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Abstract 

 

Illuminating the functional implications of environmental exposure in 

RNA modifications 

Juan Camilo Gonzalez Rivera, PhD 

The University of Texas at Austin, 2020 

 

Supervisor:  Lydia M. Contreras 

 

RNA post-transcriptional modifications are changes to the chemical composition 

of nucleotides that can reprogram RNA fate and functions. They have critical roles in 

cellular regulation and gene expression. Preliminary evidence suggests that environmental 

stressors such as air pollution could impact patterns of these marks. Thus, there is a critical 

need to identify how environmental stressors are involved in modulating levels and types 

of RNA modifications and in understanding how these stressors could mis-

regulate pathways that lead to adverse health outcomes. However, the lack of large-scale 

and sensitive technologies to detect and study the role of these marks in low abundant 

RNAs has limited our understanding of the functional relationship between stress, cellular 

functions and RNA modifications. My dissertation aims to develop tools to identify 

mechanisms connecting molecular alterations of specific RNA transcripts to cellular 

functions underlying environmental stress. To address this, first, we developed a tool to 

capture RNA modifications in the form of 8-oxo-7,8-dihydroguanosine (8-oxoG), the most 

predominant modification generated during environmental stress. We applied this tool to 

profile RNA transcripts in human lung cells exposed to relevant concentrations of air 

pollution mixtures to identify high-confidence mRNAs that are direct markers of oxidation 
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post exposures to air pollution. Importantly, we identified transcripts that led us to a 

specific pathway (cholesterol synthesis) that is highly oxidized by air pollution. Overall, 

these initial studies revealed a novel mechanism that drives abnormal cellular function in 

steroid metabolism that can be traced to the formation of respiratory diseases.  

Secondly, we developed a large-scale screening approach, based on MD 

simulations, that investigates molecular interactions between proteins that modulate RNA 

activity and stress-induced RNA modifications. We examined four proteins implicated in 

diseases (PNPase, YTHDF1, NOVA1 and TDP-43). In this work, we found that these 

proteins share the ability to directly interact with multiple modifications using common 

RNA-binding domains. From a molecular design perspective, identifying the molecular 

principles that govern these RNA-protein interactions, provided an opportunity to engineer 

proteins with higher affinity for RNA modifications. Collectively, these studies support the 

functional relationship between alterations at the molecular level in RNA molecules and 

regulation of cellular processes.  
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Chapter One:  Introduction and background 

1. 1 INTRODUCTION 

The levels of air pollution continue to rise to alarmingly high levels in many cities 

around the globe, and almost the entire global population is exposed to detectable levels of 

pollution. Ambient air pollution is estimated to cause over 4.2 million premature deaths 

largely from heart disease, stroke, chronic obstructive pulmonary disease (COPD) and lung 

cancer (1). Urban atmospheres are comprised of a complex heterogenous mixture of 

reactive gas substances and small particles directly emitted from transport, industry and 

other sources or formed within the atmosphere. Major components of this environment 

such as ozone (O3), particulate matter (PM) and volatile organic compounds (VOCs) have 

the potential to cause harmful effects on health. For instance, O3 is associated with risk of 

cardiovascular and respiratory diseases via inflammatory responses in sensory nerves and 

morphology injury in lungs (2). PM2.5 contribute to a decline on lung, hearth and brain 

activity through the deposition and toxic activity of particles, and a deterioration of immune 

responses (3). In addition, VOCs such as acrolein and methacrolein, that can react with O3  

to generate more particles, induce respiratory and gastrointestinal and cardiovascular 

irritation by activation of signaling factors in sensory processes (4).  

From the cellular perspective, air pollution has been shown to exert stress responses 

characterized by signaling, metabolic, and morphological alterations. As such, O3 triggers 

production of pro-inflammatory and signaling cytokines such as interleukins IL1-β, IL-6 

and IL-8 and the tumor necrosis factor alpha (TNF-α) that can regulate mechanism of 

adaptation, proliferation and apoptosis (5, 6). In addition, exposures to acrolein shows 

interaction with membrane receptors such as the Epithelial Growth Factor Receptor 

(EGFR) and the Transient Receptor Potential Cation Channel (TRPA1), and show 
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activation of the transcription factor Nuclear Factor Kappa B (NF-κB) that can mediate 

responses such as cell proliferation and apoptosis (7, 8). Given its amphiphilic character, 

acrolein has also been reported to alter lipid metabolic processes, increasing phospholipids 

and triglycerides (9). However, the underlying mechanisms that lead to these alterations 

are not well understood.  

Numerous studies are moving towards novel biomolecular approaches exploring 

RNA chemistry, function and expression to characterize cellular responses to 

environmental factors. One of the most interesting approaches has been the use of the RNA 

oxidative modification 8-oxo-7,8-dihydroguanine (8-oxoG) as a sensitive biomarker of 

environmental exposures (10). This adduct has been successfully applied in epidemiologic 

and cell culture exposures (10, 11). In addition, transcriptome wide analysis of chemical 

exposures, or toxicogenomic analysis, have been used to evaluate global alterations in 

mRNA expression, providing insights into the genes and the physiological pathways 

impacted by air pollution exposures (12).  

1.2 HEALTH EFFECTS OF OZONE AND ACROLEIN CHALLENGES 

Ozone (O3) is major product of photochemical reactions that can induce formation 

of reactive oxygen species, leading to oxidative stress. Studies concerning O3 health effects 

suggest that it can generate oxidative injury in lung and brain tissue. The respiratory track 

is most likely the first organ affected by O3 exposure, causing impairment of pulmonary 

function and reduction of airway antioxidant defenses (13). In addition, studies 

demonstrate that O3 can produce functional changes associated with neurodegenerative 

diseases. For instance, the striatum and substantia nigra is affected after 30 days of 

exposure to 0.25 ppm O3 (14). Specifically, O3 can alter redox signal that contribute to the 

activation of dopaminergic neuronal death (15).  
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Acrolein and methacrolein are highly reactive unsaturated aldehydes released to the 

atmosphere during combustion of petrochemical products and burning of wood and 

cigarettes (16). They are also initial major photochemical products of main VOCs such 1,3-

butadiene and isoprene. Given that acrolein can exert adverse effects on diverse cellular 

pathways and organs, acrolein exposures have been associated with a wide range of health 

conditions including cardiovascular, respiratory, neuronal and metabolic diseases. When 

inhaled, acrolein can cause irritation of the upper respiratory system and can trigger airway 

sensory receptors that mediate bronchoconstriction (9). Furthermore, it can cause apnea, 

shortness of breath, cough, airway obstruction and mucous infection (9). Acrolein can cross 

the alveolar-capillary membrane and hence it is thought to contribute to cardiovascular 

injury. Specifically, it can interact with cation channels receptors, triggering the opening 

of channels that allow neuronal activation of pain signaling, and increase local tissue 

inflammation, blood flow and vascular permittivity, and edema (17). Because of its 

amphiphilic nature, acrolein can alter lipid metabolism linked to dyslipidemia and 

atherogenesis. For instance, acrolein in 0.1 to 0.5 mg/kg doses in mice induce higher levels 

of very low-density lipoprotein (VLDL), phospholipids, and triglycerides (18). Acrolein 

can also generate adducts with high-density lipoprotein (HDL), impairing the transport of 

cholesterol from peripheral tissues to the liver, and hence inducing accumulation of 

cholesterol that likely lead to atherogenesis (19).  

1.3 MOLECULAR ALTERATIONS OF ENVIRONMENTAL STRESS ON CELLULAR 

COMPONENTS 

Detection of stress-induced modifications occurring on cellular components such 

as lipids, proteins and DNA are widely used to characterize cytotoxic effects of air 

pollution. These marks can be influenced by environmental factors, and hence they 
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constitute a robust marker of exposure. Components of the cell and subcellular membranes, 

such as polyunsaturated fatty acids are highly susceptible to oxidation (20). The end-

products of this process consist of aldehydes and polymerized carbonyl compounds that 

can cause failure in the membrane fluidity, inactivation of membrane-bound proteins and 

receptors, and changes in permeability (16). These events are key contributors of epithelial-

to-mesenchymal transition, cell fibrosis and the progression of several cardiovascular 

diseases (21). As such, the incidence of lipid oxidation has become remarkably effective 

as clinical biomarkers in multiple environmental assessments, for instance, chronic and 

acute doses of O3 induce higher levels of lipid peroxidation markers in healthy young adults 

with broad ranges of ambient O3 exposure (22). Yet, multiple products of lipid peroxidation 

such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) can induce further damage 

in DNA and proteins (23, 24). In proteins, oxidative species can post-translationally modify 

amino acids, resulting on several modified products such as alkoxy, peroxide, hydroxy and 

carbonyl groups (25). These modifications lead to fragmentation, aggregation and protein 

unfolding contributing to protein inactivation (25). As such, O3 cause protein oxidation in 

rats at doses of 0.25 ppm for 4 h (26), and during in vitro studies, at levels of 50 and 200 

ppb O3 suggesting formation of protein aggregates attributed to the cross-linking capacity 

of O3 (27). Furthermore, direct exposures of rats to acrolein, in concentrations of 9.2 mg/kg, 

can induce acrolein-protein adducts (28). Although cells can detoxify some of these 

adducts by reducing radical groups and by lysosomal and proteasomal proteolysis, certain 

oxidized proteins are poorly handled causing the accumulation of dysfunctional proteins 

(29). Prominent levels of modified proteins are described on chronic obstructive pulmonary 

disease (COPD), diabetes, atherosclerosis and neurodegenerative diseases (29-31).   

In addition to the interest on protein and lipid modifications, more attention has 

emerged in elucidating the mutagenic effect of reactive oxygen species on nucleic acids. 
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Nucleic acids are specifically sensitive to chemical damage because oxygen and nitrogen 

atoms in the nucleobases are reactive to a variety of radicals. In DNA, environmental stress 

can cause strand breaks, DNA and protein crosslinking, and formation of over 20 oxidized 

adducts (32). For instance, acrolein in concentrations from 25 to 100 µM has been shown 

to cause DNA strand breaks and an increase in formation of nucleic acid oxidation (33).  

Similarly, 60 to 120 ppb of O3 exposure showed to induce DNA backbone cleavage and 

formation of RNA base oxidation in airway cells (34). Among the canonical nucleobases, 

oxidation occurs preferentially at a guanine base, resulting in the formation of 8-oxo-7,8-

dihydroguanine (8-oxoG). This modification has been the most notable base oxidation in 

RNA with respect to alterations in genetic information (35). Interestingly, under normal 

physiological conditions and under stress conditions, RNA oxidation is more predominant 

than DNA oxidation suggesting that RNA is more susceptible to form oxidation products 

(36). This phenomenon appears to be determined by differences in structure, packaging, 

repair and localization (37). RNA oxidation has generated wide interest given that certain 

messenger RNAs (mRNAs) and non-coding RNAs are more prone to oxidation (38, 39). 

Indeed, the mechanism of RNA oxidation appears to be highly selective because several 

abundant transcripts are less oxidized than certain scare transcripts (40). This process has 

functional repercussions on RNA because oxidation facilitates noncanonical base pairing 

altering the native structure and protein recognition (37). Yet, some modifications can 

interfere and even prevent the decoding process on the ribosome, affecting translation 

fidelity and efficiency, scaling the detrimental effect of RNA oxidation by inducing 

reduction of protein levels and misfolding of proteins (41). Interestingly, accumulation of 

oxidized RNA has been described in neurodegenerative diseases such as Alzheimer’s 

disease, Parkinson disease and amyotrophic lateral sclerosis where protein downregulation 

and aggregation are hallmarks of these conditions (42). Our study using adenocarcinomic 
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human alveolar basal A549 cells described the incidence of RNA oxidation after exposures 

to mixtures of 872 ppb acrolein, 698 ppb methacrolein and 4 ppm O3 (10). Overall, these 

observation highlights the relevance of RNA oxidation from a system biology approach, 

as it obviates the links between defective molecular functions and cellular networks 

impacted by exposures. 

1.4 OMICS STUDIES ON THE IMPACT OF AIR POLLUTION 

A major challenge of understanding the effects of air pollution is to derive a 

comprehensive characterization of the circuitry of responsive pathways and to provide an 

integrated outlook of the cell physiology from exposure to disease. Advancement in omics 

technologies has progressively aided progress towards mechanistic understanding with an 

increasing number of epidemiologic, animal and cell exposures conducting global 

expression analysis. As such, transcriptomic studies using a variety of atmospheric stresses 

have found common alterations in pathways implicated on oxidative stress, metabolism of 

xenobiotics and inflammatory cytokine responses. In addition, gene expression changes in 

pathways involved in DNA damage and repair, cell cycle, DNA synthesis, gene 

transcription, metabolism of lipids and lipoproteins, extracellular matrix remodeling, and 

cytoskeleton reorganization have been shown to be dependent on the physicochemical 

attributes of the atmospheric stress and the dose of exposure (magnitude, duration and 

recurrence). Although protein levels often do not instantly reflect alterations in the 

transcriptome, the pathways identified by toxicology proteomic studies clearly overlap 

with the pathways described by transcriptomics studies. As such, proteomic profiling 

exhibit stress-induced alterations of many pathways involved in oxidative stress, 

xenobiotic metabolism, pro-inflammatory cytokines, DNA repair, signal transduction, cell 

proliferation, transcriptional regulation, cholesterol biosynthesis pathways and 
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cytoskeleton organization. As such, protein profiling has also been demonstrated to be 

valuable to derive the status of biological mechanisms since proteins are more proximal to 

the phenotype. Overall, omics approaches have enabled the direct identification of key 

mechanisms underlying exposure-related disease, as well as the prediction of novel 

biomarkers of exposure.  

1.5 CURRENT TECHNOLOGIES TO INTERROGATE RNA MODIFICATIONS AND THEIR 

INTERACTIONS WITH PROTEINS 

Advanced biochemical tools with RNA sequencing or proteomics has prompted the 

development of large-scale approaches for interrogating the roles of modified nucleotides 

in RNA-protein interactions. In vitro studies of RNA-protein interactions in the context of 

RNA modification includes the use of systematic evolution of ligands by exponential 

enrichment (SELEX) (43, 44). This strategy enables screening of RNA binding preference 

of numerous RBPs in an unbiased fashion (45-48). In vivo studies combining cross-linking 

and immunoprecipitation with next-generation sequencing approaches (e.g., HITS-CLIP, 

CLIP-seq, PAR-CLIP) (49) enable profiling the modified RNA partners of RBPs. While 

these techniques have been widely adapted for mapping of modifications in the 

transcriptome (50, 51); they have not been applied to study native modified-RNA-protein 

complexes with a few exceptions (51, 52). One limitation of this approach is that is prone 

to sequence bias because it depends on base-specific crosslinking chemistry. Besides, 

CLIP-based methods are typically restricted by the inability to provide clues of the binding 

affinity of the interaction. To discover new protein readers, studies rely on affinity 

pulldown with biotinylated RNAs containing the modified nucleotide of interest and 

quantitative proteomics. This approach has become the preferred strategy in the field to 

identify protein readers, including readers of N6-methyladenosine (m6A) (53-57), N1-
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methyladenosine (m1A) (58) and inosine (I) (59, 60) among others. While this technique 

enables investigation of synthetically available modified bases and low-affinity ligands, 

current studies mostly deal with interrogating binding to single modifications.  

Despite the technological innovation, the demand to examine modified RNA-

dependent protein interactions has stimulated the development of computational 

approaches that can guide and/or predict potential binding partners in RNA-protein 

complexes. One of such involves predictive computational models trained to identify 

potential RNA ligands based on physicochemical properties (61-66). These methods offer 

large-scale predictions of RNA partners, however, at present, the experimental data 

available for protein readers is insufficient for precisely training these programs. 

Alternatively, interactions can be predicted from experimentally determined RNA-

protein structures and atomistic molecular dynamics simulations (67). Currently, 

biophysical models of macromolecular structures are sufficiently accurate to achieve a 

mechanistic description of RNA-protein interactions (68), yet researchers have modestly 

used them to investigate complexes in the context of RNA modifications. Recently, we 

have established a computational MD simulation framework that accurately predicted the 

dynamic binding preference of the bacterial exonuclease polynucleotide phosphorylase (E. 

coli PNPase) for chemically modified RNAs –including 8-oxo-7,8-dihydroguanosine (8-

oxoG) and 5-methylcytosine (m5C)—  as such providing a tool for large scale screening of 

chemical RNA modifications on RNA-protein interactions (69). Moreover, MD 

simulations have undergone improvements to provide atomic-level insights into the 

principles of protein recognition of modified bases (70). These principles can harness 

engineered peptides and/or protein readers with enhanced properties such as higher affinity 

or improved selectivity for a specific modification (71-73).  
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Characterization of the interaction of protein readers with diverse modifications is 

necessary for understanding how the epitranscriptome regulates RNA function; however, 

this biophysical aspect remains largely unexplored. Recent studies have revealed that 

YT521-B homology (YTH) domain proteins, well-established readers of m6A, have 

preferential binding for m1A-containing sequences (although with ~10-fold lower affinity 

than for m6A) (58, 74). Furthermore, while certain modifications can enhance (directly or 

indirectly) the affinity of RNA-protein interactions, modifications can additionally ablate 

protein binding profoundly altering the fates and functions of the RNAs (53, 75). The 

ability of RNA modifications to facilitate recruiting or repressing binding to RNAs may 

represent a mechanism to generate more functional diversity of RNAs.  

1.6 SUMMARY OF RESEARCH OBJECTIVES AND ACCOMPLISHMENTS 

The following chapters embody a compendium of the research that I performed at 

the University of Texas at Austin, collected into six main works that have been published 

or are near publication.   

Chapter two is a description of a platform for the discovery of RNA modifications 

induced by exposure of cells to air pollution mixtures. Key aspects of this work are the 

development of an immunoprecipitation approach for RNA containing 8-oxo-7,8-

dihydroguanosine (8-oxoG) and the establishment of a pipeline for library preparation and 

analysis of transcriptomics data. To this end, I closely worked with Kevin Baldridge. 

Furthermore, we exploited the expertise of Dr. Hildebrandt Ruiz and her student Simon 

Wang in air pollution, to recreate ambient mixtures of air pollutants and conduct 

physiochemical characterization of the mixture. We showed that air pollution impacts the 

oxidative chemistry of specific mRNAs related to metabolic and nucleic acid repair 

pathways in human lung epithelial BEAS-2B cells. Among the mRNA transcripts that are 
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highly susceptible to oxidation, the cholesterol synthesis transcript FDFT1, which encodes 

for Farnesyl-diphosphate farnesyltransferase, is consistently oxidized at acute and chronic 

levels of air pollution. To demonstrate the implications of this process in cellular function, 

we knocked down the specific FDFT1 target subjected to oxidation by air pollution. We 

showed that the downregulation of this transcript induces similar morphological 

phenotypes to BEAS-2B cells.  Collectively, our results suggest a mechanism of oxidative 

stress that impacts important cellular functions that could be related with early mechanisms 

of respiratory conditions. 

Chapter three investigates the induction of 8-oxoG-containg mRNAs by indoor 

pollution, using the platform described in Chapter two. This study was performed in 

collaboration with Mark Sherman and Simon Wang. We showed that exposing human 

epithelial lung BEAS-2B cells to formaldehyde caused oxidation of many RNA transcripts 

belonging to signaling pathways regulating cellular proliferation, migration, and apoptosis.  

Chapter four describes a novel computational approach that screens interactions 

between proteins and chemically modified RNAs. This method was developed with Dr. 

Phanourios Tamamis and his student Asuka Orr at Texas A&M. It is based on a two-stage 

process that uses MD simulations to screen and predict between 100+ RNA modifications 

the ones that could increase binding affinity. We trained the model using experimental 

constant of dissociations of E. coli polynucleotide phosphorylase (PNPase) with modified 

RNAs, showing a high correlation with the association free energies determined from the 

MD simulations.  

Chapter five applies the principles of the approach described in Chapter four to 

screen mutations on the binding site of PNPase for enhanced binding to 8-oxoG. In this 

work, I worked closely with Asuka Orr. Based on the structural analysis of PNPase 

interaction with 8-oxoG, we selected three conserved residues in the binding site. To 
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eliminate mutants that negatively impact protein function, we selected residues that are 

conserved in homologous PNPase. Next, we screened the mutants and identified variants 

that were analyzed experimentally. We showed that some of these variants have higher 

binding affinity and selectivity for 8-oxoG than the wild-type sequence. Collectively, our 

data demonstrated the application of computational tools to accurately predict and design 

enzymes targeting RNA modifications.   

Chapter six applies the approach described in Chapter four to elucidate the 

preferential binding of four RNA binding proteins to modified RNAs. Here I worked with 

Asuka Orr to show that these proteins share the ability to directly interact with multiple 

modifications using common RNA-binding domains. In all these instances, we found that 

specific contacts provide discrimination to these newly found interactions.  Altogether, our 

data informs about the preferential binding and extended selectivity of RNA binding 

proteins for modified RNAs, this knowledge is critical to understand the functional role of 

RNA modifications. 
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Chapter Two:  Post-transcriptional air pollution oxidation to the 

cholesterol biosynthesis pathway promotes pulmonary stress 

phenotypes 

2.1 INTRODUCTION 

The impact of environmentally induced chemical changes in RNA molecules has 

been relatively unexplored, making the field of environmental epitranscriptomics an 

emerging area of research. Air pollution can induce chemical oxidation marks such as 8-

oxo-7,8-dihydroguanine (8-oxoG) in RNAs of lung cells, which may be associated with 

premature cellular alterations in lung pathogenesis. Here, we developed a method for 

transcriptome-wide profiling of 8-oxoG using immunocapturing and RNA sequencing. We 

found 42 transcripts consistently oxidized in bronchial epithelial BEAS-2B cells exposed 

to air pollution mixtures that recreate urban outdoor conditions. We showed that the FDFT1 

transcript in the cholesterol synthesis pathway is particularly susceptible to air pollution-

induced oxidation. This process leads to decreased transcript and protein expression, and 

reduced cholesterol synthesis. Knockdown of FDFT1 replicates alterations seen in air 

pollution exposure such as transformed cell shape and suppressed cytoskeleton 

organization. Our results suggest a novel mechanism by which air pollution causes RNA 

oxidation of key metabolic-related transcripts facilitating cell phenotypes associated with 

respiratory inflammation and disease. 

2.2 RESULTS AND DISCUSSION 

2.2.1 Characterization of cell exposure to relevant concentrations of air pollution 

Most experimental environmental studies have focused on investigating exposure 

to a single chemical (76-79), but in reality, we are continuously exposed to heterogeneous 

mixtures of agents. For example, in urban areas, air contains oxides of nitrogen and sulfur, 
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ozone, organic compounds, particulate matter and more. Studying complex mixtures is 

more biologically relevant because the detrimental effects of exposures involving multiple 

molecules are much greater than the one provided by individual molecules (10).  

Given that the bronchus might experience the highest particle exposures in the 

lungs (80), we used bronchial epithelial BEAS-2B cells, a well-established model for 

epithelial air toxicity studies (81-83). It is worth noting that several cell-based models have 

been established to study respiratory toxicology (84). Despite not fully capturing the 

dynamics of the respiratory system, lung cell lines provide a first approximation to 

understanding transcriptional regulation processes during environmental stress (85-87) that 

can be further explored in more complex systems.  

Table 2.1. Summary of initial precursor concentrations and SOA formed  

 Replica 
O3 

(ppb) 

Methacrolein 

(ppb) 

Acrolein 

(ppb) 

α-pinene 

(ppb) 

Maximum 

formed  SOA 

(µg/m3) 

Lower 

Oxidative 

Potential 

Mixture 

1 109 97 100 44 50 

2 109 97 100 44 50 

3 100 97 100 44 40 

Highier 

Oxidative 

Potential 

Mixture 

1 3,900 670 790 0 60 

2 3,700 670 790 0 50 

3 3,900 670 790 0 N/A 

   N/A data not available for this exposure. 

 

Here, we exposed BEAS-2B cells to a mixture of airborne pollutants for 1.5 hours 

using an air-liquid interface system (Figure 2.1A). This mixture was derived from the 

reaction of acrolein, methacrolein, α-pinene and ozone (O3) in a 10 m3 Teflon 

environmental chamber at 37.3°C (Figure 2.S1). The initial concentrations of precursors 

are shown in Table 2.1. The reaction was monitored using a scanning electrical mobility 
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system (SEMS, for monitoring of the particle matter size), an aerosol chemical speciation 

monitor (ACSM, for monitoring the particle-phase bulk composition), and a high-

resolution time-of-flight chemical ionization mass spectrometer (CIMS, for monitoring the 

molecular composition of the gas phase), collectively confirming that the air mixture 

composition was similar across independent exposures.  

 

 
 

Figure 2.1. Physicochemical and cell viability characterization of the lower oxidative 

air pollution mixture derived from VOCs+O3. 
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Concentrations of the initial precursors are shown in Table 2.1. (A) Schematic of 

the exposure experiment. Cells are exposed for 1.5 h to the air pollution mixture. 

Cell viability from two cell inserts from a 6-well plate is analyzed after exposure 

and the remaining inserts are exchanged with fresh media and incubated at 37 °C. 

After 20 h from starting the exposure, two inserts are analyzed for cell viability. (B) 

Representative gas-phase composition during one of the exposures (0 – 1.5 hours), 

measured using the (H2O)nH3O
+ chemical ionization mass spectrometer (CIMS). 

Average integrated unit-mass ion intensities are shown. Labels indicate select 

dominant ions observed at the corresponding m/z. Ions ranging between m/z 2-79 

and 201-400 were monitored but not shown. The integrated ion intensities shown 

are not adjusted for sensitivities due to lack of authentic standards for oxidation 

products. (C) Typical f44 vs f43 profile, an estimator for aerosol oxidation state, 

observed by the aerosol chemical speciation monitor (ACSM) during the exposure 

period (0-1.5 hour). Ambient data typically lies within the triangular region. (D) 

Size distribution of secondary organic aerosol as observed by the scanning 

electrical mobility system (SEMS), averaged over the period between 0 to 1.5 hours 

from the start of the exposure. Lognormal distributions are shown. (E) Percentage 

of viable cells (at t = 1.5 h) after trypsinization of the adhered cells in the inserts, 

and after cell recovery (t = 20 h) determined by trypan blue dye exclusion method 

in an automatic viability analyzer (Vi-CELL) (N = 3).
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It is expected that acrolein, methacrolein and α-pinene will react to form a 

combination of substances more reflective of what pulmonary cells might experience in a 

polluted environment. In this model, acrolein, methacrolein, and α-pinene are volatile 

organic compounds (VOCs) that act as precursors forming secondary organic aerosol 

(SOA) by gas phase reactions with O3 and partitioning of the low vapor pressure products 

to the particulate phase. Acrolein and methacrolein are common VOCs found in urban 

atmospheres, mostly emitted in combustion processes including tobacco smoke, cooking 

fumes, forest fires, and combustion of diesel (88, 89), and they are medically relevant 

because they exacerbate asthma and COPD (90, 91) by mechanisms not fully understood. 

Furthermore, α-pinene, an abundant monoterpene, is emitted in vast quantities to the 

atmosphere by vegetation (e.g. by many coniferous trees, such as pine) and it is an 

important atmospheric precursor of SOA (92). Lastly, O3 is an atmospheric oxidizer 

abundant in indoor and outdoor environments and associated with oxidative damage to the 

lungs (93). We injected low concentration of VOC precursors and O3 to form a multi-

component gas-phase mixture including oxidation products such as aldehydes and ketones 

(94), which commonly contribute to smog in urban atmospheres (95). The precursors 

undergo several generations of chemical reactions that transformed the precursors into 

SOA (96) (Figure 2.1B). In this study, the BEAS-2B cells were exposed to these reaction 

products in addition to remaining precursors.  

The SOA concentration generated in the chamber ranged from ~ 40 - 50 μg/m3 with 

particle mode diameter around 100 nm (Figure 2.1D). This concentration of airborne fine 

particles (PM2.5 - particle diameter < 2.5 μm) corresponds to conditions referred as 

“unhealthy for sensitive groups” according to National Ambient Air Quality Standards 

(NAAQs, 1997). Yet, these conditions are typical of moderately polluted megacities (97, 

98), during wildfire periods in urban areas in California (99) or while inside an office 
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building in a U.S city (100). We plotted the f44 vs f43 triangle profile, an estimator of 

aerosol oxidation state, obtained from the ACSM during the exposure period of 1.5 hours 

(Figure 2.1C). Higher f44 values are associated with greater contribution to the aerosol mass 

by more oxidized compounds (e.g. doubly oxidized compounds), whereas higher f43 values 

are associated with greater contribution to the aerosol mass by lightly oxidized compounds 

(e.g. singly oxidized compounds). The aerosol falls within the typical range observed in 

ambient organic aerosol samples (represented by the blue triangular region in Figure 2.1C), 

indicating that the air pollution products within the mixture resemble moderately oxidized 

ambient organic aerosol (101). 

We determined cell viability using the trypan blue exclusion method. As seen in 

Figure 2.1E, cell viability does not significantly increase after exposure to air pollution 

relative to clean air control cells (t-test analysis, one-tailed homoscedastic, p-value > 0.05). 

Moreover, most of the cells remained viable after 20 hours, indicating that the exposure 

concentration used was non-lethal. We also determined cytotoxicity of the air pollution 

exposure using the enzymatic activity of lactate dehydrogenase (LDH), an abundant 

cytoplasmic protein released into the cell culture media when the cellular membrane is 

compromised. This assay revealed comparable levels of LDH between exposed cells and 

controls immediately after exposure (t = 1.5 hours) (Figure 2.S2).  

We also conducted transcriptomics analysis of the mRNAs to compare expression 

changes under air pollution exposure relative to clean air controls. This analysis shows 

differential expression of 878 mRNA transcripts with an adjusted p-value < 0.05. Of these, 

336 transcripts exhibit increased expression with a fold change > 2, and 542 exhibit 

decreased expression with fold change < 0.5 (Figure 2.S3A). The upregulated transcripts 

are involved in spliceosome, adherens junction, pyruvate metabolism, pathways in cancer 

and other diseases, caffeine metabolism, measles, ribosome, phosphonate metabolism, and 
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pathogenic E. coli infection. The downregulated transcripts are involved in pathogenic 

infection, pathways in cancer, thyroid hormone signaling pathway, signaling pathways 

regulating pluripotency of stem cells, and focal adhesion. Previous studies in BEAS-2B 

cells subjected to submerged exposure of PM2.5 at 10 μg/cm2 
 of cell culture and 50 μg/ml 

(equivalent to ~15 and ~22 times our particle exposure dose, respectively) reveled similar 

perturbed pathways such as cancer development and cellular metabolic processes (81, 102). 

Moreover, in vivo studies evaluating gene expression in mice revealed comparable 

alterations in gene expression of cell-cell adhesion and calcium transport pathways after 

doses of 300 μg of PM2.5 (equivalent to ~44 times our particle exposure dose) (103). These 

results support our cell exposures and confirm that specific patterns or signatures of 

transcriptional changes can be recognized from air pollution exposure. 

2.2.2 Increased RNA oxidation in cells exposed to air pollution 

To assess whether air pollution exposure forms RNA oxidation in BEAS-2B cells, 

we measured concentrations of 8-oxoG ribonucleotides using ELISA, which has been 

extensively used to detect oxidation of guanine in RNA and DNA (10, 104, 105). Exposed 

cells exhibit higher levels of 8-oxoG as compared to control cells (Figure 2.2A). These 

levels are equivalent to 1.46 ± 0.10 nM (or 65.9 ± 4.69 pg of 8-oxoG/µg of RNA) and 1.68 

± 0.07 nM (or 75.6 ± 3.30 pg of 8-oxoG/µg of RNA) in the control and exposed cells 

respectively, which are consistent with 8-oxoG concentrations reported in human and 

animal samples (106-108). Moreover, we directly exposed purified RNA from BEAS-2B 

cells to air pollution, showing a similar increase in 8-oxoG levels as compared to clean air 

controls (Figure 2.S4). These results suggest that air pollution directly oxidize RNA during 

a short exposure period of 1.5 hours (relative to the cell line’s doubling time of ~24 hours). 
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Likewise, studies in heart mouse tissue have detected changes in RNA oxidation after one 

hour of inducing oxidative stress by oxygen depletion (hypoxia) (38).  

It is worth noting that we measured moderated levels of basal RNA oxidation in the 

clean air controls. Evidence suggests that even in the absence of exogenous stress, 

endogenous cellular processes generate reactive oxygen species (ROS) that may not pose 

a functional burden to the cell (109, 110). Indeed, ROS can act as important signaling 

molecules in some cases, i.e. angiogenesis (111). Although some level of basal oxidation 

is expected and could play functional roles as epitranscriptomics marks (112), this specific 

phenomenon requires further investigation in future work.  
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Figure 2.2. 8-oxoG-RIP sequencing shows that certain mRNAs are more prone to 

oxidation by air pollution.  
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(A) Free 8-oxoG nucleosides from total RNA were quantified shortly after exposure 

(t = 1.5 h) by ELISA (N = 3). (B) Schematic of the 8-oxoG-RIP seq approach. 

Briefly, RNA is extracted and depleted of rRNA in BEAS-2B cells exposed for 1.5 

h to air pollution mixtures or clean air. A fraction of the resulting pool of mRNAs 

is immunoprecipitated (IP) in the presence of an antibody that selectively binds 8-

oxoG-containing RNAs. Then, RNA library preparation and sequencing are 

performed in the unenriched mRNA fraction (pool before the IP step) and the 8-

oxoG mRNA enriched pool (after the IP step). (C) Enrichment of P32-labeled 8-

oxoG oligomers using immunoprecipitation (IP) compared to normal oligomers 

determined by scintillator. As negative control, 8-oxoG oligomers were incubated 

without the presence of anti 8-oxoG antibody (N =2). (D) Schematic of the 

methodology used to identify air pollution-induced 8-oxoG transcripts. 8-oxoG 

enriched transcripts from each condition were identified by comparing the 8-oxoG 

IP mRNA relative to the input mRNA pools. Then, the resulting 8-oxoG enriched 

transcripts were compared between exposure conditions to identify air pollution-

induced 8-oxoG transcripts, which include unique 8-oxoG enriched transcripts in 

the air pollution pool or 8-oxoG enriched transcripts present in both the air pollution 

mixture and control exposures that exhibited a fold change (FC) ratio (exposure to 

control) > 1.5. (E) KEGG pathway analysis for air pollution-induced 8-oxoG 

transcripts. Statistical difference was computed using t-test analysis and 

significance is denoted as * for p-value < 0.05; n.s. denotes non-significant 

difference. Error bars are expressed as one standard deviation (SD).
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2.2.3 8-oxoG RIP-seq enables detection of RNA oxidation in biologically relevant 

transcripts after air pollution exposure 

We developed an integrated immunoprecipitation (IP) assay of 8-oxoG with RNA 

sequencing (8-oxoG RIP-seq) to identify which RNA transcripts are more susceptible to 

oxidation by air pollution (Figure 2.2B). Given that the process of RNA oxidation is 

selective (113), we expect to identify cellular pathways enriched in oxidized transcripts as 

an indicative of targeted susceptibility by air pollution-induced oxidation. We employed 

an anti-8-oxoG antibody (clone 15A3) that can recognize 8-oxoG in both DNA and RNA 

(38, 113-115) and has been used for 8-oxoG immunoprecipitation of miRNA and mRNAs 

(38, 113).  

We conducted Dot blotting to characterize the specificity of the selected antibody 

to 8-oxoG over common methylated and oxidized RNA modifications (N6-methyladenine 

(m6A), 8-oxo-7,8-dihydroadenine (8-oxoA), 5-hydroxycytosine (5-OHC), 5-

hydroxyuracil (5-OHU), and 5-formylcytosine (f5C)), as well as unmodified G (Figure 

2.S5). Our results show that the antibody used is highly specific to 8-oxoG-marked RNAs 

(particularly when marked internally) relative to non-marked RNAs and RNAs marked 

with other modifications (i.e. 8-oxodA, 5-OHC, 8-OHU, f5C, and m6A were tested). Given 

the lack of signal in the 10-mer containing one 8-oxoG mark at the second position from 

the 5’ end, the antibody may fail to capture 8-oxoG-marked RNA transcripts at the 5’ end. 

Our results also indicate little sequence bias, observed by the linear behavior between the 

number of 8-oxoG marks and the binding signal (Figure 2.S5B). We then 

immunoprecipitated radiolabeled 8-oxoG-containing oligos to monitor the IP efficiency by 

scintillation (Figure 2.2C). We used unmodified oligos and incubations in the absence of 

the antibody as negative controls. Based on our 8-oxoG IP, we found an IP efficiency of 
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~30%. In contrast, other known 8-oxoG IP approaches have reported lower efficiencies of 

~8% (116). These low efficiencies on 8-oxoG IP could reflect a structure-dependent bias, 

which has been reported in other RNA modification antibodies (116-118).  

