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1 Introduction

The worldsheet is the best understood definition of string theory. It allows us to in principle
compute scattering amplitudes in flat spacetime to any order in the string coupling gs at finite
string length ℓs =

√
α′. For instance, the scattering of four gravitons in type IIB superstring

theory at leading order in gs is known as the Virasoro-Shapiro amplitude, and takes the
form of the worldsheet integral (up to an overall factor)

A
(0)
closed(S, T ) =

16
(S + T )2

∫
d2z |z|−

S
2 −2|1− z|−

T
2 −2 = −

Γ
(
−S

4

)
Γ
(
−T

4

)
Γ
(
−U

4

)
Γ
(
S
4 + 1

)
Γ
(
T
4 + 1

)
Γ
(
U
4 + 1

) ,
(1.1)

where we define the Mandelstam variables in terms of the momenta pi as

S = −α′(p1 + p2)2 , T = −α′(p1 + p4)2 , U = −α′(p1 + p3)2 . (1.2)

An outstanding question is how to generalise these worldsheet calculations to curved spacetime,
such as appears in the AdS/CFT correspondence. The difficulty is that these curved spacetimes
typically have finite Ramond-Ramond (RR) flux, which cannot be handled by the traditional
Ramond-Neveu-Schwarz (RNS) formalism [1]. While some progress has been made using the
Green-Schwarz [2] and pure spinor [3] formalisms, to date no scattering amplitude in curved
spacetime with finite RR flux has been computed directly from the worldsheet.

Recent progress has been made for scattering of gravitons in type IIB string theory on
AdS5 × S5 with radius R, using the holographic duality to N = 4 SU(N) super-Yang-Mills
(SYM) with the ’t Hooft coupling λ ≡ g2

YMN related to the string parameters as R4/ℓ4s = λ.
The genus-zero amplitude in AdS5 × S5 is dual to a four-point function of stress tensors
in SYM in the leading large N limit to all orders in 1/λ. This holographic correlator is
fixed by the analytic bootstrap [4–6] to be

Mclosed(s, t) =
1
N2

[
1
stu

+
α̃

(0)
R4

λ3/2 +
α̃

(1)
D2R4

λ2 +
α̃

(0)
D4R4(s2 + t2 + u2) + α̃

(2)
D4R4

λ5/2

+
α̃

(0)
D6R4stu+ α̃

(1)
D6R4(s2 + t2 + u2) + α̃

(3)
D6R4

λ3 +O(λ−7/2)
]
+O(N−4) ,

(1.3)

which we wrote in terms of the Mellin space variables s, t, u = −s− t that are related by the
Mellin transform to the usual cross ratios U, V in position space [7, 8]. The coefficients α̃(k)

#
correspond to higher derivative corrections to supergravity such as R4, and the protected
terms shown here were computed using supersymmetric localisation in [9–11].1 We can then
take the flat space limit [14] by rescaling (s, t, u) → R2(s, t, u) and taking R/ℓs → ∞, after
which we identify the rescaled s, t, u with the flat space Mandelstam variables in (1.2) divided
by α′. The 1/λ expansion at finite s, t, u in (1.3) then corresponds to expanding the AdS
Virasoro-Shapiro amplitude at small S, T, U .

1These higher derivative corrections were also computed at finite complex coupling τ in [12, 13].
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We can also consider the AdS Virasoro-Shapiro amplitude at finite S, T, U . This limit
corresponds to rescaling Mclosed(s, t) → λ3/2Mclosed(

√
λs,

√
λt), and then expanding in large

R/ℓs = λ1/4, resulting in a small curvature expansion for the AdS Virasoro-Shapiro

Aclosed(S, T ) = A
(0)
closed(S, T ) +

1√
λ
A

(1)
closed(S, T ) +O (1/λ) , (1.4)

where the leading term is the flat space Virasoro-Shapiro amplitude (1.1) and determines an
infinite number of coefficients α̃(0)

# in (1.3), A(1)
closed(S, T ) is the first curvature correction which

determines the coefficients α̃(1)
# , and so on. In [15–18], it was shown how to compute these

curvature corrections using two constraints. The first constraint uses a dispersion relation
to relate the correlator to single trace massive string operators that scale as λ1/4, such as
the Konishi operator. The CFT data of these operators can be computed at leading large
λ from the flat space amplitude, while 1/λ corrections are computable from integrability
applied to the classical string theory on AdS5 × S5 [19]. The second constraint comes from
assuming that the AdS amplitude can be computed from a worldsheet integral such as (1.1),
with the additional insertion of single-valued multiple polylogarithms, which was motivated
from the fact that only such functions appear when performing closed string worldsheet
calculations in an expansion around flat space. By combining both constraints, the first two
curvature corrections were computed in [18], and higher curvature corrections are expected
to be fixed in terms of 1/λ corrections to massive string operators as computable from
integrability. Each curvature correction to the worldsheet integrand turns out to admit
uniform transcendentality, a feature that is typical for N = 4 SYM.

In this paper, we will generalise this strategy to the scattering of open string gluons on
the worldvolume of D7 branes in type IIB string theory. In particular, consider N D3 branes,
4 D7 branes, and an O7 plane in type IIB string theory [20–22]. At large N , the geometry
is AdS5 × S5/Z2, where the Z2 orientifold has a fixed point locus of S3, such that gluons
scattering on the D7 branes probe AdS5 × S3 [23]. The dual CFT is a 4d N = 2 USp(2N)
gauge theory with one hypermultiplet in the antisymmetric and four hypermultiplets in the
fundamental, where the latter transform under an SO(8) flavour symmetry. Gluon scattering
on the D7 branes is dual to the four-point function of flavour multiplets in the CFT, such that
we can define the AdS Veneziano amplitude as the leading large N limit of this correlator
to all orders in the ’t Hooft coupling λ, which is proportional to R4/ℓ4s. We can similarly
consider two different orbifolds of this theory as described in [24], such that AdS Veneziano
amplitudes of all three cases are proportional to each other, except that the flavour group
GF now equals either U(4) or SO(4) × SO(4) instead of SO(8).2

The holographic gluon correlator is fixed by the analytic bootstrap [25] to be

M I1I2I3I4(s, t) = Tr(T I1T I2T I3T I4)
N

[
− 2
st

+
α̃

(0)
F 4

λ
+
α̃

(0)
D2F 4u+ α̃

(1)
D2F 4

λ3/2

+
α̃

(0)
D4F 4,1u

2 + α̃
(0)
D4F 4,2st+ α̃

(1)
D4F 4u+ α̃

(2)
D4F 4

λ2 +O(λ−5/2)
]

+ permutations +O(N−2) ,

(1.5)

2The GF = U(4) theory has an SU(N) gauge group with two antisymmetric hypermultiplets and four
fundamental hypermultiplets, while the GF = SO(4) × SO(4) theory has an USp(N) × USp(N) gauge group
with one bifundamental hypermultiplet and four fundamental hypermultiplets.
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where we sum over two permutations of the external operators and T I are generators in the
adjoint of the gauge group. The coefficients α̃(k)

# correspond to higher derivative corrections
to gauge theory such as F 4, and the terms in the first line are protected and were computed
using supersymmetric localisation in [26].3 The coefficients α̃(0)

# are determined via the flat
space limit by the flat space scattering amplitude for four gluons in open superstring theory
at leading order in gs, known as the Veneziano amplitude

AI1I2I3I4(pi) = g2
sK̂

[
Tr(T I1T I2T I3T I4)A(0)(S, T ) + permutations

]
,

A(0)(S, T ) = 1
S + T

∫ 1

0
dz z−S−1(1− z)−T−1 = −Γ(−S)Γ(−T )

Γ(1− S − T ) ,
(1.6)

where K̂ is a kinematic factor. In AdS this Veneziano amplitude receives curvature corrections
that are suppressed by powers of 1/

√
λ

A(S, T ) = A(0)(S, T ) + 1√
λ
A(1)(S, T ) +O (1/λ) . (1.7)

The term A(1)(S, T ) is the first curvature correction and determines an infinite number
of coefficients α̃(1)

# in (1.5). As in the N = 4 SYM case, we can compute A(1)(S, T ) by
combining a dispersion relation that relates the correlator to single trace massive string
operators that scale as λ1/4, as well as by assuming the correlator is given by a worldsheet
integral. Since open string scattering is not single-valued, unlike closed string scattering, we
assume a more general ansatz of multiple polylogarithms. Nonetheless, we find these two
constraints completely fix the first curvature correction of the AdS Veneziano amplitude,
which takes the form of the worldsheet integral in (1.6)

A(1)(S, T ) = 1
S + T

∫ 1

0
dz z−S−1(1− z)−T−1G(1)(S, T, z) , (1.8)

with the extra insertion

G(1)(S, T, z) = (S + T )−1[3 + (4T − S) log(z) + (4S − T ) log(1− z)− S(3S + 4T ) log2(z)

− T (3T + 4S) log2(1−z) +
(
5S2+12ST + 5T 2

)
(ζ(2)− Li2(z)− Li2(1−z))

]
+ ζ(3)(S + T )2 + T (2S + T ) (log(1− z)Li2(1− z)− Li3(1− z))

+ S2 log2(z)
(2
3 log(z)− log(1− z)

)
+ S(2T + S) (log(z)Li2(z)− Li3(z))

+ T 2 log2(1− z)
(2
3 log(1− z)− log(z)

)
. (1.9)

It is not surprising that this result does not admit uniform transcendentality, given that the
theory we consider is not maximally supersymmetric.

We have three distinct consistency checks on our answer. Firstly, in the high energy limit
we find that our answer takes an exponential form, as was observed for the AdS Virasoro-
Shapiro amplitude in [27] and that the exponent for open strings is half of the one for closed
strings, as argued in [28]. Secondly, while integrability has not yet been completed for the

3These first two corrections were also computed at finite complex coupling τ in [26].
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open string theories we consider,4 we can still compute the scaling dimension of massive
string operators in a large λ expansion using the semiclassical approach of [33], which gave
the correct answer in the AdS5 × S5 case. In our open string case, we are able to compute
the spin dependent terms of the first 1/

√
λ correction to the massive string operator scaling

dimensions, which matches our answer for the amplitude. Thirdly, the small S, T expansion of
our result matches the first line of (1.5), which was previously computed in the GF = SO(8)
theory using localisation [26]. Furthermore, we can combine our new constraints with those
of [26] to fix all terms displayed in the second line of (1.5). This corresponds to the D4F 4

higher derivative correction to the super-Yang-Mills term F 2 that describes the AdS5 × S3

effective action, and is the first unprotected correction.
The rest of this paper is organised as follows. In section 2 we discuss kinematic constraints

from superconformal symmetry on the flavour multiplet correlator, as well as derive the
dispersion relation. In section 3, we describe our ansatz for the worldsheet integral, which
we combine with the dispersion relation to fix the first curvature correction to the AdS
Veneziano amplitude. In section 4, we consider the high and low energy limits and extract
the OPE data of massive string operators from the amplitude. In section 5, we compute the
energies of massive string operators in a semiclassical expansion. We conclude in section 6
with a review of our results and a discussion of future directions. Technical details of the
calculations are given in the various appendices.

2 Setup

2.1 Correlator

We consider 4d N = 2 superconformal field theories with R-symmetry group SU(2)R×U(1)R
and flavour symmetry SU(2)L × GF , where as discussed above GF can be SO(8), U(4),
or SO(4) × SO(4). We will consider the moment map operator OI(x, v), which is the
superconformal primary of the flavour supermultiplet, and is a Lorentz scalar with dimension
∆ = 2 in the singlet of SU(2)L, the adjoint of SU(2)R (with polarisation vα) and also in the
adjoint of GF (with index I). Conformal correlators of such operators have been constructed
in [25] which we will follow for the setup.

The four-point function under study

⟨OI1(x1, v1)OI2(x2, v2)OI3(x3, v3)OI4(x4, v4)⟩ =
(v1 · v2)2(v3 · v4)2

x4
12x

4
34

GI1I2I3I4(U, V, α) , (2.1)

can be expressed in terms of the cross-ratios

U = x2
12x

2
34

x2
13x

2
24

= zz , V = x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z) , α = (v1 · v3)(v2 · v4)
(v1 · v2)(v3 · v4)

, (2.2)

where
xij = xi − xj , (vi · vj) = vαi v

β
j ϵαβ . (2.3)

4See however [29–32] for some first few steps.

