arXiv:2306.07881v2 [cs.CV] 1 Sep 2023

Viewset Diffusion: (0-)Image-Conditioned 3D Generative Models from 2D Data

Stanislaw Szymanowicz

Christian Rupprecht

Andrea Vedaldi

Visual Geometry Group — University of Oxford

{stan, chrisr,vedaldi}@robots.ox.ac.uk

Generative Single-view 3D Reconstruction

& !f‘@
[P . APt
& !f'@ =

Reconstructions

3D Generation

Volumes Volumes

Figure 1: Viewset Diffusion. Our category-specific models perform both ‘generative’ 3D reconstruction and unconditional 3D generation.
In single-view 3D reconstruction (left) our models generate plausible explanations of occluded regions (car’s back, hydrant’s occluded side).
The same models are able to generate varied 3D objects (right) in a feed-forward manner while being trained only on 2D data.

Abstract

We present Viewset Diffusion, a diffusion-based genera-
tor that outputs 3D objects while only using multi-view 2D
data for supervision. We note that there exists a one-to-
one mapping between viewsets, i.e., collections of several
2D views of an object, and 3D models. Hence, we train a
diffusion model to generate viewsets, but design the neural
network generator to reconstruct internally corresponding
3D models, thus generating those too. We fit a diffusion
model to a large number of viewsets for a given category
of objects. The resulting generator can be conditioned on
zero, one or more input views. Conditioned on a single view,
it performs 3D reconstruction accounting for the ambigu-
ity of the task and allowing to sample multiple solutions
compatible with the input. The model performs reconstruc-
tion efficiently, in a feed-forward manner, and is trained us-
ing only rendering losses using as few as three views per
viewset. Project page: szymanowiczs.github.io/
viewset-diffusion.

1. Introduction

Image-based 3D reconstruction, i.e., recovering the 3D
shape of the world from 2D observations, is a fundamental

problem in computer vision. In this work, we study the
problem of reconstructing the 3D shape and appearance of
individual objects from as few as one image. In fact, we cast
this as image-conditioned 3D generation, and also consider
the case of unconditional generation (fig. 1).

Single-view 3D reconstruction is inherently ambiguous
because projecting a 3D scene to an image loses the depth
dimension. The goal is thus not to recover the exact 3D
shape and appearance of the object, particularly of its oc-
cluded parts, but to generate plausible reconstructions. This
can only be achieved by learning a prior over the likely 3D
shapes and appearances of the objects. Here, we do so for
one category of objects at a time.

Leveraging 3D object priors for reconstruction has been
explored by several works [1, 48]. Most of these tackle
3D reconstruction in a deterministic manner, outputting one
reconstruction per object. This is limiting in the presence of
ambiguity, as a deterministic reconstructor can only predict
either (1) a single most likely solution, which is plausible
but usually incorrect, or (2) an average of all possible re-
constructions, which is implausible (fig. 2).

Thus, in this work, we tackle the problem of modelling
ambiguity in few-view 3D reconstruction. Our goal is to
learn a conditional generator that can sample all plausible
3D reconstructions consistent with a given image of an ob-

ject from a given viewpoint.

We approach this problem using Denoising Diffusion
Probabilistic Models (DDPM) [14] due to their excellent
performance for image generation [0]. However, while
DDPMs are trained on billions of images, 3D training data
is substantially more scarce. We thus seek to learn a 3D
DDPM using only multi-view 2D data for supervision. The
challenge is that DDPMs assume that the training data is
in the same modality as the generated data. In our setting,
the 3D model of the object can be thought of as an unob-
served latent variable, learning which is beyond the scope
of standard DDPMs. We solve this problem starting from
the following important observation.

