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A B S T R A C T   

Accurate assessment of slope failures and their large deformations is critical for effective landslide mitigation. 
This study introduces the new Cooperative Stochastic Material Point Method (CSMPM), addressing challenges in 
probabilistic characterization of slope large deformations considering three-dimensional (3D) soil heterogene
ities. The method employs an enhanced Karhunen-Loève (KL) expansion to model 3D soil spatial variability 
efficiently. By using rough and refined grids, derived through the enhanced KL expansion, the study achieves 
computational efficiency without compromising accuracy. By combining the computational advantages of the 
rough grid with the precision of the refined grid, the CSMPM enables efficient probabilistic analysis of 3D 
heterogeneous slopes. The results demonstrate its capability to identify slope large deformation failure modes 
and quantify the associated failure probability. Notably, the shallow failure mode exhibits fan-shaped horizontal 
diffusion, introducing uncertainty, while the compound failure mode presents challenges in landslide prevention. 
The progressive failure mode poses the highest hazard. Horizontal heterogeneities significantly influence both 
large deformation likelihood and failure modes, emphasizing the importance of 3D soil spatial variability in 
geotechnical reliability assessments. The CSMPM, with its innovative approach, proves to be a practical tool for 
enhancing our understanding of geohazards and associated uncertainties, as well as large deformations. It 
provides valuable insights for improving risk assessment of slope hazards.   

1. Introduction 

Landslides are one of the most common natural geological hazards in 
the world (e.g., Bandara et al., 2016; Zhang et al., 2018; Jiang et al., 
2022a; Troncone et al., 2023). In particular, the phenomenon of large 
deformations in the landslides, which dynamically progresses due to 
slope instability, presents a significant threat to adjacent infrastructure 
and human safety (e.g., Mohammadi and Taiebat, 2013; Chen et al., 
2021). Different geomaterials, originating from intricate geological 
processes, inherently display spatial variability or heterogeneity in their 
physical and mechanical attributes, reflecting the multifaceted nature of 
their formative processes (e.g., Jiang et al., 2014; Deng et al., 2017; 
Chen et al., 2022; Liu et al., 2022). There is evidence that spatial vari
ability of soil shear strength parameters significantly influences slope 
failures, where slopes are susceptible to instability, and failures typically 
occur along paths of minimal resistance (e.g., Ma et al., 2022a; Chen 

et al., 2021). The soil heterogeneity significantly affects the slope failure 
modes and mechanisms, as well as the probability of failure and post- 
failure behavior of the slope (e.g., Liu et al., 2019; Chen et al., 2022). 
Although extensive research has been conducted on the effects of spatial 
variability in soil properties on two-dimensional slope failures, very 
limited research has been conducted on 3D slope failures that consider 
the spatial variability of soil parameters (Jiang et al., 2022a). Recent 
works, by Li et al. (2015) and Shu et al. (2023), have demonstrated that 
the 3D spatial variability of geotechnical parameters has a significant 
impact on slope failure mechanisms. Therefore, international standards 
(Phoon et al., 2016) emphasize the importance of modelling that ac
counts for this 3D spatial variability in the geotechnical parameters in 
order to facilitate slope failure analysis and associated risk assessments. 

Currently, there are several simulation methods that are available to 
model the 3D spatial variability of geotechnical parameters (as shown in 
Table 1), such as, discrete cosine transform method (Wang et al., 2021), 
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Fourier transform technique (Hu et al., 2022), and stepwise covariance 
matrix decomposition method (e.g., Li et al., 2019; Zhang et al., 2022), 
etc. Among them, the Karhunen-Loève (KL) expansion method is widely 
employed to simulate the spatial variability of soil parameters due to its 
ability to obtain accurate results with fewer truncation terms (Phoon 
et al., 2002). However, in the context of simulating the 3D spatial 
variability of geotechnical parameters over extensive scales, and espe
cially within the limited scales of fluctuation, the computational de
mand can be prohibitively high. As such, the KL expansion method is 
rarely used in the simulation of the 3D spatial variability of geotechnical 
parameters. 

In Huang et al. (2013) the landslide risk was defined as the product of 
landslide probability and landslide consequences. Due to the difficulty 
in modeling the large deformations of the slope, most studies have only 
focused on quantifying the probability of 3D slope failure using either 
the random limit equilibrium method (RLEM) or the random finite 
element method (RFEM). For example, Hicks et al. (2014) studied the 
influence of the 3D heterogeneity of undrained shear strength on the 
reliability and risk of clay slopes at different depths using the RFEM. 
Xiao et al. (2016) proposed using an auxiliary RFEM method for 3D 
slope risk assessment. Liu et al. (2018) used the RFEM method to 
calculate the probability of slope failure based on the critical cross- 
section of a 3D slope. Hu et al. (2022) investigated the influence of 
the 3D spatial variability of soil parameters on the slope failure mech
anism using the RLEM. The existing research primarily focuses on the 
pre-failure and initiation phases of slopes, overlooking the critical post- 
onset period marked by extensive large deformation failures. Following 

the initiation of slope instability, the finite element mesh undergoes 
distortion, rendering the conventional methods such as the RLEM and 
RFEM, that have been developed for small deformations, unsuitable for 
simulating the comprehensive process of large deformation failures (e. 
g., Jiang et al., 2022a; Ma et al., 2022a,2022b,2022c). The large 
deformation characteristics, which serve as indicators of the conse
quences of slope failures, are integral to effective landslide risk assess
ment. However, the quantitative risk assessment based on the large 
deformation characteristics of 3D slopes presents a considerable chal
lenge (e.g., Chen et al., 2021; Jiang et al., 2022a; Liu et al., 2022). In 
light of this, there is a need for advanced methodologies that can capture 
and analyze the intricate details of large deformation failures in the 3D 
slopes. 

Advanced numerical techniques, including discrete element method 
(DEM) (Weng et al., 2019), discontinuous deformation analysis (DDA) 
(Chen and Wu, 2018), coupled Eulerian-Lagrangian (CEL) (e.g., Chen 
et al., 2021; Liu et al., 2022), smoothed particle hydrodynamics (SPH) 
method (Zhang et al., 2020) and material point method (MPM) (e.g., 
Soga et al., 2016; Coombs et al., 2020; Yerro et al., 2022; Jiang et al., 
2022b), have been used to overcome the mesh distortions when 
modeling the slope large deformations. In recent years, the MPM has 
become a powerful tool for simulating the entire process of slope large 
deformation failure due to its integration of the advantages of 
Lagrangian and Eulerian methods, including high computational accu
racy (Zhang et al., 2016). Bandara et al. (2016) used the MPM to 
simulate the entire process of a rainfall-induced landslide. Conte et al. 
(2020) applied the MPM to model the runout process of the Maierato 

Table 1 
Research on probabilistic stability analysis of three-dimensional slopes considering spatial variability of soil parameters.  