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
3
2
2

We can define a reduced correlator H(U, V ) by considering the solution to the N = 2
superconformal Ward identity [34]

GI1I2I3I4(U, V, α) = GI1I2I3I4
0 (U, V, α) + (1− zα)(1− zα)HI1I2I3I4(U, V ) , (2.4)

where G0 is the protected part of the correlator, and all nontrivial data is in H(U, V ).
We will study the Mellin transform of the reduced correlator5

HI1I2I3I4(U, V ) =
∫ i∞

−i∞

ds dt

(4πi)2U
s
2 +1V

t
2−1Γ

[
1− s

2

]2
Γ
[
1− t

2

]2
Γ
[
1− u

2

]2
M I1I2I3I4(s, t) , (2.5)

where u = −s − t, and crossing symmetry acts on M I1I2I3I4(s, t) by

M I1I2I3I4(s, t) =M I3I2I1I4(t, s) =M I2I1I3I4(s, u) . (2.6)

In this work we will only consider the leading contribution of order 1/N in the large N
expansion,6 which corresponds to open string scattering where the worldsheet has the topology
of a disc with four insertions at the boundary. The colour structures for this configuration
are single traces of the generators T I of GF and the amplitude takes the form7,8 [25, 26]

M I1I2I3I4(s, t) = Tr
(
T I1T I2T I3T I4

)
M(s, t) + Tr

(
T I1T I4T I2T I3

)
M(t, u)

+ Tr
(
T I1T I3T I4T I2

)
M(u, s) ,

(2.7)

where M(s, t) is called the colour-ordered amplitude and can have only poles in the s- and
t-channels, the only ones consistent with the colour ordering (1234). Crossing symmetry
for M(s, t) implies that

M(s, t) =M(t, s) . (2.8)

We can also expand the reduced correlator in long superconformal blocks as

HI1I2I3I4(U, V ) =
∑
τ,ℓ

∑
r∈adj⊗adj

P I1I2I3I4
r C2

τ,ℓ,rU
−1Gτ+2,ℓ(U, V ) , (2.9)

where the labels are the twist τ = ∆ − ℓ and spin ℓ of the superconformal primary, the
4d conformal blocks are given by

Gτ,ℓ(U, V ) = zz

z − z
(kτ+2ℓ(z)kτ−2(z)− kτ+2ℓ(z)kτ−2(z)) ,

kh(z) = z
h
2 2F1(h/2, h/2, h, z) ,

(2.10)

and P I1I2I3I4
r is a projector to the irreducible representation r of GF . The irreps in the

s-channel will always include the singlet 1, the antisymmetric adjoint adj, and the traceless
symmetric sym in terms of adjoint indices. We can use (2.7) together with symmetry

5We use shifted Mellin variables compared to [25]: (s, t, u)here = (s − 2, t − 2, ũ − 2)there.
6We will drop the overall factor 1/N from formulas.
7Structures of the form Tr

(
T I1 T I2

)
Tr
(
T I3 T I4

)
and permutations only appear at subleading orders in 1/N .

8The normalisation of the generators is not important for our tree level calculation, as it can be absorbed
into the overall normalisation of the amplitude.
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properties of conformal blocks under the exchange 1 ↔ 2 to conclude that there are only
operators in the representations 1 and sym with even spin and operators in adj with odd spin.

The leading term in this Mellin amplitude was computed in [25]

M(s, t) = − 2
s t

+O(λ−
1
2 ) , (2.11)

fixing our normalisation of M(s, t). Apart from the Mellin amplitude we will also study
its Borel transform

A(S, T ) ≡ λ

8

∫ κ+i∞

κ−i∞

dα

2πi e
αα−4M

(√
λT

2α ,

√
λU

2α

)
, (2.12)

where the ’t Hooft coupling λ is related to the AdS radius R and the Regge slope α′ via
the AdS/CFT dictionary9

√
λ = R2

α′ +O

( 1
N

)
. (2.13)

We call A(S, T ) the AdS amplitude. It is known since [14, 35] that the transform (2.12)
relates AdS/CFT Mellin amplitudes to flat space amplitudes in the limit R→ ∞. In our case

A(S, T ) =
∞∑
k=0

1
λ

k
2
A(k)(S, T ) , (2.14)

has the flat space Veneziano amplitude in (1.6) as the leading term. This leads us to identify
S, T and U = −S − T with the dimensionless Mandelstam variables given in (1.2).

2.2 Dispersion relation

In order to derive a dispersion relation for the colour-ordered Mellin amplitude M(s, t),
we use two main ingredients. The first is that the OPE expansion (2.9) translates to the
statement [7, 36] that the Mellin amplitude has simple poles at s = τ +2m−2, where m ∈ N0
label (super)conformal descendants, with residues given by

M(s, t) ≈
C2
τ,ℓQ

τ+2,d=4
ℓ,m (t− 2)

s− τ − 2m+ 2 , (2.15)

where the Mack polynomial Qτ+2,d=4
ℓ,m (t− 2) is defined in (A.1), and we removed the irrep

label from C2
τ,ℓ because the leading 1/N form of the Mellin amplitude (2.7) and crossing

symmetry implies that the symmetric irreps 1 and sym have even spins ℓ and identical
CFT data, while the antisymmetric irrep adj can be associated simply with odd spins.10

The second ingredient is the assumption that the string theory amplitude has a softer UV
behaviour than the corresponding field theory amplitude (2.11), i.e. we will assume the
following bound in the Regge limit

M(s, t) = o(u−1) for u→ ∞ with t fixed, Re(t) < 0 . (2.16)
9For the GF = SO(8) theory, the ’t Hooft coupling is the usual λ = g2

YMN , while for the other two theories
there is an extra factor of two.

10Other irreps will not contribute nontrivially to the dispersion relation, as single trace operators do not
appear in those other irreps.

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
3
2
2

1 2 3 4 5 6 δ

0

1

2

3

4

5

ℓ

Figure 1. Chew-Frautschi plot of the spectrum of operators exchanged in the Veneziano amplitude.

With these assumptions we can derive the fixed-t dispersion relation

M(s, t) =
∮
u

du′

2πi
M(−u′ − t, t)

u′ − u
=
∑
τ,ℓ,m

C2
τ,ℓQ

τ+2,d=4
ℓ,m (t− 2)

s− τ − 2m+ 2 . (2.17)

We expect the exchanged operators to be related to massive open string states in flat space,
so that their dimensions should satisfy

∆ = mR
(
1 +O

(
λ−

1
2
))

=
√
δλ

1
4 +O

(
λ−

1
4
)
, (2.18)

where δ = 1, 2, . . . is the string mass level and the masses m2 = δ/α′ can be determined
from the locations of the poles of the Veneziano amplitude (1.6). The spectrum exchanged
in the Veneziano amplitude is shown in figure 1 and the AdS Veneziano amplitude will
encode curvature corrections to the flat space masses and partial wave coefficients. This
means we can expand the OPE data as

τ(δ, ℓ) =
√
δλ

1
4 + τ1(δ, ℓ) + τ2(δ, ℓ)λ−

1
4 + . . . ,

C2
τ,ℓ =

2−2τ(δ,ℓ)−2ℓ−9π3τ(δ, ℓ)4

(ℓ+ 1) sin
(
π
2 τ(δ, ℓ)

)2 f(δ, ℓ) ,

f(δ, ℓ) = f0(δ, ℓ) + f1(δ, ℓ)λ−
1
4 + f2(δ, ℓ)λ−

1
2 + . . . ,

(2.19)

where the flat space spectrum in figure 1 implies

f(δ, ℓ) = 0 , δ − ℓ even . (2.20)

We can now follow [16, 37] to compute the Borel transform (2.12) of the dispersion rela-
tion (2.17) in a large λ expansion, and to sum over m. We find that the amplitude has
poles at S = δ = 1, 2, . . .. We can match the residues with those of A(0)(S, T ) to determine

– 8 –
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⟨f0⟩δ,ℓ for all exchanged operators, where the angle brackets indicate a sum over degenerate
operators with the same δ and ℓ. For instance, we find for the first few Regge trajectories

⟨f0⟩δ,δ−1 = r0(δ) ,

⟨f0⟩δ,δ−3 = r1(δ)
3 δ(δ + 2) ,

⟨f0⟩δ,δ−5 = r2(δ)
90 δ(5δ3 + 28δ2 + 80δ + 48) ,

(2.21)

where
rn(δ) =

41−δδδ−2n−1(δ − 2n)2

Γ(δ − n+ 1) . (2.22)

Absence of such poles at order 1/λ1/4 requires that

τ1(δ, ℓ) = −ℓ , ⟨f1⟩δ,ℓ = ⟨f0⟩δ,ℓ
4ℓ− 1

2√
δ

. (2.23)

The first non-trivial correction to flat space occurs at order 1/
√
λ, where we compute in

an expansion around S = δ

A(1)(S, T ) =
4∑
i=1

R
(1)
i (T, δ)
(S − δ)i +O((S − δ)0) . (2.24)

The numerators R(1)
i (T, δ) can be explicitly computed in terms of ⟨f2⟩δ,ℓ and ⟨f0τ2⟩δ,ℓ and

are given in appendix B.3, where it is also shown how to obtain them more indirectly by
resumming the low energy expansion.

3 Worldsheet correlator

In order to fully fix A(1)(S, T ) we will now make the assumption that it has a representation as
a worldsheet integral. Colour-ordered open string amplitudes can be expressed as an integral
over a segment of the boundary of the open string worldsheet. For instance, by conformally
mapping the worldsheet to the upper half plane and fixing three of the operator insertions at
0, 1 and ∞, the flat space Veneziano amplitude can be written as (1.6). Correspondingly,
our ansatz for the first curvature correction is

A(1)(S, T ) = 1
S + T

1∫
0

dz z−S−1(1− z)−T−1G(1)(S, T, z) . (3.1)

Since A(1)(S, T ) has poles up to fourth order (2.24), the integrand G(1)(S, T, z) should have
terms with maximal transcendentality 3. Further it should only have singularities at z = 0
and z = 1. In order for the Wilson coefficients in the low energy expansion (1.5) to have
the expected transcendental weight, the weight of each term in G(1)(S, T, z) should match
the degree in S and T plus one. Finally, crossing symmetry dictates

G(1)(S, T, z) = G(1)(T, S, 1− z) . (3.2)
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A suitable basis of transcendental functions are the multiple polylogarithms (MPLs) Lw(z),
which are labelled by a word w made up of letters in the alphabet {0, 1}. They can be
defined recursively by

d

dz
L0w(z) =

1
z
Lw(z) ,

d

dz
L1w(z) =

1
z − 1Lw(z) , (3.3)

together with the condition limz→0 Lw(z) = 0 unless w = 0p, for which L0p(z) = logp z
p! . In

particular for the empty word we have L∅(z) = 1. This leads us to the ansatz

G(1)(S, T, z) = 1
S + T

3∑
n=0

∑
i,j,±

c±n,i,jP
±
n,i(S, T )T±

n,j(z) , (3.4)

where P±
n,i(S, T ) are symmetric / antisymmetric homogeneous polynomials of degree n and

the functions T±
n,j(z) have transcendental weight n and are given in terms of

L±
w(z) = Lw(z)± Lw(1− z) , (3.5)

by

T+
3 (z) =

(
L+

000(z), L+
001(z), L+

010(z), L+
011(z), ζ(2)L+

0 (z), ζ(3)
)
,

T−
3 (z) =

(
L−

000(z), L−
001(z), L−

010(z), L−
011(z), ζ(2)L−

0 (z)
)
,

T+
2 (z) =

(
L+

00(z), L+
01(z), ζ(2)

)
, T−

2 (z) =
(
L−

00(z), L−
01(z)

)
,

T+
1 (z) =

(
L+

0 (z)
)
, T−

1 (z) =
(
L−

0 (z)
)
, T+

0 (z) = (1) .

(3.6)

The ansatz has 33 rational coefficients c±n,i,j . We start fixing these coefficients by demanding
consistency with (2.24), assuming that the OPE data takes the form

√
δ⟨f0τ2⟩δ,ℓ = rτ2,1

δ,ℓ + r
τ2,ζ(2)
δ,ℓ ζ(2) ,

⟨f2⟩δ,ℓ = rf2,1
δ,ℓ + r

f2,ζ(2)
δ,ℓ ζ(2) + r

f2,ζ(3)
δ,ℓ ζ(3) ,

(3.7)

where ri,jδ,ℓ are rational numbers, together with (2.20). To compare to (2.24) one first Taylor
expands the integrand of (3.1) around z = 0 and then integrates before finally expanding
around S = δ, for different values of δ. This fixes all 33 parameters of the ansatz. Our
solution is

G(1)(S, T, z) =
(
S2 + T 2

)(
2L+

000(z)− L+
011(z) +

3
2ζ(3)

)
+ 3

2L
+
0 (z)

− 1
2
(
3S2 + 4ST + 3T 2

) (
L+

001(z) + L+
010(z)− ζ(3)

)
+ 3
S + T

− 3S2 + 8ST + 3T 2

S + T
L+

00(z) +
5S2 + 12ST + 5T 2

S + T

(
L+

01(z) + ζ(2)
)

+ (S2 − T 2)
(
2L−

000(z)−
3
2L

−
001(z)−

3
2L

−
010(z) + L−

011(z)
)

− S − T

S + T

(
3(S + T )L−

00(z) +
5
2L

−
0 (z)

)
.

(3.8)

The same result expressed in terms of classical polylogarithms can be found in (1.9).
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4 High and low energy limits

Since our solution for the first curvature correction to the AdS Veneziano amplitude relied on
various assumptions, it is important to check that it matches other independent calculations.
We will first compare to the high energy limit, then the low energy limit as previously
computed using localisation for the GF = SO(8) theory in [26], and finally in the next section
to the energies of massive string operators that we compute semiclassically. Note that the
first and third checks apply to theories with any GF . In the low energy expansion, we also
combine localisation constraints with our new results to completely fix the 1/λ2 term, which
corresponds to D4F 4 correction at finite curvature.