Given a 3D model of an object, we can render all possi-
ble 2D views of it. Likewise, given a sufficiently large set
of views of the object, called a viewset, we can recover, up
to an equivalence class, the corresponding 3D model. Be-
cause of this bijective mapping, generating 3D models is
equivalent to generating viewsets. The advantage of the lat-
ter is that we often have access to a source of suitable 2D
multi-view data for supervision. Similarly to 2D image gen-
eration, our corresponding DDPM takes as input a partially
noised viewset and produces as output a denoised version of
it. For generation, this denoising process is iterated starting
from a Gaussian noise sample.

Our second key intuition is that the bijective mapping
between viewsets and 3D models can be integrated in the
denoising network itself. Namely, our DDPM is designed
to denoise the input viewset by reconstructing a full radi-
ance field of the corresponding 3D object (see fig. 3). This
has the advantage of producing the 3D model we are after
and ensuring that the denoised viewset is 3D consistent (the
lack of 3D consistency is an issue for some multi-view gen-
erators [22, 47]). Furthermore, by allowing different views
in the viewset to be affected by different amounts of noise,
the same model supports conditional generation from any
number of input views (including zero). This conditional
generation is achieved by setting the noise level of the avail-
able conditioning images to zero.

We call our method Viewset Diffusion and, with it, make
several contributions: (i) The idea of generating viewsets
as a way to apply DDPMs to the generation of 3D objects
even when only multi-view 2D supervision is available. (ii)
An ambiguity-aware 3D reconstruction model that is able
to sample different plausible reconstructions given a sin-
gle input image, and which doubles as an unconditional
3D generator. (iii) A network architecture that enables our
reconstructions to match the conditioning images, aggre-
gate information from an arbitrary number of views in an
occlusion-aware manner and estimate plausible 3D geome-
tries. (iv) A new synthetic benchmark dataset, designed for
evaluating the performance of single-image reconstruction
techniques in ambiguous settings.

Input VisionNeRF

Input PixelNeRF
-

P
¥

Ours: samples Ground truth

\ 14
\ Y
%4

Ours: samples Ground truth

Minens

o
a2
- :u‘.
‘e

| Y

Figure 2: Ambiguities. Under occlusion, deterministic methods
blur possible shapes (orange car’s back, Minens characters’ poses)
and colours (black car’s back, occluded sides of Minens charac-
ters). Our method samples plausible 3D reconstructions.

2. Related Work

Works most related to ours consider the problem of few-
view 3D reconstruction and the ensuing ambiguities.

Reconstructing Neural Fields. Few-view reconstruction
methods that use Neural Radiance Fields [25] include
Sin-NeRF [51] and DietNeRF [15]. They use seman-
tic pseudo-labels in unseen views to provide multi-view
pseudo-constraints from pre-trained 2D networks, effec-
tively leveraging a 2D prior. Other works learn a 3D prior
instead and represent individual shapes using global latent
codes [16, 27, 31, 36]. Codes be optimised at test-time
via auto-decoding, akin to latent space inversion in priors
learned with 3D GANSs [2]. The latent codes can also be
local [13, 21, 53] or simultaneously global and local [21],
which tends to improve high-frequency details. While our
method borrows the idea of local conditioning and learning
a 3D prior from such prior works, a key difference is that
we sample different plausible reconstructions, while most
prior works only output a single reconstruction, which tends
to regress to the mean, usually falling outside the data dis-
tribution, being blurry, and mixing several modes in one.
In contrast, our method samples multiple sharp reconstruc-
tions, each of which is different yet plausible.

Reconstruction Beyond Neural Fields. Many other pos-
sible 3D representations have been explored, including
geometry-free representations [30, 39, 40, 45], occupancy
voxel grids grids [4, 42, 52], textured meshes [18, 49] or
hybrid implicit-explicit representations [33, 50]. While our
work is currently based on a neural radiance field, it is com-
patible with any differentiable formulation.