No. Analysis 
method 

Random field parameter information Geometric parameter Source 

Soil 
parameters 

Probability 
distribution 

Autocorrelation 
function 

Autocorrelation 
distance (m) 

Random field 
discretization 
Method 

Slope 
angle 
(◦) 

Slope 
height 
(m) 

Longitudinal 
length (m) 

1 FEM Su Normal Exponential 
Gauss–Markov 

lh = 1–1000, lv = 1 LAS 45 5 100 Hicks et al. 
(2014) 

2 FEM Su Normal Exponential 
Gauss–Markov 

lh = 1–12, lv = 1 LAS 45 5 50 Li et al. 
(2015) 

3 FEM Su Lognormal Squared 
exponential 

lh = 20, lv = 2 EOLE 26.6 6 100 Xiao et al. 
(2016) 

4 FEM Su Lognormal Squared 
exponential 

lh = 10, lv = 2 MLEM 26.6 5 30, 60 Liu et al. 
(2018) 

5 LEM Su Normal Single exponential lh = 10, lv = 1 FFT 30 10 500 Lee and 
Ching 
(2020) 

6 CEL c, φ Lognormal Squared 
exponential 

lh = 20, lv = 4 MLEM 26.6 10 0–150 Chen et al. 
(2021) 

7 FEM Su Lognormal Squared 
exponential 

lh = 1–60, lv = 1 CMD 45 5 60 Huang and 
Leung 
(2021) 

8 FEM c, φ Normal / lh = 25, lv = 2 DCT 26.6 15 50 Wang et al. 
(2021) 

9 LEM c, φ, γ Normal Squared 
exponential 

lh = lv = 2–40 FFT 30, 45, 
60 

40 100 Hu et al. 
(2022) 

10 CEL c, φ Lognormal Squared 
exponential 

lh = 20, lv = 4 MLEM 26.6 10 100 Liu et al. 
(2022) 

11 FEM Su, ks Lognormal Single exponential lh = 24, lv = 1 CMD 45 5 20 Ng et al. 
(2022) 

12 FDM c, φ Lognormal Single exponential lh = lv = 4 CMD 45 10 15 Zhang et al. 
(2022) 

13 FEM c, φ Lognormal Gaussian lh = 1–1000, lv = 1 LAS 45 9 50 Varkey 
et al. 
(2023) 

14 LEM Su Lognormal Exponential 
Gauss–Markov 

lh = lv = 10 SRM 18.4, 
26.6, 
45 

10 100 Shu et al. 
(2023) 

Note: FEM, FDM, LEM and CEL denote the finite element method, finite difference method, limit analysis method and coupled Euler-Lagrange method, respectively; c, 
φ, γ, Su and ks represent the cohesion, internal friction angle, unit weight, undrained shear strength and saturated permeability coefficient, respectively; lh and lv denote 
the horizontal and vertical autocorrelation distances, respectively; CMD, LAS, MLEM, DCT, FFT, SRM and EOLE represent the covariance matrix decomposition 
method, local average subdivision method, modified linear estimation method, discrete cosine transform method, Fourier transform technique, spectral representation 
method and extended optimal linear estimation method, respectively. 
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landslide. Another advantage of the MPM is that it can utilize history- 
dependent constitutive models. Since the landslides may result in 
extensive shearing of soils, it is important to select an appropriate 
constitutive model that can capture the critical state as well as the re
sidual state (Soga et al., 2016). Yerro et al. (2016) used the MPM to 
simulate the entire process of slope instability incorporating the Mohr- 
Coulomb model with strain softening behavior induced by increasing 
deviatoric plastic strain. Troncone et al., (2022a) utilized the MPM 
combined with a strain-softened Mohr-Coulomb constitutive model to 
simulate the deformation process occurring in landslides. Troncone 
et al., (2022b) further proposed an analytical method to reduce the in
fluence of the grid dependence on the numerical results. 

To incorporate the inherent spatial variability of soil properties, 
Wang et al. (2016) first combined the theory of random fields (RFs) with 
the MPM, proposing the random material point method (RMPM). Liu 
et al. (2019) developed the efficient computation of the random limit 
equilibrium and MPM to calculate the probability of slope large defor
mation failure. Ma et al., (2022a,2022b) applied the stochastic material 
point method (SMPM) to simulate a series of granular flows and post- 
failure motions in landslides, accounting for diverse soil heterogene
ities. However, in engineering practice, slopes manifest in 3D, and un
derstanding the genuine internal failure mechanisms necessitates 3D 
modeling. Moreover, Chowdhury and Xu (1995) highlighted the corre
lation among multiple failure modes of the slope. Presently, a gap exists 
in the research regarding the evolution of various large deformation 
failure modes in the context of 3D heterogeneous slopes and the impact 
of the 3D spatial variability of soil parameters on these failure modes. 
This gap likely stems from the computational challenges associated with 
the SMPM, leading to an unexplored research area. Thus, there is a need 
for an efficient SMPM that can automatically identify the failure modes 
while alleviating the computational complexities inherent in the 3D 
heterogeneous slope large deformation analysis. Bridging this gap will 
significantly contribute to advancing our understanding of the landslide 
processes, particularly in realistic 3D slope scenarios, and enhance the 
accuracy of predictive models for more effective risk assessment of slope 
failures. 

Addressing the computational challenges inherent in calculating the 
probability of 3D slope large deformation failure using the SMPM ne
cessitates a novel approach. This paper introduces a new Cooperative 
Stochastic Material Point Method (CSMPM) for 3D slopes, accompanied 
by an enhanced KL expansion technique to simulate the 3D spatial 
variability of soil parameters. The core concept involves developing two 
distinct sets of background grid models in the MPM to enable collabo
rative analysis. The proposed approach encompasses two essential 
modules: (1) Discretization of 3D RFs concerning the soil parameters; (2) 
Collaborative analysis of significant slope large deformations using the 
rough and refined grid models. Importantly, this methodology is 
agnostic to the coordinates of RF grids, seamlessly integrating the two 
distinct grid models for both roughening and refinement processes. 

The paper is structured as follows: The “Methodology” section details 
the new CSMPM, wherein the 3D RF implementations are generated 
through an enhanced KL expansion technique coupled with a Latin hy
percube sampling method. Subsequently, the “Illustrative Example” 
section presents a 3D clay slope as a representative case to demonstrate 
the effectiveness of the proposed approach. The analysis explores in 
detail the evolution mechanism, failure process and hazards of the four 
identified failure modes in detail. Furthermore, an exploration of the 
influence of horizontal autocorrelation distance on both the slope large 
deformation failure modes and the associated failure probability is 
conducted. The “Discussion” section investigates the further improve
ment room of the proposed approach. This comprehensive framework 
contributes to advancing our understanding of 3D slope post-failure 
behaviors, offering a valuable tool for enhanced risk assessments in 
geotechnical engineering. 

2. Methodology 

2.1. Generation of 3D random fields using enhanced Karhunen-Loève 
expansion method 

The KL expansion method is a spectral method based on the 
decomposition of the autocorrelation function (Jiang et al., 2022a). 
However, its application in the context of 3D slopes is relatively limited. 
This is mainly because, once extended to three dimensions, a huge 
autocorrelation coefficient matrix needs to be decomposed. In addition, 
although this method can achieve similar accuracies to other methods 
with a smaller number of truncation terms, its computational efficiency 
is relatively low, especially for the 3D problems. Additionally, this 
method encounters the dual challenges of memory space and compu
tational load. Fortunately, Li et al. (2019) and Zhu et al. (2021) proposed 
a decomposed KL expansion method that is suitable for characterizing 
the spatial variability of soil parameters in the three dimensions with 
large sizes and small scales of fluctuation. Firstly, the widely used 
separable 3D isotropic squared exponential autocorrelation function is 
employed to characterize the spatial autocorrelation of soil parameters: 

ρ(τx)ρ
(
τy
)
ρ(τz) = exp

(

−
τ2

x
l2x

)

exp

(

−
τ2

y

l2y

)

exp

(

−
τ2

z

l2z

)

(1)  

where τx, τy and τz are the distances between any two points in space 
along the X ,Y, and Z directions, τx = xi − xj, τy = yi − yj, τz = zi − zj, 
respectively; lx, ly, and lz represent the autocorrelation distances in 
the X ,Y, and Z directions, respectively. Next, the KL expansion method is 
adopted to discretize the Gaussian RFs of soil parameters, and the matrix 
operation process for generating the Gaussian RFs of soil parameters can 
be expressed as (Jiang et al., 2014) 