To discriminate 8-oxoG resulting from air pollution exposure from native cellular 

8-oxoG and artifactual oxidation that might be caused during sample preparation (119), we 

incorporated the statistical comparisons shown in Figure 2.2D. Briefly, we first identified 

8-oxoG enrichment within the mRNA pool in either exposed or control cells. At this step, 

we compared the distribution of each transcript between the pool of transcripts that bound 

to the 8-oxoG-specific antibody and the input pool (the total RNA pool in the absence of 

8-oxoG antibody immunoprecipitation) in either exposed or control cells (with an adjusted 

p-value < 0.1, and fold change > 2). Then, we compared the resulting groups of 8-oxoG 

transcripts in the exposed cells and the control cells to discriminate transcripts that are 

either A) uniquely represented in the air pollution group or B) that although present in both 

exposed and control pools, are at least 1.5 times more abundant in exposed cells. The 

resulting group, referred to as air pollution-induced 8-oxoG transcripts, has a minimum 

log2-fold change enrichment of 6.7 (Figure 2.S6), a threshold sufficiently high to 

confidently assume that this analysis removed oxidized background noise generated from 

non-specific interactions (between mRNA transcripts and protein A magnetic beads or 8-

oxoG antibody) or from random artifactual oxidation.  

This analysis yielded 707 transcripts enriched in 8-oxoG modifications in BEAS-

2B cells after 1.5 hours of air pollution exposure. Previous studies have identified ~3,400 

oxidized transcripts in mice expressing familial ALS-linked SOD1 mutant (120) and 

~2,400 oxidized transcripts in Saccharomyces cerevisiae treated with H2O2 (121). 

However, these studies lack statistical analyses to distinguish between basal oxidation and 

specific oxidation induced by the treatment condition. Furthermore, we followed 
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recommendations to prevent artificial oxidation of the RNA during sample preparation 

including the use of O2-depleted solutions and avoiding RNA fragmentation before IP 

(119). 

According to the analysis of KEGG pathways in Enrichr (122), the 707 oxidized 

transcripts by air pollution are involved in carbohydrate and amino acid metabolism (i.e. 

propanoate metabolism, glyoxylate and dicarboxylate metabolism, and valine, leucine and 

isoleucine degradation) cancer pathways (i.e. bladder cancer, chronic myeloid leukemia, 

thyroid cancer, and small cell lung cancer), RNA transportation, and adherens junction 

(cell bridges connecting actin cytoskeleton of neighboring cells) (Figure 2.2E).  

2.2.4 RNA oxidation induced by air pollution is selective and correlates with mRNA 

downregulation  

One important feature of RNA oxidation is that oxidation occurs selectively and 

independent of the RNA abundance (113). Therefore, we investigated the distribution of 

the 707 oxidized transcripts by calculating the ratio of oxidized transcripts versus all 

detected transcripts in ten averagely divided expression bins (Figure 2.S7A). Our results 

show that these transcripts scatter among low and high expression bins, suggesting that 

oxidation occurred regardless of the mRNA expression levels. Other molecular aspects that 

make certain RNAs more prone to oxidation require further investigation in the literature.  

Studies suggest that 8-oxoG modifications can influence mRNA fate (i.e. by 

affecting mechanisms of transcriptional regulation, stability, turn over, etc.) (41, 104, 123). 

We found that ~81% of the oxidized transcripts that bound to the 8-oxoG-specific antibody 

are in the negative fold-change region of the differential expression volcano plot (Figure 

2.S7B), indicating overall that oxidized transcripts are more prone to decrease in 

expression. 
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2.2.5 Exposure response analysis of oxidized mRNAs indicates that cholesterol 

biosynthesis is highly sensitive to air pollution oxidation 

To better understand transcriptome patterns that are consistently modified as a 

result of air pollution exposures, we conducted additional studies in BEAS-2B cells using 

an air mixture  previously reported to generate a significant increase in RNA oxidation 

(10). Because air pollution exposure is uneven in the bronchiole region, it is expected that 

certain areas could exhibit up to 9 times more stress (80), which may overwhelm cellular 

defenses and elicit clear defects in lung cells.  

The mixture derived from higher concentrations of the VOCs+O3 precursors (Table 

2.1) includes higher levels of unreacted VOC precursors (Figure 2.S8A). The SOA 

concentration ranged from ~ 40 - 60 μg/m3 (Figure 2.S8B), with a particle mode diameter 

around 130 nm (Figure 2.S8C). The particle-phase concentration was similar to the one 

generated in the lower oxidative mixture (by design) as α-pinene, which produces SOA at 

a higher yield, was not included in these higher VOC+O3 experiments. Importantly, the 

aerosol phase has a higher oxidative state as shown by the proximity of the data points to 

the superior edge of the outlined area in Figure 2.S8C than the mixture in Figure 2.1C. This 

analysis indicates that air pollution products within the mixture resembled highly processed 

ambient oxidative particles. This mixture induced a significant increase in RNA oxidation, 

indicating it has a higher oxidative potential (Figure 2.S9A) than the mixture in Figure 

2.2A. Moreover, we observed a reduction in the percentage of viable cells to ~ 88% at t = 

1.5 hours and to ~93% at the end of the recovery period, t = 20 hours (Figure 2.S9B). 

 



 26 

 



 27 

Figure 2.3. Exposure of BEAS-2B cells to air pollution leads to alterations in 

cholesterol synthesis 

(A) Heatmap showing 8-oxoG enrichment of lower and higher oxidative exposures. 

Color scale represents 8-oxoG enrichment as log2 fold change values. Transcripts 

with similar enrichment were clustered together using ggdendrogram R script. (B) 

Overlap between the air pollution-induced 8-oxoG transcripts derived from 

exposure at lower oxidative mixture and the ones derived from exposure at high 

oxidative mixture. (C) KEGG pathways analysis for the 42 8-oxoG transcripts 

overlapping between the two air pollution mixtures. (D) PCR products of FDFT1-

215 cDNA synthesized from lower and higher oxidative exposures. PCR products 

were separated in 3% agarose gel and stained with ethidium bromide. GAPDH was 

used as internal normalization and PPIB was used as negative control. The amount 

of PCR product was detected by densitometry using TotalLab CLIQS and 

normalized by the level of the internal GAPDH product. The ratio of normalized 

distal/proximal products are plotted for FDFT1-215 and PPIB (N = 2). (E) Western 

blot of FDFT1 in BEAS-2B cells after exposures to the different air pollution 

conditions (N = 2). Detection of GAPDH was used as internal loading control, 

which showed unchanged expression levels in the transcriptomics analysis. The 

signal intensity from the bands was quantified by densitometry using TotalLab 

CLIQS. (F) Endogenous cholesterol measured by a colorimetric assay from whole 

cellular lysates collected after exposure (N = 2). Statistical difference was 

computed using t-test analysis and significance is denoted as * for p-value < 0.05, 

and ** for p-value < 0.001; n.s. denotes non-significant difference. Error bars are 

expressed as one standard deviation (SD).
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We then applied 8-oxoG RIP-seq analysis to BEAS-2B cells exposed to the air 

pollution mixture producing particles with higher oxidative potential. We identified 555 

oxidized transcripts under this exposure condition. Of these, 42 overlapped with the 8-

oxoG enriched transcripts (as significantly) seen in the lower oxidative potential exposure 

(from the earlier 707 oxidized transcripts) (Figure 2.3B). Overlapping transcripts are 

involved in steroid biosynthesis, fatty acid elongation, propanoate metabolism, among 

others (Figure 2.3C). Of these, ones related to proteins in the steroid biosynthesis pathway 

are among the most enriched and consistent in oxidation, with two out of 19 (FDFT1 and 

DHCR24) significantly oxidized under both exposure conditions in this study, including 

the low oxidative exposure that captures environmentally conditions typically observed in 

urban atmospheres. 

The heat map in Figure 2.3A illustrates the log2-fold change 8-oxoG enriched 

transcripts in response to the two exposure conditions. Three main clusters indicate patterns 

of enrichment (blue shade) for oxidized transcripts: uniquely oxidized at either lower 

(green block) or higher potential exposure (orange block) and oxidized at both exposure 

conditions (purple block). A small region of ~10 transcripts are evenly enriched at both 

exposure conditions, including the FDFT1 and DHCR24 transcripts. 

2.2.6 Cholesterol synthesis is altered by air pollution-prompted oxidation of FDFT1 

transcript 

To explore the significance of oxidative modification of mRNAs, we further 

studied farnesyl-diphosphate farnesyltransferase 1 (FDFT1) a key regulatory step in the 

cholesterol biosynthesis pathway. FDFT1 encodes for a membrane-associated protein, also 

known as squalene synthase. The FDFT1 transcript detected as oxidized by air pollution, 

under both exposure conditions tested, is thought to undergo nonsense-mediated decay 
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(FDFT1-215, Ensembl transcript ID: ENST00000529464), one of the RNA-quality control 

processes that rely on the recognition of abnormal mRNA by the ribosome (37). We 

focused on this transcript, given that we observed its oxidation under both exposure 

conditions tested and given its role in cholesterol biosynthesis, which we hypothesized to 

be particularly relevant to cytoskeletal properties known to be affected in conditions of 

lung diseases (124-128). 

Our transcriptomic data show that the FDFT1-215 transcript was downregulated at 

both lower and higher oxidative mixture, although this trend had higher statistically 

significance at the higher oxidative exposure (adjusted p-value < 0.05). The levels of 

oxidized FDFT1-215 transcript after 8-oxoG IP were further verified by the quantification 

of its copy number using RT-qPCR (Figure 2.S11).  

We adapted a reverse transcription truncation assay to validate the oxidation of the 

FDFT1-215 transcript via an antibody-free approach (129, 130). We used chemical tagging 

of 8-oxoG to leave a bulky moiety that induces reverse transcription stops (116, 131-133). 

In this method, K2IrBr6 acts as a mild one-electron oxidant that reacts with 8-oxoG – 

without introducing oxidative modification to G – to form an electrophilic intermediate 

that can react with a primary-amine nucleophile to yield a stable amine-conjugated product 

(116, 133).  

After reverse transcription of the labeled transcripts, we carried out PCR using 

primers near the 5’ end (proximal) and the 3’end (distal). The resulting accumulation of 

proximal products can be compared with the distribution of distal products to identify 

oxidized transcripts by gel electrophoresis (Figure 2.S12A). We selected the housekeeping 

proteins Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Peptidyl-prolyl cis-

trans isomerase B (PPIB) that remained unaffected by the exposure according to our 8-

oxoG RIP-seq data as internal normalization and negative control, respectively. The ratio 
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of distal/proximal FDFT1-215 products represents the relative level of complete FDFT1-

215 product relative to that of truncated FDFT11-215 product. The level of 8-oxoG 

oxidation is determined by a reduction in the ratio from exposed cells as compared with 

that from the control. The decrease in the relative level of distal PCR product for both 

exposures indicates oxidation of FDFT1-215 transcript (Figure 2.3D). In contrast, the 

relative levels of distal PPIB were almost identical to the levels of proximal PPIB.  

Given that changes in transcriptional stability of 8-oxoG mRNAs may reduce 

protein expression (104), we tested FDFT1 levels in protein extracts from BEAS-2B cells 

exposed to air pollution by Western blotting. After normalizing the signal by the GAPDH 

loading control, FDFT1 expression significantly decrease in the cells exposed to the higher 

oxidative exposure by 2.5-fold compared to the control (t-test analysis, one-tailed 

homoscedastic, p-value < 0.05) (Figure 2.3E). At the lower oxidative exposure, FDFT1 

levels remain unchanged relative to the clean air control, as expected based on the similar 

trends observed by transcriptomics data.  

Since the FDFT1 protein regulates the first specific step in the cholesterol pathway, 

we then tested the levels of cholesterol in whole cellular lysates by a colorimetric assay. 

As seen in Figure 2.3F, cholesterol content decrease at both air pollution conditions, and 

interestingly, the reduction is more significant as the levels of air pollution increased. 

Overall, our findings suggest that RNA oxidation in the FDFT1-215 transcript accumulates 

at non-lethal conditions, in a way that alters gene and protein expression and promotes 

dysregulation of the cholesterol synthesis pathway at increased air pollution 

concentrations.  
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2.2.7 Downregulation of FDFT1 results in morphological alterations in BEAS-2B 

reflecting cellular phenotypes of environmental exposures 

To understand the deleterious effects of downregulation of FDFT1 on cellular 

function, we knocked down FDFT1 in BEAS-2B cells using small interfering RNA 

(siRNA). We designed a siRNA to target the FDFT1-215 transcript (referred to here as 

si215). As negative controls, we used a scrambled sequence siRNA control (predesigned 

silencer select negative control sequence No.1, Thermo Fisher Scientific) and siRNA 

untreated cells. We confirmed decay in FDFT1 protein levels in the silenced cells by 

Western blotting (Figure 2.4A), with a transfection efficacy of at least 70%. In addition, 

we observed a decrease in cellular cholesterol after 24 hours of si215 treatment (Figure 

2.4B). Because cholesterol is critical in cellular membranes for fluidity, stiffness, and 

structural support of cytoskeleton (134), we inspected the effect of defective cholesterol 

synthesis (driven by FDFT1-215 knockdown) on cell morphology. We observed that 

FDFT1 knockdown leads to substantial morphological alterations in BEAS-2B cells 

including alterations in cellular shape and retraction of cell size (Figure 2.4C). Yet, 

consistent with the fact that cholesterol is a key regulator of membrane and actin 

cytoskeleton organization (135), si215 cells experienced drastic changes in F-actin 

integrity and membrane ruffling, as well as gap formations between adjacent cells. Notably, 

these morphological changes are detected without considerable alterations in cell viability 

(Figure 2.S13). 

To test the potential association of the observed defective cell morphology 

phenotype stimulated by FDFT1-1 knockdown and air pollution exposure, we then 

analyzed the morphological changes in BEAS-2B cells after 1.5 hours of higher oxidative 

exposure. Strikingly, the knockdown of FDFT1 reproduced the phenotypic alterations 

spontaneously occurring during air pollution exposure (Figure 2.4C and 2.4D). As such, 
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the si215 cells suffered a significant retraction of ~23% in the cytosol area compared to 

siCtrl cells (Figure 2.4E), as well as substantial membrane ruffling, suggesting loss of cell 

adhesion. This effect results in loss of cell to cell contacts as evidenced by the formation 

of distinct intercellular gaps (Figure 2.4C). Similarly, exposed cells acquired 

heterogeneous shapes and experienced significant irregular retraction of the cytosol area 

by ~33%, whereas clean air control cells maintained their original epithelial-like 

morphology. Furthermore, we analyzed the heterogeneity in cortical actin filament 

orientations (or F-actin anisotropy – an estimator of microfilament organization) using 

FibrilTool (136). In si215 silenced cells, the anisotropy score significantly decreased by ~ 

50% relative to the siCtrl cells. Likewise, we observed significant rearrangements in actin 

filaments post-exposure with an averaged decrease of ~36% in the anisotropy score (Figure 

2.4F). Notably, key biological processes highly dependent of the cytoskeleton and cell to 

cell adhesion (e.g. adherens junction) were found to be extensively impacted by the 

different air pollution conditions in our 8-oxoG transcriptional and functional analysis 

(Figure 2.2F).  

Notably, the observed morphological phenotypes in BEAS-2B are consistent with 

previous air exposure studies in cultured pulmonary cells. Cigarette smoke exposures have 

been described to reduce F-actin content and promote intracellular gap formation in both 

bovine pulmonary artery endothelial cells and primary alveolar type II epithelial cells 

(137). Likewise, studies using urban particulate matter with diameter < 2.5 µm (PM2.5) 

with a dose of 10 µg/ cm2
 of cell culture area for 24 hours, and  radical-containing ultrafine 

PM (particles with diameter < 10 µm) with a dose of 20 µg/cm2
 of cell culture area for up 

to 24 hours have been reported to prompt microfilament rearrangements and incomplete 

cell-to-cell contact in BEAS-2B cells (102, 138).  
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Figure 2.4. Downregulation of FDFT1 (Farnesyl-diphosphate Farnesyltransferase 1) 

in BEAS-2B cells is linked to early alterations induced by air pollution. 
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(A) Western blot analysis of FDFT1 in BEAS-2B cells after 24 h of siRNA antisense 

knockdown of FDFT1 (N = 2). A scrambled sequence siRNA was used as a control (siCtrl). 

(B) Endogenous intracellular cholesterol in FDFT1 knockdowns of BEAS-2B cells (N = 

2). (C) Confocal fluorescent microscopy images of F-actin staining with Alexa Fluor 594 

phalloidin and nuclei staining with DAPI of BEAS-2B cells using a magnification of 63X. 

The images are representative of two independent FDFT1 knockdown in BEAS-2B cells. 

(D) Confocal fluorescent microscopy of BEAS-2B air exposures (from high oxidative 

mixtures). (E) Anisotropy of actin fibrils was measured using the ImageJ plug-in 

FibrilTool. An anisotropy score of 0 is given for no order (purely isotropic fibrils), and 1 

is given for perfectly parallel fibrils (purely anisotropic arrays). This analysis was 

conducted in 10 µm x 5 µm regions on 10 cells for each condition. (N = 2). (F) F-actin area 

of 15 cells per condition was quantified using Fiji Image J. (N = 2). Statistical difference 

was computed by t-test analysis and significance is denoted as * for p-value < 0.05, and ** 

for p-value < 0.001. Error bars are expressed as one standard deviation (SD).
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2.3 METHODS 

2.3.1 BEAS-2B cell cultures 

BEAS-2B (ATCC CRL-9609) cells were acquired from ATCC. Cell cultures for 

exposures were initiated from cryopreserved cells (passage 2 from parent stock) in pre-

coated T-75 culture flask following the ATCC instructions. Cells were cultured in 23 ml 

of complete Bronchial Epithelial Cell Growth medium (BEGM, Lonza) with a seeding 

density of 225,000 cells at 37°C under an atmosphere containing 5% CO2 and in a 

humidified incubator. Cell were incubated for 4 days until reaching 70% - 80% confluence 

with medium renewal every 48 hours. Then, cells were passaged to collagen-coated inserts 

(30 mm diameter, hydrophilic PTFE with pore size of 0.4 µm, EMD Millipore) housed in 

6-well plates (Corning Costar Clear Multiple Well Plates) with a seeding density of 

200,000 cells and incubated for 24 hours with 0.8 ml and 1.1 ml of medium in the apical 

and basolateral side, respectively. Cell culture inserts were coated with 1 ml of 57 µg/ml 

of Bovine Collagen Type I (Advanced BioMatrix) in BEGM at least 24 h before seeding. 

Two hours before exposure, the medium from the apical cell surface was completely 

removed, and the medium from the basolateral cell surface was renewed with fresh 

complete medium. Cell density was estimated using 0.6 ml of cell suspension in a Vi-Cell 

XR viability analyzer (Beckman Coulter). 

2.3.2 Generation of air pollution mixtures 

Acrolein (ACR, 90% stabilized, Sigma-Aldrich), methacrolein (MACR, 95% 

stabilized, Sigma-Aldrich), α-pinene (98% stabilized, Sigma-Aldrich) and O3 were mixed 

inside a 10 m3 Teflon chamber at 1 atm, 37.3oC and with relative humidity (RH) between 

35 and 60%, in the dark to generate gas- and particle-phase pollutants. Prior to each 
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experiment, a “blank” experiment was performed to test the cleanliness of the chamber and 

react away residual organics remaining from the previous experiments. The products were 

then removed by flushing the chamber with dried clean air (<10 particles cm-3 and < 5 ppb 

gas-phase impurities) for at least 12 hours. Afterwards, humidified clean air was flushed 

through the chamber to raise the relative humidity. On the day of the experiment, acrolein 

was first injected into the chamber followed by methacrolein, α-pinene and finally O3. A 

set of three experiments were performed under similar initial conditions (Table 2.1). The 

O3 used for VOC oxidation was produced using an O3 generator (TG-10, Ozone Solutions) 

using UHP O2 via corona discharge. Once mixed, these chemicals oxidized and reacted to 

form gas and particulate phase products. Cell exposure was started after ~45 minutes of O3 

injection.  

2.3.3 Physicochemical characterization of the air pollution mixtures 

Particle size distributions were characterized using a scanning electrical mobility 

system (SEMS, Brechtel model 2002). The SEMS consists of a differential mobility 

analyzer (DMA) and a butanol condensation particle counter (CPC). The DMA separates 

particles based on their electrical mobility, which is a function of the particle diameter. 

Size-selected particles are counted by the CPC via light scattering. The SEMS is configured 

to characterize the distribution of suspended particles using 60 discrete size bins ranging 

from 10 to 1000 nm in diameter, with sheath and polydisperse flow rates set to 5 and 0.35 

LPM. A pre-impactor, a NafionTM membrane dryer, and a 210Po strip neutralizer were 

used to condition the polydisperse sample flow upstream of the DMA column. 

The particle-phase bulk chemical composition was measured using an aerosol 

chemical speciation monitor (ACSM, Aerodyne). Using electron impact ionization, the 

ACSM can measure the submicron, non-refractory aerosol bulk composition at one minute 
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intervals (101, 139). Using a standard fragmentation table (140), the ACSM can speciate 

the aerosol content into organics, nitrate, sulfate, ammonium, and chloride (101). The 

ACSM was calibrated with 300nm size-selected ammonium nitrate and ammonium sulfate 

aerosol generated from nebulized 0.005 M solutions to determine the necessary ion-to-

mass signal conversion factors using default procedures recommended by the instrument 

manufacturer. ACSM data were analyzed in Igor Pro V6.37 (Wavemetrics) using ACSM 

local v1603 (Aerodyne) and other custom routines. Time dependent air beam corrections 

were applied to the raw data based on N2 signal changes relative to the reference N2 signal 

(when the calibration was performed). The default relative ion transmission efficiency 

curve was applied to the data. A collection efficiency of 0.5 was assumed for the ACSM, 

which is consistent with other aerosol mass spectrometers using similar sample inlet and 

ion generation methods (101, 141). 

A high-resolution time-of-flight chemical ionization mass spectrometer (CIMS, 

Aerodyne) was used to monitor the molecular composition of gas-phase compounds using 

(H2O)0-2H3O
+ clusters as the chemical ionization reagents (142), with (H2O)H3O

+  being 

the most abundant reagent ion. The chemical ionization used in CIMS is softer than 

electron impact ionization used in ACSM and can provide information about the molecular 

composition of gas-phase species. Ionization by (H2O)0-2H3O
+ clusters proceeds via either 

the proton transfer, Eq. (1), or the adduct formation, Eq. (2) pathway. 

𝑅 + (𝐻2𝑂)𝑛𝐻3𝑂
+ → 𝑅𝐻+ + (𝑛 + 1)𝐻2𝑂   Eq. (2.1) 

𝑅 + (𝐻2𝑂)𝑛𝐻3𝑂
+ → 𝑅(𝐻2𝑂)𝑚𝐻3𝑂

+ + (𝑛 −𝑚)𝐻2𝑂 Eq. (2.2) 

The sensitivity of the CIMS (e.g. conversion ion intensity of RH+ to mass 

concentration for R) depends on the proton affinity of the analyte R, the abundance of the 

reagent ions (i.e. amount of (H2O)0-2H3O
+ available, the relative distribution of which 

varies with sample gas humidity as well), and other instrument factors (e.g. reaction time 
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scale between reagent ion and analyte; ion transmission efficiencies, etc.) and requires 

calibration with authentic standards, which are not commercially available or practically 

viable for the hundreds and possibly more oxidation products observed.  

2.3.4 Air-liquid interface (ALI) exposures of BEAS-2B cells 

Two polycarbonate modular cell exposure chambers (MIC-101 Billups-

Rothenberg), were used to house exposed and control samples. Prior to each exposure, the 

modular chambers were conditioned with O3 flush to reduce contamination by plasticizer 

residues (which were initially found to be responsible for O3 loss), followed by clean air 

flush to displace residual O3. Probes (HMP60) were used to monitor the RH and 

temperature downstream from each chamber. Each chamber held two or three 6-well 

plates, and a mix of 0.08 LPM CO2 (UHP, Airgas) and 1.52 LPM air pollutants was pumped 

through the exposure chamber for 1.5 hours. In parallel, a mix of 0.08 LPM CO2 and 1.52 

LPM humidified clean air was pumped through the control chamber. The modular exposure 

chambers were housed in a temperature-controlled room at 37oC. 

2.3.5 RNA extractions 

Following exposure, each membrane was treated with 1 ml of TRIzol (Invitrogen) 

in the apical side and gently mixed to ensure thorough lysis. The whole lysate was collected 

and frozen until the day of the extraction. TRIzol RNA extraction was conducted following 

TRIzol’s manufacturer instructions. To prevent artificial oxidation of RNA by dissolved 

oxygen in solutions, ethanol (200 Proof, OmniPur, EMD Millipore), isopropanol 

(molecular biology grade, IBI Scientific) and nuclease-free water (Ambion) used in the 

downstream steps after TRIzol were purged with ultra-high purity N2 for 30 min. TRIzol 

aliquots were thawed on ice and RNA was purified using Direct-zol RNA miniprep (Zymo 
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Research). The purified RNA was incubated with DNAse I (NEB) following the 

manufacturer’s protocol, and then re-extracted with RNA clean and concentrator kit (Zymo 

Research). 

2.3.6 Direct exposure of RNA to air pollution 

We extracted total RNA from BEAS-2B cells as described above and stored at -80 

°C. The day of the exposure, 8 µg of RNA were resuspended in 500 µl of TE buffer (pH. 

8.0) supplemented with 10 µl of SUPERaseIn RNA inhibitor (Invitrogen) into each well 

of a 6-well plate. The exposure was conducted using high concentrations of the VOC+O3 

precursors (Table 2.1) for 1.5 hours following the same conditions as for the BEAS-2B 

exposures. After exposure, RNA was purified with RNA clean and concentrator kit (Zymo 

Research) and then stored at -80 °C until the day of analysis. 

2.3.7 Quantification of free 8-oxoG levels in total RNA 

Free 8-oxoG was quantified in total RNA using the DNA/RNA Oxidative Damage 

ELISA Kit (Cayman Chemical). Two RNA dilutions (3 µg and 1.5 µg of total RNA) were 

digested with 0.375 µg of nuclease P1 from Penicillium citrinum (Sigma-Aldrich) in 20 

mM sodium acetate buffer pH 5.2 containing 50 mM sodium chloride and 0.1 mM zinc 

chloride in a 105 µl reaction volume. After incubation at 37°C for 2 h, 1 unit of Calf 

Intestinal Phosphatase (CIP, NEB) and 5X alkaline phosphatase buffer (500 mM Tris 

acetate, 220 mM sodium chloride, 50 mM magnesium chloride, pH 7.9) was added to a 

final reaction volume of 150 µl. The competitive ELISA method was conducted at the two 

dilutions (1 ug and 0.5 ug of total RNA) with three technical replicates following the steps 

in the manufacturer protocol. The standard curve, measured as B/B0 (Standard 

bound/Maximum Bound) for each standard dilution, was calculated from triplicate 
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standard readings. The sample concentration was determined in the linear range of the 

standard curve (10.3-3,000 pg/ml), after accounting for the dilution, with a sensitivity 

(determined as 80% B/B0) of 10.3-11.8 pg/ml and a mid-point (defined as 50% B/B0) of 

52-104 pg/ml. A disparity lower than 20% between the different dilutions was considered 

acceptable. In addition, we corrected the cross reactivity of the antibody for 8-oxoG in 

RNA using a factor of 0.38 as suggested in the manufacturer protocol. Buffers were 

prepared fresh on the day of the assay using N2-purged nuclease free water. 

2.3.8 8-oxoG RIP-seq analysis 

Immunoprecipitation of 8-oxoG-containing RNA was performed in two biological 

replicates for each condition. After DNase I treatment of RNA, ribosomal RNA (rRNA) 

was depleted using Ribo-Zero Gold rRNA Removal kit (Illumina) as described by the 

manufacturer. Depletion of rRNA was validated by Agilent 2100 Bioanalyzer (Agilent), 

and all samples had a RIN higher than 7. All buffers were prepared fresh from concentrated 

stocks on the day of pulldown experiments using N2-purged nuclease free water. RNA was 

incubated with 12.5 µg of 8-oxo-7,8-dihydroguanosine (8-oxoG) monoclonal antibody (0.5 

mg/ml, Clone 15A3, Trevigen) in IP buffer (10 mM Tris pH 7.4, 150 mM NaCl, 0.1% 

IGEPAL, and 200 units/ml of SUPERaseIn RNA inhibitor (Invitrogen) in a 1 ml reaction 

volume for two hours on a rotator at 4°C. Then, SureBeads Protein A magnetic beads 

(Biorad) were washed according to manufacturer’s recommendation and blocked in IP 

buffer supplemented with 0.5 mg/mL bovine serum albumen (BSA) for two hours at room 

temperature. After washing beads twice in IP buffer, they were resuspended in IP buffer, 

mixed with the RNA-antibody reaction and then incubated for 2 h on a rotator at 4°C. Next, 

the beads were washed three times in IP buffer before performing two competitive elutions 

with free 8-oxodG nucleosides (Cayman Chemical). Each elution was conducted by 
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incubating the beads with 108 µg of 8-oxodG in IP buffer for 1 h on a rotator at 4°C. Then, 

the elution volume was cleaned up using the RNA Clean and Concentrator-5 kit (Zymo 

Research).  

Input RNA and immunoprecipitated 8-oxoG-containing RNA libraries were 

prepared using the NEBNext Small RNA kit (NEB) by the Genomic Sequencing and 

Analysis Facility at the University of Texas at Austin. For the samples generated at low air 

pollution levels, sequencing was performed on an Illumina NextSeq 500 pair-end 2 x75 

bases with a read depth of 20M reads for pulldowns and 32M reads for input RNA samples. 

For the samples generated at high air pollution levels, sequencing was performed on an 

Illumina HiSeq 4000 pair-end 2 x150 bases with a with a read depth of 16M reads for 

pulldowns and 32M reads for input RNA samples. 

2.3.9 Transcriptomics analysis 

FastQC was used to generate quality check reports on the raw data, and then read 

trimming was performed using cutadapt 1.14, followed by another quality check using 

FastQC that demonstrated high quality read data. This preprocessed data was then aligned 

to the Ensembl comprehensive human genome annotation (GENCODE 26, GRCh38.p12) 

using STAR 2.6.0c, allowing novel splice junctions and using a two-pass mapping 

approach (transcriptome reference assembly then realignment to the reference) for 

comprehensive transcriptome alignment. Alignment was performed using parameters 

recommended in the STAR manual for ENCODE standards with a resultant mapping rate 

of >60% for all samples and multi-mapping rates of 9 - 32%. Next, RSEM 1.3.1 was used 

to estimate transcript abundances and then differential expression and 8-oxoG enrichment 

analysis were performed using DESeq2 in R version 3.6.1. Transcripts were annotated 
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using biomaRt in R. RNA-sequencing datasets have been deposited in NCBI GEO under 

accession number GSE137019.  

2.3.10 Enrichment analysis 

Enrichment analysis of the differentially upregulated, downregulated and oxidized 

transcript lists was performed in Enrichr web tool (122, 143). We generated the lists for 

enrichment by filtering the transcripts with adjusted p-value < 0.05, and fold change > 2 

(for upregulated genes) and < 0.5 (for downregulated genes). The list of oxidized 

transcripts was obtained for enriched genes (positive fold change) and with an adjusted p-

value < 0.05 for high air pollution levels and adjusted p-value < 0.1 for low air pollution 

levels. The plots of the top-most enriched pathways were generated from the KEEG 

database by ranking them by the Enrichr’s combined score (122, 143).  

2.3.11 Validation of 8-oxoG immunoprecipitation 

All the buffers were prepared fresh on the day of the assay using N2-purged 

nuclease free water to prevent artefactual oxidation. A 24-mer 8-oxoG RNA 

oligonucleotide (with sequence: [NN(8-oxoG)N]6, where N is A, G, C or U) and the 24-

mer unmodified RNA oligo (with sequence: [NNGN]6) were custom synthesized by 

GeneLink. The oligos were radiolabeled using T4 polynucleotide kinase (NEB) as 

described by the manufacturer. After labeling, RNA was cleaned up by ethanol 

precipitation. This was done by first adding 1 M Tris buffer (pH 8.0) and 1 M sodium 

acetate (pH 5.2) to the reaction mixture to bring the final concentrations to 50 mM and 0.3 

M respectively. Two volumes of phenol/chloroform/isoamyl alcohol (25:24:1) (Fisher 

Scientific) were then added and the solution was vortexed for one minute followed by 

centrifugation at 15,000 g for 2 minutes to achieve phase separation. The aqueous (top) 
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phase was collected, and 1 µl of GlycoBlue Coprecipitant (Thermo Fisher) and 2.5 volumes 

of chilled 100% absolute ethanol (OmniPur, 200 Proof, Millipore Sigma) were added. The 

solution was mixed and then incubated overnight at -20 °C. The following day, the solution 

was centrifuged at 4 °C at 15,000 g for 15 minutes. The supernatant was removed and then 

washed with 95% ethanol followed by a final centrifugation at 15,000 g for 5 minutes. The 

supernatant was discarded, and the pellet was dried in a Vacufuge plus (Eppendorf) for 5 

minutes before resuspension in Molecular Biology Grade Water (Quality Biological). 

To generate the input RNA for 8-oxoG IP, 2.5 ng of the P-32 labeled RNA (either 

8-oxoG or unmodified) was mixed with 5.1 µg of unmodified oligomer and resuspended 

in 56 µl of N2-purged Molecular Biology Grade Water (Quality Biological). The 8-oxoG 

immunoprecipitation was conducted as described above. After elution, the P-32 signal was 

detected using liquid scintillation counter (Beckman LS 6500).  

2.3.12 Dot blot assay 

All RNA oligomers used to test the specificity of the commercially available 8-

oxoG antibody (clone 15A3) employed in 8-oxoG RIP-seq are listed in Table 2.S1A and 

were synthesized by GeneLink. Serial 2-fold dilutions of each oligo were denatured and 5 

µl was spotted on the hybond-N+ nylon membrane (GE Healthcare) followed by UV-

crosslinked at 120,000 μJ/cm for 60 seconds. The membrane was blocked with 5% Bovine 

Serum Albumin (BSA; Fisher Scientific) in 1X PBS (pH 7.4, VWR) containing 0.05% 

Tween 20 (VWR) overnight at 4°C. After extensive washing, it was incubated at 4 °C in 

1% BSA in 1X PBS with the addition of anti-8-oxoG antibody (clone 15A3, Trevigen) 

used at 1:400 dilution. Following extensive washing, the membrane was incubated at room 

temperature for 1 hour with anti-mouse IgG H&L HRP conjugate (W4021, Promega) 

secondary antibody diluted 1:2,500 in in 1% BSA in 1X PBS. Chemiluminescent detection 
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was conducted on a ChemiDoc XRS+ imaging system (Biorad) and quantification of the 

band’s intensity with CLIQS (TotalLab).  

2.3.13 Reverse transcription truncation assay 

All the buffers were prepared fresh on the day of the assay using N2-purged 

nuclease free water to prevent artefactual oxidation. Chemical labeling of RNA was 

conducted by mixing 1 µg of total RNA extracted from BEAS-2B cells after exposure with 

100 μl of 100 mM  NaPi  buffer (pH 8.0) (Sigma Aldridge), 5 ul of  500mM BTN-NH2 

(EZ-Link Amine-PEG2-Biotin; Thermo Fisher Scientific) and 1 μl of SUPERase In RNase 

inhibitor (Thermo Fisher Scientific) following by incubation at room temperature for 10 

min. Next, 6.3 μl 100mM K2IrBr6 (Alfa Aesar) was added and allowed to react for 30 min 

at room temperature. The reaction was quenched with 4 ul of 20 mM EDTA solution at pH 

8.0 (Thermo Fisher Scientific). The RNA was purified with the RNA Clean and 

Concentrator-5 kit (Zymo Research) before reverse transcription. 

cDNA products from FDFT1-215, GAPDH and PPIB RNA were synthesized with 

SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific) using primers listed in 

Table 2.S1B. We followed the steps suggested by the manufacturer. Briefly, 2.2 µg of RNA 

was annealed with 2 µM of each primer and 10 mM dNTP mix for 5 min at 65°C, and then 

incubated on ice for at least 1 min. Then, the following components were added: 5x SSIV 

Buffer, 100 mM DTT, SuperScript IV Reverse Transcriptase and SUPERase In RNase 

inhibitor. The mixture was incubated at 55°C for 10 min and then at 80°C for 10 min to 

terminate the reaction. To remove RNA templates, the cDNA products were incubated with 

2 units of RNase H (NEB) at 37°C for 15 min.  