Ambiguity in 3D Reconstruction. Single-view 3D re-
construction is an ill-posed problem because a 2D input
only partially constrains the 3D output. A 3D prior can re-

duce but not eliminate the ambiguity. In fact, even when the
3D reconstruction is constrained to be plausible according
to the given prior, it does not mean that it is unique [48].
For instance, when we reconstruct a person seen from the
front, even knowing that it is a person is insufficient to ex-
actly predict their back. The goal is to obtain one or several
plausible solutions that are compatible with the given ob-
servations, for example via constrained optimization [11]
or using an adversarial loss during training [48]. Ignoring
ambiguity may result in distortions, including blurry recon-
structions without fine details [5].

We embrace ambiguity in 3D reconstruction and train a
network to (1) output a 3D object that matches an observa-
tion such that (2) the 3D object is a plausible member of a
given category. This setting is similar to Wu et al. [48], but
we allow sampling different plausible reconstructions via
a conditional diffusion model, rather than finding a single
plausible solution via a constrained optimisation approach.

3D Modelling with Diffusion Models Recently, Denois-
ing Diffusion Probabilistic Models [14] (DDPM) have been
applied to modelling 3D shape distributions by diffus-
ing directly in the space of 3D representations, including
point clouds [23], triplanes [10, 34, 46] and other radiance
fields [17, 26] Shortcomings of these approaches include
(1) assuming an available 3D dataset (see also section 3.2)
and (2) requiring heuristics for dealing with ‘floater’ arte-
facts [26, 34] common in volumes reconstructed from
multi-view data in an optimisation setting.

Others leverage pre-trained 2D diffusion models via
Score Distillation Loss for text-to-3D generation [29, 44]
with test-time optimisation, and extensions allow image-
based reconstruction [20, 24]. Concurrently to our work,
several others [3, 22, 47] learn image-conditioned diffu-
sion models. The outputs are 2D, and their 3D consis-
tency is only approximate, with frequent flickers [3, 22, 47].
3D consistency can be enforced via costly (sometimes
1 hour [55]) test-time optimization of a 3D representa-
tion [8, 55]. In contrast to prior and concurrent works,
our method (1) can be trained on 2D data, requiring only
3 views of an object, (2) is guaranteed to be 3D consis-
tent, and (3) is feed-forward, and therefore much faster
than test-time distillation methods [8, 24, 55]. HoloDiffu-
sion [19] also learns 3D generative models from 2D data,
but it only considers unconditional generation, while we
propose a principled, unified framework for conditional and
unconditional generation.

The closest work to ours is RenderDiffusion [1], dis-
cussed in detail in section 3.3.

3. Method

We consider the problem of learning a distribution over
3D objects, supporting both unconditional sampling and

sampling conditioned on one or more views of the object.
We approach this problem using a 3D DDPM and rethink
the training setup to allow training it from multi-view 2D
data, without access to 3D ground-truth.

3.1. DDPMs: background and notation

Consider the problem of learning a distribution p(x)
over 2D images € R3*H*W (or, with little changes, a
distribution p(x|y) conditioned on additional information
y such as a text description). The DDPM approach gen-
erates a sequence of increasingly noisier versions of the
data. This sequence starts from xy = z and adds progres-
sively more Gaussian noise such that the conditional dis-
tribution p(x¢|x) at step ¢ can be characterised by writing
= \/1—02xg + ope, t = 1,...,T, where oy is a se-
quence of noise standard deviations increasing from 0 to 1,
€; is normally distributed. The marginal distribution p(z;)
does not, in general, have a closed-form solution but for
large t ~ T it approaches a normal distribution.