H = μ+
[
σdiag

( ̅̅̅
λ

√ )
FT
]T

W (2)  

where μ and σ represent the mean and standard deviation of a soil 
parameter, respectively; H is the matrix for implementing the soil 
parameter with a dimension of m × 1, where m is the number of RF grids; 
diag

( ̅̅̅
λ

√ )
is an N ×N diagonal matrix composed of N eigenvalues; W is a 

standard normal random vector with a dimension of N × 1, W =

(ξ1, ξ2, ⋅⋅⋅, ξN)
T; F is the matrix of eigenfunctions with a dimension of 

m ×N, expressed as 

F =

⎡

⎢
⎢
⎣

φ1(x1, y1, z1) φ2(x1, y1, z1) ⋅⋅⋅ φN(x1, y1, z1)

φ1(x2, y2, z2) φ2(x2, y2, z2) ⋅⋅⋅ φN(x2, y2, z2)

⋮ ⋮ ⋮ ⋮
φ1(xm, ym, zm) φ2(xm, ym, zm) ⋅⋅⋅ φN(xm, ym, zm)

⎤

⎥
⎥
⎦ (3)  

where φj(xi, yi, zi) are the eigenfunction values at different locations 
corresponding to the j-th eigenvalue, i = 1, 2, …, m, j = 1, 2, …, N. For 
the 3D autocorrelation coefficient matrix, directly performing eigen
value decomposition requires a large amount of memory space, which 
may even exceed the memory capacity of a regular computer. In 
contrast, converting the direct decomposition of a 3D autocorrelation 
coefficient matrix into the decomposition of three one-dimensional 
autocorrelation coefficient matrices can significantly improve the 
computational efficiency. The 3D autocorrelation coefficient matrix can 
be represented as 

R = Rx ⊗ Ry ⊗ Rz (4)  

where Rx, Rz, and Rz are the one-dimensional autocorrelation coefficient 
matrices after decomposition; ⊗ expresses as a Kronecker product. The 
corresponding matrices of eigenvalues and eigenfunctions can be 
expressed as 

λ = λ x ⊗ λy ⊗ λz (5)  
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F = Fx ⊗ Fy ⊗ Fz (6) 

To obtain the eigenvalues and eigenfunctions of an autocorrelation 
function, it is necessary to solve the Fredholm integral equation of the 
second kind (e.g., Phoon et al., 2002; Jiang et al., 2014, 2023). Taking 
the X direction as an example, the expression is calculated as follows: 
∫

Ω
ρx(x1, x2)φk(x2)dx2 = λkφk(x1) (7)  

where x1 and x2 are the coordinates of any two points in the one- 
dimensional computational region Ω. However, the Fredholm integral 
equation of the second kind has an analytical solution only for triangular 
or single exponential autocorrelation functions (Zhu and Hiraishi, 
2023). Numerical methods are necessary to solve for the eigenvalues 
and eigenfunctions of the equation in all other cases. This study employs 
the wavelet-Galerkin technique (Phoon et al., 2002) to solve the integral 
equation in Eq. (7) numerically. Initially, the eigenfunction in the Haar 
wavelet basis can be represented as 

φk(x) =
∑N− 1

i=0
d(k)

i ψ i(x) = Ψ T(x)D (8) 

The autocorrelation function is also expressed in Haar wavelet basis 
as 

ρx(x1, x2) =
∑Nk − 1

i=0

∑Nk − 1

j=0
Aijψ i(x1)ψ j(x2) = ΨT(x1)AΨ(x2) (9)  

Aij =
1

hihj

∫ 1

0

∫ 1

0
ρx(x1, x2)ψ i(x2)ψ j(x1)dx1dx2 (10)  

where Nk = 2t, t is the maximum wavelet level; d(k)
i is the wavelet coef

ficient; Ψ i(.) is the Harr wavelet basis function; A is the 2D wavelet 
transformation matrix of the autocorrelation function with a dimension 
of Nk ×Nk; hi is a constant that can be determined by the orthogonality 
condition of the Harr wavelet basis. By substituting Eqs. (8)-(10) into Eq. 
(7), respectively, the eigenvalue problem for the Fredholm integral 
equation can be transformed into a finite eigenvalue problem as follows: 

λΨ T(x)D = Ψ T(x)APD (11)  

where P is the diagonal matrix, which can be expressed as 

P =

⎡

⎣
h0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ hNk − 1

⎤

⎦ (12) 

Given that D̂= P1/2D, Â= P1/2AP1/2, thus Eq. (11) can be further 
converted as 

λD̂ = ÂD̂ (13) 

Then the eigenvalue decomposition of Eq. (13) is carried out to 
obtain the eigenvector D̂ and the eigenvalue λ of the autocorrelation 
function, and further the wavelet inverse transform of the eigenvector D̂ 
is carried out to obtain the eigenfunction of the autocorrelation function 
as follows: 

F = Ψ T(x)P− 1/2 D̂ (14) 

In this way, the eigenvalues and eigenfunctions of the autocorrela
tion function for each dimension can be obtained. Then, substituting 
Eqs. (5) and (6) into Eq. (2), we get the Gaussian RF implementation as 
follows: 

H= μ+
{

σ
[
diag

( ̅̅̅̅̅
λx

√ )
FT

x

]
⊗
[
diag

( ̅̅̅̅̅
λy

√ )
FT

y

]
⊗
[
diag

( ̅̅̅̅̅
λz

√ )
FT

z

]}T
W

(15) 

Finally, based on the statistical characteristics of the soil parameter 

[i.e., mean, coefficient of variation (COV), and marginal distribution], 
the Gaussian RF implementation is transformed through equiprobable 
transformation to obtain the non-Gaussian RF implementation as fol
lows (Jiang et al., 2014): 

HNG = G− 1[Φ(H) ] (16)  

where HNG is the non-Gaussian RF matrix; G− 1(⋅) is the inverse cumu
lative distribution function of the marginal distribution of H; Φ(⋅) is the 
cumulative distribution function of a standard normal variable. The 
transformation method through matrix operations greatly simplifies the 
process of eigenvalue decomposition of the autocorrelation coefficient 
matrix, overcoming the limitation of exceeding computer memory when 
decomposing the huge 3D autocorrelation coefficient matrix. This 
method significantly improves the generation speed of 3D RFs for soil 
parameters (e.g., Li et al., 2019; Zhu et al., 2021). 

2.2. Validation of the enhanced KL expansion technique via two examples 

While the enhanced KL expansion technique significantly accelerates 
the RF generation process, its influence on both the precision of RF 
generation and the subsequent results of probabilistic calculations re
mains unknown. To address this challenge, two illustrative examples are 
employed to rigorously assess the accuracy of the enhanced KL expan
sion technique in generating the 3D RFs. 

Example 1. The proposed approach in this study is applied to an undrained 
cohesive slope previously studied by Cho (2010). The slope is extended by an 
additional 10 m in the Y direction, creating a 3D model of the slope to verify 
the effectiveness of the enhanced KL expansion technique. In total, 18,200 
finite difference grids are divided into different types: 18,000 hexahedra and 
200 wedges. These grids are composed of 20,601 nodes. 