PCR was carried out with the pairs of primers listed in Table 2.S1B. We combined 

2 µl of cDNA product with primers (final concentration of 300 nM of each primer) and 1X 
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Power Sybr Green PCR Master Mix (Thermo Fisher Scientific) in a final reaction of 50 µl. 

The reactions started at 95°C for 10 min and cycled 40 times at 95°C for 15 s and 60°C for 

1 min. PCR products were resolved on a 3% agarose gel with DNA size markers and 

stained with ethidium bromide. Bands were detected on a ChemiDoc XRS+ imaging 

system (Biorad) and quantification of the band’s intensity with CLIQS (TotalLab). 

2.3.14 Cytotoxicity analysis 

Cell viability was measured by trypan blue exclusion assay. Before the assay, cells 

were rinsed with warmed phosphate buffer solution pH 7.4 (PBS, Thermo Fisher 

Scientific) and then trypsinized with 0.5% polyvinylpyrrolidone (Sigma-Aldrich) in 

trypsin/EDTA 0.025% solution (Lonza) for 6 minutes at 37 °C. Then, trypsin neutralizing 

solution (Lonza) was added following by centrifugation at 130 rpm for 5 min. The cell 

pellet was resuspended in 5 ml of fresh cell media. Cell viability was estimated using 0.6 

ml of cell suspension in a Vi-Cell XR viability analyzer (Beckman Coulter). 

Cellular membrane damage was measured by detection of lactase dehydrogenase 

(LDH) in the cellular medium using a colorimetric assay (LDH Cytotoxicity Detection Kit, 

Takara Bio). Absorbance of the assay was measured at 491 nm for 30 min at 25°C using a 

Cytation 3 plate reader with constant shacking (Biotek). 

2.3.15 Western blotting and cholesterol analysis 

Cells attached to the cell culture inserts were lysed by adding 200 ul of M-PER 

mammalian protein lysis buffer (Thermo Fisher Scientific) supplemented with Halt 

protease inhibitor cocktail (Thermo Fisher Scientific) with vigorous mixing by pipetting. 

The lysate was stored at -80°C until the day of analysis and protein concentrations were 

analyzed by Coomassie (Bradford) protein assay kit (Thermo Fisher Scientific). The whole 
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protein lysate was dissolved in 5% 2-mercaptoethanol sample buffer (3X buffer: 0.5M Tris-

HCl pH 6.8, 10% (w/v) SDS, 25% glycerol and 0.5% (w/v) bromophenol blue). 

Electrophoresis of 0.5 - 5 ug of protein loaded per lane was conducted in 10% 

polyacrylamide gels at 90V for 2.5 h. Protein bands in the gel were transferred to 0.2 µm 

nitrocellulose membranes (Biorad) using a Trans-Blot SD Semi-Dry Transfer Cell 

(Biorad). Then, membranes were blocked overnight in 5% skimmed milk in Tris-buffered 

saline containing 0.05% Tween 20 (VWR). Squalene synthase (FDFT1) was detected with 

Rabbit monoclonal anti-FDFT1 IgG [EPR16481] (ab195046, Abcam) used at 1:5,000 

dilution, and goat anti-rabbit IgG H&L HRP conjugate (ab6721, Abcam) was used as 

secondary antibody at 1:10,000 dilution. Immunodetection was performed with the Clarity 

Western ECL substrate (Biorad). Prior to detection of GAPDH as loading control, the 

membrane was stripped with mild stripping buffer (200 mM glycine, 0.1% (w/v) SDS and 

1% Tween 20). Then, the membrane was blocked and reblotted using mouse monoclonal 

GAPDH Antibody [6C5] (Santa Cruz Biotechnology). Polyclonal anti-mouse IgG H&L 

HRP conjugate (Promega) was used as secondary antibody. Chemiluminescent detection 

was conducted on a ChemiDoc XRS+ imaging system (Biorad) and quantification of the 

band’s intensity with CLIQS (TotalLab).  

Intracellular cholesterol was quantified in whole cellular lysates using the Amplex 

Red Cholesterol Assay kit (Thermo Fisher Scientific) according to the manufacturer 

instructions. Cholesterol was measured in two biological replicates, and each sample was 

quantified in triplicate.  

2.3.16 Confocal microscopy 

Prior to fixing of the cells, membranes were removed from the plastic insert by 

making an incision around the edge of the membrane. Each membrane was then placed 
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onto a microscope slide mounted in a petri dish with cells facing upward. Cells were fixed 

in 1 ml of 3.7% formaldehyde solution in phosphate buffer solution pH 7.4 (PBS, Thermo 

Fisher Scientific) for 15 minutes at 37°C. After fixation, the formaldehyde solution was 

discarded, and the membrane was washed three times with 1 ml of PBS pre-warmed to 

37°C. Then, 1 ml of 0.1% Triton-X-100 (Sigma-Aldrich) in PBS was placed onto the 

membrane for 4 minutes and washed with 1 ml PBS three times. The membrane was then 

pre-incubated with 1 ml of 1% bovine serum albumin (BSA) in PBS for 20 minutes, prior 

to adding the phallotoxin staining solution. To stain F-actin in the cells, 10 µl of Alexa 

Fluor 594 Phalloidin solution (Thermo Fisher Scientific) was diluted into 400 µL of PBS 

with 1% BSA solution. The staining solution was placed onto the membrane for 20 minutes 

at room temperature and protected from light to prevent photobleaching. The fluorescent 

media was aspirated and washed three times with PBS. Once each membrane was stained, 

a drop of ProLong Gold Antifade Mountant with DAPI (Thermo Fisher Scientific) was 

placed onto the membrane. A coverslip was positioned on top of the membrane, and then 

the edges of each coverslip were sealed with clear nail polish and left to dry. Specimens 

were stored in the dark at 4°C until the day of analysis. Confocal microscopy for analysis 

was performed using a Zeiss LSM 710 Confocal Microscope. Five or more images were 

acquired in random locations and captured using Zen Pro software with a 63x oil objective 

and filters for DAPI and Alexa 594.  

2.3.17 Image analysis 

The extent of F-actin area was quantified in Fiji/ImageJ by drawing the outline of 

the cell with the free hand pencil tool in at least 5 cells in 3 confocal images (63x 

magnification) selected for each biological replicate and condition. The F-actin 

organization around the nucleus and plasma membrane was quantified using Fibriltool 
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plugin in Fiji according to the described protocol (136). This analysis was conducted in 3 

confocal images (63x magnification) selected for each biological replicate and condition. 

The anisotropic score was computed on 5 or more cells per image by drawing an area of 

interest of approximately 5 µm by 10 µm.  

2.3.18 Knockdown of FDFT1 in BEAS-2B cells 

BEAS-2B cells were cultured on collagen-coated inserts as described above with a 

seeding density of 225,000 cells 24 hours before transfection. To knock FDFT1 down, we 

used a pre-designed siRNA (s138, Silencer Select, Thermo Fisher Scientific) to target 

FDFT1 main coding transcripts (si138). Additionally, a custom siRNA (si215) was 

designed to target FDFT1-215 (Transcript ID ENST00000529464.5) with anti-sense 

sequence 5’- GCCAACUCUAUGGGCCUGUUU -3’. As negative control, we used the 

scrambled siRNA Silencer Select Negative Control No.1 siRNA from Thermo Fisher 

Scientific.  

SiRNAs were transfected using Lipofectamine 3000 Reagent (Thermo Fisher 

Scientific), according to the manufacturer’s protocol. Briefly, the RNA master mix was 

prepared by diluting 37.5 pmol of the siRNA in 125 µl Opti-MEM medium (Thermo Fisher 

Scientific). Then, the Lipofectamine master mix was prepared by mixing 125 µl Opti-MEM 

medium with 3.75 µl Lipofectamine 3000 following by an incubation at room temperature 

for five minutes. To prepare the transfection complexes, the lipofectamine master mix was 

slowly added, dropwise, to the RNA master mix. The solution was then gently mixed and 

incubated at room temperature for 30 minutes. During this incubation, the basolateral 

media was refreshed, and the apical media was completely removed. Following the 

incubation, the transfection complex was added on the apical side and then 550 µl of fresh 

BEGM medium was added dropwise and gently rocked. Cells were incubated at 37ºC for 
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24 hours in a humidified 5% CO2 incubator. To establish the transfection efficiency, we 

transfected cell using BLOCK-IT fluorescent oligo (Thermo Fisher Scientific) and we 

visualized using a Zeiss Axiovert 200M Widefield Fluorescent Microscope and a FITC 

filter. RNA and protein were extracted, and formaldehyde fixation of cells was performed 

following the protocols described above.   

2.3.19 Statistical analysis 

We conducted all described measurements as either biological triplicates or 

duplicates. All data was presented as the mean ± one standard deviation. Statistical analysis 

between groups was determined by Student’s t-test in JMP (SAS) with a significance of p-

value < 0.05. 
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Chapter Three: Profiling oxidative RNA modifications reveals strong 

functional network relationships underlying formaldehyde exposure 

* Article in preparation 

3.1 INTRODUCTION 

Recent studies have highlighted the association between oxidative stress-inducing 

chemicals and diseases such as Alzheimer’s disease and cancer. While agents such as 

formaldehyde and cigarette smoke have been demonstrated to cause disease and overall, 

negatively impact human health, their mechanisms of action remain unclear. Recent 

advances in RNA-sequencing technology and of antibodies targeting RNA oxidation 

enable the isolation and identification of transcripts differentially oxidized in response to 

toxic exposures. In this study, RNA-sequencing in combination with oxidation-specific 

immunoprecipitation are used to detect differential oxidation of transcripts following direct 

exposure of 1ppm formaldehyde to human BEAS-2B lung cells using an air-liquid 

interface exposure system.  Results from this analysis suggest a functional role of the 

oxidized transcripts following formaldehyde exposure in multifunctional signaling 

pathways regulating cellular proliferation, migration, and apoptosis.  By combining direct 

cell-exposure systems, oxidized-RNA immunoprecipitation, RNA-sequencing 

technologies, and network analyses, detection of specifically oxidized molecular markers 

could be used to further characterize biological responses to external stressors and identify 

targets for drug development toward therapies for complex diseases. 

 
* In this work I am a leading author contributing to 50% of all research done in collaboration with Mark 

Sherman 
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3.2 RESULTS 

3.2.1 Minimal cellular damage at 1 ppm formaldehyde exposure 

We exposed bronchial epithelial BEAS-2B cells, in an air-liquid interface (ALI) 

system, to 1 ppm formaldehyde in biological triplicate for two hours, a realistic, high 

exposure condition for individuals working in industrial plants (144). Following exposure, 

cells were allowed to recover with fresh media for 6 hours before analysis. As seen in 

Figure 3.1, cells showed no significant differences in lactase dehydrogenase (LDH) activity 

in the cellular media, a measurement of cell cytotoxicity, relative to clean air control cells. 

This data suggests that the exposures were conducted below cytotoxic levels and that the 

detected LDH activity corresponds to minimal cellular damage expected from normal 

cellular processes.  

Cytotoxicity after similar exposure conditions in the literature have shown varied 

responses depending on the cell type, dose and exposure technique. For example, Rager et 

al., exposed human bronchial A549 cells to 1 ppm formaldehyde for 4 hours at the ALI at 

1.0 L/min and saw a 6.68 fold increase from control conditions in LDH activity (145). 

Likewise, Li et al., exposed Hs 680.Tr human tracheal fibroblast cells with media 

containing 99.6 µM (3ppm) for 4 hours after determining this concentration to induce the 

half maximum cytotoxic effect, suggesting that formaldehyde exposures are expected to 

cause some amount of cell death (146). Conversely, Gostner et al., did not detect any 

reduction in viability after 0.5 ppm formaldehyde exposure to A549 cells for 72 hours at 

the ALI, and Chen et al., reported that formaldehyde exposures of BEAS-2B cells showed 

over 90% viability over a period of 6 hours with exposure concentrations up to 15 ppm (78, 

147).   
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Because the cells had not shown signs of significant mortality, responses detected 

by RNA transcript quantification levels were considered indicative of acute cell responses 

to the formaldehyde exposures themselves and not reflective of major cellular metabolism 

patterns for necrosis and cell death.  

 

 

 

Figure 3.1 Lactate dehydrogenase (LDH) assays show no significant differences in 

cell viability between cells exposed to formaldehyde (FA) and clean air 

controls (CA).  

LDH levels were assayed immediately following two hours of exposure conditions 

followed by six hours recovery.  Clean air exposed cultures (red) and formaldehyde 

exposed cultures (blue) show no significant differences in LDH activity (p-value = 

0.65, t-test 2 tails homoscedastic). Error bars represent one standard deviation 

across the average LDH measurements for three exposure replicates. 
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3.2.2 Differential expression analysis offers a limited landscape of the functional 

relationships mediated by formaldehyde exposure 

 
 

Figure 3.2 Functional pathway analysis of BEAS-2B cells exposed to 1 ppm 

formaldehyde  

(A) and gene ontology (B) analyses based on input of 125 differentially expressed 

transcripts into Enrichr (padj< 0.05). Terms are sorted by their absolute value of –

log2padj value to account for false discovery rate.  Upregulated terms extend to the 

right and downregulated terms extend to the left. Associated terms are listed 

opposite of the axis. The number of overlapping genes with the pathway are located 

at the end of the bars and bars are color coded with the database from which they 

were generated.  

 

To explore transcriptional changes mediated by sub-lethal concentrations of 

formaldehyde, ribosomal RNA-depleted RNA for each sample was used as input RNA for 

sequencing and subsequent differential expression analysis by DESeq2. Our data revealed 
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125 and 129 transcripts that show a significant increase and a significant decrease in 

expression, respectively (padj < 0.05 Log2FC > |2|).   

The pathway analysis of BEAS-2B cells following exposure to formaldehyde 

(Figure 3.2) shows enrichment or depletion of transcripts belonging to very few pathways, 

which are mainly associated to cancer, angiogenesis and DNA processes. Among the 

identified pathways, several may act in the regulation of oxidative stress responses. For 

instance, the p73 transcription factor helps cells to cope with oxidative stress by promoting 

translation of specific mRNAs nucleolar and rRNA processing proteins (148, 149). 

Likewise, blockage of the androgen receptor pathway could induce oxidative stress 

response by increasing ROS-generating NAPDH oxidases (150) and decreasing expression 

of ROS scavengers (151). Furthermore, oxidative stress has been traditionally associated 

with DNA damage because of the incidence of ROS in formation of DNA base 

modifications, abasic sites and strand breaks (152), thus DNA repair pathways play a 

critical role in removal of the deleterious consequences of oxidative stress (153). 

The GO analysis of differentially expressed transcripts shows upregulation of 

themes including histone acetylation, transcription repression, regulation of cell motility 

and migration, polymerase transcription activity, focal adhesion, chromatin, N6-

methyladenosine (m6A) binding processes. These processes reflect potential response to 

DNA damage and changes in chromatin and gene expression patterns, previously identified 

in transcriptional analysis of formaldehyde exposure. In particular, studies indicate that 

formaldehyde disrupts histone posttranslational modifications by promoting formation of 

adducts, affecting histone acetylation, methylation, and proper chromatin assembly (78, 

154, 155). Differential expression of transcripts associated with cell adhesion, regulation 

of the cell cycle, gene expression, proliferation and differentiation seen in this study have 
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also been previously associated with exposure to formaldehyde, lending support to the 

consistency of the input dataset with other similar studies (78, 145-147, 156).  

3.2.3 8-oxoG enrichment as a major driver of variance in formaldehyde exposure 

 

Figure 3.3 RNA sequencing principal component analysis of BEAS-2B cells exposed 

to 1 ppm formaldehyde.  

PCA shows immunoprecipitation as the major driver of variance (39% of variance 

explained). There appears to be some variation amongst IP samples along PC2 

(14% of variance), but paired samples group together and downstream 

normalization of immunoprecipitated datasets to input datasets and subsequent 

relative abundance comparisons across treatments are expected to reduce the effect 

of aberrant reads resulting from the same original culture on the analysis. PCA plot 

represents all eight samples used in this study.  

 

We analyzed two biological replicates for each exposure using RNA sequencing. 

Following the data analysis pipeline described in the method section, DESeq2 was 

performed considering all eight samples sequenced, as well as pairwise comparisons (e.g., 

CAIP with CAInput, FAIP with FAInput, and FAInput with CAInput) to assess transcript 

enrichment and to expose any unintended drivers of differentiation. As seen in Figure 3.3, 
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8-oxoG immunoprecipitation is the major driver of differentiation, explaining 39% of the 

variance within the dataset. This is expected because immunoprecipitation enriches for the 

8-oxoG containing subset of the input RNA pool. Additionally, 14% of the variation is 

attributed to PC2; however, the samples appear to be paired, as would be expected since 

they originated from the same culture. Due to the downstream normalization process of 

immunoprecipitated pools relative to their input counterparts and subsequent calculation 

of relative abundance of each transcript across conditions, noise resulting from PC2 is 

likely to be greatly reduced. 

Our bioinformatic pipeline identified a total of 357 transcripts were identified as 

enriched in oxidation relative to the same transcripts in the clean air samples, passing the 

applied threshold  padj < 0.05 enrichment compared to input and a fold change (FC) 

difference between the formaldehyde and clean air treatments greater than 4. 

3.2.4 8-oxoG enrichment identifies strong network relationships in response to 

formaldehyde exposure 

To explore pre-established relationships between protein encoding transcripts 

enriched in response to formaldehyde-generated oxidative stress, we used STRING-DB to 

perform a network analysis amongst the differentially expressed and differentially oxidized 

transcripts from this study (See Figure 3.3). The resulting network assessment of 122 

transcripts for enriched transcripts (FAInput with CAInput) did not show statistically more 

interactions than expected (p-value 0.0665) due to chance as calculated by STRING (See 

Figure 3.4A). This finding suggests that differentially expressed transcripts were not 

indicative of interacting functional associations. Conversely, the network analysis for 314 

differentially oxidized transcripts showed significantly more interactions than expected 

due to chance (p-value 0.000217, see Figure 3.4B). The strong interconnectedness amongst 
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differentially oxidized transcripts suggests that functional cellular processes could be 

affected by transcript oxidation (157). 

 

 

Figure 3.4 STRING protein-protein interaction analysis of BEAS-2B cells exposed 

to 1 ppm formaldehyde.  

Differential enrichment (A) and differential oxidation (B) show high connectivity 

amongst differentially oxidized transcripts (p-value 0.0665 vs p-value 0.000217, 

respectively), potentially indicating a functional role in cellular processes following 

exposure to 1 ppm formaldehyde.  

 

3.2.5 Differentially oxidized transcripts in response to formaldehyde exposure 

indicate strong functional association with oxidative stress response 

Differential enrichment of oxidized transcripts was assessed in a similar fashion to 

the input transcript analysis; however, for candidate transcripts whose padj < 0.05, 

differences in fold change between IP enrichments relative to input RNA amongst 

formaldehyde-treated cells and clean air controls were taken into consideration when 

filtering transcripts of interest (see Figure 3.1). 357 transcripts were identified as 

differentially oxidized due to formaldehyde exposures relative to clean air controls. 120 of 
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the 256 transcripts from the differential oxidation analysis were previously identified by 

the study as differentially expressed in the input analysis, suggesting that oxidized 

transcripts isolated by immunoprecipitation have >45% overlap with transcripts 

differentially expressed. Roughly 70% of the differentially oxidized transcripts encode for 

proteins.  

A functional enrichment analysis was conducted with 339 differentially oxidized 

transcripts using Enrichr to provide context of relevant biological processes, pathways, and 

networks potentially involving the data set (Figure 3.5). The functional pathway 

assignments provide many pathways that have established associations with oxidative 

stress, suggesting that oxidation of these transcripts could play a functional role in their 

regulation. Trends indicate pathways involving chromatin, cell migration, apoptosis and 

cell signaling and cell cycle progression.  

Transcripts were assessed by GO analysis with Enrichr as described above and 

ranked by padj value (Figure 3.6). The terms identified by the differential oxidation analysis 

implicate interactions with proteins involved with chromatin, cell migration and vacuolar 

compartmentalization, negative regulation of biological processes and recovery from DNA 

damage, and a number of genes associated with the regulation of apoptotic processes, 

potentially indicative of an early marker for cell fate as has been previously proposed by 

Shan et al7. Multiple gene ontologies affected by oxidation become apparent in relatively 

few functional categories, however, the patterns do not appear to be driven by single 

transcripts, rather diverse suites of transcripts that include few shared members. The GO 

terms involved with the differential oxidation analysis coincide well with the pathway 

analysis and taken together indicate functional association with cellular processes specific 

to the role of signaling in cell cycle progression and apoptosis.   
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Figure 3.5 Functional pathway analysis based on differentially 8-oxoG-enriched 

transcripts resulting from exposure of BEAS-2B cells to formaldehyde.   
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339 enriched transcripts identified through 8-oxoG-seq (padj< 0.05) were used as 

input to the Enrichr web tool to search gene databases. Several pathways identified 

have previously been associated with oxidative stress and these oxidized transcripts 

could influence regulation of migration, cell signaling, proliferation, gene 

expression, and apoptosis. The height of each bar corresponds to the –log2padjusted 

value associated with the term listed below. Above the bar indicates the number of 

transcripts and the total number of transcripts associated with each pathway.  The 

color of the bar corresponds to the database from which the information was 

retrieved. Individual transcripts associated with each pathway are listed in 

supplemental information.
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Figure 3.6 GO associated terms of differentially oxidized transcripts resulting from 

formaldehyde exposure to BEAS-2B human lung cells.  
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339 enriched transcripts identified through 8-oxoG-seq (padj< 0.05) were used as 

input to the Enrichr web tool to search gene databases. Several pathways identified 

have previously been associated with oxidative stress and these oxidized transcripts 

could influence regulation of migration, cell signaling, proliferation, gene 

expression, and apoptosis. The height of each bar corresponds to the –log2padjusted 

value associated with the term listed below. Above the bar indicates the number of 

transcripts and the total number of transcripts associated with each pathway.  The 

color of the bar corresponds to the database from which the information was 

retrieved. Individual transcripts associated with each pathway are listed in 

supplemental information 

3.3 DISCUSSION 

Oxidative stress poses a threat to the cell that results in the generation of ROS/RNS 

and radical damage to biological molecules. Oxidative damage has been linked to the 

occurrence of complex disease such as Alzheimer’s disease, Parkinson’s disease and 

cancer, though the etiology of them remains unknown. Responses have been well 

documented with regard to the effect of oxidation on proteins, lipids, and DNA; however, 

recent work indicates that RNA may also play a part in the cellular response. The presence 

of 8-oxoG, the most abundant oxidized RNA nucleotide, on specific transcripts has been 

indicated in dysregulation of critical pathways, ribosome sequestration, degradation, 

temporal deficiencies of critical transcripts, and improper translation of protein products, 

potentially leading to reduced fitness of damaged cells and tissues (158). This study 

provides support, in agreement with others, suggesting that RNA oxidation is not a random 

occurrence, but that specific transcripts may have evolved vulnerability to oxidative stress.   



 63 

Comparing relative levels of 8-oxoG-containing transcripts isolated by 

immunoprecipitation to input RNA transcripts allows the identification of differentially 

oxidized genes in BEAS-2B cells coinciding with exposure to oxidative stress induced by 

formaldehyde. The differential oxidation analysis in this study identifies transcripts with 

functional association to cell cycle progressions, apoptosis, cell-cell signaling, migration, 

and chromatin modifications. These associations provide sound rationale and a list of 

candidate pathways, proteins, and transcripts for overexpression/knockdown/knockout 

studies and in vitro assays comparing oxidative states of RNA transcripts to determine their 

physiological role among these pathways. The functional analysis of differential 

expression data indicates changes in gene expression associated with histone acetylation, 

cancer, and cell motility due to formaldehyde exposure. These associations are supported 

by previous transcriptomic analyses of low-level formaldehyde exposures (0.1-2ppm) 

showing alterations in microtubule-related processes (159), cell differentiation, metabolic 

processes, and changes in transcription factor activity (147).  To the best of our knowledge, 

this is the first study to indicate RNA oxidations as components in the functional regulation 

of pathways in response to oxidative stress. 

The use of 8-oxoG-seq in combination with air-liquid interface exposure systems, 

such as the lung cell exposure system in this study, could enable the characterization of 

oxidized RNA species from specific cell types and their reaction to toxins. Since each cell 

type has a different repertoire of transcripts and epigenetic marks being produced, disparate 

cell types may have alternative mechanisms to deal with oxidative stress, as pathways 

selectively damaged in response to oxidative stress in one type may not be reflected in 

another cell type.  These changes in gene expression profiles could make one cell type 

more or less vulnerable to damage, affecting regulatory mechanisms and leading to 

dysregulation of the cell cycle, cell potentiation, migration, etc. ALI exposures in 
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combination with 8-oxoG-seq may provide a means to study mechanistic differences and 

pathway interactions between exposure conditions, as the technique can be easily modified 

to study exposures to different toxins, concentrations, or durations of exposure.  While this 

study focuses on differential enrichment of 8-oxoG under oxidative stress, still remains the 

question of the functional implications of basal level oxidation, transcripts apparently 

devoid of oxidation, and the interplay of the over 150 other known RNA modifications that 

occur in vivo.  

While much of the research in oxidative stress has focused on proteins, lipids, and 

DNA, recent work suggests that RNA may play a role in the cellular response to oxidative 

stress. RNA transcripts are generated as single strand polymers consisting of four basic 

nucleotide monomers, their sequence thought to orchestrate their role within the cellular 

environment. Due to this relatively restrictive pallet of monomers, it might be expected 

that RNA transcripts have predictable vulnerability to oxidative stress based on their 

nucleotide content and length, regardless of their template gene or protein product. An 

additional factor that could contribute to oxidation is transcript association with metals, 

driven by radicals produced by the Fenton reaction. Based on these basic parameters, 

enriched RNA damage would be expected on longer transcripts, transcripts with higher 

relative guanine content, and transcripts associated with metals. Likewise, the debilitating 

implications of random and widespread RNA damage from oxidative stress, driven mostly 

by guanine residues, would impose a negative selective force for guanine incorporation. 

The evolutionary response to this artifact could be somewhat mitigated in mRNA by codon 

redundancy to codons minimized in guanine composition.   

Previous studies indicate that RNA oxidation is not strongly correlated with 

guanine content, length, metal association, nor tertiary structure, suggesting that there may 

be underlying, functional mechanisms for maintenance of differential oxidation within the 
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cell (121).  This claim is supported by this study and others finding that certain transcripts 

maintain a basal level of oxidation, even when no oxidative stress is imposed (104, 110).  

Furthermore, additional suites of enriched transcripts are generated under oxidative stress, 

potentially indicating RNA oxidation as a responsive element to the presence of ROS/RNS. 

It is important to note that 8-oxoG is only one of over 150 documented RNA modifications, 

each likely possessing different redox potentials for damage and potentially playing roles 

in other processes.   

The functional impact of higher oxidation reactivity of RNA relative to DNA has 

caused some to speculate that RNA may have evolved this capacity to act as a type of 

oxidative shield, buffering the onslaught of radicals to protect the more permanent, 

heritable effects of DNA oxidation (160).While this may be one evolutionary benefit to 

RNA oxidation, our functional enrichment analysis suggests that the oxidation of specific 

transcripts may play a more strategic role in the response to oxidative stress, involving 

transcripts associated with pathways regulating cell proliferation, motility, cell signaling, 

and apoptosis.  The critical role of these pathways could implicate oxidation of RNA 

transcripts as a contributing factor to the decision of cellular fate or, conversely, to the 

disruption of the redox state of the cell leading to cellular dysfunction and disease. 
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3.4 METHODS 

 
 

Figure 3.7. Schematic 8-oxoG-seq experimental workflow of formaldehyde exposed 

BEAS-2B cells.  



 67 

After exposure, basolateral medium was removed and assessed for cell viability via 

LDH analysis. Total RNA was extracted and ribosomal RNA (rRNA) was 

selectively depleted to yield a pool of enriched whole transcriptome RNA. A 

fraction of this pool was mixed with an anti-8-oxo-7,8-dihydroguanosine (8-oxoG) 

antibody followed by protein A magnetic beads. The antibody bound RNA was 

recovered by competitive elution with excess of free 8-oxoG nucleotides. Both 

pools, the transcriptome pool and the 8-oxoG transcript pool, were submitted for 

Illumina RNA sequencing and assessed bioinformatically as described in the text.
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3.4.1 Culture of BEAS-2B Cells 

Normal human lung cell cultures of BEAS-2B (ATCC CRL-9609) were initiated 

from cryopreserved cells in pre-coated T-75 culture flasks following the instructions from 

American Type Culture Collection (Manassas, VA). Cells were cultured in 23 ml of 

complete Bronchial Epithelial Cell Growth medium (BEGM, Lonza, Walkersville, MD) 

with a seeding density of 225,000 cells at 37°C under an atmosphere containing 5% CO2 

in a humidified incubator. Cells were incubated for 4 days until reaching 70% - 80% 

confluence with medium renewal 48h after seeding. Cell counting was conducted using 0.6 

ml of cell suspension in a Vi-Cell XR viability analyzer (Beckman Coulter, Brea, CA). 

Cells were then passaged to collagen-coated inserts (30 mm diameter, hydrophilic PTFE 

with pore size of 0.4 µm, EMD Millipore, Burlington, MA) housed in 6-well plates 

(Corning Costar Clear Multiple Well Plates, Corning, NY) with a seeding density of 

200,000 cells and incubated for 24h with 0.8 ml and 1.1 ml of medium in the apical and 

basolateral side, respectively. Cell culture inserts were coated with 1 ml of 57 µg/ml of 

Bovine Collagen Type I (Advanced BioMatrix, Carlsbad, CA) in BEGM 24h before 

seeding. Two hours before exposure, the medium from the apical cell surface was 

completely removed, and the medium from the basolateral cell surface was renewed with 

fresh complete medium.  

3.4.2 Air-liquid interface (ALI) exposures of BEAS-2B cells 

Two polycarbonate modular cell exposure chambers (MIC-101 Billups-

Rothenberg, San Diego, CA) were prepared to house treatment and control samples for 

exposure experiments. Prior to each exposure, the chambers were flushed with 0.15 – 0.35 

%v O3 for 15-20 minutes at ambient temperature and humidity at a flow rate of 2 L/min to 
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reduce contamination by plasticizer residues, left overnight, and flushed with clean air for 

20 min to displace residual O3. Probes (HMP60, Vaisala, Finland) were used to monitor 

the relative humidity and temperature downstream from each chamber.  

Formaldehyde gas was generated via thermal decomposition of paraformaldehyde 

powder (Alfa Aesar, 97%). Paraformaldehyde powder was measured using an analytical 

balance (ALF 64, Fisher Scientific) to reach an approximate gas concentration of 1 ppm. 

Paraformaldehyde was placed inside the head plug of a 316 stainless steel Swagelok tee, 

wrapped in heating tape (Omega Engineering, HTWC101-010) and injected at > 40% 

output with a  flow rate of 2 L/min with ultra-high purity (UHP) N2 through the shoulders 

of the tee into an environmental chamber (see Figure 3.8). A 360o bend in tubing was 

immediately downstream of the injection tee to obstruct stray particles. Clean air was 

generated using an Advanced Apparatus Development Company (AADCO) intruments’ 

high purity air generator.  Formaldehyde was mixed with humidified clean air inside the 

environmental chamber to reach the targeted gas-phase concentrations. A mix of 0.08 

L/min CO2 and 1.52 L/min formaldehyde-containing air was pumped through the 

formaldehyde environmental reaction chamber. In parallel, a mix of 0.08 L/min CO2 and 

1.52 L/min humidified clean air was pumped through the clean air exposure chamber. Gas 

phase compounds (formaldehyde, methanol, ethanol, acetaldehyde, formic acid, glycolic 

acid, lactic acid) were monitored throughout the experiment by chemical ionization mass 

spectrometry (CIMS, Aerodyne, Billerica, MA). 
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Figure 3.8. Formaldehyde injection and exposure system.  

Clean air was generated with an high air purity generator (AADCO instruments) 

and channeled either into the clean air exposure chamber or injected with 

formaldehyde generated by thermal decomposition of paraformaldehyde powder 

into the environmental reaction chamber, then pulled into the formaldehyde 

exposure chamber at 2 LPM.  BEAS-2B cell cultures were either exposed to the 

formaldehyde-air mix or clean air for two hours at 37˚C and recovered for 6 hours 

in fresh media at 37˚C before processing. 

 

Cells were placed in the chamber, sealed, and exposed to either formaldehyde air 

(FA) or clean air (CA) pulled from the environmental chamber for two hours.  Media was 

then replaced, and cells were allowed to recover for 6 hours at 37˚C in a humidified 

incubator under an atmosphere containing 5% CO2 until RNA was extracted. 

3.4.3 Cytotoxicity assay 

After six hours of recovery from exposure in fresh BGEM media, the basolateral 

medium for each well was collected and frozen at -80°C until the day of analysis. Cellular 
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membrane damage was measured by detection of lactase dehydrogenase (LDH) in the 

cellular medium using a colorimetric assay (LDH Cytotoxicity Detection Kit, Takara Bio, 

Japan). LDH is an enzyme released into media after plasma membrane damage and is 

proposed to increase proportionally to the number of dead cells (161). Absorbance of the 

assay was measured at 491nm for 30 min at 25°C using a Cytation 3 plate reader (Biotek, 

Winooski, VT). 

3.44 RNA preparation 

Following exposure, the apical side of each membrane was treated with 1 ml of 

TRIzol (Invitrogen, Carlsbad, CA) and gently mixed to ensure thorough lysis of cell 

culture. Lysate was collected and frozen until the day of the extraction. TRIzol RNA 

extraction was conducted following TRIzol’s manufacturer instructions with freshly 

prepared ethanol (200 Proof, OmniPur, EMD Millipore, Burlington, MA), isopropanol 

(molecular biology grade, IBI Scientific, Dubuque, IA) and nuclease-free water (Ambion, 

Austin, TX) purged of oxygen with ultra-high purity N2. Briefly, TRIzol aliquots were 

thawed on ice and 1 ml of chloroform (HPLC grade, J.T.Baker, Phillipsburg, NJ) was 

added to induce phase separation. Soluble RNA in the aqueous phase was precipitated in 

0.5 ml isopropanol overnight at -20°C with glycogen (GlycoBlue, Thermo Fisher 

Scientific, Waltham, MA) as a carrier. Following precipitation, the pellet was washed twice 

with 1ml 95% ethanol and air-dried. The purified RNA was incubated with DNAse I (New 

England Biolabs, Ipswich, MA) following the manufacturer’s protocol. RNA was then re-

extracted with 200 µl of 25:24:1 mixture of phenol/chloroform/isoamyl alcohol (Fisher 

BioReagents, Hampton, NH) followed by a chloroform extraction and an isopropanol 

precipitation as described above. After DNase I treatment of RNA, ribosomal RNA (rRNA) 

was depleted using Ribo-Zero Gold rRNA Removal Kit (Illumina, San Diego, CA) as 
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described by the manufacturer’s protocol to produce the formaldehyde air and clean air 

input RNA samples (FAInput and CAInput). Depletion of rRNA was validated by Agilent 

2100 Bioanalyzer (Agilent, Santa Clara, CA) and all samples surpassed a RNA Integrity 

Number (RIN) threshold of 7.0. 

Immunoprecipitations of 8-oxoG-containing RNA transcripts were performed in 

biological duplicates for CA and FA conditions. All buffers were prepared fresh from 

concentrated stocks on the day of pulldown experiments and purged of O2 as described 

above. A portion of the input RNA was incubated with 12.5 µg of 8-oxo-7,8-

dihydrodeoxyguanosine (8-oxo-dG) monoclonal antibody (0.5 mg/ml, Clone 2E2, 

Trevigen, Gaithersburg, MD) in IP buffer (10 mM Tris pH 7.4, 150 mM NaCl, 0.1% 

IGEPAL, and 200 units/ml SUPERaseIn RNA inhibitor [Invitrogen, Carlsbad, CA]) in a 1 

ml reaction volume for 2h at 4°C with rotation.  The 8-oxo-dG antibody binds specifically 

to 8-oxoG-containing transcripts directly without mediation through a RNA-binding 

protein. SureBeads Protein A magnetic beads (Biorad, Hercules, CA) were washed 

according to manufacturer’s protocol and blocked in IP buffer supplemented with 0.5 

mg/ml bovine serum albumen (BSA) for two hours at room temperature. After washing 

beads twice in IP buffer, the beads were resuspended in IP buffer, mixed with the RNA-

antibody reaction and incubated for 2h at 4°C with rotation. Next, the beads were washed 

three more times in IP buffer before two competitive elutions were performed with free 8-

oxo-dG nucleosides (Cayman Chemical, Ann Arbor, MI). Each elution consisted of 

incubation of the beads with 108 µg of 8-oxo-dG in IP buffer for 1h at 4°C with rotation. 