In order to draw a sample zy, one starts backwards,
drawing first a sample z7 from the marginal p(z7), and
then taking samples x; from p(x;_1|x;), until x is ob-
tained. The key observation is that these are comparatively
simple distributions to learn. Various slightly different for-
mulations are possible; here, we learn a denoising network
Zo(zy,t) that tries to estimate the “clean” sample xo from
its noisy version x;. Given a training set X’ of images, such
a network is trained by minimizing the loss

. 1 .
L(#0,t) = =50 Y w(01) Ep(ay mg) | F0 (w1, 1) — w0

where the weight w(o;) depends on the noise/timestep [12].
3.2. The challenge of a 3D extension

We now consider using a DDPM to learn a distribution
p(v) of 3D models v of objects (in practice radiance fields,
see section 3.4). In oder to train a DDPM to generate 3D
models v, we would require a dataset }V of such models.
Differently from 2D images, however, 3D models are not
readily available. We assume instead to have access to 2D
multi-view training data. Each training sample is a viewset
(x,11), i.e., a collection & € RV>*3XHXW of N views of a
3D object with known camera poses IT = {7()}~ . The
3D model v is not observed but a latent variable.

The fact that v is a latent variable suggests adopting the
latent diffusion approach, which has been very successful
for 2D images [32], and thus simply replace the input data
x with corresponding codes v. Unfortunately, doing so re-
quires to know the encoder — v, mapping the input data
x to the latents v. In our case, this mapping amounts to
image-based 3D reconstruction, which is non-trivial.

One way of implementing the mapping « +— v is to use
an optimization method like NeRF, which can recover the

Noisy target Render: Render:

target target
Multi-view
Reconstructor
3D

InpuN
Image Viewset Volume ‘
e

Render: @ Render: @
cond. target

Figure 3: Viewset Diffusion takes in any number of clean con-
ditioning images and generated images with Gaussian noise (sec-
tion 3.3). The denoising function is defined as reconstructing (sec-
tion 3.4) and rendering a 3D volume. When there is at least one
clean conditioning view, Viewset Diffusion samples plausible 3D
reconstructions. When all input views are noisy, it samples a 3D
object form the prior.

Noisy target

Clean cond. Noisy target

radiance field v given a sufficiently large viewset x. This
is the approach taken by several prior works [10, 46], but it
has several shortcomings. First, with no prior information,
reconstructing a model v from a viewset x is ambiguous
due to visibility (the interior of an object does not matter
to its appearance) and over-parameterization. While we can
dismiss these ambiguities as classes of equivalent models',
nevertheless they increase the irregularity of the distribu-
tion p(v) that we wish to learn [46]. Second, good inde-
pendent reconstructions require a fairly large (> 50) num-
ber of views per object, which are not always available, and
even then they may still contain defects such as floaters [34].
Lastly, optimization-based reconstruction is slow (hours per
sample) and must happen for every sample x € X’ before
training the distribution p(v) can even start.

3.3. Viewset diffusion

In this section, we seek to directly train a DDPM to gen-
erate 3D models using only 2D supervision. Our approach
is centred around a few simple but powerful observations.
First, we note that it is easy to apply DDPMs to viewsets x
because, differently from the 3D radiance fields v, they are
assumed to be observable. Second, while DDPMs do not di-
rectly support generating latent variables, we can interpret
the latent 3D model v as an intermediate viewset represen-
tation learned by the neural network which implements the
DDPM — we simply do not apply diffusion to it.

Concretely, we write the DDPM denoising function as
the composition of two functions. The first is an encoder
network

v =®(xy, 11, 04) (1)

which, given a noised viewset (s, I1), produces as output a

!n the sense that these models all produce the same images.

3D model v. This 3D model is then decoded into an esti-
mate

&o(xy) = U(v, 1) = U(D(xy, L, 04),1T) (2

of the clean viewset by the decoder U that implements dif-
ferentiable rendering. This is the same formulation as stan-
dard image-based diffusion, except that (1) one generates a
set of views in parallel instead of a single image and (2) the
denoiser network has a particular structure and geometric
interpretation. The training loss is the same as for standard
diffusion:

L(®, xo, e, 11, 1) = w(oy) || (P(z¢, 1T, o), IT) — 0]

where ¢; = /1 — of xo + o€ is a noised version of the
(clean) input viewset x.