4.1 High energy limit

In the high-energy limit of large S, T,R with S/T and S/R fixed11 we expect the amplitude
A(S, T ) to be determined by a classical computation, as shown for the closed string amplitude
on AdS5 × S5 in [27]. We expect the form

AHE
open(S, T ) ≡ lim

S,T,R→∞
S/T,S/R fixed

A(S, T ) ∼ e−Eopen , (4.1)

and the exponent is determined by the saddle point at z = S
S+T of the integrals (1.6) and (3.1)

Eopen = E(0)
open + 1

R2E
(1)
open +O

( 1
S

)
,

E(0)
open = S log

(
S

S + T

)
+ T log

(
T

S + T

)
,

E(1)
open =−G(1)

(
S, T,

S

S + T

)
+O(S)

= S2
(
2L100

(
S

S + T

)
− 4L000

(
S

S + T

)
− ζ(3)

)
+ S(3S + 2T )

(
L001

(
S

S + T

)
+ L010

(
S

S + T

))
+ T 2

(
2L011

(
S

S + T

)
− 4L111

(
S

S + T

))
+ T (2S + 3T )

(
L101

(
S

S + T

)
+ L110

(
S

S + T

))
.

(4.2)

The exponent can be interpreted as the energy of a classical string solution and it was argued
in [28] that the open string should have half the energy of the corresponding closed string
solution, given that gluing two open string worldsheets gives one closed string worldsheet.
To check this, recall that the closed string amplitude on AdS5 × S5 takes the form of an
integral over the Riemann sphere12

Aclosed(4S, 4T ) =
1

(S + T )2

∫
d2z |z|−2S−2|1−z|−2T−2

(
1 + 1

R2G
(1)
closed(S, T, z) +O

(
1/R4

))
.

(4.3)
11We set α′ = 1 in this section.
12Note that we evaluate (1.4) at 4S, 4T because the open string momenta are doubled when applying the

reflection principle of [28].
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The high-energy limit is defined as

AHE
closed(4S, 4T ) ≡ lim

S,T,R→∞
S/T,S/R fixed

Aclosed(4S, 4T ) ∼ e−E(0)
closed−

1
R2 E

(1)
closed−O( 1

S ) , (4.4)

and one can check that the closed string exponents from [17, 18, 27] are precisely twice as
large as the ones for the open string (4.2)

E(0)
closed = 2E(0)

open , E(1)
closed = −G(1)

closed

(
S, T,

S

S + T

)
= 2E(1)

open . (4.5)

Note that we are comparing different string theories and would not expect such a relation
beyond the high-energy limit, which is governed by classical solutions.

4.2 Low energy expansion

Let us now discuss the low energy expansion of A(S, T ), i.e. the Taylor expansion around
S = T = 0. We define the Wilson coefficients α(k)

a,b by

A(S, T ) = − 1
ST

+
∞∑

k,a,b=0

σ̂a1 σ̂
b
2

λ
k
2
α

(k)
a,b , σ̂1 = −U , σ̂2 = −ST . (4.6)

The flat space Wilson coefficients α(0)
a,b can be easily extracted from the representation

A(0)(S, T ) = − 1
ST

exp
( ∞∑
n=2

ζ(n)
n

(Sn + Tn − (S + T )n)
)
, (4.7)

giving for instance

α
(0)
a,0 = ζ(a+ 2) ,

α
(0)
a,1 = 1

2

a∑
i1,i2=0
i1+i2=a

ζ(2 + i1)ζ(2 + i2) +
1
2(a+ 1)ζ(a+ 4) , . . . (4.8)

We can compute the low energy expansion of the Mellin amplitude by applying the inverse
of (2.12) term by term to (4.6), giving

M(s, t) = − 2
s t

+
∞∑

k,a,b=0

Γ(4 + a+ 2b)23+a+2b

λ1+ a
2 +b+ k

2
σa1σ

b
2α

(k)
a,b , (4.9)

with
σ1 = −u , σ2 = −st . (4.10)

The first few terms of the Mellin amplitude read

M(s, t) =− 2
s t

+ 48ζ(2)
λ

−
384ζ(3)u− 48α(1)

0,0

λ
3
2

− 273
ζ(2)2 (7st− 4u2)+ uα

(1)
1,0 − 1

8α
(2)
0,0

λ2

+O
(
λ−

5
2
)
. (4.11)
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For the GF = SO(8) theory, the localisation constraint of [26] then fixes13

α
(1)
0,0 = 0 , α

(2)
0,0 = 48ζ(2)2 , (4.12)

where the first coefficient was fixed already in [26], while the second we fix in appendix C.
To compute the coefficients α(1)

a,b from our expression for A(1)(S, T ) obtained above, we
need to expand integrals of the form

Iw(S, T ) =
1∫

0

dz z−S−1(1− z)−T−1Lw(z) . (4.13)

This computation is done in appendix D and the result is

Iw(S, T ) = poles +
∞∑

p,q=0
(−S)p(−T )q

∑
W∈0p

�1q
�w

(L0W (1)− L1W (1)) , (4.14)

where the pole terms can be obtained as explained in the appendix and � is the shuffle
product. Note that L0W (1) and L1W (1) are MZVs of weight p+ q + |w|+ 1. Using this, we
can compute the low energy expansion corresponding to (3.8)

A(1)(S, T ) =− 3σ̂1ζ(2)2 + σ̂2
1

(19
2 ζ(5)− 20ζ(2)ζ(3)

)
− σ̂2(19ζ(5) + 20ζ(2)ζ(3))

− σ̂3
1

(33
2 ζ(3)

2 + 68
7 ζ(2)

3
)
− σ̂1σ̂2

(33
2 ζ(3)

2 + 278
7 ζ(2)3

)
+ σ̂4

1

(
25ζ(7)− 51ζ(2)ζ(5)− 96

5 ζ(2)
2ζ(3)

)
− σ̂2

1σ̂2

(2137
16 ζ(7) + 102ζ(2)ζ(5) + 288

5 ζ(2)2ζ(3)
)

− σ̂2
2

(
50ζ(7) + 51ζ(2)ζ(5) + 168

5 ζ(2)2ζ(3)
)
+ . . . ,

(4.15)

where we expanded up to fourth order in S, T, U . Note that there are no poles at S, T = 0 as
expected from the field theory Mellin amplitude and we have α(1)

0,0 = 0 in agreement with the
localisation result (4.12). This also fixes the remaining coefficient at order 1/λ2 in (4.11) to

α
(1)
1,0 = −3ζ(2)2 . (4.16)

We have thus completely determined the D4F 4 correction in AdS at tree level, as given
in (4.11), (4.12), and (4.16). In the notation of (1.5) we have

α̃
(0)
D4F 4,1 = 293ζ(2)2 , α̃

(0)
D4F 4,2 = −2721ζ(2)2 , α̃

(1)
D4F 4 = 279ζ(2)2 , α̃

(2)
D4F 4 = 289ζ(2)2 . (4.17)

4.3 OPE data

Let us now extract the OPE data from our solution. From A(1)(S, T ) we obtain for the
first two Regge trajectories (rn(δ) is defined in (2.22), and similar formulas can be obtained

13Note that α
(1)
1,0 cancels out in this computation.
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for all Regge trajectories)

⟨f0τ2⟩δ,δ−1 = r0(δ)
√
δ

(3
4δ +

1
2δ − 3

4

)
,

⟨f0τ2⟩δ,δ−3 = r1(δ)
36

√
δ
(
9δ3 + 13δ2 − 28δ + 24

)
,

⟨f2⟩δ,δ−1 = r0(δ)
24δ

(
−14δ3 + 198δ2 − 580δ + 243

)
+ δ2ζ(3)⟨f0⟩δ,δ−1 ,

⟨f2⟩δ,δ−3 = r1(δ)
216

(
−42δ4 + 266δ3 − 2696δ2 − 2523δ + 13122

)
+ δ2ζ(3)⟨f0⟩δ,δ−3 .

(4.18)

This implies that the non-degenerate operators on the leading Regge trajectory have the
dimensions

τ2(δ, δ − 1) =
√
δ

(3δ
4 + 1

2δ − 3
4

)
. (4.19)

In the next section we will compare (4.19) to the energies of massive string operators as
computed from a semiclassical expansion. To this end we have to look for classical solutions
whose charges correspond to operators from the long superconformal multiplet labelled by δ

and ℓ = δ−1, i.e. the long multiplet whose primary has Lorentz spin δ−1, dimension
√√

λδ(1+
O(λ− 1

2 )), is in the singlet of SU(2)L × SU(2)R ×U(1)R and in the 1, sym or adj of GF .

5 Massive string operators

We will now compute the dimension of heavy single trace operators that scale as λ1/4 and
compare to the prediction (4.19) from our solution. In particular, we will consider single
trace operators in irreps with two adjoint indices, as they correspond to open strings with
Chan-Paton factors on either end. These can have the irreps 1, sym and adj as discussed
above. Our calculation will apply to all three theories GF = SO(8), U(4), SO(4) × SO(4)
that we consider, as the latter two differ from the former by orbifolds that do no affect the
operator we consider.14 For simplicity, we will thus discuss only SO(8) in what follows.

From the standard AdS/CFT dictionary, finding the dimension of an operator is equivalent
to finding the energy of a string solution in AdS5 × S5, which scales as λ1/4 ∼ R

ℓs
, in terms of

the quantum numbers of the state. By considering a semi-classical expansion in the large ’t
Hooft coupling regime λ≫ 1, the authors of [33, 38] have successfully found the dimension of
the Konishi operator in N = 4 SYM perturbatively in 1/

√
λ. This was later confirmed and

extended using integrability of string theory on AdS5 ×S5 [19]. Since integrability has not yet
been worked out for our open string theory, we will instead use the semiclassical expansion.

To be more precise, recall that the operators in N = 4 SYM transform under the
PSU(2, 2|4) group and thus are labelled by the following quantum numbers of the bosonic
subgroups,

(S1,S2|J1, J2, J3) where Si, Ji ∈ Z/2 . (5.1)
The Si and Ji labels the Lorentz spin and the SO(6) R-charge. They are related to the
SU(2)× SU(2)× SU(4)R Dynkin labels, denoted as [j, j|q1, p, q2], in the following way

[j, j|q1, p, q2] ≡ [S1 + S2,S1 − S2|J2 − J3, J1 − J2, J2 + J3] . (5.2)

Here we use the convention of [39] where the dimension of the j irrep is j+1, namely j∈Z>0.
14The orbifolds affect only the SU(2)L part of the geometry, under which our operators are invariant [24].
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On the string side, those quantum numbers are naturally identified with the Noether
charges of the string solution, see appendix E, (E.8) for details. Therefore, once a string
solution is found, we can read off the quantum numbers of the corresponding operator. Since
we do not know how to quantise string theory on AdS5 × S5, we cannot solve the spectrum
exactly. Instead, one can use a semiclassical approximation to compute energies of states
in the strong coupling regime where λ ≫ 1. More precisely, the semiclassical regime is
characterised by the condition that all the charges are large

Ji ≡
Ji√
λ
= fixed, Si ≡

Si√
λ
= fixed, E ≡ E√

λ
= fixed, λ→ ∞ . (5.3)

Assuming for simplicity that there are only two non-vanishing charges, the energy takes
the schematic form

E ∼
√√

λ(J1 + J2)
(
1 + 1√

λ

(
a

(0)
0 (J1 + J2) +

a
(0)
1

J1 + J2
+ a(1)

)

+ 1
λ

(
b

(0)
0 (J1 + J2)2 + b

(0)
1

(J1 + J2)2 + b
(1)
0 (J1 + J2) +

b
(1)
1

J1 + J2
+ b(2)

)
+O(λ−

3
2 )
)
. (5.4)

More precise formulas will be given in the following sections. The energy above is the direct
generalisation of the flat space energy, with the leading order term being the flat-space string
energy. The higher terms are curvature corrections to the flat space result.

Terms in the semiclassical expansion organise in a simple way. For instance, the leading
terms at each order in the 1/

√
λ expansion are completely fixed by the classical string solution.

In the schematic example above, the four coefficients a(0)
0 , a

(0)
1 , b(0)

0 , b
(0)
1 are determined by

the classical solution. The subleading terms a(1) and b
(1)
0 , b

(1)
1 are determined by the 1-loop

fluctuation around the classical solution, while the sub-subleading term b(2) is determined by
the 2-loop fluctuation. Higher terms in the 1/

√
λ expansion follow the same pattern.

After finding the semiclassical expansion, the next step involves extrapolating the analysis
to the regime of small charge, characterised by Ji,Si = O(1), or equivalently, where Ji,Si ≪ 1
and trying to fit the operator into the long multiplet of the superconformal primary operator we
are interested in. As operators in the same long multiplet are related by supersymmetry, this
fitting allows us to determine the spectrum of the superconformal primary. This extrapolation
is non-rigorous but works well for the N = 4 case and we will assume it works for the
N = 2 open string case as well.