The elution volume was then cleaned up using the RNA Clean and Concentrator-5 kit 

(Zymo Research, Irvine, CA) to produce Clean Air immunoprecipitated oxidized RNA 

(CAIP) and Formaldehyde Air immunoprecipitated oxidized RNA (FAIP).    
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3.4.5 RNA sequencing 

Libraries for CAInput, FAInput, CAIP, and FAIP were prepared using the NEBNext 

Small RNA kit (NEB, Ipswich, MA) by the Genomic Sequencing and Analysis Facility 

(GSAF) at the University of Texas at Austin. Sequencing was performed on an Illumina 

HiSeq 4000 to yield 75bp reads with an average read depth of 31M reads for pull-downs 

and 56M reads for total RNA samples. 

3.4.6 Data analysis 

Raw sequencing data was acquired from the GSAF and visually assessed with 

FastQC (https://www.bioinformatics.babraham.ac.uk/index.html) for run quality.  Runs 

were processed with Cutadapt to remove primer and adaptor sequences(162). After 

trimming, reads were re-assessed with FastQC for read quality and the removal of 

repetitive sequences was confirmed.  Trimmed reads were then aligned with Spliced 

Transcripts Alignment to a Reference (STAR) aligner (163). STAR was chosen over other 

mapping programs such as Tophat2, HISAT, bwa, and bowtie for its ability to identify 

novel transcript isoforms via a two-pass mapping approach.  Following construction of a 

STAR genome file, the first pass compares transcript splice junctions found in the dataset 

to existing junction annotations to construct a database inclusive of novel splice junctions.  

The second pass utilizes the combined splice junction database to accurately assign reads 

to transcript isoforms. With this approach, novel splice variants could be included and 

identified for further investigation. 

A STAR genome index was constructed utilizing the ENSEBL GRCh38.p12 

primary genome assembly (ftp://ftp.ensembl.org/pub/release-

94/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz) 

with the corresponding annotations (ftp://ftp.ensembl.org/pub/release-

https://www.bioinformatics.babraham.ac.uk/index.html)
ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz)
ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz)
ftp://ftp.ensembl.org/pub/release-94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.gtf.gz)
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94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.gtf.gz). The genome index was used as a 

reference for first pass mapping of the trimmed reads to identify and annotate novel splice 

junctions. The novel splice junction database was then used in conjunction with the genome 

index for second pass mapping of trimmed reads to create an 

Aligned.to.Transcriptome.bam output file.  Read alignments were visually inspected for 

proper alignment of transcripts to annotated genes by Integrative Genomics Viewer (164) 

and the number of reads collected for each splice variant was calculated using RSEM (165). 

RSEM was chosen for read counting because it uses the SAM/BAM 

Aligned.toTranscriptome output file from the STAR aligner as input to account for novel 

isoforms generated during the two-pass mapping approach. The RSEM reference file was 

prepared using ENSEBL GRCh38.p12 and its corresponding annotation described above 

to calculate expression of each splice variant from the STAR output bam file.  

3.4.7 Annotation and Functional Analysis 

The tximport package was used to import the RSEM results file into R, allowing 

assessment of each transcript generated by STAR. Statistical analysis of differential 

expression and 8-oxoG enrichment was performed with DESeq2 in R version 3.5 using 

modified steps in the DESeq2 manual and help page. DESeq2 utilizes the transcript 

abundance across different conditions to calculate the statistical significance of transcript 

expression level changes. FAInput and CAInput were compared for standard differential 

expression analysis for changes in transcript levels in response to formaldehyde exposure.  

Comparisons of Log2(fold change) values between FAIP and FAInput (referred to as 

FAlog2FC) as well as CAIP and CAInput (referred to as CAlog2FC) were calculated to identify 

transcripts that may be differentially oxidized relative to their input RNA. By normalizing 

each oxidized transcript isolated by immunoprecipitation relative to the expression of its 

ftp://ftp.ensembl.org/pub/release-94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.gtf.gz)


 75 

corresponding transcript abundance in the input pool, relative enrichment for individual 

transcript oxidation can be calculated(166). The use of biological replicates helps to reduce 

noise due to nonspecific binding of antibodies to transcripts and minimize bias within 

sequencing reactions. The use of proportional enrichment of transcripts in formaldehyde 

exposures relative to clean air controls help to discriminate formaldehyde-induced 

oxidations from background oxidations. For this reason, a comparison between CAIP and 

FAIP was not performed because IP requires input RNA as a frame of reference for 

enrichment of particular transcripts relative to expression of the transcript in the input RNA 

pool.   

Transcripts were identified as differentially expressed (comparing FAInput and 

CAInput) if their padj < 0.05 and their log2FC > |2|. DESeq2’s padj was used for determining 

statistical significance because it utilizes the Benjamini-Hochberg method to control for 

type I error due to multiple comparisons. A padj cutoff of less than 0.05 and a fold change 

greater than 4 was chosen so that only relevant genes were included the downstream 

functional network analyses.   

To identify differentially oxidized transcripts resulting from oxidative stress 

generated by the formaldehyde exposure, candidate transcripts (padj<0.05) resulting from 

the DESeq2 analysis between immunoprecipitated and input RNA pools were filtered for 

further analysis. Differences in log2 fold changes between these transcripts in the 

formaldehyde treatment and their corresponding transcripts in the clean air condition were 

calculated by subtracting the DESeq2-generated fold change value of clean air controls 

from that of formaldehyde exposed samples for each transcript (∆log2FC = FAlog2FC - 

CAlog2FC), similar to that performed by Soetanto et al (167). Log2FC values of 0.00 were 

raised to 0.01 to enable log calculations without impacting count data. The log2FC 

difference of FAlog2FC and CAlog2FC were then compared to calculate relative magnitude of 
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oxidation for each transcript between clean air and formaldehyde air exposures. Transcripts 

with ∆log2FC values above 2 (fold change above 4) were identified as transcripts 

differentially oxidized due to formaldehyde exposure and were used for further functional 

analyses. Raw counts from RSEM were visually inspected to ensure that the major drivers 

of differentiation were not due to noise from variation in low transcript counts (minimum 

estimated counts above 0 were 22.99 and 16.32 for differential expression and oxidation 

enrichment analyses, respectively). Protein name information for each transcript was 

retrieved using the BiomaRt R package with the ENSEMBL market database setting(168). 

Enriched transcripts for differential expression and differential oxidation comparisons 

were used for downstream analyses of protein interactions, cellular/biological gene 

ontology, and functional pathways. 

It has been proposed that strong clustering of network associations can infer 

functional relationships amongst proteins and that and groups of strongly interacting genes 

can be indicative of ongoing cellular processes (157).  To elucidate potential functional 

interactions among transcripts identified by the differential expression and differential 

oxidation analyses, STRING-DB was used to identify known interactions amongst 

transcripts identified by the ∆log2FC filtering steps outlined above (169).  For proteins 

involved in network relationships, annotations were extracted, and a weighted table of 

nodes was constructed and used as input to generate a word cloud based on the frequency 

of terms to visualize potential biological insights on the network functions.  The Enrichr 

web tool was used to assess association with potential functional roles of transcripts in 

response to formaldehyde exposure (143). Databases with relevant information for gene 

ontology (GO Biological Processes 2018, GO Molecular Function 2018, GO Cellular 

Component) and molecular pathways (KEGG, WikiPathways 2016 and PANTHER) were 

compiled and filtered for statistical significance of association with the genes assessed (padj 
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< 0.05).  The pathways and GO terms identified were further investigated through literature 

review for relatedness and experimental relevance. 
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Chapter Four: A high-throughput and rapid computational method for 

screening of RNA post-transcriptional modifications that can be 

recognized by target proteins 

†This work was published in (Orr, Gonzalez-Rivera et al. 2018) 

4.1 INTRODUCTION 

There are over 150 currently known, highly diverse chemically modified RNAs, 

which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is 

known about the wealth of such interactions. This can be attributed to the lack of tools that 

allow the rapid study of all the potential RNA modifications that might mediate RNA-

protein interactions. As a promising step toward this direction, we present a computational 

protocol for the characterization of interactions between proteins and RNA containing post-

transcriptional modifications. Given an RNA-protein complex structure, potential RNA 

modified ribonucleoside positions, and molecular mechanics parameters for capturing 

energetics of RNA modifications, our protocol operates in two stages. In the first stage, a 

decision-making tool, comprising short simulations and interaction energy calculations, 

performs a fast and efficient search in a high-throughput fashion, through a list of different 

types of RNA modifications categorized into trees according to their structural and 

physicochemical properties, and selects a subset of RNA modifications prone to interact 

with the target protein. In the second stage, RNA modifications that are selected as 

recognized by the protein are examined in-detail using all-atom simulations and free energy 

calculations. We implement and experimentally validate this protocol in a test case 

involving the study of RNA modifications in complex with Escherichia coli (E. coli) 

 
† In this work I am a leading author contributing to 50% of all research done in collaboration with Asuka A. 

Orr. 
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protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction 

between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further 

advancement of the protocol can broaden our understanding of protein interactions with all 

known RNA modifications in several systems. 

4.2 RESULTS 

4.2.1 Overview of the protocol 

We present a protocol for characterizing RNA modifications that enhance the 

intrinsic interaction between RNA with proteins, leading to high-affinity RNA-protein 

systems. An overview of the protocol is shown in Figure 4.1. In summary, given a set of 

force field parameters for RNA modifications (either readily available (170) or generated 

using CGenFF (171)) and a starting structure (which can be derived experimentally, 

through homology modeling, or through structure prediction and docking tools), the 

protocol uses a fast and efficient screening tool in a high-throughput fashion to predict 

RNA modifications prone to have energetically favorable interactions with a protein. The 

screening stage operates through short MD simulations and energy calculations searching 

through trees of RNA modifications increasing in complexity from the canonical nucleic 

acids guanosine, adenosine, cytidine, or uridine. The categorization of chemical 

modifications into branches aims at prohibiting the further search of modifications that 

stem from energetically unfavorable interactions, simplifying the search and increasing the 

efficiency of the tool. Selected RNA modifications are further investigated using triplicate 

all-atom MD simulations and later evaluated and rated using association free energy 

calculations to produce a set of RNA modifications expected to favor the interaction 

between an RNA strand and a given protein. The simulations also produce an ensemble of 

3D structures of the RNA modifications in complex with the protein of interest. 
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Figure 4.1. Overview of the protocol for the characterization of modified RNA-

protein interactions.  

 

 

 



 81 

After a set of force-field parameters for RNA modifications has been selected and 

a starting structure has been built, the protocol uses a fast and efficient screening to 

predict RNA modifications prone to interact favorably with a protein using short 

MD simulations and energy calculations. Interacting RNA-protein complexes 

containing the selected RNA modifications are investigated further using all-atom 

MD simulations and later evaluated and rated using association free energy 

calculations. The protocol also yields an ensemble of atomic 3D structures of the 

RNA modifications in complex with the protein of interest.
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4.2.2 Methods 

4.2.2.1 Molecular mechanics force field parametrization 

A central aspect of this work is the incorporation of force field parametrization to 

describe the energetics underlying interactions of proteins and cognate RNA modifications. 

Most classical force fields rely on bonded potential energy terms associated with 

deformation of bond and angle geometry (stretching/compression of bonds, bending of 

angles), terms associated with the rotation about certain dihedral angles (torsions), and 

nonbonded terms, describing the electrostatic interactions and terms describing the 

dispersion interactions and repulsion when atoms overlap (van der Waals forces). In more 

complex force fields additional terms are used to account for atomic polarizability and 

complex coupling terms such as cross-coupling between bonds and angle. Force fields are 

empirically parametrized on a certain set of properties, and their usefulness relies on their 

capacity to accurately reproduce or predict quantities of measurable test data not used in 

the parametrization (172). 

4.2.2.1.1 Molecular mechanics force field parameters for proteins and RNAs 

Several force fields are available for simulating biological macromolecules (173) 

including CHARMM (174), AMBER (175), GROningen MOlecular Simulation 

(GROMOS) (176), and Optimized Potential for Liquid Simulations (OPLS) (177). The 

four force fields have undergone continuous development as parametrization methodology 

and experimental techniques advance and reproduce many protein characteristics 

satisfyingly well (173, 178). AMBER (175, 179, 180) and CHARMM (170, 174, 181) have 

incorporated nucleic acid parametrizations and are commonly used for nucleic acid-protein 

interaction simulations (182). GROMOS (183) and OPLS (184) have also expanded to 
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include parameters for nucleic acids in addition to amino acids (182). In the protocol 

described in this study, we use the CHARMM36 all-atom force field to represent protein 

residues and ribonucleosides. 

4.2.2.1.2 Molecular mechanics force field parameters for proteins and RNAs 

Recently, the parameters for 112 naturally occurring RNA modifications 

compatible with the CHARMM36 all-atom additive force field were developed and made 

publicly available (170). Alternatively, programs compatible with the CHARMM force 

field such as MATCH (182), SwissParam (185), and CGenFF (171) could allow for the 

investigation of RNA modifications beyond those with readily available parametrizations. 

With the release of the CHARMM topologies for RNA modifications, the capabilities of 

CGenFF (171) were improved allowing higher precision parametrization of RNA 

modifications. In this study, we use CGenFF (171) to parametrize 8-oxoG, 8-oxo-7,8-

dihydro-2′-deoxyadenosine (8-oxodA), 5-hydroxy-2′-deoxycytidine (5OHdC), and 5-

hydroxy-2′-deoxyuridine (5OHdU) unavailable in the CHARMM topology files. The 

structures of these modifications are built using MarvinSketch. RNA modifications are 

capped with backbone atoms of the adjacent RNA ribonucleosides before submission to 

the CGenFF (171) program following the standard methodology to covalently bond the 

CHARMM biomolecular force field with CGenFF to represent non-canonical amino acids. 

We obtain low penalties in the CGenFF output files for all newly parametrized modified 

ribonucleosides indicating fair and valid parametrization, (in the case of CGenFF, a 

“param” or “charge” penalty greater than 50 indicates that the parameters or charges for 

the modification needs additional tuning, which may involve optimization of the bonded 

parameters through the Isfitpar program (186). 
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4.2.2.2 Preparation of a starting RNA-protein complex initial coordinates 

The initial coordinates for an RNA-protein complex can be obtained from (1) 

structures derived experimentally by X-ray or NMR crystallography, (2) structures built 

through homology modeling, or (3) structures built using first-principles or ab initio 

structure prediction techniques. In the test case of the native RNA-PNPase structure, we 

construct a hybrid model combining experimentally derived structures and homology 

modeling, using X-ray resolved structures (PDB ID: 3GCM (187) and PDB ID: 4AM3 

(188)) as inputs and short MD simulations to refine the structure to create the starting 

template for this study. 

4.2.2.2.1 Initial structures from experimentally derived crystal structures 

The public availability of experimentally resolved protein structures greatly 

facilitates computational studies of biological systems. If the structure has been 

experimentally resolved, the initial coordinates of the RNA-protein complex of interest can 

be obtained from the Protein Data Bank (PDB) (189). X-ray and solution NMR derived 

structures constitute 77% and 5% of these structures respectively. 

4.2.2.2.2 Initial structures built through homology modeling 

In the case where a given RNA-protein complex is unavailable, but a homologous 

structure has been resolved, homology modeling can be introduced to build the complex of 

interest. Mutations to the homologous RNA-protein complex can be introduced using 

programs such as SCWRL4 (190), pacoPacker (191), and CIS-RR (192) to match the 

sequence of a specific RNA-protein structure. However additional refinement through 

constrained energy minimizations and MD simulations is recommended (193, 194). 

4.2.2.2.3 Initial structures built through structure prediction servers or docking programs 
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If the RNA-protein complex of interest has not been experimentally resolved and 

there is also no homologous RNA-protein complex structure, a combination of structure 

prediction and docking tools can be used to model the initial structure. The initial 

independent structures of a protein or RNA can be obtained from existing experimentally 

resolved structures or can be modeled using a variety of structure prediction servers. For 

example, I-TASSER (195), ROSETTA (196), or MD-based methods can be introduced to 

model portions of proteins or entire protein structures, while RNAstructure (197), Vfold 

(198), and SimRNA (199) (among other RNA structure predicting tools) can be introduced 

to build the initial structure of single RNA ribonucleosides or short RNA strands. Finally, 

molecular docking and RNA docking programs such as NPDock (200), 3dPRC (201), 

PRIME (202), or HDOCK (203) can be used to predict the energetically favorable binding 

conformations of an RNA in complex with a protein. Physicochemical information about 

RNAs have also been incorporated into computer programs for protein-protein docking to 

allow for RNA-protein docking with improved prediction accuracy (204). 

To select the RNA-protein docked conformation, an analogous procedure to 

peptide-protein or protein-protein molecular recognition studies (205, 206) can be 

performed, at which the binding conformation space is nearly exhaustively searched, and 

then MD simulations are performed starting from a subset of energetically favorable 

binding modes to investigate and elucidate the most energetically favorable configuration. 

Upon construction of the modeled system, additional refinement through constrained 

energy minimizations and short MD simulations (194, 207, 208) may be beneficial. 

4.2.2.2.4 Case study-homology modeling of RNA-E. coli PNPase complex 

We apply homology modeling to generate the bound structure of E. coli PNPase 

from the structure of C. crescentus PNPase bound to an RNA strand (PDB ID: 4AM3 
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(188)). The RNA-PNPase complex (homotrimer of residues 27–196, 325–453, 480–617) 

is modeled using the X-ray structure of E. coli PNPase in complex with an RNA fragment 

(PDB ID: 3GCM (187)) as the primary basis. Residues beyond 24 Å of the nearest RNA 

ribonucleoside are excluded from further investigation for computational efficiency 

purposes in subsequent MD simulations. Charged residues that are just outside of the 24 Å 

cutoff or adjacent to any of the residues included in the modeling are also included in the 

simulated system. Residues 480–617 are modeled using the X-ray structure of C. 

crescentus PNPase in complex with a 9-nucleoside RNA strand, as these residues are not 

resolved in Ref. (187). Appropriate mutations are made to the modeled region using 

SCWRL4 (190) to match the sequence of E. coli PNPase. Due to the high degree of 

similarity of these homologous proteins, 72% homology according to the Needleman-

Wunsch algorithm (209, 210), we avoid biasing the structure towards the unbound 

conformation of PNPase or biasing the structure with protein structure prediction software. 

Analogously to Ref. (194) we allow our simulations to refine the complex structure. Guided 

by the binding of RNA to C. crescentus PNPase and using structural superposition using 

MatchMaker (211) in UCSF Chimera (212), we model the binding of the RNA strand of 9 

ribonucleosides with sequence 5′-AAAGCUCGU-3′. Importantly, the simulation system is 

sufficiently large to encapsulate all E. coli PNPase residues that are determined to be key 

to either RNA binding or enzyme activity according to past mutagenesis studies (213, 214). 

Truncated ends of the PNPase protein are acetylated and amidated to avoid the introduction 

of artificial positive and negative charges to the system, respectively as in Refs. (215, 216). 

To refine the modeled system, we impose energy minimizations and a short MD simulation 

with constraints on the backbone protein and RNA atoms, analogously to Ref. (194), as 

described below. 
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To alleviate any steric clashes in the complex structure, 400 steps of steepest 

descent, 400 steps of Adopted Basis Newton-Raphson, and 400 steps of steepest descent 

energy minimizations are sequentially applied to the modeled system. The backbone 

protein and RNA atoms are constrained under 2.0 kcal/(mol Å2) harmonic constraints and 

all other heavy atoms constrained under 1.0 kcal/(mol Å2) harmonic constraints. The 

complex is then solvated in a 129 Å cubic explicit-water box with a potassium chloride 

concentration of 0.15 M (217, 218). Additional potassium ions are introduced to neutralize 

the charge of the system. In this stage, an additional 400 steps of steepest descent, 400 steps 

of Adopted Basis Newton-Raphson, and 400 steps of steepest descent energy 

minimizations with all protein and RNA backbone atoms constrained with 

1.0 kcal/(mol·Å2) harmonic constraints and all remaining heavy atoms constrained under 

0.1 kcal/(mol Å2) harmonic constraints. The system is equilibrated for 1 ns under the same 

constraints. Subsequently, all constraints are released and PNPase residues outside of 20 Å 

from any atom of the initial RNA fragment are subjected to 1.0 kcal/(mol Å2) and 

0.1 kcal/(mol Å2) for backbone and heavy side chain atoms respectively; the system is then 

simulated for an additional 5 ns. For the purpose of structure refinement, shorter MD 

simulations are preferred over longer simulations in line with Refs. (208, 219). We observe 

structural convergence, monitored through RMSD at approximately 3 ns. We extract the 

complex structure after the final 5 ns and use it as the initial template for the RNA-E. coli 

PNPase complexes investigated in this study. The modeled system is shown in Figure 4.2A. 
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Figure 4.2. Molecular graphics image of the modeled system.  

Panel A: The entire modeled RNA-E. coli PNPase complex. PNPase residues are 

shown in transparent black, blue, and red cartoon representation. The RNA strand 

is shown in licorice representation. Panel B and C: Interactions between E. coli 

PNPase residues and positions 4 and 8 of the native RNA strand, respectively. 

PNPase residues are shown in black, blue, and red transparent cartoon 

representation. The RNA strand is shown in licorice representation. PNPase 

residues that strongly interact with the positions 4 and 8 of the native RNA strand 

are shown in thin licorice representation and are labeled in black.  
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4.2.2.3 Fast and efficient screening of RNA modifications 

To systematically investigate RNA modifications that are prone to interact 

energetically favorably with a protein in a high-throughput fashion, we developed a fast 

and efficient screening tool. The screening tool investigates target RNA modifications (in 

this case 46 RNA modifications) organized into 4 separate “trees”. As shown in Figure 4.3, 

each tree starts from a seed comprising a canonical ribonucleoside and goes upwards in 

complexity forming branches of distinct modifications. The RNA modifications are 

categorized based on their structural and physicochemical properties such that modified 

ribonucleosides within a branch all share similar properties. Promising RNA modifications 

are stored for further investigation while unfavorable modifications and their propagations 

are discarded. An overview of the protocol for the characterization of modified RNA-

protein interactions is presented in Figure 4.4. 
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Figure 4.3. Organization of RNA modifications into trees and branches.  

Panels A, B, C, and D show the trees of guanosine, cytidine, adenosine, and uridine, 

respectively. 
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Figure 4.4. Overview of the protocol for the characterization of modified RNA-

protein interactions. 

4.2.2.3.1 Inputs to the fast and efficient screening tool 
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The fast and efficient screening tool requires as inputs (1) the library of RNA 

modifications under investigation, (2) the RNA ribonucleoside position(s) under 

modification, (3) the RNA modifications’ topology and parameter files, and (4) the RNA-

protein template. The library of modifications can be limited to a subset of the RNA 

modifications, for example ones that are readily available for experimental testing or can 

exclude a subset of previously identified non-interacting RNA modifications to increase 

the efficiency of the screening tool. In doing so, the computational load can be lessened. 

The selection of position(s) under modification in the RNA strand is user-defined and can 

be selected based on previous experimental or computational studies. Topology and 

parameters for the RNA ribonucleosides as well as the protein under investigation are 

obtained or constructed as described in Section 4.2.2.1. The refined RNA-protein complex 

structure derived in Section 4.2.2.2 is used, and, for the purpose of the fast and efficient 

screening and selection tool only, the RNA-protein complex is truncated to reduce the 

computational time required for the subsequent energy minimization and MD simulations. 

Light harmonic constraints are appropriately introduced to preserve the shape and structure 

of the protein during the subsequent MD simulations (previously described). More accurate 

simulations using the entire final refined structure (section 4.2.2.2) are then performed to 

investigate the effect of RNA modifications selected by the screening tool described in this 

section. 

4.2.2.3.2 Investigation of the canonical ribonucleosides 

In order to isolate the energetic contribution of the added chemical modification, 

we first investigate the interactions of the canonical ribonucleosides. Each canonical 

ribonucleoside is introduced to the predefined sequence position while preserving the 

original torsion angles and orientation of the ribonucleoside during the modeling. Upon 
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their introduction, short energy minimizations, consisting of 50 steps of steepest descent 

minimization followed by 50 steps of Adopted Basis Newton-Raphson minimization, are 

performed to allow the four independent systems to adjust to the introduced canonical 

ribonucleosides. Subsequently, a short MD simulation of 5 ns is performed using the 

GBMVII [120] implicit solvent model to quickly sample the ribonucleosides. Attention is 

paid to ensure that the light harmonic constraints introduced above remain during this 

stage. If the native RNA strand (the RNA strand used to build the final refined structure 

described in Section 4.2.2.2) has an RNA modification(s) in the position(s) under 

modification rather than canonical ribonucleosides, then a separate short MD simulation of 

the native RNA strand in complex with the truncated protein is also performed. 

Upon completion of the short MD simulations for the canonical ribonucleosides, 

the first 4 ns of the short simulation are considered as equilibration. For this equilibrium 

period, the average interaction energy (the sum of electrostatic and van der Waals 

interaction energies) between the entire RNA strand and the truncated protein is calculated 

for the last 1 ns of the short 5 ns MD simulations. These values are stored to evaluate the 

favorability of subsequent RNA modifications under investigation. For the last 1 ns of the 

native RNA’s 5 ns MD simulation, the average total energy of the isolated native RNA 

monomer is calculated and stored for later use to evaluate the intramolecular RNA 

interactions of the RNA strands containing RNA modifications. Simulation snapshots used 

to calculate the total energy of the isolated native RNA monomer are obtained from the 

short MD simulation of the native RNA-protein complex. This stage serves only to obtain 

energetic values for subsequent comparisons and no decisions are taken in this stage for 

selecting RNA modifications. 

4.2.2.3.3 Investigation and selection of RNA modifications by levels in accordance to the 

trees 
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The initial screening of RNA modifications (harboring one specific RNA 

modification under testing) is initiated in this stage, and the process is outlined in blue in 

Figure 4.4. Starting from the base of each tree, RNA modifications of each level of the tree 

are independently tested for the favorability of their interactions to the protein of interest. 

In each level, RNA modifications stemming from preceding RNA modifications that are 

prone to be energetically favorable are further investigated while those stemming from 

RNA modifications that are not prone to be favorable are immediately discarded from 

further investigation. Our tool operates under the governing principle that further additions 

of simple chemical groups to an RNA modification with either energetically unfavorable 

polar or nonpolar interactions are not expected to lead to any significant improvement in 

polar or nonpolar interactions. Thus, if an RNA modification is found to be unfavorable, 

then the branches originating from the RNA modification are also discarded. If an RNA 

modification is found to be favorable, then the RNA modifications belonging to the first 

level of the branch stemming from it are investigated. The governing principle is validated 

and stems from the logic according to which the placement of additional polar or non-polar 

groups to a ribonucleoside inherently acquiring unfavorable polar interactions or non-polar 

clashes is not expected to lead to a substantial improvement in interaction energy. For 

example, in the test case, as ho5U is prone to interact favorably with PNPase and is selected, 

5-OhdU is investigated; conversely, as m6A is screened out, m6
2A is discarded and also 

screened from further investigation. Also, in the test case, as m2G is unfavorable, m22G is 

immediately screened out (RNA modifications shaded in grey in Figure 4.4); m2Gm 

however is still tested as Gm is favorable (green arrows pointing to m2Gm originating from 

Gm in Figure 4.4). Using our test case, we validated our governing principle by 

investigating all RNA modifications in the fast and efficient screening tool. Details of the 

procedure used in the tool are described below. 
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Starting from the first level of the tree, RNA modifications are independently 

introduced to the predefined RNA ribonucleoside position(s) in the RNA strand using the 

lowest interaction energy snapshot from the short simulations of the preceding 

ribonucleoside; this is based on the organization of the tree, as a template. The original 

torsion angles and orientation of the ribonucleoside are preserved during the modeling 

followed by short energy minimizations. Then, a short 2 ns MD simulation using the 

GBMVII (220) implicit solvent model is introduced with light harmonic constraints still 

present in this stage with the first 1 ns of the short MD simulation being considered 

equilibration. Each of the RNA modifications investigated with short MD simulations is 

energetically evaluated using the average interaction energy between the entire RNA strand 

containing the modified ribonucleoside, the truncated protein, and the average total energy 

of the isolated modified ribonucleoside under investigation. The average interaction energy 

and average total energy of the isolated modified ribonucleoside are calculated for the last 

1 ns of the short MD simulation. 

The RNA modification must meet two energetic criteria to be selected for further 

investigation, represented in the conditional in the blue diamond of Figure 4.4. The primary 

energetic criterion is that the average interaction energy of the RNA strand with the 

modified ribonucleoside at the modifiable position(s) should be more favorable (lower) 

than the RNA strand containing the preceding ribonucleoside according to the tree, shown 

in Figure 4.3. The second energetic criterion is that the average total energy of the isolated 

modified ribonucleoside should be approximately equal to or less than that of the isolated 

native ribonucleoside. If both energetic criteria are met, then the specific modification is 

selected and stored for further investigation. In this case, the snapshot containing the lowest 

interaction energy conformation of the RNA-protein complex containing the RNA 

modification under consideration is also extracted and used as a template to introduce and 
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investigate the next level of modifications (with additional complexity) in the subsequent 

branches. If the RNA modification does not meet either energy criteria, then the RNA 

modification is considered unfavorable and is screened out from further investigation along 

with the following levels of modifications branching off from the modification under 

consideration. The fast and efficient screening tool continues up the four trees of 

modifications by levels until either all modifications are tested, or all the remaining 

uninvestigated RNA modifications have been screened out or discarded. This process is 

shown within the blue loop of Figure 4.4. The RNA modifications selected by the fast and 

efficient screening tool undergo all-atom multi-ns MD simulations using the entire final 

refined modeled structure (see Section 4.2.2.2) with modifications introduced to the 

positions under modification as an initial structure. 

4.2.2.3.4 Case study – application of the fast and efficient screening using the RNA-

PNPase structure 

As a first application, we implement our fast and efficient screening tool in a high-

throughput fashion to uncover the presence of RNA modifications occurring in the RNA-

E. coli PNPase complex. For the purposes of this study, which serves as a promising step 

towards a high-throughput method for studying the interplay between a given protein and 

all potential RNA modifications mediating RNA-protein interactions, we limit our search 

to modifications evolving from minimal additions or subtractions of simple chemical 

groups in the four canonical ribonucleosides. Here, we study a total of 46 modifications 

with a maximum of two generations originating from the seed, representing one of the four 

canonical ribonucleosides. The investigated modifications correspond to the additions of 

methyl, carbonyl, hydroxy or sulfur chemical groups. The complete names and 

abbreviations of the investigated RNA modifications are listed in Table 4.S1 and the 
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structures of the investigated RNA modifications are shown in the trees in Figure 4.3A–D. 

The modifications interrogated are introduced in positions 4 and 8 of the RNA sequence of 

5′-AAAXCUCXU-3′, where X indicates the modification. These positions are chosen for 

modification based on several observations: (i) inspecting the X-ray structures of the RNA 

bound-PNPase of E. coli and C. cresentus shows multiple residues forming hydrophobic 

and van der Waals interactions that strongly contribute to base recognition (70), and (ii) 

PNPase processively degrades RNA fragments (221), therefore the two modifications may 

be interpreted as a single modification since it is processively threaded into the binding 

pocket. The interactions between positions 4 and 8 in the RNA sequence and the amino 

acid residues in the template structure are shown in Figure 4.2B and C. To lessen the 

computational time of the screening, the RNA-PNPase complex is truncated to only include 

PNPase residues within 10 Å of any atom of the RNA fragment. The 10 Å cutoff is 

sufficient to capture local interactions (hydrogen bonds, salt-bridges, and van der Waals 

interactions) for an initial screening based on interaction energy. Light harmonic 

constraints are introduced to protein residues outside of 8 Å of any atom of the RNA 

fragment to alleviate structural deformation due to the truncation of the system. The 

truncated ends of the protein are amidated and acetylated to avoid artificial charges at the 

truncated ends as in Refs. (194, 215). A comparison between the truncated and entire RNA-

PNPase structure is shown in Figure 4.5. 
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Figure 4.5. Molecular graphics image comparing the truncated system to the entire 

template RNA-PNPase template.  

The truncated system is shown in orange in cartoon representation. The modeled 

system used for the explicit simulations is shown in transparent gray in cartoon 

representation. The RNA strand is shown in purple licorice representation.  

 

 

After the canonical ribonucleosides are investigated, the fast and efficient screening 

process of the tool is initiated by conducting 50 steps of steepest descent minimization 

followed by 50 steps of Adopted Basis Newton-Raphson minimization. If the average 

interaction energy of the RNA modification is 10% lower (more favorable) than the 

preceding modification in the same branch, and the average total energy of the single 

modified ribonucleoside is within 5% or less than that of the parent unmodified 

ribonucleoside, then the modification is selected and stored for further investigation. In 

these simulations, we extract the lowest interaction energy snapshot using Wordom (222). 

The 10% lower interaction energy cutoff is selected to account for the fact that 
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modifications are introduced to the lowest interaction energy snapshot, and as a result the 

use of smaller cutoff values did not result in sufficiently effective screening. Nevertheless, 

additional tuning and introduction of new cutoff parameters will be thoroughly investigated 

in future studies. This screening selected 14 RNA modifications, 8-oxoG, m1G, m7G, 5-

OHdU, s2U, Um, m5U, ho5U, 5-OHdC, m5C, m4C, m4Cm, m3C, and m1A as potentially 

enhancing the intrinsic binding affinity of the RNA-protein complex. It is worth noting 

that, for this system, we computationally validate the governing principle that more 

complex RNA modifications stemming from already unfavorable RNA modifications (of 

lower complexity) will also be unfavorable (results not shown). 

4.2.2.4 All-atom evaluation and rating of selected RNA modifications 

After the fast screening, the library of possible RNA modifications interacting with 

a protein of interest is filtered down to just the most promising candidates. In this stage, 

the selected modifications undergo triplicate multi-ns explicit-solvent MD simulations 

using the full structure of the RNA-protein complex built in Section 4.2.2.2. These 

simulations are used to evaluate the association free energy and accurately rate the 

modifications based on their contribution to favor RNA-protein interactions. This stage of 

the protocol is shown in orange in Figure 4.4. 

4.2.2.4.1 All-Atom MD simulations for selected RNA modifications 

To further investigate the selected RNA modifications via MD simulations, the 

modifications are introduced into the RNA strand in complex with the entire protein at the 

predefined position(s). These simulations can provide insight into how subtle microscopic 

changes affect experimentally measurable observations, such as the binding affinity of a 

protein to a ligand (223). Hence, triplicate all-atom explicit-solvent multi-ns MD 
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simulations are performed to study the dynamics of the RNA-protein complexes as well as 

to evaluate the energetic favorability of each modification for protein binding. In this stage, 

we use the entire final refined structure modeled in Section 4.2.2.2 as the starting template. 

While introducing the modifications, the original torsion angles and orientation of 

the ribonucleoside are preserved to avoid any bias introduced due to the modeling of the 

RNA modifications. Energy minimizations with constraints imposed on the heavy atoms 

of the system are then introduced to allow the system to find a local minimum on the 

potential energy surface such that the net force on each atom is minimized. The system is 

also solvated in a water box with ions to counteract the net charge of the RNA-protein 

complex. An equilibration stage is introduced in which the complexes are constrained 

before production to avoid any unnecessary structural distortion when initiating the MD 

simulations (224). The required length of the equilibration phase is dependent on the 

system under investigation. The unit cell dimensions, surface tension, and potential energy 

of the system should converge to steady values and can be monitored to guide the 

equilibration stage duration. Subsequently, in the production stage, the constraints imposed 

on the complexes are released. If necessary, light constraints may be introduced to 

truncated termini of the protein receptor to preserve the integrity of the RNA-protein 

complexes. The production stage of an MD simulation is used to sample the structural 

properties and dynamics of the RNA modifications in the RNA-protein strand complex of 

interest. Simulation snapshots from this stage serve as a statistical pool of conformations 

for further energetic and structural analysis. Independent triplicate simulation runs of 

RNA-protein complexes for each selected RNA modification are performed for 

reproducibility purposes. In addition, multiple MD simulations can be advantageous over 

single and long MD simulations (215). Multiple independent simulations, generated by 

different starting conditions such as different initial velocities, exploit the chaotic nature of 
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MD simulations in order to generate an ensemble of several uncorrelated trajectories 

providing a stronger statistical basis than a single long trajectory. 