Single and few-view reconstruction. With the model
above, we can learn simultaneously unconditional 3D gen-
eration as well as single and few-view reconstruction with
almost no changes. Given a conditioning viewset (y, IT'),
in fact, we can sample p(z|II,y,II') by feeding into the
network ® a mixture of noised and clean views:

vi@(thByaH@H/aot@O)

where & denotes concatenation along the view dimension.
Here o; @ 0 means that we treat o; as a vector of noise vari-
ances, one for each view in the viewset, and append zeros
to denote the fact that the conditioning views y are “clean”.

Discussion. The approach above learns a distribution
p(x) over viewsets rather than a distribution p(v) over 3D
models. As noted in section 1, however, viewsets and
3D models can be thought to be in one-to-one correspon-
dence, so sampling one is equivalent to sampling the other.
While this statement is correct in the limit of infinitely-large
viewsets,> crucially reconstruction in our case is performed
by a network ®. The benefit is that this reconstruction net-
work can learn a 3D data prior and use it to perform 3D
reconstruction with much greater data efficiency. In fact,
we use as few as 3 images per viewset, which are far from
sufficient to optimise a radiance field from scratch.

Our approach is also related to RenderDiffusion
(RD) [1], but with substantial theoretical and practical dif-
ferences. First, using our notation, their approach amounts
to reducing the size of the viewset to a single view, which
is insufficient to adequately represent a 3D object v. In
our case, by using a non-trivial viewset, the generation of
successive denoised samples ensures coherent and plausi-
ble appearance and shape from all viewpoints, which is not
guaranteed in RD, which only denoises a single viewpoint.
We also introduce architectural advancements in the form
of local conditioning and multi-view attention-based aggre-
gation, further improving quality.

2 And ignoring inconsequential reconstruction ambiguities

Input: 2D features

_______________ 1
| Output: Explicit
| Radiance Field

|
|
: y
Canonically aligned ">"> " e -
3D features [| [_’. g . .
*

. Per-frame features ‘ Geometric unprojection

— 3D convolutions + self-attention

.' Per-category features . .
- Cross-attention queries

7 . .
.’ Per-viewset features —» Cross-attention keys and values

Figure 4: Architecture. 2D input views are unprojected along
camera rays to a canonical feature volume. Multi-scale features
are extracted and aggregated with an attention mechanism to out-
put a single radiance field. The number of input views can be
variable.

3.4. Radiance fields and network architecture

Having discussed the learning formulation, we now de-
scribe key implementation details. A 3D model v = (p, ¢)
is a radiance field, i.e., a pair of functions p and ¢ map-
ping a 3D point ¢ € R3 to an opacity value p(q) > 0
and an RGB color ¢(q) € [0,1]3. For simplicity, we dis-
cretize the radiance field over a 3D grid, expressing it as
a tensor v € R¥>H>XWXD ‘and evaluate (p(q),c(q)) us-
ing trilinear interpolation and padding as needed. Similar
to DVGO [41], the voxel grid stores colors and opacities
pre-activation, and activations are applied only after trilin-
ear interpolation. Given the camera 7 (specified by rota-
tion, translation and intrinsic parameters such as the focal
length), then eq. (2) renders the image x = ¥(v,7) in a
differentiable manner via ray casting.

The goal of the network @ of eq. (1) is to output the
3D model v given as input the viewset x; (including the
cameras II) and the noise variance o; for each view. Our
network consists of the following stages (see fig. 4):

1. 2D feature extraction. A small 5-layer 2D convolu-

tional subnetwork f outputs a feature map F(V) = f (mgz))
for each image xy) in out of N images in viewset x;.

2. Geometric unprojection. For each feature map F(*),
associated camera pose (") = (R, T(*)) and the camera
intrinsic matrix K, we form a volume V' (?) ¢ RC*XH*xWxD,
Voxel with centre at location ¢ = (3,4, k) holds feature
FO [K (RW|T®) G|, where [-] denotes bilinear interpo-
lation, ~ denotes homogeneous coordinates and (-|-) denotes
column-wise matrix concatenation. After this step, volumes
V@ for different images xgi) share the same global refer-
ence frame, so they “line up”. Unprojection allows the vol-

ume to easily match the conditioning image.