The mean of the undrained shear strength (Su) is 10 kPa, the COV is 
0.3, and it follows the lognormal distribution. The squared exponential 
autocorrelation function in Eq. (1) is used to simulate the spatial auto
correlation of Su. The RF grids are consistent with the finite difference 
grids. The grid size is 0.5 m × 0.5 m × 0.5 m, the horizontal autocorre
lation distance is 16.9 m (in the X and Y directions), and the vertical 
autocorrelation distance is 1.7 m (in the Z direction). When the number 
of eigenmodes n = 30, the ratio of the expected energy ε ≥ 95 % can be 
satisfied (Jiang et al., 2014). Fig. 1 compares the simulated values and 
theoretical values of the autocorrelation coefficients of Su in the three 
directions at a reference point, which is located at the center of the slope 
(9.75 m, 4.75 m, 4.75 m). The theoretical values of the autocorrelation 
coefficients of Su in Fig. 1 are directly calculated using Eq. (1), while the 
simulated values between Su of any two points are calculated based on 
1000 implementations using the MATLAB function corr(su1, su2, 
“type”, “Pearson”). As depicted in Fig. 1, the simulated values of auto
correlation coefficients in all the three directions closely align with the 
theoretical values. This confirms the effectiveness of the enhanced KL 
expansion technique in generating the 3D RF. 

Example 2. This case study is based on the research conducted by Wang 
et al. (2021), and Fig. 2 illustrates the geometry and grid division of the 
slope. In total, 8126 finite difference grids are divided into different types: 
7746 hexahedra, 106 trihedra, 182 pyramids, and 92 tetrahedra. These 
grids are composed of 9523 nodes. The boundary conditions for this example 
are set as follows: the bottom (Z = 0 m) is fully fixed, and the following sides 
are constrained by vertical rollers: the front (X = 0 m), the rear (X = 50 m), 
the left (Y = 0 m), and the right (Y = 50 m) following Wang et al. (2021). 
Table 2 presents the values of soil parameters (unit weight γ, cohesion c, 
internal friction angle φ, Poisson’s ratio v and Young’s modulus E). It is worth 
noting that the values of all soil parameters and boundary conditions are 
aligned with Wang et al. (2021). 

Firstly, based on the means of soil parameters, the factor of safety 
(FS), computed using the self-developed finite difference strength 
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reduction method in FLAC3D (Jiang et al., 2023), is determined as 1.08, 
which agrees closely with the result of 1.031 obtained by Wang et al. 
(2021). Fig. 3 presents the corresponding contour plot, illustrating the 
spatial distribution of maximum shear strain increments. Subsequently, 
the proposed enhanced KL expansion technique is employed to establish 
Gaussian RF models for the cohesion and internal friction angle of the 
slope region. The RF region has a dimension of 50 m × 50 m × 15 m. The 
cohesion and internal friction angle are assumed to independently 
follow a normal distribution without cross-correlation. Eq. (1) is also 

used to simulate the spatial autocorrelation of cohesion and internal 
friction angle. The autocorrelation distances in the three directions are 
set as lx = 25 m, ly = 25 m and lz = 2 m, which align with the values used 
by Wang et al. (2021). To simplify the computational procedure, the 
coordinates of all RF grid centroids are aligned with those of the finite 
difference grid centroids. Based on the method used to determine the 
number of eigenmodes of KL expansion in Example 1, it is established 
that the number of eigenmodes of 250 is sufficient to meet the accuracy 
requirements. Thus, discretization of the bivariate RFs requires a total of 
500 random variables. The implementations of the bivariate RFs are 
successively assigned to the corresponding finite difference grids using 
the element traversal method integrated into FLAC3D. Fig. 4 depicts an 
implementation of the 3D RFs for the cohesion and internal friction 
angle of the slope. 

Finally, the Latin Hypercube Sampling (LHS) technique (McKay 
et al., 2000) is used to obtain 1000 sets of 3D RFs implementations of soil 
parameters. The self-developed finite difference shear reduction 
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Fig. 1. Comparison of the simulated and theoretical values of autocorrelation coefficients in the three directions of the undrained shear strength random field at the 
reference point. 

Fig. 2. FDM model of the three-dimensional slope.  

Table 2 
Values of soil parameters for the slope.  

Parameters γ (kN/m3) c (kPa) φ (◦) v E (MPa) 

Mean 20 3  19.6 0.25 10 
COV / 0.28  0.29 / /  

Fig. 3. Deterministic slope stability results (FSmin = 1.08).  
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program is then employed to conduct slope stability analysis on all the 
RFs implementations, deriving the factors of safety. The calculated 
probability of failure is 0.43, which is in basic agreement with that 0.43 
evaluated by Wang et al. (2021), who utilized the DCT method to 
simulate the 3D spatial variability of soil parameters. These results 
further confirm the effectiveness of the proposed enhanced KL expan
sion technique. 

2.3. Evaluation of large deformation characteristics by GIMP 

After obtaining the implementations of the 3D RFs of soil parameters, 
the large deformation characteristic parameters of each implementation 
can be evaluated by MPM analysis. However, the original MPM has grid- 
crossing instability, which is caused by the discontinuous gradient of 
shape functions (Bardenhagen, 2002). A sudden change of the stress can 
be found when a material point crosses to a new cell. This deficiency can 
be alleviated by using the generalized interpolation material point 
method (GIMP) that introduces an alternative grid shape function, SI, 
and particle characteristic function, χp(x) (Bardenhagen and Kober, 
2004). In the particle domain, the particle characteristic function is 
generally defined as 

χp(x) =
{

1, x ∈ Ωp
0, otherwise (17) 

The function χp(x) is used as a basis for representing the particle data 
by giving a material point property fp (i.e., particle density ρp, stress σijp 
and volume Vp). 

To discretize the space occupied by the grid, a computational grid 
shape function SI is introduced and required to be a partition of unity 
[
∑

SI(x) = 1, ∀x], which is expressed as (Ma et al., 2022b) 

SIp =
1
Vp

∫

Ωp∩Ω
χp(x)NIdΩ (18)  

SIp,j =
1
Vp

∫

Ωp∩Ω
χp(x)NI,jdΩ (19)  

where NI is the grid nodal shape function; SIp,j are the gradients of grid 
shape function, which are the implicit functions of grid node position xI, 
particle position xp and current particle volume Ωp. As for this step, the 
discretization is analogous to the FEM. After the GIMP discretization, the 
total nodal force fiI can be computed as 

fiI = f int
iI + f ext

iI (20)  

f int
iI = −

∑

p
σijpSIp,jVp (21)  

f ext
iI =

∑

p
mpSIpbip +

∫

Γt

SI(x)tidΓt (22)  

where f int
iI and f ext

iI are the nodal internal force and nodal external force at 
node I, respectively; mp is the mass of particle; bip is the body force; ti is 

the surface force; Γt is the boundary of surface force. Then, by inte
grating the momentum equations and applying the boundary conditions, 
the material point positions and velocities can be computed. In this 
study, the open-source GIMP program named MPM3D, from the 
Computational Dynamics Laboratory of Tsinghua University (Zhang 
et al., 2016), is adopted for the analysis. 

2.4. Applied soil constitutive model 

The strain softening behavior of geomaterials often exhibits a 
decrease in the shear strength from peak value to residual value as the 
plastic strain increases (e.g., Liu et al., 2019; Liu et al., 2022). To be 
more consistent with engineering practice, it is essential to adequately 
account for the stress–strain relationship of the geomaterials and take 
the soil softening process into account in the slope failure analysis. In 
this study, the Drucker-Prager model is utilized to simulate the soil 
elastoplastic behavior with linear strain softening, incorporating an 
undrained shear strength as follows (e.g., Bandara and Soga, 2015; Liu 
et al., 2019): 
⎧
⎪⎪⎨

⎪⎪⎩

Su(εp) = Su0 + Hεp, εp < εprSu(εp) = Sur, εp⩾εpr (23)  

where Su0 and Sur are the initial and residual shear strengths, respec
tively; εp is the plastic shear strain constant; εpr is the threshold value of 
plastic shear strain; H is the softening modulus. Detailed description of 
the constitutive model in the MPM can be found in Zhang et al. (2016). 