5.1 Classical open string solutions

We first derive the leading terms at each order from a classical solution for open strings. The
action, the equations of motion and the expression for the conserved charges of the open strings
are identical to the closed string case, see appendix E for details. The differences include:

• The worldsheet parameter σ spans [0, π) for open strings, in contrast to the [0, 2π)
range for closed strings.
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• Open strings end on D-branes, where classically, fermions vanish, leaving only bosonic
fields to contribute to the classical dynamics. These fields satisfy Dirichlet or Neumann
boundary conditions at σ = 0 or σ = π, instead of being periodic.15

• In our case, involving a configuration of N D3 branes, four D7 branes, and one O7 plane
all positioned together, the introduction of D7 branes breaks the SO(6) R symmetry
down to its subgroup SO(4)× SO(2) which is isomorphic to SU(2)L × SU(2)R ×U(1)R,
resulting in a partial breaking of the N = 4 supersymmetry to N = 2. Here, the
SO(4) symmetry represents the transverse rotation along the D7 brane and the U(1)R
corresponds to the longitudinal rotations of the D7 brane. Notably, we assume the
orientifold plane retains the SO(4) rotational symmetry among J1, J2 directions.16 In
this case, the Cartans of the N = 2 theory are related to the N = 4 theory’s J1, J2, J3
as follows17

JSU(2)R
= J1 + J2, JSU(2)L

= J1 − J2, JU(1) = 2J3 . (5.5)

• Our theory is defined on an orientifold and geometrically the orientifold O7 plane lies
on top of the D7 plane. Therefore, we have to identify the transverse directions of D7
brane by a Z2 orbifold action, and we only keep the states that are invariant under the
worldsheet parity plus the Z2 orbifold action.

The last point needs clarification.

The orientifold action. We begin with the orientifold action in our geometric setup. Here,
the four probe D7 branes wrap an S3 inside S5 of the curved AdS5 × S5 spacetime. In terms
of global coordinates (E.3), this necessitates to set two out of the six Xi’s to be zero. The
natural choices are given by setting cos γ = 0, sinψ = 0 or cosψ = 0. The orientifold action,
denoted by Ω, is generated by composing three different operations:

Ω = (−)F Ω̃ I . (5.6)

Here, the operator (−)F counts the fermion numbers; the second operator Ω̃ imposes world-
sheet parity as follows

Ω̃ : (τ, σ) → (τ, π − σ) . (5.7)

The last operator, I, imposes the Z2 orbifold action in the transverse direction of the D7 plane.
The explicit action of I varies depending on the embedding of the branes within the

coordinate system, and the results are summarised in the following table.
15It is much more involved to study the allowed fermionic boundary conditions as one has to work in

Green-Schwartz formalism to incorporate the RR-flux. See [40–43] for some general discussions in the absence
of the orientifold.

16J1, J2 directions still satisfy the Neumann boundary condition as they lie on the D7 brane, while the J3

direction satisfies the Dirichlet boundary condition because it is the transverse direction of the D7 brane.
17The simplest way to confirm the numerical prefactor is to compare the Dynkin label of the N = 2

supercharge in [39] with the Dynkin labels of the N = 4 supercharge in [44].
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Condition Angle Value Orbifold Action
cos γ = 0 γ = π/2 φ1 → φ1 + π

cosψ = 0 ψ = π/2 φ2 → φ2 + π

sinψ = 0 ψ = 0 φ3 → φ3 + π

The open string state also carries the Chan-Paton factor βI1I2 , where I1, I2 are the usual
adjoint indices. The orientifold action for any product of orthogonal groups (which includes
all the GF we consider) simply permutes the indices [45]

βI1I2 → βI2I1 . (5.8)

Thus, for symmetric irreps 1 and sym we get a plus sign, while for the antisymmetric irrep
adj we get a minus sign. The final requirement for the invariance of the classical solution is for
the combined solution with the Chan-Paton factor to be invariant under the orientifold action.

The constraint on winding numbers. Implementing the orientifold condition (5.6) on
the classical solution is a well-defined procedure. However, there is a subtle point worth
mentioning during the final step of extrapolating to small quantum numbers. To ensure the
invariance of the classical solution under the orientifold action, it is necessary to demand
each component of the solution to be invariant. This requirement imposes specific constraints
on the winding number m of the solution. In most cases, these constraints limit m to even
integers, denoted as m ∈ 2Z.

Considering the oscillator representations of the state reveals that the previously men-
tioned requirement might be too stringent. To elaborate this point, let us begin with a flat
space string example, assuming the existence of two independent oscillators a†n1 and a†n2 ,
each at a different level nj , to construct the state. The state characterised by the quantum
numbers (J, S) and Chan-Paton factor βI1I2 is constructed as

βI1I2 |J,S⟩ ≡ βI1I2(a†n1)
J(a†n2)

S|0⟩ , (5.9)

where |0⟩ represents the vacuum state. The orientifold action Ω modifies the sign of each
oscillator based on their level, as described by

Ωa†nj
Ω−1 = (−)nja†nj

, j = 1, 2, and Ω|0⟩ = |0⟩, (5.10)

resulting in the transformation of the state under Ω to:

ΩβI1I2 |J,S⟩ = (−)n1J+n2SβI2I1 |J,S⟩ . (5.11)

Thus, the criterion for the invariance of the state under the orientifold action is for the total
quantum number n1J+n2S to be even for symmetric irreps, or odd for the antisymmetric irrep.

For classical solutions, we impose the orientifold condition on each X separately, which
would imply that each component is even, and thus requires n1J and n2S to be separately
even and only for symmetric irreps to exist. This requirement can be intuitively understood
through the nature of the semiclassical expansion: in the semiclassical regime, J and S are
treated as large real parameters that are not necessarily integers. Therefore, to maintain
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invariance under the orientifold action without the integrality of the J and S, we must
ensure that n1 and n2 are even.

For strings propagating in AdS5 × S5, the same issue persists. Imposing the orientifold
condition directly in the large Ji,Si semiclassical limit seems too strong a constraint, as it
requires even winding number and restricts to symmetric irreps. Instead, we will only require
that the orientifold condition be satisfied after extrapolating Ji,Si to the finite integers we are
interested in, and we will interpret the orientifold constraint in the oscillator sense considered
above, even if it is not yet precisely understood on AdS5 × S5.

5.2 Open string solutions from N = 4 closed string solutions

Guided by the conditions outlined previously, we proceed to solve the string equations of
motion (EOMs). Instead of tackling the EOMs directly, we find inspiration in the solutions
already obtained for closed strings. It is noteworthy that both open and closed strings
satisfy the same EOMs and they are connected through the “doubling trick”. This approach
allows us to use the information of the existing closed string solutions to search for open
string solutions [29–31, 46].

More specifically, the doubling trick allows for generating the corresponding closed string
solution from an open string solution by gluing two identical copies of the open string solution.
It is important to note, however, that the converse of this procedure is not automatically
true. While one can limit the domain of σ from [0, 2π) to [0, π) to generate a function that
solves the open string EOMs, one still needs to ensure that this adjusted solution obeys all
previously mentioned boundary and orientifold conditions.

The known classical closed N = 4 string solutions are of the following types:

Type N = 4 Quantum Number
(J1, J2, J3)

N = 2 Quantum Number
(JSU(2)R

, JSU(2)L
, JU(1)R

)
Circular S5 (0, 0|J1, J3, J1) (0, 0|J1 + J3, J1 − J3, 2J1)

Circular AdS5 (S,S|J, 0, 0) (S,S|J, J, 0)
Circular Mixed (S, 0|S, 0, J) (S, 0|S,S, 2J)
Folded Mixed (S, 0|J, 0, 0) (S, 0|J, J, 0)

Folded S5 (0, 0|J1, J2, 0) (0, 0|J1 + J2, J1 − J2, 0)
Glued Folded (S, 0|J1, J2, 0) (S, 0|J1 + J2, J1 − J2, 0)

(5.12)

The glued folded solution generalises the two different types of folded solution and interpolates
between them smoothly. Therefore we only need to consider the glued folded solution.

Using the mapping in (5.5), we deduce the quantum numbers for the N = 2 solution,
if this restriction is legitimate. Here the identification of the N = 4 directions with J1, J2
direction is achieved by examining the boundary conditions of the bosonic field, where we
recall that J1 and J2 correspond to the quantum numbers of the two Neumann directions.

As discussed in the preceding section, our goal is to identify states that are a singlet
under the SU(2)L symmetry of the N = 2 theory. This objective imposes restrictions on the
allowed quantum numbers of classical solutions. Further analysis of the boundary conditions
of the bosonic fields leads us to conclude that merely restricting some closed solutions does
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not yield valid open solutions that satisfy the appropriate boundary conditions. Lastly, we
want a solution that will apply for every Lorenz spin ℓ. The relevant solution for us, is the
glued folded solution, with quantum numbers

Type N = 4 Quantum Number N = 2 Quantum Number
Glued Folded (S, 0|J, J, 0) (S, 0|2J, 0, 0)

(5.13)

Now we want to analyse whether this glued folded solution can be fitted into the SUSY
multiplet of the superconformal primaries that appear in the AdS Veneziano amplitude.
Recall from the previous section that the superconformal primaries identified are neutral
under the R-symmetry and carry identical Lorentz spin ℓ = j = j. Using the dictionary (5.2),
they correspond to states of the quantum number (ℓ, 0|0, 0, 0). The analysis reveals that,
with appropriately selected values of J , the folded string solution indeed qualifies as a
superconformal descendant of this primary state. A detailed examination of the long multiplets
table in section 4.6 of [39] shows that the glued folded string solution matches a state in the
middle column of the long multiplet, characterised by having an R-charge two units higher
than the primary state and retaining the same spin for J = 1.18

5.3 The classical glued folded string solution

The classical glued folded string solution takes the following form

θ = 0, ρ = ρ(σ), ϕ3 = kτ, γ = π

2 , ψ = ψ(σ), φ1 = ω1τ, φ2 = ω2τ. (5.14)

The equations of motion and Virasoro constraints can be solved, and details will be given
in appendix E. The resulting classical energy reads

Ecl =
√
m
√
λ(S + J1)

(
1 + 1√

λm

(
3S
4 + J1

4 + J2
2

2(S + J1)

)

+ 1
λm2

(
3J2

1
32 − J4

2
8(J1 + S)2 + J1J

2
2

4(J1 + S) −
13J1S
16 + 5J2

2
8 − 21S2

32

)
+O(1/λ

3
2 )
)
,

(5.15)
where m ∈ Z is the winding number. The requirements for achieving an SU(2)L singlet state
within the desired supermultiplet set both J1 and J2 equal to one. The lowest energy state
is then given by setting m = 1. As discussed above, we impose the orientifold condition in
the oscillator sense after extrapolating Ji = 1 and S = ℓ, which means that for even ℓ we
have symmetric irreps 1 and sym, while for odd ℓ we have the antisymmetric irrep adj, as
expected. Based on the general discussion around (5.4), we then find that the full quantum
energy up to this order can be expressed as follows

E =
√√

λ(ℓ+ 1)
(
1 + 1√

λ

(3ℓ
4 + 1

4 + 1
2(ℓ+ 1) + a(1)

)

+ 1
λ

(
−21ℓ2

32 − 1
8(1 + ℓ)2 + b

(1)
0 ℓ+ b

(1)
1

1 + ℓ
+ b(2)

)
+O(λ−

3
2 )
)
.

(5.16)

18Additionally, another possible fitting is the one where for the primary spin [j, j]R=0, the glued folded
string aligns with a state exhibiting spins [j ± 1, j ± 1]R=2. However, only the current identification fits the
solution from the previous sections.
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We find that the O(1/
√
λ) terms match the spin-dependent parts of our previous result (4.19),

where recall that the superprimary spin ℓ is related to δ as ℓ = δ − 1. In particular, we find
that both the odd spin adj and even spin 1 and sym irreps are given by the same formula.
The 1/λ term is a prediction for the next order.

6 Conclusion

In this paper, we computed the first curvature correction to the AdS Veneziano amplitude
for general flavour group GF by combining a dispersion relation with an ansatz for the
worldsheet integral for this amplitude. We checked our solution in three independent ways.
Firstly, we showed that the exponent of our solution in the high energy limit is half of
the corresponding exponent for closed strings as expected [28]. Secondly, we showed that
the 1/

√
λ correction to the dimensions of massive string operators matches an independent

semiclassical calculation for open strings on AdS5 ×S5/Z2. Thirdly, the low energy expansion
of our result is consistent with previous results from localisation obtained in [26] for the
case GF = SO(8). We also combined our solution with the constraints of [26] to fix the
λ−2 correction at finite R, which corresponds to the tree level unprotected D4F 4 correction
to the super-Yang-Mills action on AdS5 × S3.