3. Per-frame 3D U-Net encoder. We use the same U-
Net encoder as in DDPM [14], but replace the 2D con-
volutional and self-attention blocks with their 3D equiva-
lents, similarly to [26]. The encoder outputs multi-scale
feature maps {Wj(z) j”il, with j = 1 being the finest and
7 = M the coarsest feature map, for each input volume
V(). We also pass the timestep ¢ (and thus, implicitly, the
noise level ;) to the encoder after via the Transformer sinu-
soidal positional embedding [43]. Similarly to DDPM [14],
the timestep modulates the U-Net Convolutional blocks via
FiLM [7]. Each input volume V(9 is processed indepen-
dently by the encoder, hence it accepts the individual noise
level o for corresponding image 1(%).

4. Multi-view 3D U-Net decoder. The decoder acts as
a multi-scale multi-view feature aggregator. At each level
7 of the U-Net, the decoder aggregates features the feature
maps {Wj(z)}fil at level j with an attention mechanism:
Wi, =Attn(Q=Q;, K=V = {Wj(l)}fil) The query
Qs at the coarsest level is fixed and learnt per-class. Atten-
tion operates at each voxel location independently to min-
imise computational complexity. Learnt attention-based ag-
gregation (instead of mean-averaging) means that the com-
bination of features across views can depend on, for exam-
ple, occlusion. At each feature map level j, the aggregated
features VV]f_1 are then upscaled, passed through convolu-
tional and self-attention blocks, identically to usual U-Nets
used in diffusion models [14] to output Q;_1 = h(WJf_l),
before aggregation at the finer level 7 — 1.

5. Upscaling. Finally, a small 5-layer 3D convolutional
subnetwork ¢ performs upscaling v = ¢g(Qy) to output the
reconstructed volume v. The output of the network is a
single volume v for the N input views in viewset x;.

We validate our design choices, including the use of un-
projection and attention-based aggregation in table 4.

3.5. Training and inference details

Training. To train our model, we consider a dataset X' of
viewsets (for example, from CO3D). We further subsample
each viewset extracting at random Ny, views (x, II) that
will be passed at input to the network, where Ny, € 1,2,
so that z € {{x(M} {2™) ()1}, and an additional un-
seen view (2,7,), which is unavailable to the network.
We sample the noise level ¢, and with it the scalar noise
variance ¢; according to the cosine schedule of [28]. We
then randomly apply Gaussian noise to some of the input
views, such that noise standard deviations can be in one of
three states oy € {{d¢}, {0+, ¢}, {0+, 0}}, corresponding
to one noised view, two noised views, or one clean and one
noised view, respectively. These three options are sampled
with probability [0.45,0.45, 0.1], respectively. The noised

viewset £y = oy + o4&, s input to the network?>.

Loss. We optimise the network ® by minimising the pho-
tometric L2 loss (section 3.3), of the renders from recon-
structed volume:

L£=> w(e)[u(

=1

=

(CCt,H, O't)aﬂ'(i)) - x(l)HZ

+ M| W(D (1T, 00),) — zu]*. (3)

The weights w(c(?)) are set according to the Min-SNR-5
strategy [12]. The loss £ also includes a penalty on the
unseen view (,,,m,), as a regularisation strategy to en-
courage 3D consistency. The weight of the unseen view
At = A - min; w(o(?) is also noise-dependent, where X is a
hyperparameter.

Inference. Inference is performed by progressive denois-
ing of the viewset . The size of the viewset Nj,¢ used
at inference depends on the dataset and its complexity —
we use Nijyr = 5, 3, 4 for CO3D, ShapeNet and Minens,
respectively. When performing single-view reconstruction,
the viewset x includes the clean conditioning view, which is
unchanged during denoising the viewset. In unconditional
3D generation, images in the viewset x are initialised to
samples from Gaussian distribution. We use DDIM [38]
sampling with 250 steps.