4.2.2.4.2 Case study – all-atom MD simulations of RNA-E. coli PNPase complexes 

containing selected RNA modifications 

For the test case, we perform triplicate MD simulations for the selected promising 

modifications in complex with E. coli PNPase. The explicit water MD simulations are 

performed for RNA-PNPase complexes containing the following RNA modifications 8-

oxoG, m1G, m7G, 5-OHdU, s2U, Um, m5U, oh5U, 5-OHdC, m5C, m4C, m4Cm, m3C and 

m1A as well as the native ribonucleoside (guanosine) at positions 4 and 8 of the RNA 

fragment. All MD simulations are performed with CHARMM, version c41b1 using 

CHARMM36 topology and parameters (170, 174, 181) and parameters derived from 

CGenFF (see Section 4.2.2.1). 

The selected RNA modifications are introduced to positions 4 and 8 of the RNA 

strand in the native modeled structure (described in Section 4.2.2.2) using CHARMM. 

Energy minimizations consisting of 200 steps of steepest descent, 200 steps of Adopted 

Basis Newton-Raphson, followed by an additional 200 steps of steepest descent energy 

minimizations with all backbone atoms constrained using a 2.0 kcal/(mol Å2) harmonic 

force and side-chain atoms constrained using a 1.0 kcal/(mol Å2) harmonic force are 

introduced to alleviate steric clashes. Each complex is solvated in a 129 Å cubic explicit-

water box. The potassium chloride concentration in each water box is set to 0.15 M, and 

additional potassium ions are introduced to neutralize the charge of the systems. The ions 

are placed through 2000 steps of Monte Carlo simulations (217). Solvent molecules are 

then minimized through 50 steps of steepest descent minimization followed by 50 steps of 

Adopted Basis Newton-Raphson minimization. An additional 200 steps of steepest descent 
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minimization and 200 steps of Adopted Basis Newton-Raphson minimization are 

performed on the system with all backbone atoms constrained with a 2.0 kcal/(mol Å2) 

harmonic force and side-chain atoms constrained with a 1.0 kcal/(mol Å2) harmonic force. 

Periodic boundary conditions are applied in each simulation. 

The complexes are subsequently equilibrated in three independent MD simulations 

per modification to produce three separate initial velocities. During the equilibration stage, 

all protein and RNA backbone atoms are constrained using a harmonic force of 

1.0 kcal/(mol Å2) and all heavy side chain atoms are constrained using 0.1 kcal/(mol Å2) 

for 1 ns. After equilibration, the systems enter the production stage in which all constraints 

are released and PNPase residues outside of 20 Å from any atom of the initial RNA 

fragment are subjected to 1.0 kcal/(mol Å2) for backbone atoms and 0.1 kcal/(mol Å2) for 

heavy side chain atoms. In the production stage, each complex is simulated for 25 ns with 

simulation snapshots extracted every 20 ps. The simulations are performed using the Leap-

Frog Verlet algorithm under isobaric and isothermal conditions with the pressure set to 

1.0 atm and the temperature held at 300 K using the Hoover thermostat. We apply fast table 

lookup routines for nonbonded interactions (225) and implement the SHAKE algorithm to 

constrain the bond lengths to hydrogen atoms (226). 

In addition to the RNA modifications selected by the fast and efficient screening 

tool, the 8-oxodA modification is also investigated as a measure to ensure that RNA 

modifications deemed unfavorable in the initial screening are also unfavorable after high-

accuracy MD simulations and energy calculations. 

4.2.2.4.3 Final evaluation/assessment of RNA modifications for protein binding: MM-

GBSA association free energy calculations 
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All-atom MD simulations of biomolecular complexes in explicit solvent in 

conjunction with free energy calculation methods can predict relative association free 

energies. The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method 

(227, 228) can be introduced, similarly to Refs.(205, 206), to evaluate the association free 

energy of MD simulations and thereby assess the most energetically favorable RNA 

modifications. 

The MM-GBSA method calculates association free energies for molecules by 

combining molecular mechanics calculations and continuum (implicit) solvent models 

(227, 229). Molecular mechanics calculations estimate enthalpic contributions of the 

modified RNA-protein complex interactions. The implicit solvent model estimates the free 

energy of solute-solvent interactions and both significantly reduces computational demand 

as well as reduces errors that may arise from an incomplete sampling of solvent 

conformations. To apply the MM-GBSA method, MD simulation snapshots are used as a 

set of conformations for the complex, free protein, and free RNA strand. Before any 

calculations are made in this final RNA modification assessment stage, all solvent atoms 

are discarded and replaced by a dielectric continuum. As the association free energy is 

thermodynamically statistical, energies calculated by the MM-GBSA method should be 

averaged over the MD trajectory. Depending on the flexibility of the biomolecular complex 

under investigation, the convergence into stable association free energy values may require 

long, multi-ns MD simulations. Convergence may be monitored using running average 

association free energy values as well as structural convergence, monitored through RMSD 

values to the average structure (230). 

In our study, we use the MM-GBSA approximation (227, 228) to assess the 

association free energy of RNA fragments containing promising RNA modifications at the 
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predefined ribonucleoside positions in complex with a protein of interest using Eq. (4.1) 

(231): 

 Eq. 4.1 

where GPR, GP, and GR correspond to the energies of the RNA-protein complex, 

the protein, and the RNA strand, respectively. The individual free energies are estimated 

using the MM-GBSA approximation and Eq. (4.2) (229): 

 Eq. 4.2 

where EBonded, EElec, EGB, EvdW, and SASA represent the bonded energy, 

electrostatic interaction energy, generalized-Born energy, van der Waals energy, and 

solvent-accessible surface area of the system respectively. The sum of the electrostatic 

interaction energy and generalized-Born energy terms represent the polar contribution to 

the total MM-GBSA association free energy. The sum of the van der Waals energy and 

solvent-accessible surface area terms represent the nonpolar contribution to the total MM-

GBSA association free energy. These terms are calculated using GBMV II (220) implicit 

solvent model with the non-polar surface tension coefficient, γ, set to 0.03 kcal mol−1 Å−2. 

The cutoffs used for these calculations are infinite. 

In the association free energy calculations, we utilize the single-trajectory 

approximation (227, 232), according to which the free state of the cognate protein and the 

RNA strand adopt the same conformation as when they are bound. Thus, the bonded energy 

term in our calculations cancels out in the total association free energy calculation (Eq. 

(4.1)). The one-trajectory approximation neglects energy contributions due to structural 

relaxation, and also eliminates contributions by intramolecular (bonded, intramolecular 

van der Waals, and intramolecular Coulombic) energies that may introduce large 

uncertainties in the relative affinities (227, 232). The MM-GBSA association free energy 

DG =G
PR

-G
P
-G

R

G = EBonded +EElec +EGB +EvdW +g ×SASA
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values are used to estimate the relative binding affinities of the RNA strands containing the 

selected RNA-modifications for the protein of interest. Despite the fact that within the 

context of the specific approximation the calculation of absolute association free energies 

is not applicable, the relative association free energies (e.g., ΔΔG energy) of an RNA 

containing a modification compared to an RNA containing a canonical ribonucleoside can 

provide insights into the relative energetic favorability of different RNA modifications with 

regard to the canonical ribonucleoside. Other methods, including free energy perturbation 

calculations, which are more computationally demanding can be used to predict absolute 

association free energies; here, MM-GBSA calculations are preferred as they combine 

computationally efficiency (233) and agreement with experiments (see Section 4.2.2.5). 

For the test case, we calculate the association free energy for the RNA-PNPase 

complexes with the candidate modifications. We compute the average and standard 

deviation of the MM-GBSA association free energy from three independent simulation 

runs. Snapshots for these calculations are extracted in increments of 20 ps from each of the 

individual 25 ns MD simulations. Based on the average MM-GBSA association free 

energy, the model predicts that introduction of five different RNA modifications to an RNA 

strand result in heightened affinities to E. coli PNPase in comparison with the native RNA 

(guanosine). 

4.2.2.5 Experimental validation 

We perform electrophoretic mobility shift assay (EMSA) as described in Ref. (234), 

with some modifications. Fusion E. coli PNPase is purified from the soluble lysate using 

Ni-NTA agarose (Qiagen) to purify the His-tagged PNPase following the manufacturer’s 

protocol. Then, His-tags are removed using Thrombin resin (Thrombin CleanCleave™ Kit, 

Sigma) and carboxypeptidase A resin (Carboxypeptidase A–Agarose, Sigma). We perform 
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in vitro binding assays on 24-mers with sequence 5′ [NNXN]6 3′, where N can be rG, rA, 

rC, or rU, and X can be 8-oxoG, 8-oxodA, 5-OHdU, 5-OHdC, or m5C. The RNA-protein 

complex is detected by phosphor-imaging of the radioactive decay emitted by the P-32-

labelled 24-mer. 

4.2.3 Results 

We develop and implement a new computational protocol for screening RNA 

modifications that can favorably interact with proteins using E. coli PNPase as a test case. 

In the test case, 14 out of the 46 investigated RNA modifications are selected in the 

screening stage. Triplicate explicit-solvent all-atom MD simulations and MM-GBSA 

association free energy calculations are performed on RNA-PNPase complexes containing 

the selected RNA modifications to provide their relative affinities and reveal 5 out of the 

14 selected RNA modifications potentially favor RNA-PNPase interactions in comparison 

with the native, canonical RNA guanosine. To corroborate these predictions, we compute 

the apparent constant of dissociation (KD value) for 3 out of the 5 final candidates by 

EMSA: 8-oxoG, 5-OHdU, and 5-OHdC. We also test m5C listed among the 14 candidates 

of the screening stage but filtered out in the explicit MD simulation stage. Lastly, we 

experimentally evaluate 8-oxodA, which shares the same hydroxy group at the 8th carbon 

position in the purine moiety with 8-oxoG but scores poorly in the computational method. 

The predicted energies from MM-GBSA free association energy for each of these 

modifications are plotted against their corresponding KD value. Figure 4.6 shows a 

reasonably high correlation between the theoretical and experimental results demonstrating 

that the one-trajectory MM-GBSA approximation proved an effective method for the 

calculation of the relative association free energies of RNA modifications with respect to 

the canonical ribonucleoside and for providing a rank-ordered list of RNA modifications’ 
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energetic favorability. Thus, this method can potentially be applied to screen large libraries 

of RNA-protein interactions. 

 

 

Figure 4.6. Average MM-GBSA association free energies (kcal/mol) with respect to 

experimentally derived KD dissociation constants (nM) of RNA strands 

containing select RNA modifications.  

The average and standard deviation MM-GBSA association free energy values for 

each RNA modification were calculated using the average association free energies 

calculated from the three independent simulation runs of each complex.
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Chapter Five:  Computational evolution of an RNA-binding protein 

towards enhanced oxidized-RNA binding 

‡This work was published in (Gonzalez-Rivera, Orr et al. 2020) 

5.1 INTRODUCTION 

The oxidation of RNA has been implicated in the development of many diseases. 

Among the four ribonucleotides, guanosine is the most susceptible to oxidation, resulting 

in the formation of 8-oxo-7,8-dihydroguanosine (8-oxoG). Despite the limited knowledge 

about how cells regulate the detrimental effects of oxidized RNA, cellular factors involved 

in its regulation have begun to be identified. One of these factors is polynucleotide 

phosphorylase (PNPase), a multifunctional enzyme implicated in RNA turnover. In the 

present study, we have examined the interaction of PNPase with 8-oxoG in atomic detail 

to provide insights into the mechanism of 8-oxoG discrimination. We hypothesized that 

PNPase subunits cooperate to form a binding site using the dynamic SFF loop within the 

central channel of the PNPase homotrimer. We evolved this site using a novel approach 

that initially screened mutants from a library of beneficial mutations and assessed their 

interactions using multi-nanosecond Molecular Dynamics simulations. We found that 

evolving this single site resulted in a fold change increase in 8-oxoG affinity between 1.2 

and 1.5 and/or selectivity between 1.5 and 1.9. In addition to the improvement in 8-oxoG 

binding, complementation of K12 Δpnp with plasmids expressing mutant PNPases caused 

increased cell tolerance to H2O2. This observation provides a clear link between molecular 

discrimination of RNA oxidation and cell survival. Moreover, this study provides a 

 
‡ In this work I am a leading author contributing to 50% of all research done in collaboration with Asuka A. 

Orr. 
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framework for the manipulation of modified-RNA protein readers, which has potential 

application in synthetic biology and epitranscriptomics. 

5.2 RESULTS 

5.2.1 The S76-F77-F78 grooves from two PNPase subunits cooperate to form an 8-

oxoG binding site 

 

Figure 5.1. Domains and structure of E. coli PNPase bound to single-stranded RNA 

(ssRNA). 
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A) Domain organization of E. coli PNPase. B) Structure of the modeled ssRNA-

PNPase complex. The ssRNA-protein structure was truncated to the amino acids 

surrounding the RNA to reduce the computational time required to investigate the 

complex through MD simulations and free energy calculations. The three PNPase 

subunits are shown in blue, red, and grey surface representation. The ssRNA is 

shown in cartoon representation. C) Magnified structure of the ssRNA within the 

PNPase tunnel. The RNA strand is shown in licorice representation. PNPase 

subunits A, B, and C are shown in blue, red and grey cartoon representation, 

respectively. The RNA nucleotide positions P1 – P9 are labeled in black.
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To determine the binding site for 8-oxoG binding, we investigated the interaction 

free energy in the section of the RNA path that is resolved in the model structure of the 

bound E. coli PNPase with unmodified RNA (Figure 5.1B). We performed triplicate 50 ns 

explicit solvent MD simulations and subsequently calculated the per-nucleotide interaction 

free energies, defined as the sum of the average polar and non-polar energetic contributions 

of all the residues interacting with a single nucleotide position. This analysis indicates two 

separated regions in the ssRNA-protein complex with minimum values in the interaction 

free energy, one involving the KH domain and position P4 of the ssRNA and one involving 

the RNase PH-1 core domain and position P8 (Figure 5.2A). 

 

 

Figure 5.2. Per-nucleotide interaction of single-stranded RNA (ssRNA) within the 

tunnel of PNPase.  
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A) Interaction free energy between each individual RNA nucleotide and PNPase 

residues. The position indices correspond to those shown in Figure 5.1C. B) 

Interaction free energy between PNPase residues and either guanosine (G) or 8-

oxo-7,8-dihydroguanosine (8-oxoG) (base + sugar + phosphate groups) 

individually introduced at the indicated position of the ssRNA. C) Interaction free 

energy of the isolated nucleobase, either guanine (Gua) or 8-oxo-7,8-

dihydroguanine (8-oxoGua). The average and standard deviation interaction free 

energy values in panel A – C are calculated over triplicate 50 ns explicit solvent 

MD simulations of the RNA-protein complex. Error bars plotted as ± one standard 

deviation. Statistical analysis conducted using one-tailed homoscedastic t-test, * 

refers to p-value < 0.05, and ** refers to p-value < 0.001. 
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The first binding region locates in the KH domain, which is well known to 

participate in RNA binding (235). Deletion of KH domain reduces the RNA affinity of 

PNPase by 28-fold, which is parallel with loss of catalytic activity (236). The second site 

was located in the dynamic FFRR loop of the RNase PH-1, which was also previously 

implicated in the binding of unmodified RNA (237, 238). It is worth noting, that both sites 

are located in highly conserved regions (239), particularly the FFRR loop groups most of 

the conserved residues in the first core domain (239, 240). As such, we hypothesized that 

these sites are potential binding pockets for 8-oxoG.  

We next introduced 8-oxoG in the ssRNA at either position P4 or P8 of the 

complex, and then conducted triplicate 50 ns explicit solvent simulations of the entire 

ssRNA-protein complex. As seen in Figure 5.2B, the per-nucleotide energy calculations 

indicate that PNPase interacts more favorably with 8-oxoG than with guanosine at both 

position P4 and position P8. To provide further insights into how PNPase discriminates 8-

oxoG RNA from normal RNA, we conducted energetic calculations to determine the 

driving forces at play on these binding sites. 

At position P4, the binding of guanosine and 8-oxoG to the PNPase binding site is 

largely dominated by the charged interaction between K566 of subunit A and the phosphate 

group of the RNA strand (Figure 5.3A and 5.3B). For guanosine at position 4, the positively 

charged group of R577 forms a hydrogen bond with the 2′-OH of guanosine, whereas for 

8-oxoG, the positively charged group of R577 forms hydrogen bonds with both the 2′-OH 

and the C-8 carbonyl group of 8-oxoG. Due to the additional carbonyl group in 8-oxoG in 

comparison with guanosine, the 8-oxoG forms a more stable hydrogen bond with R577. 

This interaction stabilizes the orientation of the 8-oxoG and the hydrogen bond between 8-

oxoG and D591 as well as E581 (Figure 5.3B). The interactions at this site are dominated 

by polar interactions of amino acids with electrically charged side chains, such as basic 
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residues K566 and R577 and acidic residues E581 and D591. Owing to the negative 

electrostatic field associated with the RNA phosphate backbone, basic residues 

predominately favor electrostatic interactions with the single-stranded RNA backbone 

(241, 242). However, our analysis indicate that the charged residues are also involved in 

interactions with 8-oxoG due to hydrogen bonding (Figure 5.3A). 
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Figure 5.3. Molecular interactions of 8-oxo-7,8-dihydroguanosine (8-oxoG) in the 

active binding tunnel of PNPase.  

A) Key interactions between PNPase residues and 8-oxoG at position P4. B) 

Interaction free energy between each residue and guanosine (G) or 8-oxoG at 

position P4. Interaction is decomposed into polar (dark shade) and nonpolar (light 

shade) contributions. Only residues with an average interaction free energy less 

than −1.0 kcal/mol are shown. C) Key interactions between PNPase residues and 

8-oxoG at position P8. D) Interaction free energy between each residue and G or 8-

oxoG at position P8. E) Key interactions between PNPase residues and 8-oxoG at 

position P9. F) Interaction free energy between each residue and G or 8-oxoG at 

position P9. The interaction-free energies are obtained from three 50 ns MD 

simulations of the PNPase – RNA complex. Error bars plotted as ± one standard 

deviation. 
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At position P8, both guanosine and 8-oxoG stack between the G75-S76 peptide 

backbone and the F77 and F78 of subunit C (Figure 5.3C and D). Specifically, they form 

a π — π interaction with the F77 benzyl group of subunit C and van der Walls interaction 

with the F78 of subunit C. On the opposite face of the RNA base, they form van der Waals 

interaction with the G75-S76 backbone. Compared to guanosine, 8-oxoG forms a more 

stable stacking contact with F77 of subunit C (Figure 5.3D). In addition, 8-oxoG has a 

stronger hydrogen bond with its 2′-OH and the backbone amide group of F77 from subunit 

B, as well as a slightly stronger long-range electrostatic contact with its phosphate 

backbone and the guanidinium group of R79 in subunit C (Figure 5.3D). Moreover, the 

hydrogen bond formed between D366 side chain with the C-2 carbonyl group of 8-oxoG 

is more stable in 8-oxoG as compared to guanosine (Figure 5.3D). We observed that the 

added C-8 carbonyl of 8-oxoG forms a stable long-range electrostatic interaction with the 

positively charged guanidinium group of R79 in subunit B. 

We observed that the interaction free energy at position P4 is attributed to backbone 

interactions (mostly through K566) whereas the interaction free energy at position P8 is 

attributed to a multitude of contacts with atoms located in the base or the backbone of the 

nucleotide. To determine the extent to which the two binding sites interact with the 

nucleobase (either guanine or 8-oxo-7,8-dihydroguanine (8-oxoGua)), we conducted per-

nucleobase interaction free energy calculations in which we only considered the 

interactions between the protein residues and the base. In line with our initial observation, 

the binding of guanine and 8-oxoGua at position P8 is significantly more energetically 

favorable than at position P4 (Figure 5.2). Given that interactions with the nucleobase are 

described to provide sequence specificity (243) and that the carbonyl (8–oxo) group occurs 

at the base and not the phosphate or sugar groups, position P8 may be more critical for 8-

oxoG discrimination than position P4. 
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We observed that the binding of nucleotides at position P9 involves similar residues 

as at position P8 from the PNPase core, specifically, of the groove S76, F77 and F78. 

Contrarily, nucleotides at position P3 and P4 are contacted by divergent residues of the KH 

cap. Thus, we introduced the 8-oxoG in the ssRNA at position P9 to study whether it can 

contribute to 8-oxoG binding. Results from this analysis suggest that PNPase can also bind 

to 8-oxoG with higher affinity than guanosine at position P9 (Figure 5.S1). Remarkably, 

the interaction involves almost identical residues at position P8 but from a different pair of 

neighboring PNPase subunits (Figure 5.3F). As such, a combination of residues from 

subunit B and C yields a strong interaction with 8-oxoG at position P8, and a similar 

combination of residues from subunit A and B yields a strong interaction with 8-oxoG at 

position P9 (Figure 5.3D and F). At position 9, the backbone of both 8-oxoG and guanosine 

are stacked over the benzyl group of F77 from subunit B, and either the 2′-OH or 3′-OH 

groups in the ribose formed a hydrogen bond with the negatively charged side-chain of 

D366 (Figure 5.3E and F). As seen in position P8, the nucleobase interacts with the peptide 

bond of the stretch P74-G75-S76 via hydrogen bonding and van der Waals interactions. 

Compared to guanosine, the 8-oxoG exhibits a pronounced non-planarity of its 3D 

structure, which allows its phosphate group to contact the OH side group of S76 by 

hydrogen bonding. In addition, the twisting of the 8-oxoG base plane allows a more stable 

van der Waals interaction with the backbone amide group of S76 and the OH group of G75 

(Figure 5.3F). 

Overall, our biophysical analysis suggests that the groove formed by S76, F77, and 

F78 (SFF) in the three PNPase subunits is involved in the binding and discrimination of 8-

oxoG at either position P8 or P9 of the RNA substrate. In contrast to charged amino acids 

seen in position P4, hydrogen bonding and hydrophobic interactions predominate at the 

SFF groove, which typically contribute to sequence and structure specificity that is 
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attributed to many RNA-binding proteins (243-246). Specifically, aromatic residues are 

more often involved in base recognition (243, 247). Therefore, we further study the SFF 

binding site given the predominance of interactions that we hypothesize are likely 

implicated on discrimination of 8-oxoG. Despite the high conservation of the FFRR loop, 

previous mutation studies have only focused on the arginine residues, thus no similar 

analysis has been conducted yet on the SFF groove.  

5.2.2 Computational evolution of the S76-F77-F78 binding site yields mutants with 

differential 8-oxoG binding 

 

 

Figure 5.4. Computational evolution of PNPase SFF groove identifies variants with 

differential 8-oxoG binding affinity.  
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A) Schematic illustrating the design workflow of the PNPase mutants. B) 

Distribution of the most enriched motif by domains and within bacterial phylum 

from the 782 PNPase sequences in UNIPROT. C) Sequence logo of motif enriched 

among the 782 PNPase sequences. The motif downstream the SFF is highly 

conserved. D) Total MM-GBSA association free energy (ΔΔG) for the 69 PNPase 

mutants in complex with the 8-oxoG-RNA. The total MM GBSA association free 

energies are obtained from three 50 ns explicit solvent MD simulations of the 

mutant PNPase − 8-oxoG-RNA complex. 
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 Once we identified the SFF groove as a specific site of 8-oxoG interaction, we 

attempted to vary its sequence to create mutations that exhibit higher 8-oxoG binding using 

a semi-rational computational approach (Figure 5.4A). We hypothesized that mutations on 

this site could provide a range of 8-oxoG binding affinities. Given the high conservation 

of this region, we constrained mutations within the groove to only amino acids that 

naturally occur at each position, as determined from bioinformatics analysis of PNPase 

sequences in the UNIPROT database, analogously to a previous study (248). Our rationale 

was that residues persisting through evolution were more likely to favor protein function 

and preserve tertiary and quaternary structure; computationally, this strategy minimized 

the number of necessary simulations from 203 combinations to less than 100. Specifically, 

to limit the number of combinations, we analyzed the residue frequency in 782 PNPase 

sequences in 777 species available in UNIPROT. The analyzed sequences are highly 

dominated by bacteria (98.8% of the sequences), of which 26% corresponds to Gram-

negative Gammaproteobacteria (i.e. pathogens such as Salmonella, Yersina, Vibrio, 

and Pseudomonas species), 18% to Gram-positive Firmicutes (i.e., gut bacteria such 

as Clostridium, Streptococcus and Staphylococcus species, and Bacillus species) and 14% 

to Alphaproteobacteria (i.e., Zymomonas mobilis and members of Nitrobacter genus 

and Methylobacterium genus) (Figure 5.4B). Within the sequences analyzed, glycine and 

serine residues predominate at the X76 amino acid position, while two aromatic residues 

(phenylalanine and tyrosine) were most frequently identified at position X77 (Figure 5.3C). 

Despite the X78 position containing more diversity (11 different amino acids) aliphatic or 

non-polar aromatic residues prevail at this position. This analysis yielded 88 beneficial 

mutations, which were subsequently studied to screen their energetic favorability for 

binding 8-oxoG by simulations. 
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We initially performed the screening of each of the 88 mutations in PNPase with 

the RNA strand containing 8-oxoG at either position P8 or P9, through short implicit 

solvent MD simulations and interaction energy calculations. The two positions were 

investigated separately to reflect the stepwise interaction of PNPase with its RNA substrate 

and the cooperativity seen by the SFF groove from each PNPase subunit. For the initial 

screening, we modeled the residues within 10 Å of any atom of the 8-oxoG RNA fragment 

through short 5 ns simulations in implicit solvent to reduce computational load (69). The 

mutations resulting in more favorable interaction energies from this step were further 

investigated. A lenient interaction energy cutoff was favored over a stricter cutoff to reduce 

the possibility of removing false negatives from the selected mutant PNPases. This analysis 

yielded 69 and 57 mutants at positions P8 and P9, respectively, that were subsequently 

assayed by 50 ns explicit solvent MD simulations. As shown in Figure 5.3D, we observed 

variations in the association free energy for both positions P8 and P9. Out of these, nine 

combinations improved 8-oxoG association free energy (calculated by the MM-GBSA 

approximation) when mutation combinations were introduced at position P8 (ranging from 

−4.9 ± 7.18 kcal/mol (NYH) to −0.58 ± 15.79 kcal/mol (GFL) gain in average association 

free energy compared to SFF PNPase). Additionally, 30 mutation combinations improved 

8-oxoG association free energy when introduced at position P9 (ranging from 

−25.45 ± 7.75 kcal/mol (NYT) to −4.86 ± 7.65 kcal/mol (NFF) gain in average association 

free energy compared to SFF PNPase). Because of the low overlap between positions P8 

and P9, these results suggest that different combinations can modulate the specific 

contribution of each pair of PNPase subunits in 8-oxoG binding. 

Based on the association free energy values (Figure 5.4D), NYH and TYH have the 

1st and 2nd lowest ΔΔG association free energy for 8-oxoG at position P8, respectively. 

NYT, and SYH show the 1st and 2nd lowest ΔΔG association free energy for 8-oxoG at 
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position P9, respectively. GFT has moderately improved binding to 8-oxoG at both 

position P8 and P9; NYM and NFH have significantly improved binding to 8-oxoG at 

position P9 and similar affinity to 8-oxoG at position P8. Notably, NYT has significantly 

improved binding to 8-oxoG at both position P8 and P9. These mutations (NYT, NYM, 

GFT, NFH, and SYH) were evaluated in triplicate 50 ns explicit solvent MD simulations, 

confirming that each simulation converged towards reproducible values of the association 

free energies for each RNA-protein complex (Figure 5S2). 
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5.2.3 Computationally designed PNPase mutants improve 8-oxoG binding affinity 

and selectivity in vitro 

 

Figure 5.5. Electrophoretic mobility shift assays (EMSAs) of E. coli PNPase and 8-

oxoG RNA.  
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A) Profiles illustrate the behavior of the fraction of RNA bound as a function of 

protein concentration (2-fold concentration increase from 12.5 to 200 nM). 

Constant of dissociation (KD) values were calculated for each mutant with 8-oxoG-

modified oligonucleotides (sequence: [NN8-oxoGN]6) and unmodified 

oligonucleotides (sequence: [NNGN]6) conducted in duplicate. B) Comparison of 

the constant of dissociation for the mutant PNPases. Error bars plotted as ± one 

standard deviation. Statistical analysis conducted using one-tailed homoscedastic t-

test, * refers to p-value < 0.05. 
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To corroborate our computational predictions, we constructed expression plasmids 

of the selected PNPase mutants (NYT, NYM, GFT, NFH and SYH) that showed the largest 

improvements in the interaction free energy compared to the wild type sequence (SFF) at 

either position P8 or P9 (Figure 5.5). We purified these variants using His-tag affinity 

purification and then conducted in vitro binding assays. Specifically, we used increasing 

levels of each individually purified protein with an RNA oligo containing 8-oxoG (oligo 

sequence: 5′ – [NN(8-oxoG)N]6 – 3′, where N is A, C, G or U). In parallel, we conducted 

assays with a control unmodified oligo that lacked the 8-oxoG modification (sequence: 5′ 

– [NNGN]6 – 3′) to assess for varying binding selectivity towards 8-oxoG. 

Of the five mutants screened by in vitro binding assays, four show increased 8-

oxoG binding affinity or selectivity (Figure 5.5A). Three mutants show higher 8-oxoG 

binding affinity compared to the wild type PNPase as measured by KD values (NYT, 

NYM, and NFH). Of these, only the NYM mutant PNPase causes significant increase in 

8-oxoG binding affinity (one-tailed heteroscedastic t-test, p-value < 0.05) (Figure 5.5B). 

Remarkably, we observed a reduction in the binding affinity of several of these mutants to 

unmodified RNA (e.g., not containing 8-oxoG). For example, the selectivity (determined 

as the ratio of KD 8-oxoG and KD unmodified) for the NYM mutant is 2.8 and for the 

NFH mutant is 2.5, while the wild type is 1.8. As seen in Figure 5.5B, the remaining 

mutants display a gradient of binding affinities. Notably, the GFT mutant conserves similar 

binding affinity to the wild type motif but with increased selectivity (SGFT = 2.3 

vs SSFF = 1.8). These data confirm that minor changes in the conserved SFF binding groove 

can influence PNPase substrate binding activity. 
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5.2.4 Biophysical insights of the mutant PNPases with enhanced 8-oxoG affinity and 

selectivity 

We computationally examined the NYM, NYT, NFH, GFT, and SYH mutant 

PNPases in complex with an RNA strand containing 8-oxoG at position P8 or P9 to 

determine their effect on affinity and/or specificity of 8-oxoG RNA. We observed a few 

key trends: (1) mutations involving S76N and/or Y77F substitutions provide higher 8-

oxoG affinity in the NYM, NYT and NFH mutants, attributed to new hydrogen bond 

interactions with 8-oxoG. (2) a unique trend seen in the GFT mutant is that the F78T 

substitution directly contacts the 8-oxoG modification, which can be linked to the increased 

8-oxoG selectivity in this mutant. And (3), for the SYH mutant, we observed a balance 

between diminished 8-oxoG affinity at position P8 and increased 8-oxoG affinity at 

position P9. 
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Figure 5.6. Molecular interactions of 8-oxoG with the mutant PNPases.  
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NYM (panel A for position P8 and panel B for position P9); NYT (panel C for 

position P8 and panel D for position P9); NFH (panel E for position P8 and panel 

F for position P9); GFT (panel G for position P8 and panel H for position P9) and 

SYH (panel I for position P8 and panel J for position P9). The interaction-free 

energies are obtained from three 50 ns MD simulations of the RNA-protein 

complex. Error bars plotted as ± one standard deviation. 
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For the S76N mutation in the NYM, NYT and NFH mutants, the increased 8-oxoG 

affinity may be attributed to stabilized hydrogen bond interactions to 8-oxoG at either 

position P8 or P9 (Figure 5.6A, B and C). At position P8, we observed that the longer side 

chain of N76 (compared to the wild type S76) induces a more stable hydrogen bond 

between the carboxamide group of N76 in subunit B and the 2′-OH of 8-oxoG. This 

interaction permits stronger hydrogen bonds between the adjacent residue (either Y or F) 

in subunit B and the 2′-OH and C-8 carbonyl groups of 8-oxoG. At position P9, the longer 

side chain of N76 allows the formation of a hydrogen bond between the carboxamide group 

of N76 in subunit B and either the phosphate group oxygens or the 3′-OH of 8-oxoG. With 

regard to the Y77F mutations (present in the NYM and NYT), the increased 8-oxoG 

affinity may be attributed to the formation of new hydrogen bonds that stabilize negatively 

charged residues interacting with 8-oxoG (Figure 5.6A and B). In NYM, we observed that 

the OH group of Y77 in subunit C, allows the formation of an intramolecular hydrogen 

bond to D366 in subunit B, which stabilizes the hydrogen bond between the carboxyl group 

of D366 and the C-2 amide group of 8-oxoG. In NYT, we observed that OH group of Y77 

in subunit C, allows the formation of an intramolecular hydrogen bond to E371, which 

stabilizes a new hydrogen bond between the carboxyl group of E371 in subunit B and the 

N-1 amide group of 8-oxoG. Overall, the formation of new interactions could potentially 

explain the enhanced 8-oxoG affinity attributed to the mutants NYM and NYT. 

The increased 8-oxoG selectivity of the GFT mutant can primarily be attributed to 

interactions occurring at position P9 (Figure 5.6D). At this position, the F78T mutation 

allows for the formation of a hydrogen bond between T78 in subunit B and the C-8 carbonyl 

group of 8-oxoG. Although the affinity of the GFT mutant to the unmodified RNA is less 

than that of the wild type SFF, the interactions at position P9 could contribute to the similar 
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affinity of the GFT mutant to 8-oxoG compared to that of the wild type SFF (Figure 5.5B), 

thereby enhancing the selectivity of the GFT mutant for 8-oxoG. 

The similar affinity of the SYH mutant to 8-oxoG compared to the wild type 

PNPase SFF could potentially be attributed to the balance between diminished interaction 

energies occurring at position P8 and enhanced interaction energies occurring at position 

P9 (Figure 5.6E). As seen in NYM and NYH mutants, the F77Y mutation allows for the 

formation of a new hydrogen bond between the OH group of Y77 in subunit C and the C-

2 amide group of 8-oxoG. This hydrogen bond stabilizes the orientation of the 8-oxoG base 

promoting hydrogen bonds between D366 and E371 with 8-oxoG. However, given that 

SYH has a shorter residue side chain at position 76 than NYM and NYT, the nucleoside is 

drawn away from S76 in subunit B due to the Y77, D366 and E371 interactions. As the 

nucleoside is positioned away from residues 75–78 in subunit B, the interactions are overall 

diminished. On the contrary, for 8-oxoG in position P9, the F77Y and F78H mutations 

allow for the formation of new hydrogen bonds, which enhance the binding of SYH to 8-

oxoG. The hydroxyl group of Y77 in subunit B allows for the formation of a hydrogen 

bond to the C-6 carbonyl group of 8-oxoG and the protonated nitrogen in the imidazole 

group of H78 in subunit A allows for the formation of a hydrogen bond to the C-8 carbonyl 

group of 8-oxoG or the 3′-OH of 8-oxoG. 
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5.2.5 Computationally designed PNPase variants complement cell survival under 

oxidative stress 

 

Figure 5.7. PNPase mutants complement E. coli survival to H2O2 exposure. 
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A) Spot plating of 10−3 and 10−4 cell culture dilutions after exposure to 20 mM 

H2O2 for 20 min. K12 Δpnp strain (from the Keio collection), E. coli K12 

MG1655 WT, and the PNPase wild type rescue plasmid (SFF) transfected in the 

low expression plasmid are shown. 1X PBS in place of H2O2 solution was used to 

demonstrate cell growth under unstressed conditions. B) Spot plating of the 

10−3 and 10−4 cell culture dilutions after exposure to 20 mM H2O2 for 20 min. 

K12 Δpnp cells were transfected with the low expression plasmid encoding each 

mutant PNPase. The alanine mutation (AAA) was used as a negative control. C) 

Cell area from spot plates of the 10−3 dilution was calculated using image J after 

normalization with the PBS control cell area. Statistical analysis conducted using a 

one-tailed homoscedastic t-test, * refers to a p-value < 0.05. Error bars plotted 

as ± one standard deviation. 
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PNPase-deficient E. coli cells have been shown to be more sensitive under 

oxidative stress conditions compared to wild type E. coli cells, implying that PNPase has 

an important role in oxidative stress resistance (235). To gain insight into the effect that 

increased 8-oxoG RNA binding in PNPase could have in cellular tolerance to H2O2, we 

performed cell viability assays in PNPase-deficient E. coli cells complemented with one of 

the five characterized PNPase mutants (NYT, NYM, GFT, NFH, and SYH). 