Our method of combining dispersion relations with a worldsheet integral ansatz can also
be used to constrain the AdS Veneziano amplitude to higher orders in 1/R, as was the case
with the AdS Virasoro-Shapiro amplitude. In the latter case, integrability results for massive
string operators were then sufficient to fix the next order in the curvature expansion [18],
and likely higher orders too. In our open string case, integrability has not yet been worked
out for the classical worldsheet theory, which is why we instead had to use a semiclassical
expansion to compute the spin dependent terms of the first 1/

√
λ correction to the massive

string operators.19 The semiclassical expansion involves a non-rigorous extrapolation to finite
quantum numbers, which is especially subtle when implementing the orientifold constraint. A
rigorous integrability analysis would be useful both to check this semiclassical expansion, as
well as allow us to compute higher orders in the curvature expansion of the AdS Veneziano
amplitude. We are looking into this and hope to report back soon.

Now that both the AdS Veneziano and Virasoro-Shapiro amplitudes are available, at
least to the first couple orders in a small curvature expansion, it would be interesting to
compare them. In flat space, the famous KLT relation [47] shows that the Virasoro-Shapiro
amplitude is the square of the Veneziano amplitude, up to a phase factor. This relation can
also be understood by deforming the contour of the two dimensional worldsheet integral for
the Virasoro-Shapiro amplitude into two copies of the one dimensional worldsheet integral
of the Veneziano amplitude. In appendix F, we show some first steps to generalising this
for the AdS amplitudes, but did not find any obvious relation.

One of the checks on our curvature correction to the AdS Veneziano amplitude was the low
energy expansion for the GF = SO(8) theory, which was computed by combining localisation
with analytic bootstrap in [26]. It would be nice to generalise this calculation to the other

19To fix the complete 1/
√

λ correction would require a 1-loop correction to the classical string solution we
considered, which seems challenging due to the subtlety of imposing the orientifold constraint.
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two theories with U(4) and SO(4)× SO(4) flavour groups. The challenge in these cases is
that the matrix model for the localised mass deformed partition function is no longer a single
trace deformation of a free matrix model, which facilitated the calculation of [26, 48, 49].

Finally, the general method of combining dispersion relations with an ansatz for the
worldsheet integral should work for other cases of AdS/CFT with a weakly coupled string
theory limit. One such example is type IIA string theory on AdS4 × CP3, which is dual
to ABJM theory with U(N)k × U(N)−k gauge group in the large N, k limit [50]. Both
integrability [51] and the superblock expansion [52, 53] of the stress tensor multiplet is
known for this theory, which should allow us to compute curvature corrections to the AdS
Virasoro-Shapiro amplitude to all orders in λ ≡ N/k.20
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A Mack polynomials

Our definitions for the Mack polynomials are

Qτ,d
ℓ,m(t) = K(τ, ℓ,m, 3)Qτ,dℓ,m(t) , (A.1)

with

K(τ, ℓ,m,∆) = − 2(ℓ+ τ − 1)ℓΓ(2ℓ+ τ)
2ℓΓ

(
ℓ+ τ

2 )
)4 Γ(m+ 1)Γ

(
∆− τ

2 −m
)2 (

ℓ+ τ − d
2 + 1

)
m

. (A.2)

Note that the value for ∆ changes for different reduced Mellin amplitudes. For the full Mellin
amplitude of four identical scalars ϕ it is ∆ = ∆ϕ, while for the reduced Mellin amplitude
for the ⟨2222⟩ correlator in N = 4 SYM, we have to set ∆ = 4. Qτ,dℓ,m(t) is called a Mack
polynomial in the literature [7]. We found the following representation useful [54]

Qτ,dℓ,m(t) = (−1)ℓ4ℓ
ℓ∑

n1=0

ℓ−n1∑
m1=0

(−m)m1

(
m+ t

2 + τ

2

)
n1

µ̃(ℓ,m1, n1, τ, d), (A.3)

µ̃(ℓ,m, n, τ, d) ≡
2−ℓΓ(ℓ+ 1)(−1)m+n (ℓ−m+ τ

2
)
m

(
n+ τ

2
)
ℓ−n

Γ(m+ 1)Γ(n+ 1)Γ(ℓ−m− n+ 1)

×
(
d

2 + ℓ− 1
)
−m

(2ℓ+ τ − 1)n−ℓ
(
m+ n+ τ

2

)
ℓ−m−n

× 4F3

(
−m,−d2 + τ

2 + 1,−d2 + τ

2 + 1, ℓ+ n+ τ − 1;

ℓ−m+ τ

2 , n+ τ

2 ,−d+ τ + 2; 1
)
.

(A.4)

20The first couple 1/λ corrections to this holographic correlator was already studied at finite R in [52].
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B Dispersive sum rules

In this section we use a crossing-symmetric dispersion relation to directly compute the Wilson
coefficients in the expansion (4.9) in terms of OPE data.

B.1 Crossing-symmetric dispersion relation

A crossing-symmetric dispersion relation for Mellin amplitudes with the symmetry

M(s, t) =M(t, s) , (B.1)

was first derived in [37], and we use essentially the same relation. We express the Mellin
amplitude in terms of the crossing-symmetric variables u and r = σ2

σ1

M̃(u, r) =M(s′(u, r), t′(u, r)) , (B.2)

by using

s′(u, r) = 1
2

(
−u+

√
u(u− 4r)

)
, t′(u, r) = 1

2

(
−u−

√
u(u− 4r)

)
, (B.3)

which solves r = σ2/σ1 and satisfies u+ s′(u, r) + t′(u, r) = 0. At large u we have either

s′(u, r) = −r +O

(1
u

)
, t′(u, r) = −u+ r +O

(1
u

)
, (B.4)

or
s′(u, r) = −u+ r +O

(1
u

)
, t′(u, r) = −r +O

(1
u

)
, (B.5)

so the bound on chaos (2.16) with fixed s or t translates to the following bound for fixed r

M̃(u, r) = o(u−1) , for |u| → ∞ with Re(r) > 0 . (B.6)

We can now use the bound (B.6) to write a dispersion relation starting with

M̃(u, r) =
∮
u

du′

2πi
M̃(u′, r)
(u′ − u) . (B.7)

In terms of u, s, t and τm = τ + 2m − 2 the Mellin amplitude has poles

M(s, t) ≈ C2
τ,ℓ

Qτ+2,4
ℓ,m (u− 2)
s− τm

,

M(s, t) ≈ C2
τ,ℓ

Qτ+2,4
ℓ,m (u− 2)
t− τm

.

(B.8)

We assume that poles in the u-channel are absent altogether, as is the case in flat space (for
colour-ordered amplitudes). M̃(u, r) is a meromorphic function in u due to the symmetry
M(s, t) =M(t, s). The poles lie at u = − τ2

m
τm+r , which corresponds to s′(u, r) = τm or t′(u, r) =

τm, depending on the values of r and τm. In this way we finally get the dispersion relation

M̃(u, r) = −
∑
τ,ℓ,m

C2
τ,ℓ

τm (τm + 2r)
τm + r

Qτ+2,4
ℓ,m (− τ2

m
τm+r − 2)

τ2
m + (τm + r)u . (B.9)
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Note that all the Mack polynomials depend only on r, so if we expand

M̃(u, r) =
∑
a,b

αa,bσ
a
1σ

b
2 =

∑
a,b

αa−b,bσ
a
1r
b , (B.10)

low values of b correspond to simple sum rules for αa,b. In order to do the Taylor expansions
in r of the Mack polynomials in (B.9) we apply the chain rule to a generic function f(s)

∂nr f

(
− τ2

m

τm + r

)∣∣∣∣
r=0

=
n∑
q=1

(−1)n−q(n− q + 1)q−1(q + 1)n−q
Γ(q)τn−qm

∂qsf(s)
∣∣
s=−τm

, n > 0 . (B.11)

We further use Qτ,4
ℓ,m(s) = Qτ,4

ℓ,m(−s − 2 − τ − 2m) to write

∂qsQ
τ+2,4
ℓ,m (s− 2)

∣∣
s=−τm

= (−1)q∂qsQ
τ+2,4
ℓ,m (s− 2)

∣∣
s=0 . (B.12)

By expanding also the other factors in u and r, we find for the Wilson coefficients

αa−b,b =
∑
τ,ℓ,m

C2
τ,ℓ

b∑
q=0

Ua,b,q(τm)∂qsQ
τ+2,4
ℓ,m (s− 2)

∣∣
s=0 , (B.13)

with

Ua,b,0(τm) =
(a+ b)(1− a)b−1

(−1)bΓ(b+ 1)τa+b+1
m

,

Ua,b,q>0(τm) =
πΓ(a)4F̃3(1, 1, 1− b,−a− b+ 2;−a− b+ 1, a− b+ 2, 2− q; 1)

(−1)b sin(πa)Γ(b)Γ(q)Γ(q + 1)Γ(a+ b− 1)τa+b+1−q
m

,

(B.14)

where 4F̃3 is the regularised hypergeometric function.

B.2 1/λ expansion

The first dispersive sum rule that we obtain by expanding (B.13) with the OPE data (2.19)
(but leaving the leading twist τ0 unfixed) is

α
(0)
a,0 =

∑
Oτ,ℓ

f0
(τ2

0 )a+2 . (B.15)

By comparing this with (4.8) in the limit of large a we see that

τ0(r) =
√
δ , δ ∈ N+ . (B.16)

Using this, we get the first layer of sum rules in terms of δ

α
(0)
a,b =

∞∑
δ=1

b∑
q=0

ca,b,q
δ2+a+2bF

(0)
q (δ) , (B.17)

with

ca,b,0 = (a+ 2b)(−a− b+ 1)b−1
(−1)b+1Γ(b+ 1) ,

ca,b,q>0 = πΓ(a+ b) 4F̃3(1, 1, 1− b,−a− 2b+ 2;−a− 2b+ 1, a+ 2, 2− q; 1)
(−1)b+1 sin(π(a+ b))Γ(b)Γ(q)Γ(a+ 2b− 1) ,

(B.18)
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and

F (0)
q (δ) = 4q

Γ(2q + 2)

δ−1∑
ℓ=0

(ℓ− q + 1)q(ℓ+ 2)q⟨f0⟩δ,ℓ . (B.19)

By comparing the sum rule with (4.8), we find the solution, which is simply an Euler-Zagier
sum with q 1’s

F (0)
q (δ) = δqZ1, . . . , 1︸ ︷︷ ︸

q

(δ − 1) . (B.20)

The generating series for this solution is
∞∑
q=0

F (0)
q (δ)

(
z

δ

)q
=
(
z + δ − 1
δ − 1

)
. (B.21)

At the next order the requirement that (4.9) is an expansion in 1/
√
λ leads to a sum

rule for vanishing Wilson coefficients

0 =
∞∑
δ=1

b∑
q=0

ca,b,q

δ
5
2 +a+2b

(
F (1)
q (δ)− (2 + a+ 2b)T (1)

q (δ)
)
, (B.22)

with

T (1)
q (δ) = 4q

Γ(2q + 2)

δ−1∑
ℓ=0

(ℓ− q + 1)q(ℓ+ 2)q⟨f0⟩δ,ℓ2(τ1(δ, ℓ) + ℓ) ,

F (1)
q (δ) = 4q

Γ(2q + 2)

δ−1∑
ℓ=0

(ℓ− q + 1)q(ℓ+ 2)q
(√

δ⟨f1⟩δ,ℓ − ⟨f0⟩δ,ℓ
(
4ℓ− 1

2

))
.