4. Experiments

Datasets. We evaluate our method at 128 x 128 resolution
on ShapeNet-SRN Cars [37] using the standard train/val/test
split [37] and protocol: view 64 is used for conditioning and
the remaining 250 views as novel, unseen prediction targets.
We also evaluate our method on four object classes from
CO3D [30]: Hydrant, Teddybear, Plant and Vase. For each
object class, we form a small testing set with 100 exam-
ples of randomly sampled image pairs and associated cam-
era poses, one for conditioning and the other as the target,
from randomly sampled test instances. Pre-processing de-
tails for CO3D are in the sup. mat.

We also introduce Minens (see fig. 5), a new dataset
that makes it easier to evaluate ambiguity and diversity in
3D reconstruction. We design it to be large in the num-
ber of instances, while sufficiently small for rigorous ex-
perimentation using academic resources. Each object in
Minens consists of a torso with randomly articulated arms,
legs and head and is textured with one of 3,000 skins. We
render 40,000 training and 5,000 validation examples with
OpenGL at 256256 resolution and downsample to 48 x48
with Lanczos interpolation. Each example consists of 3 im-
ages and associated camera poses II. We form two test sets

3With a slight abuse of notation, this applies a given noise level to the
corresponding image. Also note that some elements of o can be 0, there-
fore @+ can also contain clean (non-noised) images.

LAEITIY:
185 4 34 %

Figure 5: Minens dataset. Textured meshes are articulated and
rendered from random camera viewpoints, allowing for procedural
generation of a large number of instances.

with the Minens dataset: ‘Random’, with randomly sam-
pled skins, poses and camera viewpoints, and ‘Ambiguous’,
with manually-selected 3D poses that are ambiguous when
seen from a single viewpoint, e.g., due to one arm being oc-
cluded by the torso. We use different skins for training and
testing. Similar to our subset of CO3D above, we select 100
test samples, consisting of one conditioning image and one
target image, from different viewpoints. Code and the Mi-
nens dataset are available at szymanowiczs.github.
io/viewset-diffusion.

Evaluation protocol. We render the reconstructed ob-
ject from the target viewpoint(s) and measure the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) and Learned Perceptual Image Patch Similarity [54]
(LPIPS), measured with a pre-trained VGG Net [35], when
compared to the ground truth image. However, determin-
istic baselines like PixeINeRF produce a single average re-
construction which is optimal for squared-error metrics like
PSNR: the ‘average’ sample is blurry (fig. 2), but closer
in PSNR to the ground truth than most samples taken from
the correct posterior distribution.* Hence, by only looking
at metrics like PSNR, it is simply not possible to measure
the benefits of modelling ambiguity. To measure the latter,
we take multiple samples of reconstructions of every object
and report the best PSNR and SSIM from these samples.
For Minens and CO3D we use 100 samples per testing in-
stance. For ShapeNet-SRN, we take 20 samples due to the
computational burden (the benchmark tests 175,000 gener-
ated views). As LPIPS is not as strongly affected by this
property since it measures perceived visual similarity, here
we report the average across all 100/20 samples. For com-
pleteness, we also report the best LPIPS across all samples
and the average PSNR and SSIM, but we report them in
brackets ‘(+)” as they do not measure well what we want.

Baselines. Our primary aim is to show the importance of
modelling reconstruction ambiguity by showing that this re-
sults in sharper and possibly more accurate reconstructions

4By definition, the mean of a distribution has the minimum average
square distance to all samples, and this distance is significantly less than
the average squared distance between pairs of samples, particularly in
high-dimensional spaces like images.

