.76). Moreover, the absence of

CoV values, indicated by a NaN column, correlates well with the pep-

tide's charge (R2 = 0.41).

The good correlation between MW with the CoV for all polar

modifiers, as well as their good intercorrelation (IPA with both MeOH

and ACN), is not surprising since all peptides essentially posses similar

set of functional groups (FGs) relevant for analyte-modifier

interactions.

Since the RT is not contained in the data, we will give an equa-

tion combining CoV (IPA) with MW, TPSA, and peptide charge (three

very easily calculable properties) as a strong indication of

interrelationship:

CoV IPAð Þ¼0:027 �MWþ�0:03 �TPSAþ�5:998 �chargeþ
�16:19, R2

¼0:78:

3.6 | Signal suppression with peptides

In the first section of the manuscript, it was demonstrated that we

can pinpoint the reasons behind missing CoV values to gas-phase

proton transfer reactions with modifier and an out-of-range CoV

value. The goal of this section is to investigate these mechanisms

and see their importance with a completely different set of com-

pounds. When we look at the CoV ranges for our peptides: N2

(21.72 V to 7.19 V), MeOH (9.51 V to �6.93 V), IPA (�1.28 V to

�23.63 V), and ACN (1.69 V to �10.81 V), Figure 7. Since CoV was

ramped from �50 to 50 V (steps of 0.2 V) during optimization, it is

clear that proton transfer to modifier represents a probable first step

in signal suppression.

Since we have more molecules in our peptide dataset, we were

able to successfully apply some important ML classification methods

in order to predict whether a peptide would be detected with polar

modifier or not. Here, we provide just a quick overview, detailed

description, and results of all the models can be found in the

F IGURE 8 TPSA versus MW for
185 peptides, points are colored in accordance
with the signal suppression, blue for MS signal
present and yellow for MS signal suppressed.
(A) Peptide charge = 2+ and (B) peptide
charge = 3+
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supporting information, section ML models. The features used are

peptide charge, CoV(N2), TPSA, MW, number of basic AAs (base),

number of Ser and Thr residuer (ST), number of acidic sidechains

(acid), and length of peptide. All features were scaled, and fivefold

cross validation was used to test the accuracy with all models. The

detailed grid hyperparameter search for Support Vector, Decision

Tree, Random Forest, XGBoost, K-Nearest Neighbors (KNN), Logistic

Regression, and Ridge classifiers is performed. The results are also

compared with “Logistic Regression CV” available under scikit-learn

package, which is a form of logistic regression which includes built-in

cross-validation to find the optimal value of regularization parameter

(C). Best results were obtained with random forests and Logistic

Regression CV, but we focused our interpretation on Logistic Regres-

sion, as it provides a clearer linear relationship among the features in

the built model. The Logistic Regression CV model demonstrated

robust performance with an accuracy of 0.89, precision of 0.93, recall

of 0.81, F1 score of 0.87, and an AUC-ROC of 0.90.

In order to check which of our features are the most important

for predicting peptide CoV value suppression, we used coefficient

analysis, permutation feature importance, SHAP Values, and recursive

feature elimination (RFE). First three methods indicated the impor-

tance of peptide charge and three strongly related features describing

peptide size: MW, TPSA, and peptide length. RFE also indicated the

importance of basic amino acids count.

We will now plot all these important features to gain some visual

perspective. We will use MW and TPSA as axes and present/

suppressed CoV values as color, and we will make different plot for

charge 2/3 Figure 8.

It can clearly be seen at Figure 8 that signal suppression mostly

occurs for the 3 + charged peptides, while for the ones with charge

2+, there is a cluster at the small MW region. This indicates that the

peptide charge density is crucial for the possibility of modifier to par-

ticipate in proton transfer. This is not surprising; higher charge density

makes proton loss much more favorable. This reason is once more

confirmed when we take a look at the 3+ peptides that reached the

detector; with only one exception, they are all in the MW > 2000 Da

region, the one with lowest charge density. The effect of basic AAs

can be seen on Figure S6, which shows that most of the 2+ peptides

with suppressed signal have only one basic AA, and suppressed 3+

peptides have up to two of them. In short, the peptides with non-

suppressed signal have more basic amino acids, which makes them

weaker proton donors.

4 | CONCLUSIONS

This research employs a data science-based method to understand

correlation between modifiers and various molecular properties in

DMS and effectively pinpoints two signal suppression mechanisms for

small molecules. For peptides, we use machine learning to establish a

clear relationship between simple peptide properties and proton

transfer-induced signal suppression. The accuracy of our ML model in

determining these trends enables a deeper understanding of DMS

behavior, thereby enriching the methodology and analysis of peptides

using DMS.
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