(B.23)

This has the solution

τ1(δ, ℓ) = −ℓ , ⟨f1⟩δ,ℓ = ⟨f0⟩δ,ℓ
4ℓ− 1

2√
δ

. (B.24)

The next dispersive sum rule is

α
(1)
a,b =

∞∑
δ=1

b∑
q=0

ca,b,q
δ3+a+2b

(
F (2)
q (δ)− (2 + a+ 2b)T (2)

q (δ) + p
(2,0)
a,b,qF

(0)
q (δ) + p

(2,1)
a,b,qF

(0)
q+1(δ)

)
,

(B.25)
with

T (2)
q (δ) = 4q

Γ(2q + 2)

δ−1∑
ℓ=0

(ℓ− q + 1)q(ℓ+ 2)q2
√
δ⟨f0τ2⟩δ,ℓ ,

F (2)
q (δ) = 4q

Γ(2q + 2)

δ−1∑
ℓ=0

(ℓ− q + 1)q(ℓ+ 2)q (δ⟨f2⟩δ,ℓ + 22ℓ⟨f0⟩δ,ℓ) ,
(B.26)

and

p
(2,0)
a,b,q = − q2(a+ 2(b+ 7)) + 2q(a+ 2b)(a+ 2b+ 6)− 9q

2 − 8(a+ 2)b2 − 4a(a+ 4)b

− 2
3a(a+ 1)(a+ 5)− 16b3

3 − 20b
3 + 59

8 , (B.27)

p
(2,1)
a,b,q =

1
4(q + 1)

(
4a2 + 2a(8b− 2q + 11) + 16b2 − 8(b+ 7)q + 44b− 37

)
.
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B.3 Summing the low energy expansion

Let us also sum the low energy expansion, to get a new representation for the Veneziano
amplitude. The main task is to derive a generating series for the coefficients ca,b,q. We
start by noting that

ca,b,q = −
b−1∑
k=0

(−1)kca+1+k,b−1−k,q−1 , (B.28)

which lets us express these coefficients in terms of ca,b,0

ca,b,q = (−1)q
∞∑

k1,...,kq=0
(−1)kca+q+k,b−q−k,0 , k = k1 + . . .+ kq . (B.29)

Hence we can first do the sum
∞∑

a,b=0
ca+q+k,b−q−k,0x

ayb = 1 + y

1− x− y

(
y

1− y

)q+k
, (B.30)

which implies
∞∑

a,b=0
ca,b,qx

ayb = 1 + y

1− x− y
(−y)q . (B.31)

Together with the sum rule (B.17) and the generating series (B.21) we can use this to show

∞∑
a,b=0

σ̂a1 σ̂
b
2α

(0)
a,b =

∞∑
δ=1

1
δ2

1 + y

1− x− y

(
δ − δy − 1
δ − 1

)
, (B.32)

where
x = σ̂1

δ
, y = σ̂2

δ2 . (B.33)

Similarly one can use (B.31) together with (B.25) to compute

A(1)(S, T ) =
∞∑

a,b=0
σ̂a1 σ̂

b
2α

(1)
a,b =

4∑
i=1

R
(1)
i (T, δ)
(S − δ)i +O((S − δ)0) , (B.34)

with the numerators (where C(α)
ℓ (x) are Gegenbauer polynomials)

R
(1)
4 (T, δ) =− 4δ

Γ(δ)(T + 1)δ−1 ,

R
(1)
3 (T, δ) = 1

2∂TR4(T, δ) ,

R
(1)
2 (T, δ) =

δ−1∑
ℓ=0

⟨f0⟩δ,ℓ

(δ + 2T )C(1)
ℓ+1

(
2T
δ +1

)
2T 2 + 2δT −

(
2δ2 − 2ℓ2T (δ + T ) + δ2ℓ

)
C

(1)
ℓ

(
2T
δ +1

)
2δ(ℓ+1)T (δ + T )


−
δ−1∑
ℓ=0

2⟨f0τ2⟩δ,ℓC
(1)
ℓ

(
2T
δ + 1

)
√
δ(ℓ+ 1)

, (B.35)
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R
(1)
1 (T, δ) =

δ−1∑
ℓ=0

⟨f0⟩δ,ℓ

[( (
8ℓ3 + 216ℓ2 − 44ℓ− 9

)
T 4 + 3δ

(
4ℓ3 + 208ℓ2 − 44ℓ− 9

)
T 3

+ δ2
(
4ℓ3 + 636ℓ2 − 55ℓ+ 15

)
T 2 + 3δ3

(
76ℓ2 + 8ℓ+ 5

)
T

+ 6δ4(ℓ+ 2)
) C

(1)
ℓ

(
2T
δ + 1

)
24δ2(ℓ+ 1)T (δ + T )3

−

(
6δ3 +

(
4ℓ2 + 8ℓ+ 42

)
T 3 + δ

(
4ℓ2 + 8ℓ+ 105

)
T 2 + 84δ2T

)
C

(1)
ℓ+1

(
2T
δ + 1

)
24δT (δ + T )3

]

+
δ−1∑
ℓ=0

[
⟨f0τ2⟩δ,ℓ

(−δℓ− 2(ℓ+ 1)T )C(1)
ℓ

(
2T
δ + 1

)
δ3/2(ℓ+ 1)(δ + T )

+
C

(1)
ℓ+1

(
2T
δ + 1

)
√
δ(δ + T )


−

⟨f2⟩δ,ℓC
(1)
ℓ

(
2T
δ + 1

)
δ + δℓ

]
.

C Localisation constraints

In this appendix we will give the details of how to apply the localisation constraints of [26, 55]
to the correlator for the GF = SO(8) theory. Of the three localisation constraints considered
in [26, 55], only one applies to the flavour structures we consider in (2.7), and this constraint
takes the form

−∂4
µ1F

∣∣
µ=0 + 3∂2

µ1∂
2
µ2F

∣∣
µ=0 = 32N2I[M(s, t) +M(t, u) +M(u, s)] , (C.1)

where the integral is defined as21

I[M ] ≡−
∫

dsdt

(4πi)2

[
M(s, t)Γ[1− s/2]Γ[1 + s/2]Γ[1− t/2]Γ[1 + t/2]Γ[1− u/2]Γ[1 + u/2]

×
(
H s

2
+H− s

2

tu
+
H t

2
+H− t

2

su
+
Hu

2
+H−u

2

st

)]
, (C.2)

where Hn is a harmonic number. The l.h.s. of (C.1) is written in terms of derivatives of the
free energy deformed by two of the four masses µi corresponding to the four Cartans of SO(8).
This quantity was computed in a large N and large λ expansion in [26], and takes the form

−∂4
µ1F

∣∣
µ=0 + 3∂2

µ1∂
2
µ2F

∣∣
µ=0 = 192ζ(2)

λ
N +O(N0) . (C.3)

For the Mellin amplitude to the order shown in (4.11), we consider the integrals22

I[1] = 1
24 , I[s] = I[u] = I[t] = 0 , I[t2] = I[s2] = I[u2] = − 1

30 ,

I[st] = I[su] = I[st] = 1
60 .

(C.4)

Applying (C.1) to (4.11) using these integrals and the localisation result (C.3), we get (4.12).
21We use shifted Mellin variables compared to [26]: (s, t, u)here = (s − 2, t − 2, u − 2)there.
22Note that the meromorphic term cancels out from the combination in (C.1).
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D Low energy expansion for integrals with MPLs

In this appendix we explain how to compute the low energy expansion around the point
S = T = 0 for integrals of the form

Iw(S, T ) =
1∫

0

dz z−S−1(1− z)−T−1Lw(z) . (D.1)

This computation is a simpler version of the analogous two-dimensional case done for closed
string amplitudes in [56]. To deal with the singularities of the integrand at z = 0, 1 we start
by splitting the integral into two contributions

Iw(S, T ) = I(1)
w (S, T ) + lim

ϵ→0
I(2)
w (S, T ) , (D.2)

where

I(1)
w (S, T ) =

1∫
0

dz

(
z−S − 1

) (
(1− z)−T − 1

)
z(1− z) Lw(z) ,

I(2)
w (S, T ) =

1−ϵ∫
ϵ

dz
z−S + (1− z)−T − 1

z(1− z) Lw(z) .

(D.3)

The first contribution is absolutely convergent at S = T = 0 so that we can first Taylor
expand around this point and then integrate term by term. Using the shuffle relations

Lw(z)Lw′(z) =
∑

W∈w�w′

LW (z) , (D.4)

and
d

dz
(L0W (z)− L1W (z)) = LW (z)

z(1− z) , (D.5)

we find

I(1)
w (S, T ) =

∞∑
p,q=1

(−S)p(−T )q
1∫

0

dz
L0p(z)L1q(z)Lw(z)

z(1− z)

=
∞∑

p,q=1
(−S)p(−T )q

∑
W∈0p

�1q
�w

(L0W (1)− L1W (1)) .

(D.6)

The second contribution is also absolutely convergent at S = T = 0 as long as ϵ > 0,
so we compute

I(2)
w (S, T ) =

∞∑
p,q=0
p·q=0

(−S)p(−T )q
∑

W∈0p
�1q

�w

1−ϵ∫
ϵ

dz
LW (z)
z(1− z) , (D.7)

where the integral gives
1−ϵ∫
ϵ

dz
LW (z)
z(1− z) = L0W (1− ϵ)− L1W (1− ϵ)− (L0W (ϵ)− L1W (ϵ)) . (D.8)
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The contribution from z = 0 always vanishes, except when w = 0n. In this case it contributes

lim
ϵ→0

∞∑
p=0

(−S)p
(
p+ n

n

)
− logp+n+1(ϵ)
(p+ n+ 1)! = − 1

Sn+1 . (D.9)

The contribution from z = 1 is more subtle, as MPLs Lw(z) can have a logarithmic singularity
near z = 1 when the last letter in w is 1. These can be isolated in terms of L1n(1 −
ϵ) = 1

n! log
n(ϵ) using the shuffle relations (D.4). Assume for instance w = w′01. In this

case we can use

Lw′0(z)L1(z) = Lw(z) +
∑

W∈w′
�1
LW0(z) , (D.10)

to isolate the singularity

Lw(1− ϵ) = Lw′0(1) log(ϵ)−
∑

W∈w′
�1
LW0(1) +O(ϵ) . (D.11)

This idea can be used recursively to determine the singular contributions near z = 1 for any
word w, which lead to poles in T . In general the integral then takes the form

lim
ϵ→0

I(2)
w (S, T ) = poles +

∞∑
p,q=0
p·q=0

(−S)p(−T )q
∑

W∈0p
�1q

�w

(L0W (1)− L1W (1)) , (D.12)

and the sum of both contributions gives

Iw(S, T ) = poles +
∞∑

p,q=0
(−S)p(−T )q

∑
W∈0p

�1q
�w

(L0W (1)− L1W (1)) . (D.13)

E Classical string solutions

In this appendix we give more details about the classical string solutions of section 5. We
first review the basics of classical string solutions in AdS5 × S5, then give a summary of the
open string solutions we found and finally give a detailed description of the folded closed
string solutions and the corresponding open string solutions.

E.1 Setup

The range of σ for the closed strings is within [0, 2π). For open strings this range is halved,
resulting in σ ∈ [0, π).

Action. The bosonic part of the AdS5 × S5 string action in conformal gauge reads

IB =
√
λ

4π

∫
dτ

∫
dσ (LAdS + LS) , (E.1)

where

LAdS = −∂aYP∂aY P − Λ̃(YPY P + 1) , LS = −∂aXM∂
aXM + Λ(XMXM − 1) . (E.2)

Here XM , M = 1, . . . , 6 and YP , P = 0, . . . , 5 are the embedding coordinates of R6 with the
Euclidean metric δMN and of R2,4 with ηPQ = (−1,+1,+1,+1,+1,−1) in LAdS, respectively
(YP = ηPQY

Q). Λ and Λ̃ are the Lagrange multipliers imposing the two hypersurface
conditions.
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Global AdS coordinates. It is conventional to use global coordinates, defined as

Y1 + iY2 = sinh ρ sin θeiϕ1 , X1 + iX2 = sin γ cosψeiφ1 ,

Y3 + iY4 = sinh ρ cos θeiϕ2 , X3 + iX4 = sin γ sinψeiφ2 ,

Y5 + iY0 = cosh ρeiϕ3 , X5 + iX6 = cos γeiφ3 .

(E.3)

The metric reads

(ds2)AdS5 = dρ2 − cosh ρ2dt2 + sinh2 ρ(dθ2 + cos2 θdϕ2
1 + sin2 θdϕ2

2) ,
(ds2)S5 = dγ2 + cos γ2dφ2

3 + sin2 γ(dψ2 + cos2 ψdφ2
1 + sin2 ψdφ2

2) .
(E.4)

Equations of motion. The classical equations of motion read

∂a∂aYP − Λ̃YP = 0 , Λ̃ = ∂aYP∂aY
P , YPY

P = −1 ,
∂a∂aXM + ΛXM = 0 , Λ = ∂aXM∂aXM , XMXM = 1 .

(E.5)

In addition, the coordinates satisfy Virasoro constraints. In conformal gauge they read

ẎP Ẏ
P + Y ′

PY
′P + ẊMẊM +X ′

MX
′
M = 0 , ẎPY

′P + ẊMX
′
M = 0 . (E.6)

Conserved charges. The corresponding SO(2, 4) and SO(6) conserved charges are23

SPQ =
√
λ

∫
dσ

2π (YP ẎQ − YQẎP ) , JMN =
√
λ

∫
dσ

2π (XMẊN −XNẊM ) (E.7)

The conventional choice for the 3+3 Cartan generators of SO(2, 4) × SO(6) is

S0 ≡ S50 ≡ E =
√
λE , S1 ≡ S12 =

√
λS1 , S2 ≡ S34 =

√
λS2 ,

J1 ≡ J12 =
√
λJ1, J2 ≡ J34 =

√
λJ2, J3 ≡ J56 =

√
λJ3 .

(E.8)

Boundary conditions. For closed string solutions we need to impose periodic boundary
conditions for all the fields. For open string solutions, the bosonic fields YP in AdS5 all
satisfy the Neumann boundary conditions. Out of three bosonic fields XM in S5, two satisfy
Neumann boundary conditions and one satisfies Dirichlet boundary conditions.