However, it should be noted that numerical calculations are often 
influenced by the grid size when using the strain softening model (e.g., 
Conte et al., 2010; Galavi and Schweiger, 2010). Previous studies have 
proposed various solutions to address the issue of grid dependence when 
incorporating the strain softening models (e.g., Yerro et al., 2016; Soga 
et al., 2016; Troncone et al., 2022a, 2022b). In this study, the proposed 
approach utilizes two sets of computational MPM grids: rough and 
refined. However, the use of strain softening models also introduces the 
issue of grid dependency. Nonetheless, even if the rough grid cannot 
accurately calculate the runout distance of the landslide, it does not 
impact the accuracy of the final calculation results. As long as the rough 
grid model can adequately capture the change of RFs of soil parameters. 
This is because the refined grid model ultimately determines the accu
racy of the calculation results. Hence, it is only necessary to ensure that 
the refined grid size has a minimal impact on the final calculation re
sults. In the “Illustrative example” section, the refined grid size will be 
comprehensively investigated to choose the most appropriate grid size. 

2.5. Estimation of post-failure characteristic parameters 

Once the soil parameters and constitutive model have been deter
mined, the analysis of slope large deformations can be conducted to 
estimate the post-failure characteristic parameters. Fig. 5 depicts the 
representative characteristic diagram of an unstable slope after failure. 

Fig. 4. One typical random field implementation of soil parameters for the three-dimensional slope.  
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The failure mode of the slope illustrated in the figure is encapsulated by 
five key characteristic parameters: relative displacement (Rd), maximum 
sliding depth (H), maximum runout distance (L), sliding volume (V) and 
influence area (S). The determination of particle sliding behavior is 
usually facilitated by assessing Rd, enabling the identification of slope 

instability. The Rd of a particle can be obtained by, its coordinate posi
tions at the initial moment (x0, y0, z0) and at the final moment (xt, yt, zt), 
and computed by the Euclidean distance 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xt − x0)
2
+ (yt − y0)

2
+ (zt − z0)

2
√

between the two coordinates. 
Conventionally, slope instability is deemed to occur when the maximum 
value of Rd for all particles exceeds 1.0 m according to the literature (e. 
g., Liu et al., 2019; Liu et al., 2023). H is an important parameter for 
identifying the slope failure mode (Liu et al., 2019). S represents the area 
covered by the landslide body after the slope toe, which can quantify the 
degree of impact on the infrastructure and residential areas below the 
slope after slope failure. The definitions of L, H and V are explained in 
detail in the literature (e.g., Hicks et al., 2014; Chen et al., 2021; Huang 
et al., 2021), and will not be repeated here. 

2.6. Implementation workflow 

In order to probabilistically simulate the post-failure behavior of 
landslides considering the 3D spatial variability of soil parameters, the 
GIMP is integrated with the RF theory within the LHS framework. To 
overcome the significant computational challenges using the GIMP, a 
new CSMPM method is proposed, which involves creating two sets of 
MPM grid models to enhance collaborative analysis, specifically tailored 

Fig. 5. Typical diagram of the three-dimensional heterogeneous slope 
after failure. 

Fig. 6. Flowchart for the implementation of the proposed approach.  
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for 3D slopes. Initial pre-analysis capitalizes on the computational effi
ciency of the rough grid model. Subsequently, the samples with elevated 
hazard levels are identified based on the results from the pre-analyzed 
samples. Finally, a comprehensive analysis is conducted using the 
refined grid model, offering a detailed exploration of the probabilistic 
post-failure behavior of 3D slopes. This method not only optimizes the 
computational resources but also ensures a nuanced understanding of 
the landslide risk by prioritizing the examination of the samples with 
higher hazard potential. Fig. 6 shows the workflow for implementation 
of the proposed approach. The details are summarized in the following 
steps:  

1. Determine the input information, including slope geometry and 
statistics of Su (i.e., mean, COV, marginal distribution, autocorrela
tion function, autocorrelation distances) and establish the deter
ministic slope model.  

2. Construct N sets of rough MPM grid models using the LHS technique. 
Perform pre-analysis with each rough grid model. Extract the 
maximum values of Rd associated with the N sets of computational 
samples and sort them in descending order.  

3. According to the pre-analysis descending order, the refined MPM 
grid model is constructed for the d-th sample. The initial value of d is 
1. Perform in-depth analysis for the d-th sample. Extract the 
maximum value of Rd for the refined grid model.  

4. Judge whether Rd is greater than 1.0 m. If Rd is greater than 1.0 m, go 
to Step 3. Perform in-depth analysis for the (d + 1)-th sample. 
Otherwise, k = k + 1, the initial k = 0. The calculation terminates 
only when there are kt consecutive samples with Rd less than 1.0 m. kt 
is generally selected as 1–10 % of the total number of samples (Liu 
et al., 2019). In addition, n is evaluated as the number of samples 
with large deformation failures.  

5. Calculate the probability of slope large deformation failure, Pf = n/N, 
to identify the associated failure modes, and extract the post-failure 
characteristic parameters including the runout distance, sliding 
depth, sliding volume and influence area. Estimate the correspond
ing best-fit probability distributions and statistical characteristics of 
the post-failure characteristic parameters for various failure modes. 

2.7. Illustrative Example 

An 3D clay slope example is investigated to show the feasibility of the 
proposed CSMPM on calculating the probability of slope large defor
mation failure, identifying the associated failure modes, and evaluating 
the post-failure characteristic parameters. Fig. 7 shows the geometry of 
slope with a height of 12 m and a slope angle of 26.6◦ (1:2). Hicks et al. 

(2014) found that the results of 3D slope calculations were not affected 
by the boundary when LY/H > 8, where LY was the length of the Y di
rection and H was the slope height. To this end, we set LY to 96 m since 
H = 12 m. Zhang et al. (2003) found that the computational accuracy 
was more satisfactory when the distance from the slope toe to the right 
end boundary was 1.5H and the distance from the slope crest to the left 
end boundary was 2.5H. In addition, considering the need for large 
deformation analysis in this study, the runout distance needs to be 
reserved for the right boundary, so the distance from the slope toe to the 
right end boundary is taken as 42 m, and the distance from the slope 
crest to the left end boundary is taken as 30 m. Initially, two MPM grid 
models are established for the analysis: the rough and refined grid 
models. The former has a background grid size of 2 m × 2 m × 2 m, with 
42,624 material points placed in the Y direction spacing of 1 m and in 
the X direction spacing of 0.5 m. The latter has a background grid size of 
1 m × 1 m × 1 m, with 681,984 material points placed in the X and Y 
directions spacing of 0.25 m. The RF grid size is consistent with the 
background grid size. Both models have the same boundary conditions; 
the X and Y directions of the slope bottom (Z = 0 m), the right (Y = 0 m), 
and the left (Y = 60 m) sides of the slope are completely fixed, while the 
front (X = 60 m) and rear (X = 0 m) sides of the slope are constrained by 
vertical rollers following Xiao et al. (2016). 