We verified the genomic deletion of pnp (Δpnp) in E. coli K12 BW25113 strain 

from the Keio collection by PCR (Figure 5.S3). Complementation of the Δpnp strain with 

a constitutive lpp promoter expressing each mutant PNPase or the wild type sequence 

(denoted as SFF strain) does not provoke a significant impact on cell growth and viability 

(Supplementary Figure 5.S4A and S4B). Moreover, native western blotting analysis 

indicates that the different mutant PNPases have similar relative levels of expression 

(Supplementary Figure 5.S4C). And most importantly, given the similar migration of the 

mutants to wild type PNPase in native gels, this assay also suggests that the mutations do 

not produce distinct affections in tertiary and quaternary structure. 

We exposed cells to 20 mM H2O2 for 20 min at room temperature, and 10−3 and 

10−4 cell dilutions post-exposure were plated and incubated overnight at 37 °C for colony-

forming counts and spot plate analysis. As shown in Figure 5.7A, the Δpnp strain has 

decreased cell viability relative to E. coli K12 MG1655 WT cells. We then complemented 

the Δpnp strain with the wild type pnp gene using the constitutive lpp promoter plasmid 

(SFF strain). Our results suggest that this constitutive expression rescued survivability 

compared to the Δpnp strain (Figure 5.7A). 

We tested the viability of the five mutant PNPases using the same H2O2 exposure 

conditions described above (Figure 5.7B). A PNPase with mutations to alanine (AAA 

motif) was included as a negative control. We measured the area covered by small colonies 
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on each spot in the 10−3 and 10−4 dilution using image J and normalized to the same area 

on the PBS control to approximate the number of colonies in the spot plates (Figure 5.7C 

and Supplementary Figure 5.S4C). As seen in Figure 5.7C, all five mutants showed higher 

survivability to H2O2 exposure compared to the complemented wild type PNPase (SFF 

strain), increasing cell tolerance between 1.5 and 2.2 times. Although, only the GFT and 

SYH PNPase mutants were statistically significant using one-tailed heteroscedastic t-test 

(p-value < 0.05), these data demonstrate that PNPase variants with enhanced 8-oxoG 

affinity and selectivity differentially affect cellular tolerance to oxidative stress. 

5.3 DISCUSSIONS 

In the present study, we examined the interaction of PNPase with 8-oxoG-

containing RNA in atomic detail to gain insight into the mechanism of 8-oxoG 

discrimination. MD simulations and free energy calculations were performed to identify 

the site responsible for 8-oxoG selectivity and to quantify the driving forces at play. These 

findings were then used to evolve PNPase’s 8-oxoG binding site towards varying affinities 

using a novel approach that initially screens PNPase mutants from a library of naturally 

occurring mutations and thoroughly assesses the selected mutants using multi-ns MD 

simulations and free energy calculations. As such, we found the computationally predicted 

mutants increased 8-oxoG affinity between 1.2 and 1.5 times and/or selectivity between 

1.5 and 1.9 times. Importantly, we demonstrated that the PNPase mutants with enhanced 

preferential binding of 8-oxoG significantly increased cell tolerance to H2O2. This 

observation provides a clear link between molecular discrimination of RNA oxidation and 

cell survival. 

We observed that the 8-oxoG binding interface is scattered on the central channel, 

mainly involving two regions, which are spatially separated by three nucleotides of the 
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RNA substrate (Figure 5.2). We focus our study to the second binding site, located in the 

first core domain of PNPase, because our analysis indicates that it may have a more 

dominating role in the binding and discrimination of 8-oxoG. This site engages RNA with 

the highly conserved FFRR loop, which forms the aperture to the central channel of the 

core, making aromatic stacking interaction with the bases of engaged RNA (249). We 

found that two loops from neighboring subunits contact opposite faces of the RNA base 

providing a high binding to 8-oxoG. Previous studies indicate that adjacent positions to the 

SFF groove, specifically the residues R79 and R80, have a conformational role that 

regulates both RNA binding and catalytic degradation despite not directly interacting with 

the ssRNA (239). Notably, our energetic calculations determined that R79 contributes, with 

a small energetic contribution, to 8-oxoG binding at both position P8 and P9. Moreover, 

the FFRR loop is very dynamic; structural studies have shown that the two phenylalanine 

residues from two neighboring subunits stack, making the channel more constrained in the 

apo structure (238). However, when PNPase binds the RNA substrate, the channel opens 

and structural changes propagate to the active site resulting in proper orientation of the 

catalytic residues (237). Specifically, R79 and R80 (upon contact of the phenylalanine 

residues with the RNA substrate) form a hydrogen bond with Y404 and the latter residue 

contacts T462, located in the active site (238). Because FFRR loop is able to influence the 

catalytic site, it is possible that upon 8-oxoG binding, the loop’s new conformation 

influences changes in the active site that blocks the enzymatic degradation of RNA, 

explaining the inability of PNPase to process 8-oxoG-containing RNA (250). 

Computational biophysical approaches have become more important for 

understanding modified RNA-protein interactions by providing insight into structural 

features that help explain mechanistic increases in binding (69, 71, 72, 251-254). To 

overcome the difficulties of designing a complex binding site, we used a combination of 
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structural and bioinformatics strategies to establish a framework that facilitates the rapid 

sampling of binding affinities of protein mutants towards modified RNA substrates. To 

start, we only permitted naturally occurring amino acids in the selected mutable positions. 

This approach is intended to minimize the introduction of residues that can alter tertiary 

structure and assembly of the homotrimer that may impede PNPase function (239, 255). 

Next, we implemented a two-step MD simulation screening, which involved an initial run 

of  short implicit solvent MD simulations of the truncated RNA-protein complex to rapidly 

sample the amino acid combinations meeting the aforementioned biological constraints 

that improve 8-oxoG interaction compared to the wild type SFF sequence. Then, a second 

step of MD simulations consisting of all-atom 50 ns explicit solvent MD simulations was 

conducted to more accurately sample the interactions that passed the first step followed by 

free energy calculations. The use of biological constraints allowed for the rapid 

identification of biologically relevant mutations with favorable interactions to a modified 

RNA (248). Finally, triplicate 50 ns explicit solvent MD simulations for the mutants 

acquiring the lowest association free energy were conducted to ensure reproducibility. We 

previously applied a similar multi-step approach to screen the interactions of PNPase with 

a library of 46 naturally occurring RNA modifications providing a reasonably high 

agreement between computational and experimental results (69). Our study successfully 

combines the use of computational biophysics approaches assisted by biological 

constraints to understand RNA-protein interactions, as well as the use of multi-stage 

component strategy comprising an initial screening stage followed by more accurate 

simulations.  

Our approach is shown here to be a powerful tool in predicting PNPase mutants in 

the SFF groove which would bind specifically to 8-oxoG-containing RNA. One limitation 

of this study is the poor structure resolution of the electron density maps of the bound 



 138 

PNPase in proximity to the catalytic site (249). Because of the high mobility of the S1 in 

the bound structure (238), this study was also unable to capture the contribution of S1 

domain in 8-oxoG binding, which likely assists first contact with the RNA substrate. As 

such, some of the discrepancies observed between the predicted interaction free energies 

and the experimental KD values could be attributed to the lack of fully resolved crystal 

structure of the RNA-PNPase complex. The validation using in vitro protein shift assays 

revealed that the computational approach provided reasonable prediction ability of many 

mutant sequences.  

Moreover, further studies are needed to shed light on the most distinct biochemical 

principles of modification-dependent binding of RNA by natural protein readers. We found 

that the introduction of asparagine (N) at X76 and tyrosine (Y) at X77 could potentially 

enhance the binding of PNPase mutants to 8-oxoG through primarily increased interactions 

to the nucleobase at position P8. We observed that asparagine at X76 primarily stabilizes 

hydrogen bonds to the sugar OH group of 8-oxoG at position P8 while tyrosine at X77 

indirectly enhances the binding of 8-oxoG by stabilizing D366 and E371 through 

intramolecular hydrogen bonding. Interestingly, we also found that the introduction of a 

polar amino acid at X78 (such as threonine) with a sufficiently large sidechain such that it 

is in proximity to the C-8 carbonyl group of 8-oxoG at position P9 could potentially 

enhance the selectivity of PNPase mutants for 8-oxoG. We also observed that interactions 

to 8-oxoG at both positions P8 and P9 are important for the improved 8-oxoG binding. 

Intriguingly, we observed PNPase mutants within diminished affinity for 8-oxoG at one 

RNA position (either P8 or P9) while having significantly improved affinity for 8-oxoG at 

a separate position (either P9 or P8), as is the case for SYH relative to SFF. It is worth 

noting, that for this example, we observed no overall improvement in 8-oxoG binding 

experimentally. This analysis raised the question of whether certain RNA residues can 
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favor interactions with cognate proteins, which has been fairly unexplored in the 

epitranscriptomics field (246). For instance,  one of the few studies exploring the basic 

principles of protein recognition of RNA modifications examined a model peptide chain 

using MD simulations to describe the mechanism of binding with the anticodon stem loop 

of the human tRNALys3, which is the primer for HIV replication (71). Importantly, while 

examining  the loop of this tRNA, which contains two highly chemically modified bases 

(one 5-methylmethoxymethul-2-thuiuridine (mcm5s2U) and one 2-methylthio-N6-

threonylcarbamoyladenosine (ms2t6A)), their results highlighted modification-dependent 

binding of the peptide ligand; in this case, they demonstrated preferential interactions 

between the hydrophobic phenylalanine and the anticodon loop, while also showing 

preferential interactions between basic arginines and the RNA phosphate backbone (71, 

247). More importantly, these principles were later applied to design peptides that mimic 

the native binding, resulting in a drug candidate for HIV therapeutics (247).  

To better understand the physiological functions of the epitranscriptome, advances 

in the toolbox that facilitate the manipulation of the enzymes that recognize and/or edit 

RNA modifications are required (256). Engineering efforts using these enzymes could 

provide enhanced control over gene expression of specific transcripts and/or modified sites 

beyond what the current approaches investigating global perturbation of these factors 

allow, providing more sensitive and reproducible approaches. For example, CRISPR-Cas9 

technology has provided ways to deliver a range of RNA enzymes to specific transcripts 

to study mechanism of epitranscriptomic regulation (257, 258). These tools are important 

because it may allow controlled modulation of the modifications at individual transcripts 

or sites to elucidate their functions, as well as for potential therapeutic and diagnostic 

applications derived from RNA modification studies (259).  
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5.4 MATERIALS AND METHODS 

5.4.1 Modeling of E. coli PNPase in complex with an ssRNA 

We used the molecular model of E. coli PNPase bound to a single-stranded RNA 

(ssRNA) reported in our previous study (69) as the structural basis for this new study. This 

model was generated through homology modeling of positions 517–549 of the unbound E. 

coli PNPase structure previously resolved by X-ray crystallography (238) (PDB ID : 

3GCM) to the RNA-bound structure of Caulobacter crescentus PNPase resolved by X-ray 

crystallography (249) (PDB ID : 4AM3). To model the conformation of the bound 

structure, we docked a nine nucleotide long ssRNA with an identical sequence used for the 

crystal structure of C. crescentus PNPase in complex with RNA (PDB ID: 4AM3): 5′ – 

AAAGCUCGG – 3′, with guanosines introduced to positions P4, P8, and P9 (Figure 5.1C). 

The guanosines were introduced to provide molecular and energetic references for the 

analysis of the 8-oxoG interactions. We then introduced energy minimization steps 

(comprising of steepest descent and adopted basis Newton-Raphson) to alleviate any steric 

clashes within the complex structure and subsequently simulated the complex in explicit 

solvent for 5 ns to produce the starting structure for the 50 ns explicit solvent MD 

simulations using CHARMM (260). The simulation setup and parameters are the same as 

those described for the 50 ns MD simulations. The short simulation was sufficient to 

alleviate unfavorable interactions within the complex structure without deviating 

significantly from its initial structure. To model the E. coli PNPase structure bound to the 

8-oxoG-containing ssRNA, we introduced 8-oxoG using the procedure detailed in our 

previous study (69). Briefly, we parametrized 8-oxoG using CGenFF (171), and then 

replaced the guanosines with 8-oxoGs at positions P4, P8 or P9 in CHARMM (260), 

producing the following modified RNAs: P4: 5′ – AAA(8-oxoG)CUCGG – 3′, P8: 5′ – 
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AAAGCUC(8-oxoG)G – 3′ and P9: 5′ – AAAGCUCG(8-oxoG) – 3′. Subsequently, the 

structure was energetically minimized to alleviate any steric clashes and used as the initial 

structure for mutagenesis simulations. 

5.4.2 Semi-rational computational evolution of RNA-protein interactions 

We combined biophysical (structural and energetic) and bioinformatics analyses to 

identify the key residues interacting with 8-oxoG in the PNPase binding site. In the 

biophysical analysis, we analyzed the structures obtained from triplicate 50 ns explicit 

solvent MD simulations of the RNA strand (with sequence 5′ – AAAGCUCGG –3′) in 

complex with the protein, to study the interactions between each nucleotide position and 

neighboring PNPase residues in the protein. The simulation setup, parameters and 

procedure are detailed in the Section 5.4.3 and the all-atom evaluation and rating stage of 

our previous study, in which the full system (i.e., residues 27–142, 336–453, 517–549) was 

investigated in explicit solvent all-atom representation. Upon completion of the 50 ns 

explicit solvent MD simulations, we performed a per-nucleotide interaction free energy 

analysis to identify the key interacting nucleotide positions. We subsequently introduced 

an 8-oxoG at the selected position and then performed triplicate 50 ns explicit solvent 

simulations. Upon completion of the 50 ns explicit solvent MD simulations, a per-residue 

interaction free energy analysis was performed. 

In the bioinformatics analysis, we extracted 782 PNPase protein sequences from 

the UNIPROT database. Based on the analysis, we allowed the placement of the following 

sets of amino acids at the three residue positions investigated: G, N, S, or T at position 76, 

F or Y at position at 77, and F, H, I, K, L, M, N, Q, S, T, or V at position 78. Due to the 

initial screening nature of this approach, the entire ssRNA-protein complex was truncated 

to include only the binding site (i.e., residues within 10 Å of any atom of the RNA strand), 
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and then short (5 ns) simulations were implemented in implicit solvent. The simulation 

setup, parameters and procedure were the same as those used in our previous study (69). 

The mutations to the three investigated residues in the binding site and the 8-oxoG 

modification at the examined position of the RNA substrate were introduced to the 

truncated structure in CHARMM such that the original torsion angles and orientation of 

the residues were preserved during the modeling. Upon completion of the short implicit 

solvent MD simulations, we performed interaction energy calculations between the 

mutated site and the RNA strand containing 8-oxoG (as previously detailed in (69)), which 

served to screen out any combinations of mutants that did not predict more energetically 

favorable conditions with the RNA modification relative to the wild type PNPase. A 

relaxed criterion was preferred to reduce the number of false negatives (i.e., combinations 

of mutants which could presumably be worthy of further investigation). Any false positives 

selected in the initial screening due to the relaxed criterion were additionally evaluated 

using longer simulations and free energy calculations (described below) to screen them out 

and select only the most promising mutants for experimental testing. 

As a final assessment, single 50 ns explicit solvent MD simulations were performed 

on the selected PNPase mutants from the initial screening in order to refine the mutant 

PNPase-RNA complex structures and the intermolecular interactions therein. These refined 

complexes were then used to assess the most energetically favored PNPase mutants for 8-

oxoG binding. We then calculated the average association free energy of the PNPase 

mutants binding to the RNA strand containing 8-oxoG and selected PNPase mutants with 

improved average association free energies for 8-oxoG compared to the wild type E. 

coli PNPase motif at that location (SFF). An additional two 50 ns explicit solvent MD 

simulations were performed for the selected mutants binding to 8-oxoG such that each of 
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the selected mutants were simulated in triplicate 50 ns explicit solvent MD simulations to 

ensure reproducibility of the single runs. 

5.4.3 Molecular dynamics simulations 

The 50 ns explicit solvent MD simulations described in the above sections were 

performed in CHARMM (260) using the CHARMM36 force field (181) as described in 

our previous study (69). Additional topologies and parameters for 8-oxoG were generated 

using CGenFF (171). The entire PNPase – RNA strand complex system was used as the 

initial structure for all 50 ns explicit solvent MD simulations. For the 50 ns explicit solvent 

MD simulations of PNPase in complex with an RNA strand containing 8-oxoG, the 

modification was introduced in CHARMM such that the original torsion angles and 

orientation of the residues were preserved during the modeling. Likewise, for the 50 ns 

explicit solvent MD simulations of all the PNPase mutants, the amino acid substitutions 

were introduced in CHARMM such that the original torsion angles and orientation of the 

residues were preserved during the modeling. Upon the introduction of the 8-oxoG or the 

amino acid substitutions, we introduced energy minimizations to alleviate any steric 

clashes that may have occurred during their substitution. Prior to the 50 ns explicit solvent 

MD simulation, the complex PNPase – RNA structure was solvated in a 120 Å3 water box. 

All protein and RNA backbone atoms were constrained using a harmonic force of 

1.0 kcal/(mol·Å2) and all heavy side-chain atoms were constrained using 0.1 kcal/(mol·Å2) 

for 1 ns. After equilibration, all constraints were released and PNPase residues outside of 

20 Å from any atom of the initial RNA fragment were subjected to 1.0 kcal/(mol·Å2) for 

backbone atoms and 0.1 kcal/(mol·Å2) for heavy side chain atoms. In this stage, each 

complex was simulated for 50 ns with simulation snapshots extracted every 20 ps. The 

50 ns explicit solvent MD simulations were performed using the Leap-Frog Verlet 
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algorithm under isobaric and isothermal conditions with the pressure set to 1.0 atm and the 

temperature held at 300 K using the Hoover thermostat. We applied fast table lookup 

routines (261) for nonbonded interactions and implemented the SHAKE algorithm (226) 

to constrain the bond lengths to hydrogen atoms. 

5.4.4 Association free energy calculations 

To identify the most energetically favorable PNPase mutants binding to 8-oxoG, 

we calculated the association free energy of each PNPase mutant bound to 8-oxoG over 

the entire 50 ns production run using the Molecular Mechanics Generalized Born Surface 

Area (MM-GBSA) approximation (262, 263). The association free energies were 

calculated for each simulation snapshot extracted every 20 ps in each of the 50 ns explicit 

solvent MD simulations. Subsequently, we calculated the block average association free 

energy every 12.5 ns. Thus, the reported average and standard deviation association free 

energy values for the single runs are calculated over 4 measurements, where the first, 

second, third, and fourth measurement corresponds to the individual average association 

free energy values of the first, second, third, and fourth 12.5 ns segment of the 50 ns 

explicit solvent MD simulation production runs. For the triplicate 50 ns explicit solvent 

MD simulations of the promising PNPase mutants binding to 8-oxoG, the association free 

energy calculations were performed to ensure reproducibility, and the reported average and 

standard deviation association free energy values for the triplicate runs are calculated over 

three “measurements” corresponding to the individual average association free energy 

values of the first, second, and third 50 ns explicit solvent MD simulation. Additional 

information on the MM-GBSA association free energy calculations is provided in our 

previous study (69). 
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5.4.5 Interaction free energy analysis of residue-nucleotide pairs and independent 

groups (residues, nucleotides, nucleobases) 

After conducting MD simulations of the RNA-protein complex, we applied the 

MM-GBSA approximation (262, 263) to evaluate the interaction free energy of all possible 

interacting residue-nucleotide pairs using Equation 1, analogously to previous studies (206, 

264-273). The pair-wise interaction free energy values between each PNPase residue and 

each RNA nucleotide were subsequently used to calculate per-residue interaction free 

energies (interaction free energy contribution of each PNPase residue to an RNA 

nucleotide) and per-nucleotide interaction free energies (interaction free energy 

contribution of each RNA nucleotide to the entire PNPase binding site). 

The pair-wise interaction free energy values between each PNPase residue and each 

RNA nucleotide were subsequently used to calculate per-residue interaction free energies 

(interaction free energy contribution of each PNPase residue to an RNA nucleotide) and 

per-nucleotide interaction free energies (interaction free energy contribution of each RNA 

nucleotide to the entire PNPase binding site). 
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Eq. 5.1 

The first, second and third components of the equation above represent the polar, 

van der Waals and non-polar solvation interactions free energies between P and R, 

respectively. The variable P corresponds to a given amino acid in the protein 

and R corresponds to the nucleotide at a given position in the ssRNA. The 

variable PR corresponds to the amino acid – nucleotide complex. The interaction-free 

energies of m = 1 to f (=2500) frames were summed and averaged. 
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The polar component of the total interaction free energy is comprised of 

electrostatic interaction (EijElec) and generalized-Born (EijGB) energy contributions 

between the residue P and nucleotide R. The polar component represents the interaction 

between the residue P and nucleotide R, and the interaction between residue P and the 

solvent polarization potential induced by the nucleotide R. The non-polar component (sum 

of the second and third term) consists of the van der Waals interactions between the 

residue P and the nucleotide R, in addition to the change in the non-polar solvation free 

energy due to binding (γΔSASAi). The non-polar interaction free energy term represents 

the non-polar interactions with the surrounding solvent and cavity contributions. 

The solvation terms were determined using the grid based GBMV implicit solvent 

model (274). These calculations were executed with the non-polar surface tension 

coefficient, γ, set to 0.03 kcal mol-1 Å-2. The generalized-Born energy contribution (Eij
GB) 

and solvent accessible surface area (ΔSASAi) are affected by the location of P and R in the 

complex. To compute the Eij
GB term in Eq. 5.1, all atoms were included, and the charges of 

atoms outside the groups PR, P, and R were set to zero in each calculation of the terms  

GPR
inte

,  GP, and GR, respectively. The ΔSASAi term expresses the difference in solvent 

accessible surface areas of the residue P and nucleotide R within the complex and in 

unbound states. For these calculations, we used infinite cutoff values.  

Using the individual residue-nucleotide pairwise interaction free energy values, we 

calculated per-residue and per-nucleotide interaction free energies. We define the per-

residue interaction free energy as the sum of all the energetic contributions of each residue 

interacting with a given nucleotide, and we define the per-nucleotide interaction free 

energy as the sum of all the per-residue interactions occurring with the given nucleotide. 

In addition, we also performed per-nucleobase interaction free energy calculations, 

analogously to ref. (275), in which we calculated the interaction free energy contributions 
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of the PNPase residues to the nucleobase, rather than the entire nucleotide. For these 

calculations, in Eq. 5.1, the variable P corresponds to a given amino acid in the protein and 

R corresponds to the nucleobase at a given position in the ssRNA. The variable PR 

corresponds to the amino acid - nucleobase complex. To compute the Eij
GB term in Eq. 5.1, 

all atoms were included, and the charges of atoms outside the groups PR, P, and R 

(corresponding to the nucleobase and not the sugar or phosphate group of the given 

nucleotide) were set to zero in each calculation of the terms GPR
inte

,  GP, and GR, respectively. 

The phosphate and sugar group atoms were included in all Eij
GB energy calculations with 

zero charge, aiming at including the backbone screening effect between interacting atoms 

(275).  

5.4.6 Reagents, bacterial strains and plasmids 

The 8-oxoG RNA oligonucleotide 24-mer (with sequence: [NN(8-oxoG)N]6, 

where N is A, G, C or U) and the 24-mer unmodified RNA oligo (with sequence: 

[NNGN]6) were custom synthesized by GeneLink (Orlando, FL). The constitutive 

promoter plasmid (containing a lpp promoter and a synthetic RBS B31, with sequence 

CCCATCAAAAAAATATTCTCAACATAAAAAACTTTGTGTAATACTTGTAACGC

TTCTAGAGTCACACAGGAAACCTACTAG) was kindly provided by Hal Alper’s 

group at UT Austin. ATP [γ-32P] (3000 Ci/mmol 10 mCi/ml, 100 µCi) for 5′-end labeling 

of RNA oligos was purchased from PerkinElmer (Waltham, MA). The E. coli K12 

BW25113 Δpnp strain from the Keio collection (276) and the E. coli K12 MG1655 were 

kindly provided by Jeffrey Barrick group at UT Austin. Primers and plasmids used in this 

study are listed in Tables 5.S1 and 5.S2. 
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5.4.7 FLP recombination of E. coli strain from Keio collection 

To eliminate the kanamycin resistance cassette from the E. coli K12 BW25113 

Δpnp strain from the Keio collection, we used FLP recombination based on the protocol 

adapted from (276, 277). Briefly, electrocompetent cells of the E. coli Δpnp strain were 

generated and then transformed with the plasmid pCP20 (278). pCP20 has a temperature-

sensitive origin of replication, confers ampicillin and chloramphenicol resistance and 

encodes the FLP recombinase. Cells were plated on a LB (Fischer Scientific, Hampton, 

NH) + ampicillin (50 μg/ml, VWT, Radnor, PA) plate overnight at 30 °C. Recombination 

was induced from a single colony that was inoculated in LB overnight at 43 °C. This step 

allows the induction of expression of the FLP recombinase and selects for loss of pCP20. 

Then, a 100fold dilution of the overnight culture was made using fresh LB and plated on a 

LB plate overnight at 30 °C. Ten individual colonies were patched onto LB + kanamycin 

(VWR, Radnor, PA), LB + ampicillin and LB plates, and grew overnight at 37 °C (for LB 

and LB + kanamycin plates) and at 30 °C for LB + ampicillin. Successful colony 

candidates in the LB plate that demonstrated sensitivity to both kanamycin and ampicillin 

were incubated in LB overnight at 37 °C. 

The validation of the removal of the kanamycin resistance cassette was performed 

by PCR of genomic DNA extracted using Wizard Genomic DNA purification kit 

(Promega, Madison, WI). Sanger sequencing was used to validate that no frame shifts were 

introduced. Primers were designed flanking the pnp gene, 240 bp upstream (from E. 

coli strain K12, accession U00096.3, region 3,311,408 – 3,311,427) and 258 bp 

downstream of the target gene (region 3,308,756 – 3,308,775) (see  Table 5.S1 for 

sequence information). Correct removal of the cassette was detected by the length of the 

amplicon in 1% agarose gel electrophoresis stained with ethidium bromide (Invitrogen, 
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Carlsbad, CA). The WT E. coli K12 MG1655 strain was used as positive control for gene 

presence. 

5.4.8 Cloning and site-directed mutagenesis 

The pnp sequence (from E. coli strain K12, accession U00096.3, region: 3,309,033 

– 3,311,168) was synthesized by GenScript (Piscataway, NJ) and then cloned into the 

pET28a vector between NdeI and BamHI restriction sites, resulting in the pET28a-

pnp construct. To introduce mutations in the Ser76-Phe77-Phe78 site, we used the Q5 Site 

Directed Mutagenesis Kit (NEB, Ipswich, MA) and NEBase Changer for primer design 

(https://nebasechanger.neb.com/). The primers used for mutagenesis are listed 

in Supplementary Table S1. We transformed the ElectroMAX DH5α-E Cells (Invitrogen, 

Carlsbad, CA) with the mutagenized plasmid by electroporation using a GenePulser Xcell 

electroporation system (Biorad, Hercules, CA), followed by an hour incubation in an I26 

rotatory shaker (New Brunswick Scientific, Edison, NJ) at 37 °C in SOC media. 

The cells were then plated on BD Difco LB Broth (Fischer Scientific, Hampton, 

NH) and agar (Fischer Scientific, Hampton, NH) plates supplemented with 50 μg/ml 

kanamycin sulfate (VWR, Radnor, PA) for selection. Individual colonies were inoculated 

into liquid LB medium and grown overnight for plasmid isolation the following day. 

Plasmid preparations were then submitted to the Genomic Sequencing and Analysis 

Facility at the University of Texas at Austin and confirmed by Sanger sequencing using 

primers listed in Supplementary Table S1. Once confirmed, miniprep DNA was used to 

transform E. coli BL21(DE3) competent cells (NEB, Ipswich, MA) following the supplier 

protocol. 

To generate the strain used for oxidative stress assays, a pnp gene amplicon from 

CML366 (see  Table 5.S2) was cloned into a plasmid containing a lpp constitutive 

https://nebasechanger.neb.com/
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promoter with a synthetic RBS B31 by Gibson Assembly (Primers for PCR amplification 

in  Table 5.S1). Mutagenesis of the SFF site was performed in the constitutive plasmid as 

described above to introduce the modeled variants. The selection of colonies was 

performed using LB and agar plates supplemented with 25 μg/ml of chloramphenicol 

(Sigma-Aldrich, St. Louis, MO). Plasmids harbored by transformants were isolated and 

sequence confirmed by Sanger sequencing using primers listed in  Table 5.S1. 

5.4.9 Protein expression and purification 

Frozen BL21(DE3) cells containing the pET28a-pnp mutants were used to start 

cultures for protein expression. Cells were grown in LB media with 50 μg/ml kanamycin 

sulfate until an OD600 of 0.6 was reached. The OD600 was measured in duplicate using 

200 µl of sample in a 96-well clear plate and analyzed in a plate reader (BioTek, Winooski, 

VT). Then, protein expression was induced by addition of IPTG (MilliporeSigma, 

Burlington, MA) to a final concentration of 1 mM for 3 hrs at 37 °C with constant shaking. 

Cells were centrifuged and then resuspended in lysis buffer in 50 mM NaH2PO4, 300 mM 

NaCl, 5 mM MgCl2, and 15 mM imidazole (Fischer Scientific, Hampton, NH) before 

lysing via sonication (Q125 Sonicator, QSonica, Newton, CA). The lysate was centrifuged 

at 3,320 g for 30 min at 4 °C. The supernatant (soluble fraction) was collected and stored 

for protein purification. 

Mutant PNPase variants were purified by affinity purification of the 6x-his-tagged 

protein using Ni-NTA Agarose beads following the protocol of the supplier (Qiagen, 

Hilden, Germany). Briefly, 1 mL of pre-washed Ni-NTA beads was mixed with 10–50 mg 

of the soluble fraction of the lysate followed by incubation on a rotator at 4 °C for 1 hr. 

After incubation, three washes were performed with increasing imidazole concentrations 

(25 mM, 35 mM, 50 mM). Next, the His-tagged protein was eluted in a solution containing 
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250 mM imidazole. The protein was then concentrated 10-50X using Amicon Ultra-15 

centrifugal filters (with a cutoff of 30 kDa, MilliporeSigma, Burlington, MA) at 4 °C for 

10-minute intervals (re-homogenizing each time) and buffer exchanged to a buffer 

containing 20 mM Tris Buffer (pH 7.0) and 100 mM NaCl. The resulting protein samples 

were diluted in one volume of 80% glycerol and stored at −20 °C. The purity of the proteins 

was evaluated by SDS-PAGE, and detection of the proteins was confirmed by Western 

blotting using anti-6x-his-tag monoclonal antibody (C-terminus, clone 3D5, Thermo 

Fisher, Waltham, MA). 

5.4.10 Preparation of 32P-end-labeled RNA 

The 8-oxoG containing oligomer and the unmodified oligomer were radiolabeled 

using T4 polynucleotide kinase (NEB, Ipswich, MA) as described by the manufacturer. 

After labeling, RNA was cleaned up by ethanol precipitation. This was done by first adding 

1 M Tris buffer (pH 8.0) and 1 M sodium acetate (pH 5.2) to the reaction mixture to bring 

the final concentrations to 50 mM and 0.3 M respectively. Two volumes of 

phenol/chloroform/isoamyl alcohol (25:24:1) (Fisher Scientific, Hampton, NH) were then 

added and the solution was vortexed for one minute followed by centrifugation at 

15,000 g for 2 min to achieve phase separation. The aqueous (top) phase was collected, 

and 1 µl of GlycoBlue Coprecipitant (Thermo Fisher, Waltham, MA) and 2.5 volumes of 

chilled 100% absolute ethanol (OmniPur, 200 Proof, Millipore Sigma, Burlington, MA) 

were added. The solution was mixed and then incubated overnight at −20 °C. The 

following day, the solution was centrifuged at 4 °C at 15,000 g for 15 min. The supernatant 

was removed and then washed with 95% ethanol followed by centrifugation at 15,000 g for 

5 min. The supernatant was discarded, and the pellet was dried in a vacufuge plus 
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(Eppendorf, Hamburg, Germany) for 5 min before resuspension in Molecular Biology 

Grade Water (Quality Biological, Gaithersburg, MD). 

5.4.11 Electrophoretic mobility shift assays and KD determination 

RNA-protein interactions were evaluated by EMSAs following the protocol by 

Hellman and Fried (279) with a few modifications.  Running conditions were performed 

as described in ref. (280). The binding reactions were conducted in 12 µl containing 1X 

TMK buffer [50 mM Tris-HCl pH 7.5, 50 mM KCl, and 10 mM (CH3COO)2 Mg], 10% 

glycerol, and 500 nM heparin (Sigma Aldrich, St. Louis, MO, F.W. ~ 6000 g/mol). 

1.2 nmol of radiolabeled RNA (3,000 cpm/ul when labeled) was mixed with varying 

amounts of PNPase. The reactions were incubated for 1 hr at 37 °C and resolved via native 

electrophoresis in 5% glycerol and 5% polyacrylamide (VWR, Radnor, PA) gels in 0.5x 

TBE (VWR, Radnor, PA) at 4 °C for 2 h at 180 V. The gel was dried using a model 583 

gel dryer (Bio-Rad, Hercules, CA) and exposed to a storage phosphor screen (GE 

Healthcare, Chicago, IL) overnight. The phosporimage was acquired using a Typhoon 

9500 (GE, Marlborough, MA) and the bands were quantified using CLIQS (TotalLab, 

Newcastle upon Tyne, England). KD values were derived using the modified Hill equation 

(281) and solved using the lsqcurvefit function in MATLAB (Version R2019A, 

MATHWORKS, Natick, MA). 

5.4.12 Hydrogen peroxide survival assays 

E. coli K12 Δpnp strains containing mutagenized variants of the PNPase SFF motif 

(NYT, NYM, GFT, NFH and SYH mutant PNPases, see Table 5.S2) and E. coli K12 

MG1655 were grown overnight in 5 mL LB with 50 µg/ml chloramphenicol or LB 

respectively in a shaking incubator at 37 °C. Five replicates were inoculated for assessment. 
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The following day, 500 µl of each culture was passaged into 5 mL LB + chloramphenicol 

or LB and grown for one hour at 37 °C. The ODs were normalized with LB to the lowest 

OD of all cultures used in the experiment (0.5 – 0.6). 150 µl of each culture was then mixed 

with 150ul of 40 mM H2O2 in 1X PBS (pH 7.4) in a sterile 96-well plate and incubated at 

room temperature for 20 min. 20ul of each cell mixture was then serially diluted in 180 µl 

of PBS down to the 10-7 dilution. 100 µl of the 10−3 and 10−4 dilutions were plated and 

incubated overnight at 37 °C for CFU counts. Spot plates were also made with 10 µl from 

each dilution. 

5.4.13 Bioinformatics analysis 

To analyze the biological relevance of mutations in the SFF binding site, we 

obtained 782 non-redundant PNPase sequences from the UNIPROT database that were 

queried with the search term “polynucleotide phosphorylase” and filtered to “reviewed 

sequences” (manually curated). A multiple sequence alignment was conducted with Clustal 

Omega version 1.2.4 (282) to generate a sequence consensus using WebLogo3 (61. 

Taxonomy distribution of the sequences was visualized with the module matplotlib 

(version 3.0.2) in Python (version 3.7.2). 

We analyzed the occurrence of the characterized PNPase motifs in ~26,000 PNPase 

sequences collected from querying the NCBI protein database for “polynucleotide 

phosphorylase”. We limited the output to full-length sequences or longer than 600 amino 

acids in the RefSeq database of non-redundant, well-annotated protein sequences. Before 

aligning the sequences, we split the fasta file into seven approximately equally sized files 

to provide input files below the limit of 4,000 sequences permitted by the multiple 

alignment program Clustal Omega. The E. coli PNPase sequence from UNIPROT was 

included in each analysis to be used as reference. The resulting alignments were saved as 
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CLUSTAL files and were manually checked for the highly conserved “R/K-R-E” region 

immediately downstream of the SFF site. The block with the R/K-R-E region on each of 

the seven CLUSTAL files was combined into a single CLUSTAL file. Given the list of 

characterized mutant PNPases, we searched for the presence of the mutant amino acid 

motifs in the combined CLUSTAL file using an in-house script. To obtain the species 

name, taxonomic lineage, and full PNPase sequence from the CLUSTAL files (initially 

annotated with GenInfo (gi) identifiers), we queried gi’s using Biopython Entrez Package 

(version 1.73). 

5.4.14 Area analysis of spot plates 

Analysis of cell spots was conducted using ImageJ. The color threshold was 

manipulated to highlight areas of high saturation of cell spots. Then, the rectangular 

selection tool was used to isolate each spot, and a particle analysis was used to obtain the 

total area occupied by cells. This data was compiled for each of the three exposed trials 

and normalized using the PBS control, which was analyzed using identical methods. 