E.2 Classical string solutions

The classical solutions are labelled by their quantum numbers (S1,S2|J1, J2, J3) defined
in (E.8). There is a very simple relation to get the classical open string energy from the
closed one, as long as the restriction of the closed string solution to half of its range leads to
a valid open string solution that satisfies the correct boundary conditions [31]. It is given by

Eopen
cl (Sopen

1 ,Sopen
2 |Jopen

1 , Jopen
2 , Jopen

3 ) = 1
2E

closed
cl (2Sopen

1 , 2Sopen
2 |2Jopen

1 , 2Jopen
2 , 2Jopen

3 ) .
(E.9)

23These charges are canonically normalised. The reason is the canonical momenta of XM in terms of the
normalisation of the action (E.1) is given by PM = ∂L

∂ẊM
=

√
λ/2π, so JMN =

∫
dσ(XM PN − XN PM ). The

factor 1/2π is unrelated to the range of σ.
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E.3 Summary of open string solutions

We manage to construct the following types of classical open-string solutions based on the
known closed string solutions in the literature [33, 38, 57–68]

• Circular S5: the state has quantum numbers (0, 0|J1, J3, J1) and satisfies (N,N,D)
boundary conditions on S5 with classical energy

E =
√
2m

√
λJ1

(
1 + J2

3
4mJ1

√
λ
+O (1/λ)

)
. (E.10)

• Circular AdS5: the state has quantum numbers (S,S|J, 0, 0) and satisfies (N,N,D)
boundary conditions on S5. However, the solution satisfies (N,D) boundary conditions
in the AdS direction and thus does not correspond to a valid open string solution.

• Circular Mixed: the state has quantum numbers (S, 0|S, 0, J) and satisfies (N,N,D)
boundary conditions on S5 with classical energy. This solution is a complex solution so
restricting it to σ ∈ [0, π] will not satisfy the needed boundary conditions.

• Folded Mixed: the state has quantum numbers (S, 0|J, 0, 0) and satisfies (N,N,D)
boundary conditions on S5 with classical energy

E =
√
m
√
λS
(
1 + 1√

λ

(
3S
4m + J2

2Sm

)
+O(1/λ)

)
. (E.11)

Details can be found in (E.21). To get an SU(2)L singlet state, we must take J = 0.

• Folded S5: the state has quantum numbers (0, 0|J1, J2, 0) and satisfies (N,N,D)
boundary conditions on S5 with classical energy

E =
√
m
√
λJ2

(
1+ 1√

λ

(
J2
4m + J2

1
2mJ2

)
+ 1
λ

(
− J4

1
8J2

2m
2 + 7J2

1
8m2 + 3J2

2
32m2

)
+O(λ−

3
2 )
)
.

(E.12)
To get an SU(2)L singlet state we have to take J1 = J2 = J . Details can be found
in (E.30).

• Glued Folded: the state is obtained by gluing the two folded solutions presented
above. The state has quantum numbers (S, 0|J1, J2, 0) and satisfies (N,N,D) boundary
conditions on S5 with classical energy

E =
√
m
√
λ(S + J1)

(
1 + 1√

λm

(
3S
4 + J1

4 + J2
2

2(S + J1)

)
(E.13)

+ 1
λm2

(
3J2

1
32 − J4

2
8(J1 + S)2 + J1J

2
2

4(J1 + S) −
13J1S
16 + 5J2

2
8 − 21S2

32

)
+O(1/λ

3
2 )
)
.

E.4 Folded closed string solutions

We first present the classical closed folded string solutions in [66].
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0

ρ0

σ=0, π, 2π

σ= π
2 ,

3π
2

Figure 2. Illustration of the closed mixed folded string solution. The solution contains four identical
segments, which are split in the plot for clarity. The four segments correspond to σ in the intervals
[0, π/2], [π/2, π], [π, 3π/2], and [3π/2, 2π], respectively, and are coloured in red, cyan, violet, and
purple for visual distinction.

E.4.1 Mixed folded solution: (S, 0|J, 0, 0) type

For the mixed folded solution, the coordinates take the following form,

θ = 0, ρ = ρ(σ), ϕ3 = kτ, γ = 0, ϕ2 = ωτ, φ3 = ντ. (E.14)

The EOMs and the Virasoro constraints read

ρ′′ + 1
2(ω

2 − k2) sin 2ρ = 0,

(ρ′)2 + ω2 sinh2 ρ− k2 cosh2 ρ = ν2 .
(E.15)

The function ρ consists of four identical parts, as depicted in figure 2. For σ ∈ [0, π/2] ρ(σ)
increases from ρ = 0 to its maximal value ρ0 where ρ′ = 0. In the next interval σ ∈ [π/2, π],
ρ(σ) reverses direction, decreasing back to zero along the same path. This pattern repeats
for σ ∈ [π, 3π/2] and σ ∈ [3π/2, 2π]. Since the maximal value ρ0 of ρ is obtained when
ρ′ = 0, we can express ρ0 as

ω2 sinh2 ρ0 − k2 cosh2 ρ0 = ν2 . (E.16)

Substituting ν2 to the 2nd equation above, we find,

dρ
dσ =

√
ω2 − k2

√
sinh2 ρ0 − sinh2 ρ , (E.17)

for σ ∈ [0, π/2] and ρ ∈ [0, ρ0]. This differential equation can be solved in terms of the Jacobi
Elliptic functions but we will not present it here.

For consistency, the total change of σ is given by 2π, which leads to the constraint

2π =
∫ 2π

0
dσ = 4m√

ω2 − k2

∫ ρ0

0
dρ 1√

sinh2 ρ0 − sinh2 ρ
. (E.18)

Here we have introduced an integer parameter m which counts the total number of times
that a string folds. The solution in figure 2 corresponds to m = 1.
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Energy. The physical state has energy

E =
√
λ

2π k
∫

dσ cosh2 ρ =
√
λ

2π k
4m√
ω2 − k2

∫ ρ0

0
dρ cosh2 ρ√

sinh2 ρ0 − sinh2 ρ
, (E.19)

and carries spin and angular momentum

S =
√
λ

2π ω
∫

dσ sinh2 ρ =
√
λ

2π ω
4m√
ω2 − k2

∫ ρ0

0
dρ sinh2 ρ√

sinh2 ρ0 − sinh2 ρ
,

J =
√
λ

2π ν
∫

dσ =
√
λν .

(E.20)

Solving the constraints for the energy we find

E =
√
2m

√
λS
(
1 + 1√

λ

(
3S
8m + J2

4mS

)
+O(1/λ)

)
. (E.21)

The energy can also be computed in other limits, in particular, in the u = J 2/S fixed
limit. It reads,

E =
√
u+ 2

√
S
(
1 + 2u+ 3

4(u+ 2)S − 2u[2u(u+ 5) + 17] + 21
32(u+ 2)2 S2

)
+ . . . , (E.22)

where we recall that E = E/
√
λ, S = S/

√
λ and J = J/

√
λ.

E.4.2 Folded S5 solution: (J1, J2, 0) type

For the folded S5 solution, the coordinates take the following form,

ρ = 0, ϕ3 = kτ, γ = π

2 , ψ = ψ(σ), φ1 = ω1τ, φ2 = ω2τ. (E.23)

The EOM and the Virasoro constraints read,

ψ′′ + 1
2ω

2
21 sin 2ψ = 0,

(ψ′)2 + ω2
1 cosψ2 + ω2

2 sin2 ψ = k2 ,
(E.24)

where ω2
21 ≡ ω2

2 − ω2
1 ≥ 0.

The function ψ consists of four identical parts, as depicted in figure 3. For σ ∈ [0, π/2]
ψ(σ) increases from ψ = 0 to its maximal value ψ0 where ψ′ = 0. In the next interval
σ ∈ [π/2, π], ψ(σ) reverses direction, decreasing back to zero along the same path. With
further increase in σ within [π, 3π/2], ψ(σ) declines from zero to its minimum at −ψ0, then
increases back to zero as σ extends from 3π/2 to 2π. Since the maximal value ψ0 of ψ is
obtained when ψ′ = 0, we can express ψ0 as

ω2
1 cosψ2

0 + ω2
2 sin2 ψ0 = k2 . (E.25)

Substituting k2 to the 2nd equation above, we find,

dψ
dσ = ω21

√
sin2 ψ0 − sin2 ψ . (E.26)
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−ψ0

0

ψ0

σ=0, 2π σ=π

σ= π
2

σ= 3π
2

Figure 3. Illustration of the closed folded S5 string solution. The solution contains four identical
segments, which are split in the plot for clarity. The four segments correspond to σ in the intervals
[0, π/2], [π/2, π], [π, 3π/2], and [3π/2, 2π], respectively, and are coloured in red, cyan, violet, and
purple for visual distinction.

For consistency, the total change of σ is given by 2π, thus leads to the constraint

2π =
∫ 2π

0
dσ = 4m

∫ ψ0

0
dψ 1

ω21
√
sin2 ψ0 − sin2 ψ

. (E.27)

Here we have introduced an integer parameter m which counts the total number of times
that a string folds. The solution in figure 3 corresponds to m = 1.

Energy. The physical state has energy

E =
√
λk =

√
λ
√
ω2

1 cos2 ψ0 + ω2
2 sin2 ψ0 , (E.28)

and carries angular momenta

J1 =
√
λω1

∫ dσ
2π cos2 ψ =

√
λω1

4m
2π

∫ ψ0

0
dψ cos2 ψ

ω21
√
sin2 ψ0 − sin2 ψ

,

J2 =
√
λω2

∫ dσ
2π cos2 ψ =

√
λω2

4m
2π

∫ ψ0

0
dψ sin2 ψ

ω21
√
sin2 ψ0 − sin2 ψ

.

(E.29)

Solving for the energy, we find

E =
√
2m

√
λJ2

(
1 + 1√

λ

(
J2
8m + J2

1
4mJ2

)
+ 1
λ

(
− J4

1
32J2

2m
2 + 7J2

1
32m2 + 3J2

2
128m2

)
+O(λ−

3
2 )
)
.

(E.30)

E.4.3 Glued solution

One can construct a more generic solution by taking the AdS5 part of (E.14) and the S5

part of (E.23). The coordinate take the following form

θ = 0, ρ = ρ(σ), ϕ3 = kτ, γ = π

2 , ψ = ψ(σ), φ1 = ω1τ, φ2 = ω2τ. (E.31)

and the functions ρ and ψ are taken to be the same as introduced in the previous subsections.
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Notice that the AdS5 and S5 EOMs (see (E.5)) are decoupled, so the ansatz above
solves the EOMs automatically. The only non-trivial constraint comes form the Virasoro
constraints (E.6). One immediately notices that the Virasoro constraints are solved once
we identify

ν2|(S,J) = k2|(J,J ′) . (E.32)

As a result, the final expression for the energy is obtained by using the (S, J)-type energy
expression and identifying

J2|(S,J) = E2|(J,J ′) . (E.33)

In practice, we only need to identify the r.h.s. of (E.30) as J in (E.22) and re-expand,
we immediately find

E =
√
m
√
λ(S + J1)

(
1 + 1

m
√
λ

(
3S
8 + J1

8 + J2
2

4(S + J1)

)

+ 1
λm2

(
3J2

1
8 − J4

2
2(J1 + S)2 + J1J

2
2

J1 + S − 13J1S
4 + 5J2

2
2 − 21S2

8

)
+O(1/λ

3
2 )
)
.

(E.34)

E.5 Folded open string solutions

Finding open string solutions from the known closed ones was initiated in [30, 31, 46]. We will
see that valid open string solutions can be obtained by properly choosing the segments of the
closed string solutions, and thus the energy is simply obtained by using the identification (E.9).

It is important to remember, as discussed in section 5.1, that the boundary conditions
for open strings were fixed: all fields in AdS along with four fields in S5 satisfy the Neumann
boundary conditions, whereas two fields in S5 satisfy with the Dirichlet boundary conditions.

Mixed folded string. For the mixed folded (S, J)-type open string, we need the solution in
all the AdS directions to satisfy the Neumann boundary conditions. To ensure this, we select
two segments of the folded closed string that align with the Neumann boundary conditions
at σ = 0, π, as shown in figure 4, where we recall that at the maximum ρ|σ=0,π = ρ0 ̸= 0 and
ρ′|σ=0,π = 0. Comparing this with the global coordinates in (E.3), we immediately find that
all AdS coordinates YP satisfy the Neumann boundary conditions, Y ′

P |σ=0,π = 0.
On the S5 side, the X5, X6 fields satisfy Neumann boundary conditions, X ′

5|σ=0,π =
X ′

6|σ=0,π = 0. Since γ = 0, we have X1 + iX2 = X3 + iX4 ≡ 0. Consequently, these directions
can be considered as satisfying either Dirichlet or Neumann conditions.

Now that we verified the boundary conditions we can compute the new energy. However,
notice that the only change in the equations (E.19), (E.20) and (E.18) for the open case is
4m → 2m as the only change is the total number of identical segments. This observation
immediately leads to the identification (E.9) and thus (E.11).

S5 folded string. For the S5 (J1, J2)-type folded solution, the Neumann boundary con-
ditions in all AdS directions are manifest because ρ = 0.

In the S5 directions, the solution for ψ can similarly be constrained to ensure that at
σ = 0, π, we have ψ ̸= 0 and ψ′ = 0. This approach is illustrated in figure 5, where we take half
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0

ρ0

σ= π
2

σ=0, π

Figure 4. Open folded string solution from closed folded string solution: we take half of the solution
and relabel the coordinate by σ → σ − π/2.