Assuming that the Su follows a lognormal distribution with a mean of 
42 kPa and a COV of 0.3. The squared exponential autocorrelation 
function shown in Eq. (1) is also used here to simulate the spatial 
autocorrelation of undrained shear strength, with lx = 60 m, ly = 60 m 
and lz = 2 m, respectively. The unit weight, Young’s modulus, and 
Poisson’s ratio of the soil are taken as 20 kN/m3, 100 MPa, and 0.3, 
respectively. These parameters are treated as deterministic, as their 
contributions on the slope post-failure characteristic parameters are not 
remarkable as reported in Cheuk et al. (2013). The residual undrained 
shear strength is set as 50 % of the original strength. The softening 
modulus is set as 85 kPa. The initial in situ stresses are generated using 
gravitational loading. The gravity acceleration is 9.81 m/s2. The total 
duration of simulation for the calculation is 20 s, with each time step 
taking 8.24 × 10-4 s wherein the soil deposits become stable according to 
kinematic energy and unbalanced force of the system (Ma et al., 2022b). 

2.8. Deterministic analysis using material point strength reduction method 

In this section, the example is modeled deterministically, i.e., as a 
homogeneous slope, to provide the benchmark for the subsequent 
probabilistic analysis. First, deterministic analysis is conducted on both 
MPM grid models with the given values of soil parameters. The un
drained shear strength of soil is reduced by a strength reduction factor R, 
i.e., Su,re = Su,or/R. The slope failure occurs when the R increases to a 
specific value using the material point strength reduction method (Jiang 
et al., 2022b), which defines the factor of safety. This study adopts the 
maximum value of Rd as a criterion to determine whether the slope 
occurs in large deformation failure, using a threshold value of 1.0 m 
according to Liu et al. (2019) and Liu et al. (2023). Fig. 8(a), (b), (c) and 
(d), illustrate the final depositions of the slope when the reduction factor 
is equal to 1.25, 1.26, 1.14 and 1.15, respectively. It is shown that the 
slope remains stable when R = 1.25 and 1.14 but fails when R = 1.26 
and 1.15, indicating that the factors of safety obtained from the rough 
and refined grid models are 1.26 and 1.15, respectively. These match 
with the factor of safety (1.14) obtained from the refined model using 
the finite difference strength reduction method. On a regular computer 
equipped with a 12th generation 2.10 GHz Intel(R) Core(TM) i7-12700 
desktop, the computation time required for the rough and refined grid 
models is 407 s and 12,240 s, respectively, indicating that the compu
tation time for the refined grid model is 30.1 times that for the rough 
grid model. 

The above findings highlight that the refined grid model demon
strates the commendable computational accuracy, whereas the rough 
grid model excels in the computational efficiency. The rough grid model Fig. 7. Three-dimensional slope numerical model and its size.  
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does not significantly impact the accuracy of the final calculation re
sults, even if it fails to precisely calculate the runout distance as long as 
the rough grid model adequately captures the variation of RF imple
mentation. This is due to the refined grid model being the ultimate 
determinant of calculation results. In this regard, the refined grid size 
significantly influences the accuracy of the calculation results. Hence, it 
is imperative to assess the appropriateness of selecting a 1.0 m grid size 
for the refined grid model. As such, the MPM grid models with sizes of 
0.5 m and 0.75 m are thoroughly compared with the 1.0 m grid model 
concerning the factor of safety (FOS), runout distance, and calculation 
time, as shown in Table 3. The calculation results indicate that setting 
the grid size to less than 1.0 m yields minimal improvement in the 
calculation accuracy, while exponentially increasing the computation 
time, thus justifying the selection of a 1.0 m grid size for the refined grid 
model. Moreover, the errors observed in the computational outcomes for 
both grid models fall within an acceptable and manageable range. These 
outcomes serve as the underpinning for the proposed CSMPM, 
leveraging the complementary strengths of both grid models to establish 
a robust foundation. 

2.9. Probabilistic analysis using CSMPM 

In this section, the CSMPM is initially employed to compute the 
probability of large deformation failure in the 3D slopes. The resulting 
calculations are juxtaposed with those obtained through the traditional 
stochastic finite difference method to validate the efficacy and efficiency 
of the proposed CSMPM. Following this, the CSMPM is utilized to 
investigate the influence of varying horizontal autocorrelation distances 
on the probability of 3D slope large deformation failure. Subsequently, 
an automatic identification of associated failure modes is conducted for 
all the failure samples based on the sliding depth. The analysis examines 
into the evolution mechanisms, failure processes and hazards associated 
with the four identified failure modes in detail. Finally, an examination 

is undertaken to understand the impact of different horizontal auto
correlation distances on the large deformation failure modes of the 3D 
slope. 

2.10. Calculation of probability of large deformation failure 

The CSMPM accomplishes the discretization of 3D RF of Su through 
the enhanced KL expansion technique. The use of the KL expansion 
method for RF discretization is notable due to its independence from the 
MPM background grid size. This independence is pivotal in ensuring the 
seamless execution of the cooperative analysis process. Fig. 9 depicts the 
RF implementations of undrained shear strength generated using both 
the rough and refined grid models. Observing Fig. 9 reveals that while 
the rough grid model does not achieve the same level of continuity as the 
refined grid model, it still captures the overall distribution characteris
tics of the RF of undrained shear strength. 

To ensure sufficient failure samples for subsequent large deformation 
failure analysis in slopes, N = 1000 sets of RF implementations are 
generated using the LHS as input. The pre-analysis is carried out based 

Fig. 8. Comparison of the plastic shear strain contours of slope under different strength reduction factors.  

Table 3 
Comparison of calculation results of various refined grid sizes.  

Grid size (m) FOS Runout distance (m) Computation Time (s) 

1  1.15  14.17 12,240 
0.75  1.15  14.52 24,503 
0.5  1.15  14.76 48,976  

Fig. 9. Comparison of the random field implementations based on rough and 
refined grid models. 
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on the rough grid model, and the maximum value of Rd for each sample 
are extracted. At the same time, the failure samples in the pre-analysis 
are sorted from large to small according to Rd, and the refined grid 
model is used to carry out in-depth analysis in turn, and to judge 
whether the slope large deformation failure occurs. A total of 280 sets of 
samples needs to be deeply analyzed, from which 244 sets of large 
deformation failure samples are obtained. The final calculated proba
bility of slope failure is 0.244, which is basically consistent with that 
(0.231) calculated by the finite difference strength reduction method in 
FLAC3D under the same parameter condition. It should be noted that the 
proposed CSMPM can be implemented using a parallel computing 
strategy (i.e., simultaneous calculation of ten iterations, achieving 
100 % CPU utilization on a regular computer). The computation time 
required for 1000 rough grid model evaluations is 11.3 h, while 280 
refined material point grid model evaluations require 92.4 h, resulting in 
a total of 106.5 h. It can be found that the computational efficiency is 
significantly higher than that of the traditional SMPM, especially for the 
slope reliability evaluation with low failure probabilities (<10− 3), 
where the advantages of the proposed approach in terms of the 
computational efficiency are much more evident. 

2.11. Effect of horizontal autocorrelation distance on probability of slope 
failure 

Further investigations are conducted using the proposed approach to 
demonstrate the influence of the autocorrelation distance in the hori
zontal direction (X and Y directions) on the probability of slope large 
deformation failure. The autocorrelation distance in the horizontal di
rection ranges from 10 to 120 m, while the autocorrelation distance in 
the vertical direction (Z direction) is set at 2 m. Furthermore, when one 
autocorrelation distance in the horizontal direction is changed, the other 
autocorrelation distance in the horizontal direction remains unchanged 
at 60 m. Fig. 10 depicts the relationship curve between the probability of 
slope failure and the horizontal autocorrelation distance. In Fig. 10, the 
probability of slope failure increases with increasing the horizontal 
autocorrelation distance. It can be observed that when the horizontal 
autocorrelation distance is less than 60 m, it has a significant impact on 
the probability of slope failure. In addition, the horizontal autocorrela
tion distances in the X and Y directions are essentially close to each other 
in terms of their effect on the probability of slope failure. However, does 
this necessarily mean that the horizontal autocorrelation distances in 
the X and Y directions have the same effect on the post-failure behavior 
of landslides? A comprehensive analysis of the effect of horizontal 
autocorrelation distance on the large deformation failure modes of the 
3D slope is necessarily conducted. 