5.4.15 Statistical analysis 

In single 50 ns explicit solvent MD simulation runs, the reported average and 

standard deviation values were calculated over four measurements, each corresponding to 

one fourth of the 50 ns explicit solvent MD simulation run. In the triplicate 50 ns explicit 

solvent MD simulation runs, the reported average and standard deviation values are 

calculated over three measurements, corresponding to the individual average values of all 

the 50 ns explicit solvent MD simulation. 

We conducted all described experimental measurements as either triplicates or 

duplicates. All data were presented as the mean ± one standard deviation. Statistical 
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analysis between groups was determined by student’s t-test in JMP (SAS, Cary, NC) with 

a significance of 0.05. 
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Chapter Six: Illuminating the binding preference of protein readers of 

the epitranscriptome using computational approaches 

§Article in preparation 

6.1 INTRODUCTION  

RNA-binding proteins enable gene regulation via post-transcriptional 

modifications of messenger RNAs. Many of these proteins have modular structures 

composed of RNA-binding domains that coordinate their mRNA specificity and activity. 

Given the widespread incidence of RNA modifications, these domains may have the ability 

to interact with multiple RNA modifications; however, this activity has been poorly 

investigated. Here we used computational and biochemical assays to elucidate the 

interactions of relevant RNA-binding proteins involved in diseases and stress responses. 

The proteins studied contain one of three major RNA-binding domains: (1) the TAR DNA-

binding protein 43 (TARDBP) containing RRM domains, (2) the Neuro-oncological 

ventral antigen (NOVA1) and polynucleotide phosphorylase (E. coli PNPase) both 

containing KH domain/s, and (3) YTH domain-containing family protein 1 (YTHDF1) 

containing the YTH domain. By employing a novel virtual screening approach, we predict 

a set of RNA modifications producing energetically favorable interactions with their RNA-

binding proteins. Using in vitro electrophoretic mobility shift assays (EMSAs), we validate 

these predicted interactions reveling that these proteins share the ability to directly interact 

with multiple modifications using common RNA-binding domains. In all these instances, 

these proteins have residues that provide discrimination to RNA modifications. 

Collectively, this study demonstrates the extended ability of several RNA binding proteins 

 
§ In this work I am a leading author contributing to 50% of all research done in collaboration with Asuka A. 

Orr. 
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to interact with multiple RNA chemical modifications, a mechanisms that might provide 

functional diversity for gene expression control. 

6.2 RESULTS 

6.2.1 Selection of proteins for investigation 

A review of the literature investigating reader proteins of the epitranscriptome 

rendered 71 RNA-binding proteins (RBPs) with the ability to bind at least one of five 

actively studied mRNA modifications in human cells (m5C, 8-oxoG, I, m1A, or m6A). 

These proteins were largely identified by RNA affinity pulldowns and quantitative 

proteomics and some were further validated by independent biochemical assays. 

Annotation of the RNA-binding domains (RBDs) (283) among the identified proteins 

resulted in the RNA-recognition motif (RRM), the K homology (KH) and the YT521-B 

homology (YTH) domains as the most frequently used RBDs by numerous protein readers 

(Figure 6.1B). Moreover, seven proteins were found to preferentially bind to more than 

one modification (Figure 6.1A). This observation is intriguing because it indicates that 

promiscuity for modified RNA binding is recurrent in numerous protein readers.  

 

Figure 6.1. Review of protein readers of the epitranscriptome.  
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A) Frequency of RNA-binding domains (RBDs) in protein readers associated with 

RNA modifications. Domain names are listed according to Pfam nomenclature. 

Counts are subdivided to indicate proteins that contain a single structural RBD 

(red); repeats of the same class of RBDs (yellow); one or more RBDs in 

combination with RBDs of different classes (green); or one or more RBDs in 

combination with other protein domains (blue). B) Protein readers with preferential 

binding to more than one RNA modification. 
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Table 6.1. Overview of RBPs selected for investigation 

Protein 

name 
RBDs [#] * PDB ID Functions Associated conditions 

NOVA1 KH [3] 2ANN RNA splicing Paraneoplastic opsoclonus-

myoclonus-ataxia (POMA) 

E. coli 

PNPase 

KH, S1 4AM3, 

3GCM 

mRNA and rRNA 

degradation, and 

tRNA processing 

Human homolog: hereditary 

hearing loss and Leigh 

syndrome  

TDP-43 RRM [2] 4BS2 RNA splicing and 

mRNA stability 

Amyotrophic lateral sclerosis 

(ALS), frontotemporal lobar 

degeneration (FTLD), 

cystic fibrosis, spinal 

muscular atrophy (SMA) and 

familial 

hypercholesterolemia 1 

YTHDF1 YTH 4RCJ Binds to m6A-

containg mRNA and 

promotes translation  

 HIV-1 and tumorigenesis 

*in brackets the number of repeated domains in the protein.  

6.2.2 Identification of Polynucleotide Phosphorylase (PNPase) as a reader of N-1 

methylguanine (m1G) in RNA 

Polynucleotide phosphorylase (PNPase) is a 3’ to 5’ exoribonuclease highly 

conserved in bacteria and eukaryotes that controls steps in RNA processing and 

degradation (284). The deletion of the gene encoding PNPase from bacteria results in 

phenotypes linked to increased cellular susceptibility to environmental stressors such as 

low temperature, UV radiation and oxidative stress (235, 285-287). Protein conservation 

in BLAST shows that E. coli PNPase and the human mitochondrial PNPase (gene name 

PNPT1) share ~40% of protein identity. Mutations in the gene encoding the mitochondrial 

PNPase is associated with hereditary hearing loss (288) and Leigh syndrome (289). PNPase 

is composed of three identical subunits assembled into a torus-shape core composed of the 
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RNase PH-like domains and two accessory domains the KH and S1 RNA-binding domains 

(Figure 6.3A and B). Previously, we have identified that PNPase preferentially binds to 8-

oxoG in two separated binding pockets, one involving the KH domain and position P4 of 

the RNA and one involving the RNase PH-1 core domain and position P8 (73). Thus, we 

introduced modified bases simultaneously at positions P4 and P8 and then conducted the 

virtual screening analysis of the RNA sequence 5’ - AAAXCUCXU - 3’, where X is the 

modification. After screening the interaction of PNPase with the library of 100+ RNA 

modifications, we found that our model predicts six modifications including 8-oxoG, 1-

methylguanine (m1G), N6,N6,2′-O-trimethyladenine (m6
2Am), 2’-O-methyluracyl (Um), 

5-methylcytosine (m5U) and 5-hydroxyluracyl (ho5U) modifications with lower averaged 

association free energy than G, which delivered the lowest free energy among the canonical 

ribonucleobases (Figure 6.3C).  

To validate the model’s predictions, we then conducted EMSAs of PNPase with a 

24-nucleotide long RNA oligomer containing either m1G or 8-oxoG modifications, the two 

modifications projected with the lowest free energy. To isolate the effect of the 

modification, we varied randomly the sequence of the bases flanking the position of the 

modification (e.g., oligomer sequence: 5’- (NNXN)6 -3’, where X is the modification and 

N is C, G, U or A). We compared the changes in binding affinities to an oligomer 

containing G in the position of the modification.  

As illustrated in the binding isotherms in Figure 6.4D, introducing m1G in the 

oligomer sequence shows stronger interaction with ~2.3-fold and ~1.3-fold increase in 

binding affinity as compared to that of guanine and the 8-oxoG-containing sequences, 

respectively. Moreover, PNPase reached the saturation of binding (the plateau in the curve) 

earlier with the bound m1G (at a concentration of 46 nM) than with 8-oxoG (130 nM) and 
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with G (295 nM), indicating a narrower concentration range of effective binding between 

PNPase and m1G.  

The 3D structures extracted from 50 ns explicit solvent MD simulations illustrate 

that identical residues are involved in the interaction with m1G, 8-oxoG and G (Figure 

6.3E). At position P4, we observed that the aromatic residues I565 and I569 form a 

hydrophobic surface parallel to the plane of the nucleobase, while the polar residues (K566, 

K571, R577, E581, and D591) branch to closely interact with nucleotide. We observe that 

basic residues (e.g., K566, K571 and R577) are oriented to facilitate contacts with the 

negatively charged backbone while acidic residues (e.g., E581 and D591) are oriented 

towards the positively charged amino groups in the nucleobase.  

The differences in binding affinities measured by EMSAs are most likely associated 

with structural re-arrangements of the polar residues that stabilize the modified nucleobase. 

We analyzed the MD simulations of PNPase in complex with the oligomers using the MM-

GBSA approximation to estimate the free energy of binding between all possible residue-

nucleotide binding pairs. The MM-GBSA calculations reveal that residues I565, R577, 

E581, and D591 have significant contributions in the association free energy with the 

bound m1G as compared to that with G (p value = 0.09, 0.004, 0.09 and 0.07 respectively, 

t-test two tails homoscedastic). Of these significant interactions, I565, E581 and D591 form 

critical sequence-specific contacts (Figure 6.4E). For instance, the aromatic side chain of 

I565 forms slightly stronger non-polar interactions with the pyrimidine ring in m1G than 

with that in G. The carboxylate oxygens in E581 orientate away from the C-6 carbonyl 

compared to G, which stabilizes the modified nucleobase while forming a polar interaction 

with the N-7 amine group of m1G. Importantly, D591 directly interacts through one of its 

carboxylate oxygens with the N1-methyl group in m1G via hydrogen bond. The free energy 
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of D591 is significantly weaker with m1G than with 8-oxoG (p value = 0.1, t-test two tails 

homoscedastic), indicating that the D591 predominantly contributes to discriminate m1G. 

In P8, the nucleobase is surrounded by hydrophobic phenylalanine residues 

extending from the three PNPase subunits (Figure 6.4F). The formation of more stable base 

stacking interaction between the aromatic heterocycles of the nucleobase and the benzene 

ring of F77 (subunit C) significantly improves the association free energy of PNPase with 

m1G and 8-oxoG (p value = 0.0003 and 0.03 respectively, t-test two tails homoscedastic) 

(Figure 6.4H). Together with F77, F78 forms an aromatic site that holds m1G as noticed 

by the significantly favorable interaction with m1G as compared to that with G (p value = 

0.0024, t-test two tails homoscedastic). Remarkably, as seen to the interaction of D591 and 

m1G at P4, the D366 directly contacts the N1-methyl group via hydrogen bonding with the 

side chain carboxylate oxygens, which has significantly stronger free energy than that with 

G (p value = 0.03, t-test two tails homoscedastic) or with 8-oxoG (p value = 0.08, t-test 

two tails homoscedastic ). This observation suggests that the aspartic acids in proximity 

with the m1G – at both positions P4 (D591) and P8 (D366) – may predominantly act in the 

recognition of the N1-methyl group in m1G.  
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Figure 6.3. Molecular interactions of PNPase with modified RNAs. 
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 A) Structure representation of RNA-PNPase complex modeled in this study. The 

three PNPase subunits are shown in green, blue, and purple ribbon representation 

and the RNA is shown in licorice representation. B) Protein domain organization 

of E. coli PNPase. Regions corresponding to the binding sites are marked with stars. 

C) Total MM-GBSA association free energy (ΔΔG) for PNPase interactions with 

modified RNAs. D) Electrophoretic mobility shift assays (EMSAs) profiles 

illustrate the behavior of the fraction of RNA bound as a function of protein 

concentration (2-fold concentration increase). Constant of dissociation (KD) values 

were calculated for each modification in triplicate using the Modified Hills 

equations. E) and F) Main molecular interactions between residues and the 

modified base (m1G or 8-oxoG) and guanine (G) at position P4 and position P8, 

respectively. G) and H) Main interaction free energies between each residue and 

the modification (m1G or 8-oxoG) and guanine (G) at position P4 and P8 

respectively. Error bars plotted as ± one standard deviation. Statistical analysis 

conducted using two-tailed homoscedastic t-test, * refers to p < 0.1.
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6.2.3 Identification of YTHDF1 as a reader of 3-methyluracyl (m3U) in RNA 

YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) is a member of the 

YTH domain family that selectively recognizes m6A. YTHDF1 is predominantly found in 

the cytosol where direct binding to m6A transcripts promotes mRNA translation via 

YTHDF1-facilitated interaction with initiator factors and ribosomes (290), this mechanism 

is leveraged by the cellular machinery to fine tune gene expression and rapidly response to 

stress (290). Moreover, YTHDF1 is associated with negative modulation of HIV-1 

replication (291) and may play an important role in tumorigenesis (292).  

Structural studies of the YTH domain protein family has established that the YTH 

proteins recognize m6A through an aromatic cage in the YTH domain using highly 

conserved residues  across diverse organisms (293-295) (Figure 6.4A). Most recently, 

studies employing quantitative proteomics indicate that YTH proteins have preferential 

binding to m1A-containing RNAs (58) through conserved residues in the aromatic pocket 

(58). The affinity of YTH proteins to m6A-containing RNA vastly depends on the sequence 

context. Indeed, some sequences display in vitro affinities between 100 and 300 nM, 

whereas other sequences show affinity values higher than 1 µM (244, 245). We performed 

the virtual screening of the YTH domain in YTHDF1 (amino acids 365 – 554, PDB ID: 

4RCJ) with the RNA GGXCU motif, where X refers to the position used to insert one of 

the 100+ RNA modifications. We identified six potential candidates with lower association 

free energy than A including 7-methylguanine (m7G), thymine (T, also known as 5-

methyluracil), 2-thiouracyl (s2C), 3-methyluracyl (m3U), m6A and m1A (Figure 6.4B). 

Among these modifications, we found that our screening successfully predicts the 

favorable interaction of YTHDF1 with m1G and m1A, further validating our computational 

approach.  
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We confirmed experimentally the prediction of YTH domain (amino acids 365 – 

554) binding m3U using EMSAs. We designed a 17-mer based on the m6A motif (5’- 

GG(m6A)CU -3’) and the sequences of YTHDF1 and YTHDC1 that previously reported 

low binding affinities in vitro (5’- GAACCGG(m6A)CUGUCUUA -3’) (47, 293). The 

oligo was synthesized with m3U at the position of m6A. To have a reference to variations 

in affinity, we used an unmodified oligomer containing adenosine.  

The binding isotherms in Figure 6.4C confirmed the interaction of the YTH domain 

with m3U, which exhibited stronger interactions with 1.4-fold and 1.7-fold increase in 

binding affinity relative to that in m6A and A, respectively. Unlike the specific interaction 

with m3C, m6A rendered a weaker binding as seen by the isotherm failing to fully reach 

saturation at 22 µM. Despite missing the total amplitude of the binding reaction, the 

calculated KD value for m6A is within the reported affinity range in previous studies (293).  

We used the 3D structures obtained from 50 ns explicit solvent MD simulations to 

get insights into the residues that most contribute to the recognition of m3U. As illustrated 

in Figure 6.4D, the aromatic cage composed of the residues Y397, W411, W465, and 

W470, accommodates m3U similarly as with m6A (RSMD YTH∙m3U—YTH∙m6A: 0.920 

Å vs RSMD YTH∙A—YTH∙m6A: 0.983 Å, Figure 6.SSS). In addition to aromatic residues, 

the MM-GBSA calculations show contribution of polar uncharged residues (S396, S413, 

T414 and N441) and basic residues (K395, K469 and R506) in the interaction with the 

nucleotide (Figure 6.4E). Among the aromatic residues, the contribution of Y397 and 

W411 is significantly stronger with the bound m6A as compared with A (p value = 0.009 

and 0.06 respectively, t-test two tails homoscedastic). Despite not finding statistically 

significant interactions, the residues K395, S413, W470 and R506 have more favorable 

association free energy with the bound m3U than that with A. We observed that R506 is 

positioned closer to the backbone of the nucleotide, interacting through its side chain amine 
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group to form a hydrogen bond with the phosphate. The backbone of K395 forms a stable 

polar interaction with the C-2 carbonyl group, whereas the backbone of S413 forms a stable 

hydrogen bond with the C-4 carbonyl group of the nucleobase. Furthermore, the benzene 

ring of W470 interacts with the pyrimidine ring of m3U via base stacking interactions. 

When we compared the interaction free energies of m3U with the canonical U, many 

residues showed statistically significant contributions to m3U binding including S396, 

W411, C412, S413, T414, N441 and W470 (p value < 0.1, t-test two-tails 

homoscedastic)(Figure 6.SSS).  
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Figure 6.4. Molecular interactions of YTH domain from YTHDF1 with modified 

RNAs.  



 169 

A) Structure of RNA-Structure representation of the YTH domain modeled in 

complex with RNA and protein domain organization of YTHDF1. The structure is 

displayed in blue ribbon (protein backbone) and cyan licorice (RNA) representation 

B) Total MM-GBSA association free energy (ΔΔG) of YTH interactions with 

modified RNAs. C) Electrophoretic mobility shift assays (EMSAs) profiles 

illustrate the behavior of the fraction of RNA bound as a function of protein 

concentration (1.5-fold concentration increase). Constant of dissociation (KD) 

values were calculated for each modification in triplicate. D) Main molecular 

interactions between residues in the aromatic pocket and the modified base (m6A 

or m3U) and adenine (A). E) Main interaction free energies between each residue 

and the modification (m6A or m3U) and adenine (A). Error bars plotted as ± one 

standard deviation. Statistical analysis conducted using two-tailed homoscedastic 

t-test, * refers to p value < 0.1.
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6.2.4 Identification of NOVA-1 as a reader of 8-oxo-7,8-dihydroguanine (8-oxoG) in 

RNA 

Neuro-oncological ventral antigen (NOVA) family of proteins that includes 

NOVA1 and NOVA2 are specifically expressed in the central nervous system (296) and 

are implicated in regulation of pre-mRNA splicing (297). The neurodegenerative syndrome 

paraneoplastic opsoclonus-myoclonus-ataxia (POMA) develops by the erroneous targeting 

of NOVA-expressing neurons by the immune system (298). In POMA, neurons express 

high-titer autoantibodies specific for NOVA’s KH domains, thus disrupting its ability to 

bind to RNA (299).  

NOVA1 possesses three KH domains, the first and second domains are arranged in 

tandem, and the third domain is near the C-terminal end (300) (Figure 6.5A). NOVA1 

preferentially binds to YCAY repeats (Y is a pyrimidine) as part of an accessible loop 

within the context of an RNA hairpin (301, 302). The YCAY repeats have been confirmed 

in several NOVA1 targets such as the pre-mRNA GlyRα2 and GABAARγ2 (297, 303, 

304). Previous studies have shown that the first KH domain (named KH1) mainly interacts 

with YCAY repeats of the target RNA (302). We thus used the structure of KH1 and KH2 

domain from NOVA1 (amino acids 49 – 249, PDB ID: 2ANN) bound to an RNA hairpin 

containing YCAY in tandem (Figure 6.5A) to virtually screen interactions with the library 

of 100+ modified RNAs. We analyzed the interactions with modifications individually 

introduced at P13, P14 or P15 corresponding to the accessible segment in the RNA hairpin. 

We found that the KH1 domain which is solely in contact with the RNA binds more 

favorably to 8-oxoG (at P13 and P14), m3U (at position P13), m1G (at position P14) and 

N2,2’-O-dimethylguanine (m2Gm, at position P15) compared to the parent RNA sequence 

(Figure 6.5B).  
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To validate these predictions, we conducted EMSA with the full-length NOVA1 

protein and RNA 25-mers containing 8-oxoG or m1G at P14 (5’ – 

CGCGCGGAUCAGUXACCCAAGCGCG – 3’); these modifications were selected 

because they showed the most favorable association free energies among the candidate 

modifications. Our data reveal that NOVA1 preferentially binds to 8-oxoG with an affinity 

that is 1.9 stronger than to unmodified cytosine, which is the original nucleobase of the 

parent RNA sequence (Figure 6.5C). The binding isotherms reached the binding plateau 

indicating that the interactions achieved equilibrium, with 8-oxoG having the lower 

saturation concentration (around 1,200 nM), followed by C (around 1,800 nM), and last 

m1G (around 3,000 nM). Our analysis also indicates that m1G ablates interaction as seen 

by the decrease in affinity as compared with C.  

The 3D structures generated from 50 ns MD explicit simulations reveal that the P14 

modification locates on the α1 and α2 helices near the invariant GXXG motif in KH 

domains (Figure 6.5D). The nucleobase stacks with serine-glycine residues S14, G18 and 

S44, while the backbone interacts with a polypeptide surface of glycine residues in series 

G22, G24 and G25 and the backbone of K23. MM-GBSA calculations reveal that the major 

energetic contribution is the polar interaction of K23. In the presence of 8-oxoG at P14, 

the side chain of K23 orients towards the nucleobase and directly interacts with the C-8 

carbonyl group forming a hydrogen bond. The association free energy of K23 with 8-oxoG 

is higher than with C, and significant compared to that with m1G (p value = 0.04, t-test 

two-tails homoscedastic). The differences in association free energy of K23 is most likely 

associated with the changes in KD binding affinities. While, the non-polar interactions of 

residues S14, G18 and G22 are more significant in m1G than in C (p value = 0.07, 0.03, 

and 0.08 respectively, t-test two-tails homoscedastic) the decrease in the contribution of 

K23 may explain the lower binding affinity of m1G as compared to C or 8-oxoG.  
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Figure 6.5. Molecular interactions of KH1 and KH2 domains in NOVA1 with 

modified RNAs.  
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A) Structure of ssRNA-NOVA1 complex modeled in this study and protein domain 

organization. B) Total MM-GBSA association free energy (ΔΔG) for NOVA1 

interactions with modified RNAs at position P14. C) Electrophoretic mobility shift 

assays (EMSAs) profiles illustrate the behavior of the fraction of RNA bound as a 

function of protein concentration (2-fold concentration increase). Constant of 

dissociation (KD) values were calculated for each modification in triplicate. D) 

Molecular interactions between amino acids in the binding pocket and the modified 

base (8-oxoG or m1G) or the unmodified base (C). Modifications were placed at 

P14. E) Interaction free energies between each residue and the modification 8-oxoG 

or m1G) or the unmodified base (C). Error bars plotted as ± one standard deviation. 

Statistical analysis conducted using two-tailed homoscedastic t-test, * refers to p 

value < 0.1. 
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6.2.5 Prediction of the modified RNA binding preference of the ribonucleoprotein 

TDP-43 

Transactive response DNA-binding protein 43 (TDP-43) is member of the 

heterogeneous nuclear ribonucleoprotein particle protein (hnRNP) family of RBPs, which 

is characterized for containing multiple RNA-binding RRM domains. These 

multifunctional RNA-binding proteins are mainly localized in the nucleus to regulate 

alternative splicing of many transcripts (305).  

The TDP-43gene is highly conserved in human, mouse, Drosophila melanogaster 

and Caenorhabditis elegans (306). TDP-43regulates alternative splicing of genes related 

with many diseases, including cystic fibrosis (CFTR exon 9)(307), spinal muscular atrophy 

(SMN2 exon 7) (308), and familial hypercholesterolemia 1 (APOA2 exon 3). Furthermore, 

vast inclusions of TDP-43are found out of place and aggregated in neuronal cells in 

amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (309, 310).  

TDP-43 contains two conserved RRM domains in tandem (Figure 6.6A) that are 

required for the preferential binding of sequences with UG repeats (311). The RNA 

recognition occurs on the surface of the β-sheets (β1, β2, β3 and β4) (312). Previous studies 

reported the enrichment of TDP-43 in protein pulldowns with m6A- and m1A-containing 

RNAs, however, direct biochemical evidence of these interactions is still missing.  

In our study, we investigated the interaction of the RRM1 and RRM2 domains from 

TDP-43 (amino acid region 102 – 269, PDB ID: 4BS2) with a UG-rich RNA sequence. 

We introduced the modifications in the positions with proximity to the binding surface of 

the β-sheets (P3 to P5, P8 and P9); with position P3 and P4 located in RRM1, P5 located 

at the interface between the two RRMs and position P8 and P9 are located in RRM2. The 

virtual screening of the library of modified RNAs identified seven modifications with 
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lower association free energy than the parent sequence, including 2'-O-

ribosyladenosine(phosphate) (Ar(p)) at P3, N4-methylcytosine (m4C) and m1A at P5, m6A 

and m1A at P8, and N4,2'-O-dimethylcytosine (m4Cm) and 2'-O-methylpseudouracyl (Ψm) 

at P9 (Figure 6.6B). At P4, no modifications have lower free energy than the parent 

ribonucleotide. It is worth noting that our screening successfully predicted m1A and m6A 

among the candidate modifications. Moreover, our data may indicate that while both 

RRM1 and RRM2 domains are involved in m1A binding, only RRM2 may be involved in 

m6A binding.  

To validate our model, we conducted EMSAs of full-length TDP-43 with an RNA 

12-mer containing either m1A or m6A. As seen in the binding profiles in Figure 6.6C, we 

observed a rapid shifting between the free RNA state and the bound complex, preventing 

the calculation of the KD binding affinity (Figure 6.6A). However, the binding profiles 

show that at 305 nM concentration of TDP-43 almost all the m1A-RNA and m6A-RNA are 

shifted to the complex, while at 549 nM almost all the unmodified RNA is shifted to the 

complex, indicating that the TDP-43 KD for m1A and m6A is lower than  for unmodified 

RNA.  

We conducted 50 ns explicit solvent MD simulations with m1A at P5 and m6A at 

P8. We studied m1A at P5 because it presented a lower association free energy of at this 

position than in P8 (∆∆GP5 = -8.2±6.0 vs ∆∆GP8 = -6.7±7.9 kcal/mol). At P5, the 

nucleobase is buried in the junction of the β-sheet surface of RRM1 and RRM2. Sequence-

specific contacts are crucial for binding, in fact, as seen in Figure 6.6F, polar side chain 

residues oriented towards the base are the main contributors of the association free energy 

(D10, K41, K50, and R102). Furthermore, aromatic residues in the two RRMs stack with 

the heterocyclic rings of the purine; in particular, F54 in RRM1 and H161 in RRM2 stack 

in opposite faces of the nucleobase that aids to stabilize the nucleobase. The MM-GBSA 
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calculations indicate an increase in the free energy of residue D10 (RRM1) and D152 

(RRM2) in the free energy in the presence of m1A (relative to A), although these 

interactions are not statistically significant (p value > 0.1, t-test two-tails homoscedastic). 

Through an intramolecular H-bond, the carboxylate oxygens of D10 directly interact with 

the N1-methyl group. Whereas the C-5 amine group is hold in place through a hydrogen 

bond with the side chain carboxylate of D152. Contrarily, in the unmodified adenosine, the 

side chain of D10 forms a H-bond with the C-5 amine group while D152 lack 

intermolecular contacts with the nucleotide.  

At P8, the nucleobase stacks between the aromatic side chain of F99 and the side 

chain aliphatic surface of E166, together with electrostatic interactions between the 

positively charged amino sidechain of K168 and the ribose hydroxyl groups, stabilize the 

nucleotide on the β-sheet surface (Figure 6.6E). Unlike F99 and K168 that interact non-

specifically with the nucleobase (as seen by the similar levels of per-residue interaction 

free energy between m6A and U in Figure 6.6G), the interaction of E166 with m6A is 

significantly higher than with U (p value = 0.003, t-test two-tails homoscedastic). 

Moreover, the significantly lower favorable interaction of N164 with m6A is balanced with 

the significantly more favorable interaction of A165 with m6A (p value = 0.004 and 0.03 

respectively, t-test two-tails homoscedastic); these two consecutive residues in the linker 

region of RRM1 and RRM2 hold the nucleobase in place on the surface of the β-sheet via 

polar interactions.   

 

 



 177 

 

Figure 6.6. Molecular interactions of RRM1 and RRM2 domains from TDP-43 with 

modified RNAs. 
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 A) Structure representation of the RNA-RRM1/RRM2 complex modeled in this 

study and protein domain organization of TDP-43. The structure is displayed in 

green ribbon (protein backbone) and gray licorice (RNA) representation. B) Total 

MM-GBSA association free energy (ΔΔG) of TDP-43 interactions with modified 

RNAs at position P5 and P8. C) Electrophoretic mobility shift assays (EMSAs) gels 

of free RNA and RNA in complex increasing 1.8-fold protein concentrations. Gels 

are representative from three independent experiments. D) Main intermolecular 

interactions between residues and m1A or cytosine (C) at P5. E) Main 

intermolecular interactions between residues and m6A or uracil (U) at P8. F) and 

G) Main per-residue interaction free energies between residues and ribonucleotide 

at P5 and P8, respectively. Error bars plotted as ± one standard deviation. Statistical 

analysis conducted using two-tailed homoscedastic t-test, * refers to p value < 0.1.
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6.3 DISCUSSION  

A major challenge in the study of RNA modifications is to identify their functional 

roles and elucidate the molecular activities by which they regulate RNA functions. Given 

that protein mediate the effects of RNA modifications on cellular processes, investigating 

the interaction of proteins with modified RNAs can provide important insights into the 

functional role of the epitranscriptome. In this study, we used MD simulations to 

investigate, in a large scale, modified RNA dependent RNA-protein interactions. We 

examined four physiologically relevant RBPs, including PNPase, YTHDF1, NOVA1 and 

TDP-43, except for NOVA1, all these proteins are previously linked to binding of at least 

one RNA modification. Yet, we found that these proteins share the ability to directly 

interact with multiple modifications using common RNA-binding domains. In all these 

instances, we found that specific contacts provide discrimination to these newly found 

interactions.  

Among the proteins previously known to interact with RNA modifications, PNPase 

has been well characterized to specifically interact with 8-oxoG (69, 73, 235, 313). This 

binding is associated with clearing of damaged RNA and protecting the cell from oxidative 

stress (313). Using the virtual screening, we identified that PNPase additionally interacts 

with m1G and together with biochemical assays, we demonstrated the binding affinity for 

m1G is comparable to that for 8-oxoG (Figure 6.3). m1G is a widespread modification 

prevalently found in transfer (tRNA) of archaea, bacteria, and eukaryotes (314), and in 

ribosomal RNA (rRNA) in E. coli (315). Yet, more research needs to be conducted to 

identify this mark in less abundant RNAs such as mRNA and siRNAs. PNPase plays an 

important role in tRNA and rRNA processing, specifically it removes the Rho-dependent 

terminator sequence of tRNAs including tRNALeu, tRNAVal and tRNAGlu (316-318). All 
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these tRNA species contain m1G either 3’ adjacent to the anticodon at position 37 

(tRNALeu) (319) or upstream of the D loop at position 9 (tRNAGlu and tRNAVal)(320). 

Moreover, E. coli PNPase is involved in quality control of defective fragments of 16S and 

23S rRNA(321), in the 23S subunit m1G has been detected at position 745 (315). Together, 

the presence of m1G in several natural targets of PNPase may suggest that this modification 

can facilitate the discrimination of RNA ligands by PNPase. 

Similarly, we revealed that YTHDF1 has preferential binding for m3U (Figure 6.4), 

a modification found in archaeal, bacterial, and eukaryotic rRNA (322-325) and eukaryotic 

and bacterial rRNA (325). This mark is likely important in ribosomal synthesis (326) and 

structure (327), and is linked to higher sensitivity of rRNA to chemical cleavage (328). 

Importantly, previous studies have shown that the fat mass and obesity-associated protein 

(FTO), which is primary involved in demethylating m6A, is capable of removing m3U in 

vitro (329). Given that YTHDF2 and presumably YTHDF1 interact with FTO to prevent 

demethylation of heat shock genes(330, 331), thus YTHDF1 could be implicated in m3U 

mediated regulation via interactions with FTO (332). 

A significant contribution of this study is the identification of NOVA1 as a new 

protein reader of the epitranscriptome (Figure 6.5). We found that it specifically interacts 

with 8-oxoG, which is the most prevalent RNA oxidation given that guanine has the highest 

potential of oxidation among all the nucleobases (333). At the molecular level, 8-oxoG 

induces base mispairing that has molecular consequences in function, stability and coding 

of genomic information of RNA (37, 38, 104, 110). Moreover, the accumulation of this 

mark in the cell may induce erroneous translation, which can cause synthesis of abnormal 

proteins (41, 334). If persist, the existence of malfunctioned RNA is hazardous to the cell 

(335). Indeed, previous studies demonstrated that RNA oxidation is prominent in neuronal 

vulnerability in patients with neurological diseases (114, 336). As such, the interaction of 
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NOVA1 with 8-oxoG is notable given the implications of both NOVA1 and 8-oxoG in 

neurological disorders. 

Like NOVA1, many physiologically relevant proteins contain three KH domains in 

tandem including the poly(C) binding proteins (PCBP1-4) and hnRNP K. Recent studies 

have shown that PCBP1 reads oxidized RNA in the form of 8-oxoG. PCBP1 recognition 

of 8-oxoG is associated with triggering activation of the apoptosis-related protein cysteine-

aspartic acid protease 3 (caspase-3) and cleavage of poly ADP-ribose polymerase 1 

(PARP-1) leading to programmed cellular death (123). This mechanism is believed to be 

critical to protect cells from heavily damaged RNAs (337). And remarkably, structural 

analysis of NOVA1 and the poly(rC)-binding protein 1 (PCBP1) show that these two 

proteins share high structural and sequence similarity. Despite lack of structural 

information of PCPB1 bound with 8-oxoG, homology modeling analysis of PCPB1 

indicate that PCPB1 can bind 8-oxoG near the GxxG motif, the same region involved in 

NOVA1 interaction with 8-oxoG (Figure 6.5). Given these similarities, NOVA1 may play 

an analogous functional role as PCBP1 in signaling and removal of the deleterious effects 

of 8-oxoG accumulation in the central nervous system.  

Another important protein in neurological functions is TDP-43. We found that it 

could bind both m1A and m6A more preferentially than to unmodified RNAs. TDP-43 play 

important roles in neurological conditions by co-regulating dendritic local translation 

(338). Intriguingly, m6A is hypothesized to contribute to gene expression control of nearly 

3,000 mRNAs at synapses (339). Other modifications, including m1A has also attracted 

interest as potentially contributing to local gene regulation in neurons, due to previous 

studies demonstrating that it dynamically modulates physiological conditions as well as it 

correlates with increased gene expression (340, 341). Thus, these marks may elicit an 
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underlying mechanism driving the recognition of TDP-43 targets that are translationally 

regulated in the context of different neural activities.  

Our data supports the ability of several protein readers of the epitranscriptome such 

as PNPase, YTHDF1 and TDP-43 to bind extended nucleobase chemistries/structures. This 

promiscuity for modifications likely depends on relative cellular concentrations of both the 

protein and specially the modifications, as well as properties controlling RNA and protein 

distribution in the cell. While more investigation is necessary, evidence on the co-existence 

and/or competition of chemical modifications in the same mRNA (342, 343) and broader 

recognition of base modifications by protein readers (58, 74) implies the existence of high 

complexity of the regulatory networks to modulate gene expression (74, 344). 

6.4 METHODS 

6.4.1 Reagents and plasmids 

The modified oligonucleotides were custom synthesized by GeneLink (Orlando, 

FL) and Dhamarcon (Lafayette, CO) as listed in Table 6.S1. ATP [γ-32P] (3000 Ci/mmol 

10 mCi/ml, 100 µCi) for 5′-end labeling of RNA oligos was purchased from PerkinElmer 

(Waltham, MA). The gene sequence of each protein was synthesized by GenScript 

(Piscataway, NJ) and then cloned into pET28 vector using the restriction sites listed in 

Table 6.S2. These plasmids were transformed by electroporation into ElectroMAX DH5α-

E Cells (Invitrogen, Carlsbad, CA). Transformants were screened by colony PCR and 

sequence-verified by Sanger sequencing. 
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6.4.2 Expression and purification of proteins 

Expression of Escherichia coli (E. coli) PNPase was conducted as previously 

reported (73). All the human proteins (NOVA1, TDP-43, and YTH from YTHDF1) were 

overexpressed in BL21-CodonPlus (DE3)-RIPL E. coli strain. Briefly, one aliquot of 

frozen cells containing the expression plasmid was diluted in 25 ml of LB media (BD 

Difco, Franklin Lakes, NJ) in the presence of 50 μg/ml kanamycin and 50 μg/ml 

chloramphenicol antibiotics and incubated with shaking at 37°C overnight. The next 

morning, the cultures were pipetted into fresh 250 ml LB broth containing no selection 

antibiotics and incubated with shaking until O.D. 0.6 was reached. Then, protein 

production was induced by addition of IPTG (MilliporeSigma, Burlington, MA) to a final 

concentration of 0.4 mM. Cultures were incubated with shaking for 48 hours at 4°C to 

maximize the production of soluble protein (345). After the end of the induction period, 

cells were centrifuged and suspended in lysis buffer in 50 mM NaH2PO4, 300 mM NaCl, 

5 mM MgCl2, and 15 mM imidazole (Fischer Scientific, Hampton, NH) before sonication 

(Q125 Sonicator, QSonica, Newton, CA). The lysate was then centrifuged at 3,320 g for 

30 min at 4 °C and the supernatant (soluble fraction) was collected and stored for protein 

purification. 