−ψ0

0

ψ0
σ=0

σ=π

Figure 5. Open folded string solution from closed folded string solution: we take half of the solution
and relabel the coordinate by σ → σ − π/2.

of the closed string solution and modify the coordinate system by relabelling σ → σ−π/2. This
configuration leads to the application of mixed (NND) boundary conditions in the (12, 34, 56)
directions, X ′

1|σ=0,π = X ′
2|σ=0,π = X ′

3|σ=0,π = X ′
4|σ=0,π = X5|σ=0,π = X6|σ=0,π = 0. Given

that X5, X6 ≡ 0, these two directions can also be considered to satisfy the Neumann
boundary conditions.

Now that we verified the boundary conditions we can compute the new energy. However,
notice that the only change in the equations (E.28), (E.29) and (E.27) for the open case is
4m → 2m as the only change is the total number of identical segments. This observation
immediately leads to the identification (E.9) and thus (E.12).

Glued folded string. The construction of the glued folded string solution combines the
previously discussed solutions for both the AdS and S5 sectors, which individually meet the
requisite boundary conditions. Given this compatibility, it logically follows that the glued
solution also satisfies to the appropriate boundary conditions. Consequently, the energy
identified as (5.15) is directly derived from (E.34) via the identification (E.9).
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F Holomorphic factorisation

In this appendix we show how to rewrite the result for the AdS Virasoro Shapiro amplitude [18]
as the product of one-dimensional integrals. We will review the usual KLT argument for
holomorphic factorisation [47], and then explain how to generalise this, for the case of extra
insertions of single-valued polylogarithms. This exercise will serve many purposes. On one
hand it gives us some expectation as to which functions can appear in the open string case:
not surprisingly, the usual, multi-valued multiple polylogarithms. On the other hand, it
seems to be the best route to follow if one is interested in a closed form expression for the
AdS Virasoro Shapiro in a curvature expansion. Consider as starting point the complex beta
function - relevant for the computation of the usual VS amplitude,

Aclosed(S, T ) =
∫
CP1

d2z|z|−2−2S |1− z|−2−2T , (F.1)

and write the integrand in terms of x, y with z = x + iy and z = x − iy. We then make
the following change of variables

y → ie−2iϵy , (F.2)

where ϵ > 0 is a small positive number. It is convenient to introduce the following notation

z± = x± y, δ = z+ − z−. (F.3)

Expanding to linear order in ϵ we then get

Aclosed(S, T ) =
∫ ∞

−∞
dz+dz−(z+−iϵδ)−S−1(z−+iϵδ)−S−1(z+−1−iϵδ)−T−1(z−−1+iϵδ)−T−1.

(F.4)
This is almost factorised, but we need to be careful with branch cuts as we send ϵ → 0.
For x < 0 we choose

(x+ iϵ)α = eiπα(−x)α, (x− iϵ)α = e−iπα(−x)α , (F.5)

while for x > 0 we can of course take ϵ→ 0 with no problem (x± iϵ)α = xα. Let’s now fix
z+ to different values in (F.4), and then consider the integral over z−:

A−(z+) =
∫ ∞

−∞
dz−(z+−iϵδ)−S−1(z+−1−iϵδ)−T−1(z−+iϵδ)−S−1(z−−1+iϵδ)−T−1 . (F.6)

Consider first z+ < 0. The branch-points correspond to z− ∼ 0 and z− ∼ 1. For both
cases δ = z+ − z− < 0 and the integration contour lies below the real line at both branch
points, see figure 6. Note that the contour crosses the real line at z− = z+ < 0, but the
integrand (z+ − iϵδ)−S−1(z− + iϵδ)−S−1 is continuous as we cross the line. This means the
integral vanishes, as we can close the contour without crossing any branch cuts. By the
same reasoning, if z+ > 1 then the integration contour for z− lies above the real line, and
the integral again vanishes. Hence

A−(z+) = 0 for z+ < 0, A−(z+) = 0 for z+ > 1. (F.7)
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Figure 6. For z+ < 0 the integration contour, indicated in red, can be closed without crossing the
branch cut, indicated in blue.
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Figure 7. For z+ ∈ [0, 1] the integration contour, indicated in red, can be closed to wrap around
either of the two branch cuts, indicated in blue.

This means that the only non-vanishing contribution arises from the region z+ ∈ [0, 1]
and we obtain

Aclosed(S, T ) =
∫ 1

0
dz+(z+)−S−1(1− z+)−T−1

∫ ∞

−∞
dz−(z− + iϵδ)−S−1(1− z− − iϵδ)−T−1 ,

(F.8)
where we have written (z+ − 1 − iϵδ)−T−1(z− − 1 + iϵδ)−T−1 = (1 − z+ + iϵδ)−T−1(1 −
z− − iϵδ)−T−1. We now focus in the integral over z− and look at the behaviour around the
branch points. For z− ∼ 0 we get δ = z+ − z− > 0 and the contour is above the real line.
For z− ∼ 1 we get δ = z+ − z− < 0 so that 1 − z− − iϵδ = 1 − z−ϵ where z−ϵ has a small
negative imaginary part, and the contour is below the real line. In summary, we need to
compute the following contour integral

A1d =
∫
γ
dz−(z−)−S−1(1− z−)−T−1 , (F.9)

where γ comes from z = −∞ + iϵ, goes below the real axis between 0 and 1 and goes to
z = ∞−iϵ, see figure 7. We can now close the contour, so that it goes around the real axis with
z > 1. The contribution to the integral arises then from the following discontinuity, for x > 1

− (1− z)−T−1
∣∣∣
z=x+iϵ

+ (1− z)−T−1
∣∣∣
z=x−iϵ

= 2i sin(πT )(x− 1)−T−1 , (F.10)

which leads to

A1d = 2i sin(πT )
∫ ∞

1
dxx−S−1(x− 1)−T−1 , (F.11)

and the KLT formula

Aclosed(S, T ) = 2i sin(πT )
∫ 1

0
dz+(z+)−S−1(1− z+)−T−1

∫ ∞

1
dxx−S−1(x− 1)−T−1 . (F.12)

F.1 Insertions

We will now consider the extra insertion of single-valued multiple polylogarithms (SVMPLs)

AWclosed(S, T ) =
∫
CP1

d2z|z|−2S−2|1− z|−2T−2LW (z, z). (F.13)
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We now need to be careful with the manipulation of contours. In particular note that the
change of coordinates performed above takes us away from the region where z = z∗. For
the insertions of interest in this paper, LW (z, z) can be written as a sum of products of
multiple polylogarithms

LW (z, z) =
∑

|w|+|w′|=|W |
cww′Lw′(z)Lw(z) , (F.14)

where w,w′ are words in the {0, 1} alphabet. Each such term leads to the extra insertion
Lw(z+)Lw′(z−) after the change of variables considered above. Note that Lw(z) contains
branch cuts only along the real line, for x < 0 and/or x > 1. Because of this, the ‘almost’
factorised integral again vanishes for either z+ < 0 or z+ > 1 and one gets

AWclosed(S, T ) =
∑

|w|+|w′|=|W |
cww′Aw,w

′

closed(s, t) , (F.15)

with

Aw,w
′

closed(S, T ) =
∫ 1

0
dz+(z+)−S−1(1− z+)−T−1Lw(z+)

×
∫ ∞

−∞
dz−(z− + iϵδ)−S−1(1− z− − iϵδ)−T−1Lw′(z−) .

(F.16)

e would like to stress that this identity is only true for the entire sum entering LW (z, z).
Individual components would give non-vanishing contributions, for z+ < 0 or z+ > 1, which
exactly cancel when considering the single-valued combination. Using this fact, the argument
now runs exactly as for the case without insertions, except now we need to compute the
discontinuity across the real axis for x > 1 including the extra insertion

Disc1[(1− z)−T−1Lw(z)] . (F.17)

Multiple polylogarithms are generally not continuous as we cross the real axis for x > 1.
For instance, for the simplest case of weight one

Disc1[L0(z)] = 0 , Disc1[L1(z)] = −2πi , (F.18)

where Disc1[Lw(x)] = Lw(x+ iϵ)−Lw(x− iϵ) for x > 1. For higher weights, let us introduce
the following notation. Consider Lw(x). In the region x ∈ (0, 1) this is well defined. Then

Lw(x± iϵ) = L+
w(x)± iπdL+

w(x) , for x > 1 ,
Lw(x± iϵ) = L−

w(x)± iπdL−
w(x) , for x < 0 ,

(F.19)

where L+
w(x) is well defined for x > 1 and L−

w(x) is well defined for x < 0. Then the relevant
discontinuity to compute for the holomorphic factorisation is

Disc1[(1− z)−T−1Lw(z)]
= −eiπT (z − 1)−T−1(L+

w(x) + iπdL+
w(x)) + e−iπT (z − 1)−T−1(L+

w(x)− iπdL+
w(x))

= −2i(z − 1)−T−1(sin(πT )L+
w(x) + π cos(πT )dL+

w(x)) .
(F.20)
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This leads to the final expression for the holomorphic factorisation with insertions:

Aw,w
′

closed(S, T ) = 2i
∫ 1

0
dz+(z+)−S−1(1− z+)−T−1Lw(z+) (F.21)

×
∫ ∞

1
dz−(z−)−S−1(z− − 1)−T−1(sin(πT )L+

w′(z−) + π cos(πT )dL+
w′(z−)) .

F.2 Relating integrals and symmetry

The KLT relations are often written in a symmetric manner, with both integrals involved
evaluated over the (0, 1) interval. To relate 1d integrals in different intervals, consider the
following integrals, whose integration contours are parallel to the real line, with a small
imaginary part, positive and negative respectively:

e∓iπ(S+1)(Iw1 ± iπdIw1 ) = e∓iπ(S+1)
∫ 0

−∞
dz(−z)−S−1(1− z)−T−1 (L−

w(z)± iπdL−
w(z)

)
,

Iw2 =
∫ 1

0
dz(z)−S−1(1− z)−T−1Lw(x) , (F.22)

e±iπ(T+1)(Iw3 ± iπdIw3 ) = e±iπ(T+1)
∫ ∞

1
dz(z)−S−1(z − 1)−T−1

(
L+
w(z)± iπdL+

w(z)
)
.

Then we have

e∓iπ(S+1)(Iw1 ± iπdIw1 ) + Iw2 + e±iπ(T+1)(Iw3 ± iπdIw3 ) = 0 , (F.23)

as for both combinations we are able to close the contours without crossing any branch
cuts. Consider the integrals with no insertion, so that Lw(x) = 1 and no discontinuity.
The above equations imply

I3 = sin(πS) csc(π(S + T ))I2 . (F.24)

More generally note that dIw1 , dIw3 involve insertions of weight |w| − 1, so that for instance

Iw3 = sin(πS) csc(π(S + T ))Iw2 + lower weight insertions . (F.25)

The precise lower weight insertions can be obtained by writing the discontinuities in terms
of multiple polylogs of weight |w| − 1, and so on. Let’s now return to the specific form of
AWclosed(S, T ). The relevant SVMPLs are always of the form (see [69])

LW (z, z) = LW (z) + LW̃ (z) + product of lower weight , (F.26)

where W̃ is W with reversed letters. Then we can write

AWclosed(S, T ) = 2i sin(πS) sin(πT ) csc(π(S + T ))I2
(
IW2 + IW̃2

)
+ product of lower weights

(F.27)
In this form the symmetry z ↔ z is manifest and it is also clear that the holomorphic/anti-
holomorphic factorisation of the type of 2d integrals relevant for the computation of the
VS amplitude in AdS always involves combinations of the form

(
IW2 + IW̃2

)
. This does not

appear to be an obvious symmetry of the Veneziano amplitude on AdS found in this paper.
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F.3 Explicit integrals

Here we consider the explicit computation of 1d integrals, in terms of hypergeometric
functions. We introduce the following notation

I[Lw(z)](S, T ) =
∫ 1

0
dz(z)−S−1(1− z)−T−1Lw(z) , (F.28)

and consider insertions of growing complexity. When no insertions are present we have

I[1](S, T ) = Γ(−S)Γ(−T )
Γ(−S − T ) . (F.29)

Taking derivatives w.r.t. S and T we obtain the extra insertion of log z and log(1− z). Next
we consider the insertion of

Lin(z) = −L0n−11(z) . (F.30)

In this case we obtain

I[Lin(z)](S, T ) =
Γ(−S + 1)Γ(−T )
Γ(−S − T + 1) n+2Fn+1(1, · · · , 1,−S+1; 2, · · · , 2,−S−T+1; 1) . (F.31)

This in turns leads to

I[Lin(1− z)](S, T ) = I[Lin(z)](T, S) . (F.32)

Finally, as already mentioned

I[(log z)p(log(1− z))qLin(z)](S, T ) = (−1)p+q∂pS∂
q
T I[Lin(z)](S, T ) . (F.33)

This leads to an expression for any insertion that appears in our main result (1.9).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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