2.12. Large deformation failure modes analysis 

For each failure sample, the large deformation failure mode of the 
slope can be automatically identified through the analysis of a refined 
grid model using the proposed approach. Based on the maximum sliding 
depth, the slope failure modes can be categorized into shallow and deep 
failure modes. Additionally, there are compound failure mode involving 
spatial and temporal factors, as well as progressive failure mode. The 
slope failure modes are classified as follows: (1) Shallow failure mode, 
which occurs at the slope toe and above, with a sliding depth equal to or 
less than 12 m. (2) Deep failure mode, which occurs below the slope toe, 
with a sliding depth greater than 12 m. (3) Compound failure mode, in 
which both shallow and deep failure modes occur simultaneously at 
different spatial positions during landslide occurrence. (4) Progressive 
failure mode, where the slope experiences various failure modes at 
different time intervals. Fig. 11 shows the evolution process of a typical 
shallow failure mode of the slope and the associated cross-section at 
Y = 70 m. Initially, a sliding mass forms above the slope toe, which 
continues sliding along the foundation. The shallow failure mode of the 
slope exhibits a fan-shaped spreading phenomenon along the Y direc
tion, which is consistent with engineering practice and cannot be 
captured by a 2D analysis. Fig. 12 shows the spatial distribution of un
drained shear strength corresponding to this shallow failure mode. As 
seen from Fig. 12, there is a weak interlayer above the slope toe and the 
undrained shear strength of the upper soil layer is lower. This is an 
important factor that triggers the overall shallow failure of the slope. 

Fig. 13 shows the evolution process of a typical deep failure mode of 
the slope and the associated cross-section at Y = 48 m. From Fig. 13, it 
can be observed that a depth of damage is deeper than the slope base. 
The sliding volume is significantly larger than that corresponding to the 
shallow failure mode, which leads to more severe consequences. Fig. 14 
presents the spatial distribution of undrained shear strength corre
sponding to this deep failure mode. As seen from Fig. 14, there is a weak 
interlayer or zone present in both the upper and lower layers of the 
slope, resulting in an overall deep failure mode that permeates through 
the slope vertically. 

In addition, Fig. 15 shows the evolution process of a typical com
pound failure mode of the slope and the associated cross-sections at 
Y = 10 m and Y = 80 m. From Fig. 15, it can be observed that the left- 
side region of the slope is dominated by shallow failure mode, while 
the right-side region is dominated by deep failure mode. Although the 
compound failure mode incorporates the characteristics of both shallow 
and deep failure modes, it also possesses unique characteristics. The 
presence of deep failure inhibits the development and spreading of 
shallow failure, resulting in varying runout distances in the X direction. 
This feature highlights the necessity to consider the spatial variability of 
geotechnical parameters in the study of large deformation failure modes 
of slopes. Even though the sliding volume corresponding to this failure 
mode falls between those of shallow and deep failure modes, the un
certainty in the runout distance along the X direction poses difficulties 
for landslide disaster prevention and control. Fig. 16 demonstrates the 
spatial distribution of undrained shear strength corresponding to this 
compound failure mode. As seen from Fig. 16, the cause of shallow 
failure on the left-side region is primarily influenced by the weak 
interlayer, while the cause of deep failure on the right-side region is the 
presence of weak zones both above and below, leading to the occurrence 
of through failure in the slope. 

Fig. 17 presents the evolution process of a typical progressive failure 
mode of the slope and the associated cross-section at Y = 48 m. 
Comparing Fig. 17 with Fig. 13, it can be observed that although the 
initial failure process of the progressive failure mode is similar to that of 
the deep failure mode. After 10 s of the first failure occurrence in the 
slope, a new secondary shallow failure happens due to the presence of a 
weak interlayer at the rear edge of the slope. In addition, compared to 
the deep failure mode, the progressive failure mode involves multiple 
releases of gravitational potential energy, resulting in more severe 

Fig. 10. Variation of the probability of slope failure changing with the hori
zontal autocorrelation distance. 
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consequences. Fig. 18 displays the spatial distribution of undrained 
shear strength corresponding to the progressive failure mode. Like the 
deep failure mode, the presence of weak zones in the upper and lower 
layers leads to the through failure in the slope. After the initial failure 
occurs, the upper soil layer at the rear edge of the slope undergoes the 
secondary shallow failure due to the loss of support. 

Based on the above, it can be concluded that the different spatial 
distributions of soil parameters lead to different slope failure modes and 
their evolution processes, resulting in varying consequences. To further 
estimate the deformation characteristic parameters underlying different 
failure modes, the Akaike information criterion (AIC) (Akaike, 1974) 
and Bayesian information criterion (BIC) (Schwarz, 1978) are used as 
evaluation indices to determine the best-fit probability distributions of 
the influence area, sliding volume and runout distance corresponding to 
different failure modes (e.g., Zhang et al., 2018; Ma et al., 2022a). 

AIC = − 2
∑N

i=1
ln[f(qi)] +2k1 (17)  

BIC = − 2
∑N

i=1
ln[f(qi)] + k1lnN (18)  

where qi is the characteristic parameter calculated by the proposed 
CSMPM, including influence area (S), sliding volume (V), or runout 
distance (L), i = 1, 2, …, N, in which N is the sample size; f(qi) represents 
the selected probability density function; k1 is the number of model 

parameters for the selected probability density function. Taking the in
fluence area as an example, Table 4 compares the best-fit probability 
distributions of the influence area for different failure modes based on 
the principle of minimum values of AIC and BIC. Table 5 further lists the 
best-fit probability distributions for the post-failure characteristic pa
rameters underlying different failure modes. Fig. 19 compares the best- 
fit probability distributions of three characteristic parameters for 
different failure modes. As seen from Fig. 19, the ranking of the severity 
levels of different failure modes can readily deduced as follows: pro
gressive > deep > compound > shallow. Clearly, the progressive failure 
mode may cause the most severe consequences and requires giving 
special attention. The uncertainty of the runout distance of shallow 
failure mode is greater due to the wide range of parameter distribution. 
In contrast, the distributions of runout distance for the progressive, deep 
and compound failure modes are relatively concentrated and close to 
each other. 

Fig. 11. Evolution processes of a typical shallow failure mode of the slope and its cross-section of Y = 70 m.  

Fig. 12. Spatial distribution of the undrained shear strength corresponding to a 
typical shallow failure mode of slope. 

Fig. 13. Evolution processes of a typical deep failure mode of the slope and its cross-section of Y = 48 m.  