Protein was purified by affinity chromatography using Ni-NTA Agarose beads to 

pulldown the recombinant proteins containing a 6x-His-tag at the C-terminus, according to 

the bead’s supplier (Qiagen, Hilden, Germany). Briefly, 1 mL of pre-washed Ni-NTA 

beads was mixed with 10–50 mg of the soluble fraction of the lysate followed by incubation 

on a rotator at 4 °C for 2 hours. After incubation, three washes were performed with 

increasing imidazole concentrations (25 mM, 35 mM, and 50 mM). Next, the 6x-His-

tagged protein was eluted in a solution containing 250 mM imidazole. The protein was then 

concentrated 10-50X using Amicon Ultra-15 centrifugal filters (with a cutoff at least 3x 
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smaller than the protein size, MilliporeSigma, Burlington, MA) at 4 °C for 10-minute 

intervals (re-homogenizing each time) and buffer exchanged to a specific buffer for each 

protein (Table 6.S3). The resulting protein samples were diluted in one volume of 80% 

glycerol and stored at −20 °C. The purity of the proteins was evaluated by SDS-PAGE, 

and detection of the proteins was confirmed by Western blotting using an anti-6x-His-tag 

monoclonal antibody (C-terminus, clone 3D5, Thermo Fisher, Waltham, MA). 

 

6.4.3 Preparation of 32P end-labeled RNA 

All the oligomers were radiolabeled using T4 polynucleotide kinase (NEB, 

Ipswich, MA) as described by the manufacturer. After labeling, RNA was cleaned up by 

ethanol precipitation. This was done by first adding 1 M Tris buffer (pH 8.0) and 1 M 

sodium acetate (pH 5.2) to the reaction mixture to bring the final concentrations to 50 mM 

and 300 mM respectively. Two volumes of phenol/chloroform/isoamyl alcohol (25:24:1) 

(Fisher Scientific, Hampton, NH) were then added and the solution was vortexed for one 

minute followed by centrifugation at 15,000 g for 2 min to achieve phase separation. The 

aqueous (top) phase was collected, and 1 µl of GlycoBlue Coprecipitant (Thermo Fisher, 

Waltham, MA) and 2.5 volumes of chilled 100% absolute ethanol (OmniPur, 200 Proof, 

Millipore Sigma, Burlington, MA) were added. The solution was mixed and then incubated 

overnight at −20°C. The following day, the solution was centrifuged at 4 °C at 15,000 g 

for 15 min. The supernatant was removed and then washed with 95% ethanol followed by 

centrifugation at 15,000 g for 5 min. The supernatant was discarded, and the pellet was 

dried in a vacufuge plus (Eppendorf, Hamburg, Germany) for 5 min before resuspension 

in Molecular Biology Grade Water (Quality Biological, Gaithersburg, MD). 
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6.4.4 Electrophoretic mobility shift assays and constant of dissociation (KD) 

calculation 

RNA-protein interactions were evaluated by EMSAs following the protocol by 

Hellman and Fried {Hellman, 2007 #83} with a few modifications. The specific running 

conditions for each protein are listed in Table 6.S4. The binding reactions were conducted 

in 12 µl containing 1.2 nmol of radiolabeled RNA (3,000 cpm/ul when labeled) and varying 

amounts of protein (see Table 6.S4). The RNA oligomer was heated to 70°C for 10 min to 

denature the RNA, and then slowly cooled down to room temperature. The reactions were 

incubated for 1 hour and resolved via native electrophoresis in 5% glycerol and 5% 

polyacrylamide (VWR, Radnor, PA) gels in 0.5x TBE (VWR, Radnor, PA) at 4 °C for 2 h 

at 180 V. The gel was dried using a model 583 gel dryer (Bio-Rad, Hercules, CA) and 

exposed to a storage phosphor screen (GE Healthcare, Chicago, IL) overnight. The 

phosphor-image was acquired using a Typhoon 9500 (GE, Marlborough, MA) and the 

bands were quantified using CLIQS (TotalLab, Newcastle upon Tyne, England). KD values 

were derived using the modified Hill equation (281) and solved using the lsqcurvefit 

function in MATLAB (Version R2019A, MATHWORKS, Natick, MA). 
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Chapter Seven: Conclusions and perspectives 

In this dissertation, I described a set of tools that provides specific understanding 

of molecular mechanisms connecting chemical changes of specific RNA transcripts to mis-

regulated functions and pathways in cells exposed to environmental stresses. We showed 

through a cumulus of evidence that air pollution exposure directly induces chemical 

changes to specific RNA molecules in bronchial epithelial lung cells, specially oxidation 

of RNAs. Through this process, altering mRNA function and its interaction with regulatory 

proteins that may influence translation, splicing, localization and stability of RNAs. 

Collectively, this research contributes to the understanding of how environmental 

exposures impact the epitranscriptome, as well as identifying new responsive mechanisms 

and potential exposure biomarkers that are relevant in diagnostics and therapeutics of 

human conditions, including respiratory and neurodegenerative diseases. Importantly, my 

work will be of value to the scientific community to continue getting insights on the roles 

of RNA modifications in regulatory processes linked to environmental stress.  

In the work described in Chapter Two and Three, we demonstrate that the formation 

of an epitranscriptome mark, such as 8-oxoG, is stimulated by oxidative challenges in air 

pollution exposures; 8-oxoG accumulation has an adverse effect when accumulated in 

bronchial epithelial BEAS-2B cells, leading to changes within the cholesterol pathway and 

oxidative stress pathways that result in distinct cellular alterations associated with 

respiratory health conditions.  

Cells exposed to air pollution experienced increased RNA oxidation as compared 

to clean air controls. Remarkably, higher oxidative air pollution exposures lead to more 

severely oxidized RNA. Combining direct cell exposure and the 8-oxoG RIP-seq shows 

that RNA oxidation by air pollution is highly selective as 42 transcripts are consistently 
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oxidized. Our model suggests that induced 8-oxoG marks in mRNA transcripts can affect 

multifunctional metabolic pathways that are central regulators of cell signaling, 

proliferation and survival as well as of maintenance of the structural components. 

Specifically, the steroid synthesis pathway is enriched in oxidized transcripts. We expect 

that similar changes in regulatory RNAs (i.e. miRNAs lncRNA, etc.) will have similar 

consequences to cell function, although these are not examined in this study.  

Most importantly, our results offer insights into a molecular model of impaired 

cholesterol biosynthesis that results from aberrantly oxidized FDFT1 transcript by air 

pollution. The non-mediated decay FDFT1 transcript (FDFT1-215) is highly enriched in 

8-oxoG and significantly downregulated at higher oxidative exposures. This event leads to 

reduced FDFT1 protein levels and lower concentrations of intracellular cholesterol. 

Subsequently, the knockdown of FDFT1 transforms cell morphology and reduces 

cytoskeleton organization without affecting cell viability, providing a strong link between 

FDFT1 dysregulation and defects in cellular morphology that emerge post-exposure to air 

pollutants. Based on these results, we created the model shown in Figure 2.5. 

The therapeutic relevance of FDFT1 is clear in cases of profound birth defects 

linked to deficient cholesterol synthesis by recessive variants in FDFT1 transcripts (346). 

Furthermore, FDFT1 regulation may be key for  therapeutic intervention of invasive lung 

cancer cells (347). Collectively, these observations open new avenues for 

epitranscriptomics studies in environmental health science, which may facilitate a better 

understanding of the principles underlying 8-oxoG RNA oxidation marks and may deepen 

our knowledge of how molecular changes induced by environmental factors lead to 

alterations in human physiology.  

In Chapters Four, Five and Six, I present the development and application of a 

virtual screening method to discover novel RNA-protein interactions in the context of RNA 
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modifications that can regulate activity of these interactions. We identified using a novel 

virtual screening approach and for the first time, several interactions between RBPs and 

modified RNAs, thus expanding the repertoire of protein readers of the epitranscriptome. 

We showed that PNPase could bind directly to m1G, with a similar affinity than that toward 

8-oxoG in RNA (KDm1G 30.1±5.2 nM vs KD8-oxoG 39.3±4.9 nM), and this binding involves 

two conserved regions located in the KH and the RNase PH1 domains of PNPase. In these 

two binding segments, the conserved residues D366 (RNase PH1) and D591 (KH1) directly 

contact the N1-methyl group of m1G. Likewise, YTHDF1 potentially interacts with m3U, 

with lower affinity than that to m6A (KD m3U 7.2±2.3 µM vs KD m6A 9.9±0.4 µM). This 

binding involves the hydrophobic pocket of YTHDF1 that is also required for m6A binding, 

specifically, the conserved residues K395, S413 and W470 could be required for m3U 

recognition. We also demonstrated for the first time that NOVA1 may interact directly with 

8-oxoG (KD 8-oxoG 371±78 nM), and this interaction requires residues near the conserved 

GxxG motif in the KH1 domain. Furthermore, we showed that TDP-43 could bind directly 

to both m6A and m1A, and this binding involves separated regions within the protein. m1A 

is recognized by the pocket buried between RRM1 and RRM2’s β-sheet surface, which 

involves the direct contact of D10 with the N1-methyl group of m1A. Whereas m6A is 

solely recognized by the β-sheet surface in RRM2 and could involve residues A165 and 

E166.  

As evidenced in these studies, the flexibility to design and chemically modify RNA 

ligands computationally, provides important opportunities to interrogate unexplored 

aspects of the biochemistry of RNA-protein interactions. Specifically, our studies 

encourage the application of MD simulations to prompt the discovery of RNA-protein 

interactions with low-abundant or uncharacterized RNA modifications that can warrant 

further investigation in their cellular environment. 
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Appendices  

APPENDIX A: SUPPLEMENTARY INFORMATION FOR CHAPTER TWO 

 

 

Figure 2.S1. Schematic depicting the experimental setup used to expose BEAS-2B 

cells with air pollution mixtures.  

We used a temperature-controlled environmental chamber at 1 atm containing a 10 

m3 Teflon bag and two cell exposures chambers. Probes were used to monitor the 

temperature and relative humidity inside each exposure chamber.  
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Figure 2.S2. LDH levels after exposure of BEAS-2B cells to the air pollution mixture 

(lower oxidative mixture in Table 1) for 1.5 h.  

Activity of LDH was measured by a colorimetric assay in the cell culture media (N 

= 3). Error bars are expressed as one standard deviation (SD), n.s. refers to no 

significance difference was determined by t-test with significance established as p-

value < 0.05. 
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Figure 2.S3. Summary of functional enrichment of BEAS-2B cells exposed to air 

pollution mixtures 
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(A) Top ranked KEGG pathways enriched from the differentially expressed 

transcripts (upregulated and downregulated). We conducted transcriptomics 

analysis of the mRNAs (e.g., using a fraction of the input mRNA pool) to compare 

expression changes under exposed and control cells. This analysis shows 

differential expression of 878 mRNA transcripts with an adjusted p-value < 0.05. 

A lower p-value cutoff was used given the low variance in the transcriptome data 

as compared to the 8-oxoG pulldowns. Of these, 336 transcripts exhibit increased 

expression with a fold change > 2, and 542 exhibit decreased expression with fold 

change < 0.5 (Data 2.S1 and 2.S2). Terms ranked by the combined score in Enrichr. 

Genes associated to each pathway are presented in Data 2.S5-2.S7. (B) Venn 

diagram shows the number of transcripts upregulated and downregulated in BEAS-

2B cells following exposure (at lower oxidative mixture), and the overlap with 

transcripts identified as prone to 8-oxoG oxidation after exposure. 
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Figure 2.S4. Detection of 8-oxoG in total RNA directly exposed to air pollution.  

(A). Schematic depicting the direct exposure of RNA to air pollution. Cells were 

grown until reaching confluence. Cells were lysed with Trizol and then RNA was 

extracted and purify using spin column-based purification. 8 µg of total RNA was 

resuspended in 500 µl of TE buffer (pH 8.0) and exposed to air pollution for 90 min 

(using the higher concentrations of the VOC+O3 precursors in Table 1). RNA was 

purified and 8-oxoG was measured with ELISA. (B) Quantification of free 8-oxoG 

nucleosides from total RNA directly exposed to air pollution using ELISA (N = 3). 

Statistical difference was computed by t-test analysis and significance is denoted 

as ** for p-value < 0.001. Error bars are expressed as one standard deviation (SD)
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Figure 2.S5. Assessment of the anti-8-oxoG antibody (clone 15A3) demonstrating 

high specificity of the antibody.  
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(A) Dot blotting of different RNA oligonucleotides containing common methylated 

and oxidized RNA modifications as described in the label. Decreasing amounts 

(indicated on top of the blot) of the oligos were spotted onto the membrane, UV 

crosslinked and probed with anti-8-oxoG antibodies. (B) Quantification of the 

signal detected for the 8-oxoG 25-mer with one modification (square) and the 6x 

8-oxoG random 24-mer containing six modifications (circle). Quantification of the 

signal was conducted in CLIQS (TotalLab), with background subtracted. The signal 

ratio of 6x 8-oxoG random 24-mer/8-oxoG 25-mer of ~6 is proportional to the ratio 

of modifications in each oligomer at 10, 5 and 2.5 pmol of oligomers.  
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Figure 2.S6. Log2-FC plot representing selected 20% of all detected 8-oxoG 

enriched transcript (5493 out of 27,269 transcripts) in exposed cells.  

 

Labeled transcripts refer to the ones in the subset of the identified 707 oxidized 

transcripts by air pollution. This plot demonstrates that after applying the 

comparisons in Figure 2.2D, the minimum log2-FC of 6.7 provides a stringent 

threshold cutoff for removal of background noise from artifactual oxidation.
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Figure 2.S7. Summary of transcriptomics analysis for BEAS-2B cells exposed to air 

pollution mixtures 
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(A) Fraction of oxidized transcripts out of all transcripts (within one expression 

bin) in BEAS-2B cells exposed to air pollution (lower oxidative exposure (Table 

2.1)). (B) Volcano plot shows differential expression by comparing the input 

mRNA pool between air pollution vs clean air conditions at the lower oxidative 

potential exposure (Table 2.1). Significant expression was established with a fold 

change < 0.5 or > 2 with a statistical confidence of α = 0.1.
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Figure 2.S8. Physicochemical characterization of the air pollution mixture with 

higher oxidative potential.  
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(A) Gas-phase composition observed during the exposure period (0 – 1.5 hour) 

using the chemical ionization mass spectrometer (CIMS). Average integrated unit-

mass ion intensities are shown. Labels indicate select dominant ions observed at the 

corresponding m/z. Ions ranging between m/z 2-56 and 151-400 were monitored 

but not shown. Precursor volatile organic compounds are detected as C3H5O+ 

(ACR, C3H4O) and as C4H7O+ (MACR, C4H6O). The integrated ion intensities 

shown are not adjusted for sensitivities due to lack of authentic standards for 

oxidation products. (B) Typical f43 vs f44 profile, an estimator for aerosol 

oxidation state, observed by the aerosol chemical speciation monitor during the 

exposure period (0-1.5 hour). (C) Size distribution of secondary organic aerosol as 

observed by the scanning electrical mobility system (SEMS), averaged over the 

period between 0 to 1.5 hour from the start of the exposure. Lognormal distributions 

are shown. 
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Figure 2.S9. Exposure of BEAS-2B cells to the air pollution mixture (higher 

oxidative exposure (Table 1)) for 1.5 h.  

(A) Percentage of viable cells (at t = 1.5 h) after trypsinization of the adhered cells 

in the inserts, and after cell recovery (t = 20 h) determined by trypan blue dye 

exclusion method in an automatic viability analyzer (Vi-CELL) (N = 3). (B) Free 

8-oxoG nucleosides from total RNA were quantified shortly after exposure (at t = 

1.5 h) by ELISA (N = 3). Statistical difference was computed using t-test analysis 

and significance is denoted as *** for p-value < 0.0005. Error bars are expressed 

as one standard deviation (SD). 
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Figure 2.S10. Summary of transcriptomics analysis of BEAS-2B cells exposed to air 

pollution mixtures (at high oxidative dose) 
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(A) Venn diagram shows the number of transcripts upregulated and downregulated 

in BEAS-2B cells following exposure (at high oxidative mixture), and the overlap 

with transcripts identified as prone to 8-oxoG oxidation after exposure. (B) Volcano 

plot shows differential expression by comparing the input mRNA pool between air 

pollution vs clean air conditions at the lower oxidative potential exposure. 

Significant expression was established with a fold change < 0.5 or > 2 with a 

statistical confidence of α = 0.05.  
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Figure 2.S11. Differential expression validation using RT-qPCR 

(A) Fold change changes for differential expression and 8-oxoG IP from BEAS-2B 

cells exposed at the high oxidative mixture as given by DESeq2. (B) Validation of 

the observed trends for FDFT1 was performed by qPCR quantification of 8-oxoG 

IP and differential expression. Importantly, the abundance patterns for the FDFT1-

215 transcript identified in all three groups in the 8-oxoG analysis are replicated 

well by qPCR. Error bars are expressed as one standard deviation (SD).  
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Figure 2.S12. Validation of 8-oxoG modification via RT truncation assay 

(A) Schematic of the reverse transcription truncation assay to validate the oxidation 

of the FDFT1-215 transcript via an antibody-free method. Chemical labeling of 8-
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oxoG with K2IrBr6 generated a covalent bond with an amine-terminated biotin 

with a polyethylene glycol linker (HN-R). This reaction yields a bulky moiety in 8-

oxoG but not in G, which may cause reverse transcription stops. After reverse 

transcription of the labeled transcripts, PCR using primers near the 5’ end 

(proximal) and the 3’end (distal) results in accumulation of proximal products 

compared with the distribution of distal products. The decrease in the ratio of 

distal/proximal PCR products represents the relative level of 8-oxoG oxidation as 

compared to the control. (B) To validate the reverse transcription truncation assay 

with 8-oxoG chemical labeling, normal RNA extracted from BEAS-2B cells was 

used for a proof of concept assay. Here, we treated a fraction of the purified RNA 

with the Fenton’s reagents to induce RNA oxidation. Normal RNA and Fenton’s 

oxidized RNA was then chemically labeled with the biotin-terminated amine. After 

biotin labeling, the samples were subjected to PCR with proximal and distal primers 

for FDFT1-215. GAPDH and PPIB amplifications were used as loading control and 

negative control respectively (these transcripts were selected because they were 

unaffected by exposure according to our 8-oxoG RIP-seq analysis). Results indicate 

a decrease in the distal/proximal ratio in the Fenton’s oxidized RNA compared to 

normal RNA when both products are biotinylated. Interestingly, non-biotinylated 

RNA does not stop reverse transcription as demonstrated by the constant ratio 

between Fenton’s oxidized and normal RNA. Error bars are expressed as one 

standard deviation (SD). (C) Degradation assay of total RNA treated with the 

chemical labeling of 8-oxoG in 1% agarose gel electrophoresis. This assay 

demonstrates that chemical labeling at lower temperatures prevent degradation of 

the RNA as seen by the presence of intact 28S and 18S rRNA in Fenton’s reaction 

oxidized RNA and normal RNA treated at room temperature as compared with 
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normal RNA treated at 75 °C.  Normal RNA non-biotinylated (lane 4) was as 

positive control to depict intact RNA.  
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Figure 2.S13. Cellular stress analysis by lactate dehydrogenase (LDH) release.  

We quantified LDH in basolateral side of BEAS-2B cells after 24-hr treatment with 

siRNAs by a colorimetric assay of LDH activity in the cell culture media. No 

statistical significance was found between conditions using t-test analysis with p-

value < 0.05. Error bars are expressed as one standard deviation (SD).
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER FOUR 

Table 4.S1. Modified RNA nucleotides investigated and their symbols and CHARMM 

abbreviations. 

Continued subsequent pages  

 

Common name Symbol CHARMM abbreviation 

Guanine  G 

8-oxo-7,8-dihydroguanosine 8-oxoG - 

7-methylguanosine m7G 7MG 

1-methylguanosine m1G 1MG 

2'-O-methylguanosine Gm OMG 

N2-methylguanosine m2G 2MG 

N2,7-dimethylguanosine m2,7G 27G 

1,2'-O-dimethylguanosine m1Gm M1G 

N2,2'-O-dimethylguanosine m2Gm MMG 

N2,N2-dimethylguanosine m22G M2G 

   
Adenine  A 

8-oxo-7,8-dihydro-2’-deoxyadenosine 8-oxodA - 

8-methyladenosine m8A 8MA 

N6-methyladenosine m6A 6MA 

1-methyladenosine m1A 1MA 

2'-O-methyladenosine Am OMA 

inosine I INO 

2-methyladenosine m2A 2MA 

N6,N6-dimethyladenosine m62A M6A 

1,2'-O-dimethyladenosine m1Am M2A 

2'-O-methylinosine Im OMI 

1-methylinosine m5C 1MI 

   
Cytosine  C 

5-Hydroxy-2’-deoxycytidine 5-OHdC - 

5-methylcytidine m5C 5MC 

3-methylcytidine m3C 3MC 

N4-methylcytidine m4C 4MC 

2'-O-methylcytidine Cm OMC 
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N4,2'-O-dimethylcytidine m4Cm 4OC 

5-formylcytidine f5C 5FC 

5,2'-O-dimethylcytidine m5Cm MMC 

   
Uracil  U 

5-hydroxy-2'deoxyuridine 5-OHdU - 

2-thiouridine s2U 2SU 

2'-O-methyluridine Um OMU 

5-methyluridine m5U 5MU 

5-hydroxyuridine ho5U 5HU 

3-methyluridine m3U 3MU 

2-thiouridine s4U 4SU 

pseudouridine Ψ PSU 

dihydrouridine D H2U 

5-methyldihydrouridine m5D MDU 

1-methylpseudouridine m1Ψ 1MP 

3-methylpseudouridine m3Ψ 3MP 

2'-O-methylpseudouridine Ψm OMP 

3,2'-O-dimethyluridine m3Um M3U 

5-methyldihydrouridine m5D MDU 

5,2'-O-dimethyluridine m5Um 2MU 

2-thio-2'-O-methyluridine s2Um MSU 

5-methyl-2-thiouridine m5s2U 52U 
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APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER FIVE 

 

 

Figure 5.S1. Interaction free energy between PNPase residues and RNA. 

 

Guanosine (G) or 8-oxo-7,8-dihydroguanosine (8-oxoG) individually introduced at the 

indicated position of the ssRNA. The interaction free energy is obtained from three 50 ns 

MD simulations of the RNA-protein complex. Error bars plotted as ± one standard 

deviation.  
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Figure 5.S2. Total MM GBSA association free energy for selected mutant PNPases in 

complex with the 8-oxoG RNA at either position P8 or P9.  

 

The total MM GBSA association free energies are obtained from three independent 50 ns 

MD simulations. Given the small error bars in the association free energy, each simulation 

converged to similar values, hence corroborating the reproducibility of our results. Error 

bars plotted as ± one standard deviation.  
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Figure 5.S3. Validation of ∆pnp knockout in E. coli K12.  

 

Kanamycin resistance cassette from the Keio collection strain was eliminated by FLP 

recombination. Primers were designed flanking the pnp gene and amplified by PCR using 

gDNA. The amplicon was resolved in 1% agarose gel and stained with ethidium bromide. 

The shorter length of the amplicon in the Δpnp strain validate correct removal of the 

kanamycin cassette.
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Figure 5.S4. Growth analysis of PNPase mutants.  

 

(A) Growth curves for each of the PNPase mutants in LB media (in the absence of 

H2O2). E. coli K12 BW25114, K12 MG1655 and K12 BW25114 ∆pnp were used 

as controls. The SFF denotes the complemented strain with the wild type sequence. 

(B) Doubling time of the strains in the exponential phase for each PNPase mutants. 

Statistical analysis conducted using two-tailed heteroscedastic t test. (C) Mobility 

of the purified mutant PNPases in a 5% native polyacrylamide gel. Approximately 

1 µg of protein lysate was loaded into each well. (D) Spot plating of the 10-3 cell 

dilution after 20 min exposure to 20 mM H2O2 run in triplicate. Cell area from spot 

plates of the 10-3 dilution was calculated using image J after normalization with the 

PBS control cell area. Statistical analysis conducted using a one-tailed 

homoscedastic t-test, no statistical difference was determined between each sample 

and the SFF control. (E) Colony-forming counts (CFU/mL) in 107 cells after H2O2 

exposure run with three replicates. Statistical analysis conducted using one-tailed 

heteroscedastic t test. 
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Table 5.S1. Summary of primers  

Continued subsequent pages 

 

Entry Sequence Method 

AAA 

Forward GGCGCGTCGTGAAGGCCGCCCA 

Cloning for Q5 SDM 

primers 

AAA 

Reverse GCCGCACCCGGGATACGACCAGC 

GFT 

Forward TACCCGTCGTGAAGGCCGCCCA 

GFT 

Reverse AAGCCACCCGGGATACGACCAGC 

NFH 

Forward TCATCGTCGTGAAGGCCGCCCA 

NFH 

Reverse AAGTTACCCGGGATACGACCAGC 

NYL 

Forward TCTGCGTCGTGAAGGCCGCCCA 

NYL 

Reverse TAGTTACCCGGGATACGACCAGC 

NYM 

Forward TATGCGTCGTGAAGGCCGCCCA 

NYM 

Reverse TAGTTACCCGGGATACGACCAGC 

NYT 

Forward TACCCGTCGTGAAGGCCGCCCA 

NYT 

Reverse TAGTTACCCGGGATACGACCAGC 

SFQ 

Forward TCAGCGTCGTGAAGGCCGCCCA 

SFQ 

Reverse AAGCTACCCGGGATACGACCAGC 

SYH 

Forward TCATCGTCGTGAAGGCCGCCCA 

SYH 

Reverse TAGCTACCCGGGATACGACCAGC 

TFQ 

Forward TCAGCGTCGTGAAGGCCGCCCA 

TFQ 

Reverse AAGGTACCCGGGATACGACCAGC 
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TYH 

Forward TCATCGTCGTGAAGGCCGCCCA 

TYH 

Reverse TAGGTACCCGGGATACGACCAGC 

TYL 

Forward TCTGCGTCGTGAAGGCCGCCCA 

TYL 

Reverse TAGGTACCCGGGATACGACCAGC 

T7 Promoter 

Forward TAATACGACTCACTATAGGG Primers for 

Sequencing pET28a 

plasmids 
T7 

Terminator 

Reverse GCTAGTTATTGCTCAGCGGT 

IppB insert 

Forward GCAATTTATCTCTTCAAATGTAG  

Primers for 

Sequencing lppB 

plasmid 

PNP Insert 

Forward 

TAGAGTCACACAGGAAACCTACTAGAT

GCTTAATCCGATCGTTCGTAAATTCCA 

Primers for Gibson 

Assembly 

PNP Insert 

Reverse 

 CAGCGGTTTCTTTACCAGACTCGAGTCA

GTGGTGGTGGTGGTGGTGC 

lppB 

Backbone 

Forward CTCGAGTCTGGTAAAGAAACCG  

lppB 

Backbone 

Reverse CTAGTAGGTTTCCTGTGTGACTCTAGA 

f-SEQ-

pnpD-nest-

flank1 TCTGCGTCGCTAATTCTTGC 

Sequencing/PCR 

validation of keio 

deletion strain 

r-SEQ-

pnpD-nest-

flank1 TTAAAGCCCGACTGGCAAGG 
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Table 5.S2.  Summary of plasmids 

Continued subsequent pages 

 

Strains or 

plasmids 
Description of genotype Source 

Strains 

CML366 E. coli DH5α containing pET28a-Pnp 
This 

study 

CML2155 E. coli DH10b containing pET28a-Pnp-SFQ 
This 

study 

CML2156 E. coli DH10b containing pET28a-Pnp-NYL 
This 

study 

CML2157 E. coli DH10b containing pET28a-Pnp-TFQ 
This 

study 

CML2172 E. coli DH10b containing pET28a-Pnp-NYH 
This 

study 

CML2319 E. coli DH5α containing pET28a-Pnp-AAA 
This 

study 

CML2320 E. coli DH5α containing pET28a-Pnp-GFT 
This 

study 

CML2321 E. coli DH5α containing pET28a-Pnp-NFH 
This 

study 

CML2322 E. coli DH5α containing pET28a-Pnp-NYM 
This 

study 

CML2323 E. coli DH5α containing pET28a-Pnp-NYT 
This 

study 

CML2324 E. coli DH5α containing pET28a-Pnp-SYH 
This 

study 

CML2325 E. coli DH5α containing pET28a-Pnp-TFS 
This 

study 

CML2268 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-GFP 

This 

study 

CML2318 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp 

This 

study 

CML2364 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-AAA 

This 

study 

CML2365 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-GFT 

This 

study 

CML2366 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-NFH 

This 

study 
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CML2367 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-NYH 

This 

study 

CML2368 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-NYM 

This 

study 

CML2369 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-NYT 

This 

study 

CML2370 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-SYH 

This 

study 

CML2371 
E. coli BW25113 Δpnp containing pACYC-

LppB31rbs-pnp-TFS 

This 

study 

CML2418 
E. coli BL21 containing pET28a-Pnp 

This 

study 

CML2419 
E. coli  BL21 containing pET28a-Pnp-SFQ 

This 

study 

CML2420 
E. coli  BL21 containing pET28a-Pnp-NYL 

This 

study 

CML2421 
E. coli  BL21 containing pET28a-Pnp-TFQ 

This 

study 

CML2422 
E. coli  BL21 containing pET28a-Pnp-NYH 

This 

study 

CML2423 
E. coli  BL21 containing pET28a-Pnp-AAA 

This 

study 

CML2424 
E. coli  BL21 containing pET28a-Pnp-GFT 

This 

study 

CML2425 
E. coli  BL21 containing pET28a-Pnp-NFH 

This 

study 

CML2426 
E. coli  BL21 containing pET28a-Pnp-NYM 

This 

study 

CML2427 
E. coli  BL21 containing pET28a-Pnp-NYT 

This 

study 

CML2428 
E. coli  BL21 containing pET28a-Pnp-SYH 

This 

study 

CML2429 
E. coli  BL21 containing pET28a-Pnp-TFS 

This 

study 

CML2267 

 E. coli DH5α containing pACYC-LppB31rbs-GFT 

This 

study 

CML2356 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

AAA 

This 

study 

CML2357 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

GFT 

This 

study 

CML2358 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

NFH 

This 

study 
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CML2359 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

NYH 

This 

study 

CML2360 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

NYM 

This 

study 

CML2361 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

NYT 

This 

study 

CML2362 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

SYH 

This 

study 

CML2363 

 E. coli DH5α containing pACYC-LppB31rbs-pnp-

TFS 

This 

study 

CML2158  E. coli DH5α containing pCP20 Ref 57 

Plasmids 

pET28a-Pnp 
pET28a containing Pnp under IPTG inducible 

promoter 
Genscript 

pET28a-Pnp-SFQ 
derived from pET28a-Pnp with SFQ substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-NYL 
derived from pET28a-Pnp with NYL substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-TFQ 
derived from pET28a-Pnp with TFQ substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-NYH 
derived from pET28a-Pnp with NYH substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-AAA 
derived from pET28a-Pnp with AAA substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-GFT 
derived from pET28a-Pnp with GFT substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-NFH 
derived from pET28a-Pnp with NFH substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-NYM 
derived from pET28a-Pnp with NYM substitution 

of PNP residues 76-78 

This 

study 

pET28a-Pnp-NYT 
derived from pET28a-Pnp with NYT substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-SYH 
derived from pET28a-Pnp with SYH substitution of 

PNP residues 76-78 

This 

study 

pET28a-Pnp-TFS 
derived from pET28a-Pnp with TFS substitution of 

PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-GFP 

pACYC containing GFP under lpp constitutive 

promoter with a synthetic RBS B31 

Alper 

Lab 

pACYC-

LppB31rbs-pnp 

pACYC-LppB31rbs-GFP with pnp substituted for 

GFP 

This 

study 
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pACYC-

LppB31rbs-pnp-

AAA 

derived from pACYC-LppB31rbs-pnp with AAA 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

GFT 

derived from pACYC-LppB31rbs-pnp with GFT 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

NFH 

derived from pACYC-LppB31rbs-pnp with NFH 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

NYH 

derived from pACYC-LppB31rbs-pnp with NYH 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

NYM 

derived from pACYC-LppB31rbs-pnp with NYM 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

NYT 

derived from pACYC-LppB31rbs-pnp with NYT 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

SYH 

derived from pACYC-LppB31rbs-pnp with SYH 

substitution of PNP residues 76-78 

This 

study 

pACYC-

LppB31rbs-pnp-

TFS 

derived from pACYC-LppB31rbs-pnp with TFS 

substitution of PNP residues 76-78 

This 

study 
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APPENDIX D: SUPPLEMENTARY INFORMATION FOR CHAPTER SIX 

Table 6.S1 Sequences of RNA oligos  

Entry Modification Sequence Source Notes 

PNP-8-

oxoG 8-oxoG [NN(8-oxoG)N]6 GeneLink 

N is A, G, C or 

U 

PNP-m1G m1G  [NN(m1G)N]6 GeneLink 

N is A, G, C or 

U 

PNP-G G [NNGN]6 GeneLink 

N is A, G, C or 

U 

YTH-

m3U  m3U 

GAACCUG(m3U)CACG

UCUUA GeneLink  
YTH-

m6A m6A  

GAACCUG(m6A)CACG

UCUUA GeneLink  

YTH-A A 

GAACCUGACACGUCU

UA GeneLink  
NOVA1-

8oxoG 8-oxoG  

CGCGCGGAUCAGU(8-

oxoG)ACCCAAGCGCG GeneLink  
NOVA1-

m1G  m1G  

CGCGCGGAUCAGU(m1

G)ACCCAAGCGCG 

Dhamarcon (now Horizon 

Discovery) 

NOVA1-

C C 

CGCGCGGAUCAGUCA

CCCAAGCGCG GeneLink  
TARDBP-

m1A  m1A  GUGU(m1A)AAUGAAU GeneLink P5 

TARDBP-

m6A  m6A  GUGUGAA(m6A)GAAU GeneLink P8 

TARDBP-

G/U G/U GUGUGAAUGAAU GeneLink   
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Table 6.S2. Summary of cloning strategy used for each protein 

Gene name Region Restriction 

Site 

Vector 

NOVA1 Ensembl transcript NOVA1-202; transcript 

ID ENST00000347476.10 

SacI/SalI pET28b 

pnp E. coli strain K12, NCBI accession 

U00096.3, region: 3,309,033 – 3,311,168 

NdeI/BamHI pET28a 

TARDBP Ensembl transcript TARDBP-201; 

transcript ID ENST00000240185.7  

BamHI/SacI pET28b 

YTHDF1 Ensembl transcript YTHDF1; transcript ID 

ENST00000370339.8, region: 1093 - 1662 

EcoRI/XhoI pET28b 
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Table 6.S3. Summary of buffer composition for EMSAs 

Protein 

name Storage buffer Binding buffer Reference 

NOVA1 10 mM HEPES pH 

7.5, 100 mM KCl, 5 

mM MgCl2 

50 mM Tris-acetate, 50 mM K-

acetate, 5 mM Mg-acetate, pH 

8.0 adjusted with acetic acid, 

500 mM heparin 

(302) 

PNPase 20 mM TRIS pH 8.0, 

100 mM NaCl 

50 mM Tris-HCl pH 7.5, 50 

mM KCl, and 10 mM 

(CH3COO)2 Mg, 500 mM 

heparin 

(280) 

TDP-43 10 mM TRIS pH 8.0, 

100 mM NaCl 

10 mM NaCl, 10 mM Tris (pH 

8.0), 2 mM MgCl2, 1 mM 

DTT, 500 mM heparin 

(348) 

YTHDF1 

(YTH 

domain) 

5 mM Na phosphate, 

25 mM NaCl and 10 

mM β-

mercaptoethanol  

10 mM HEPES, pH 8.0, 50 

mM KCl, 1 mM EDTA, 0.05% 

Triton-X-100, 500 mM heparin 

(58) 
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Table 6.S4. Reaction conditions for EMSAs 

Protein name Reaction conditions 

NOVA1 

Incubation temperature: RT 

Protein range: 68 - 7,500 nM, increasing factor 1.6x 

PNPase 

Incubation temperature: 37°C 

Protein range: 19.53 - 625 nM, increasing factor 2x 

TDP-43 

Incubation temperature: RT 

Protein range: 5 - 1,780 nM, increasing factor 1.8X 

YTHDF1 (YTH domain) 

Incubation temperature: RT 

Protein range: 383 - 22,110 nM, increasing factor 1.5x 
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