Fig. 14. Spatial distribution of the undrained shear strength corresponding to a 
typical deep failure mode of slope. 
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2.13. Effect of horizontal autocorrelation distance on slope failure modes 

Finally, to illustrate the influence of the horizontal (X and Y di
rections) autocorrelation distance on the large deformation failure 
modes of the slope, Fig. 20(a) and (b) compare the variation curves of 
the ratios of different failure modes with respect to the autocorrelation 
distances in the X and Y directions, respectively. The dominant failure 
mode of the slope is the deep failure mode, which exhibits considerably 
higher ratio compared to the other failure modes. Based on the data from 
Fig. 20(a), the ratio of deep failure mode decreases as the autocorrela
tion distance in the X direction increases, while the ratios of shallow and 
progressive failure modes initially increase and then subsequently 
decrease. The ratio of compound failure mode exhibits a trend of initial 
increase, followed by a decrease, and subsequently a slight rise as the 

autocorrelation distance in the X direction increases. Fig. 20(b) reveals 
that the ratio of shallow failure mode increases as the autocorrelation 
distance in the Y direction increases. The ratio of deep failure mode 
initially decreases and then slightly increases with the increase of the 
autocorrelation distance in the Y direction, while the trend in the ratio of 
progressive failure mode is the opposite. The ratio of compound failure 
mode decreases with increasing the autocorrelation distance in the Y 
direction and eventually reaches a stable state. 

3. Discussion 

This paper introduces a novel approach, termed CSMPM, aimed at 
addressing the challenges related to the probabilistic characterization of 
slope large deformations considering the 3D spatial variability of soil 
parameters. This holistic methodology can play a crucial role in 
enhancing our understanding of the post-failure behaviors in 3D slopes, 
offering a valuable tool for accurate risk assessments in geotechnical 
engineering. The proposed approach is utilized to identify four prevalent 
large deformation failure modes in practical engineering scenarios. The 
subsequent analysis of these failure mechanisms provides new per
spectives that could guide future strategies for mitigating landslide 

Fig. 15. Evolution processes of a typical compound failure mode of the slope and its cross-sections of Y = 10 m and Y = 80 m.  

Fig. 16. Spatial distribution of undrained shear strength corresponding to a 
typical compound failure mode of slope. 

Fig. 17. Evolution processes of a typical progressive failure mode of the slope and its cross-section of Y = 48 m.  

Fig. 18. Spatial distribution of undrained shear strength corresponding to a 
typical progressive failure mode of slope. 
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disasters. 
The runout process of the landslide presents a challenging dynamic 

large deformation scenario, characterized by significant strains that 
induce partial soil remodeling and softening. Particularly in highly 
sensitive soils, the soil strength experiences a substantial decline 
attributed to the strain softening phenomenon. However, the simplified 
linear softening Mohr-Coulomb failure criterion employed in this study 
may fail to accurately capture the strength reduction of the soil under 
escalating strains. Consequently, the employment of advanced 

constitutive models that can account for the intricate strain-softening 
behavior of soil becomes imperative in the slope large deformation 
analysis to achieve a more realistic simulation of soil deformation. 

This study focused only on the soils in horizontally deposited hori
zons. However, inclined stratified slopes are frequently observed in 
nature (Ma et al., 2022b). The geometric relationship between a slope 
and underlying layers/strata may considerably influence the post-failure 
behavior. Extensive research has been conducted to investigate the in
fluence of anisotropic sedimentary stratigraphy on the destabilization 
mechanism or runout distance of 2D slopes (e.g., Zhu et al., 2019; Wang 
et al., 2021; Huang and Leung, 2021; Ng et al., 2022; Ma et al., 2022b). 
Further research is necessary to explore the effects of the rotational 
anisotropy in common soil parameters on the large deformation failure 
modes in 3D slopes. This is attributed to the more complex and realistic 
layering direction and failure modes of 3D slopes compared to 2D 
scenarios. 

Table 4 
Best-fit probability distributions of the influence area corresponding to different slope failure modes.  

Failure mode Evaluation index Normal Logistic Gamma Weibull Optimum 

Shallow failure AIC 
BIC 

205.87 
207.15 

206.15 
207.43 

207.90 
209.18 

206.15 
207.43 

Normal 

Deep failure AIC 
BIC 

15192.1 
15202.0 

15239.8 
15249.6 

15195.6 
15205.5 

15208.6 
15218.5 

Normal 

Compound failure AIC 
BIC 

2549.04 
2555.39 

2553.52 
2559.88 

2576.47 
2582.82 

2553.29 
2559.64 

Normal 

Progressive failure AIC 
BIC 

5064.75 
5072.48 

5064.70 
5072.44 

5081.07 
5088.80 

5076.15 
5083.88 

Logistic  

Table 5 
Best-fit probability distributions of characteristic parameters corresponding to 
different slope failure modes.  

Failure mode Influence area (S) Slide volume (V) Runout distance (L) 

Shallow failure Normal Logistic Normal 
Deep failure Normal Logistic Normal 
Compound failure Normal Logistic Normal 
Progressive failure Logistic Weibull Normal  

Fig. 19. Comparison of the best-fit probability distributions of three post-failure characteristic parameters corresponding to different slope failure modes.  
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4. Conclusions 

This paper proposes a novel CSMPM that integrates the 3D spatial 
variability of soil parameters for conducting probabilistic analysis of 
large deformation failures in slopes. The primary goal of this approach is 
to accurately calculate the large deformation failure probabilities of 3D 
heterogeneous slopes, identify the associated various failure modes, and 
assess the post-failure characteristics. The key conclusions of this study 
can be summarized as follows:  

(1) The study develops an enhanced KL expansion method that 
effectively simulates the 3D spatial variability of geotechnical 
parameters. Through matrix decomposition, this method over
comes limitations associated with inadequate computer memory 
in handling the huge 3D autocorrelation coefficient matrix, 
thereby enhancing the computational efficiency. Notably, it is not 
constrained by grid coordinates, thus laying the groundwork for 
subsequent probabilistic analysis of large deformation failures in 
slopes.  

(2) The proposed CSMPM involves developing two distinct sets of 
background grid models to enable collaborative analysis. The 
approach is superior to the traditional SMPM in terms of the 
computational efficiency and thus provides an effective tool for 
the probabilistic analysis of large deformation failures of 3D 
heterogeneous slopes.  

(3) The study explores the influence of horizontal autocorrelation 
distance on the large deformation failure probability of the slope 
using the proposed CSMPM. The results show that the probability 
of failure increases with the increase of horizontal autocorrela
tion distance. The horizontal autocorrelation distance below 
60 m significantly impacts the probability of failure. The effects 
of horizontal autocorrelation distances in the X and Y directions 
on the probability of failure are basically close to each other.  

(4) The proposed CSMPM automatically identifies multiple diverse 
failure modes, including shallow, deep, compound and progres
sive. The shallow failure mode occurs due to the presence of weak 
interlayer above the slope toe, which exhibits fan-shaped diffu
sion, while the shallow failure mode occurs due to upper and 
lower weak regions being penetrated. The compound failure 
mode has strong heterogeneity of the runout distance along the Y 
direction. The progressive failure mode with multiple gravity 
releases has the highest hazard. Additionally, it prioritizes their 
severity degrees as progressive > deep > compound > shallow.  

(5) The analysis of the 3D soil spatial variability highlights the deep 
failure as the dominant mode. Specifically, as the autocorrelation 
distance in the X direction increases, the ratio of deep failure 

mode decreases, while the ratios of shallow and progressive 
failure modes show an initial decrease followed by an increase. 
The compound failure mode exhibits a pattern of initial increase, 
subsequent decrease, and slight rise. In contrast, in the Y direc
tion, the ratio of deep failure mode initially decreases and then 
slightly increases, whereas the ratio of progressive failure mode 
demonstrates the opposite trend. The ratio of compound failure 
mode decreases with increasing the autocorrelation distance in 
the Y direction until reaching a stable state. These findings 
highlight the complex effect of the autocorrelation distances in 
two horizontal directions on the slope large deformation failure 
modes. 
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