Method Random Ambiguous

PSNR1 LPIPS| PSNR1 LPIPS|
RenderDiffusion 19.85 0.213 16.33 0.236

PixelNeRF 21.55 0.220 17.86 0.250
RenderDiffusion++ 24.18 0.157 19.92 0.210
Ours w/o D 24.63 0.115 20.26 0.156
Ours w D - best 24.82 (0.072) 21.50 (0.081)

Ours w D - mean (22.81) 0.107 (18.62) 0.130

Table 1: Single view reconstruction - Minens. Ours achieves
larger gains in the Ambiguous subset, showcasing the strength of
probabilistic modelling.

than deterministic predictors. We compare against other re-
constructors trained using 2D data: the fully-deterministic
PixelNeRF [53], our reimplementation of RenderDiffusion
(RD) [1], and our improvement over it, RD++. We train
PixelNeRF using the publicly available code with a tuned
learning rate and softplus activation for improved train-
ing stability and reimplement RD based on publicly avail-
able information. Since RD uses only single images for
training (using our notation from section 3.5: Niin = 1,
Nt = 1, 0 = {6+} and A = 0) and a weaker architec-
ture, for fairness we also consider the variant RD++. RD++
uses the architecture from section 3.4 (like Viewset Diffu-
sion), takes as input a single noised image (like RD) and
is trained with multi-view supervision (like Viewset Diffu-
sion): Nyain = 1, oy = {7¢} and X # 0. At inference time
RD++, like RD, is capable of 3D generation by diffusing
over a single view N,y = 1, starting from pure Gaussian
noise. Like RD, RD++ performs single-view reconstruc-
tion in a deterministic manner by accepting one clean input
view Nigr = 1, o = {0}. Finally, to evaluate the impor-
tance of a probabilistic model, we include a baseline of our
method without diffusion (i.e., one that receives a clean im-
age and directly regresses a 3D volume): Ny.in € {1,2},
ot € {{0}, {070}}, Nipr = 1.

On ShapeNet-SRN we compare to single-view recon-
struction deterministic works which report scores on this
standard benchmark [9, 16, 21, 36, 37, 47, 53].

4.1. Single-view reconstruction on Minens

In table 1 we compare the reconstruction quality us-
ing PSNR and LPIPS. Sampling multiple plausible recon-
structions via views diffusion improves the PSNR of the
best sample in both ‘Ambiguous’ and ‘Random’ subsets.
The significant gain in PSNR in the ‘Ambiguous’ dataset
shows that diffusion can effectively single-view reconstruc-
tion ambiguities. Renders of samples of the reconstructed
volumes in fig. 2 show how diverse poses and textures are
sampled under the presence of ambiguity.

In table 1 it is also seen that using views diffusion leads

Method PSNR+ SSIMt LPIPS |
3DiM 21.01 0.57 -

LFN 22.42 0.89 -

SRN 22.25 0.88 0.129
CodeNeRF 22.73 0.89 0.128
FE-NVS 22.83 0.91*%) (0.099%)
VisionNeRF 22.88 0.90 0.084
PixeINeRF 23.17 0.89 0.146
Ours w/o D 23.21 0.90 0.116
Ours w D - best 23.29 0.91 (0.094)
Ours w D -mean (22.72) (0.90) 0.099

Table 2: Single view reconstruction — ShapeNet Cars. Ours
achieves the best PSNR, with the additional benefit of probabilis-
tic treatment. *FE-NVS optimises SSIM in training, affecting per-
ceptual sharpness.

to a decrease in average LPIPS (lower is better), suggest-
ing that all samples from our method are more perceptu-
ally plausible than the results from the baselines. Finally,
the improvement in the metrics is further accompanied by
qualitative comparison in figs. 2 and 6 where our samples
are seen to be much sharper than the baseline results.

4.2. Single-view reconstruction: ShapeNet & CO3D

Quantitative results in ShapeNet and CO3D are given
in tables 2 and 3. Like in Minens, in ShapeNet-SRN the
best sample from Viewset Diffusion has higher PSNR than
the baselines, which indicates that the model can sample
from the correct distribution. This is further confirmed by
Viewset Diffusion’s lower (better) LPIPS than all baselines
in CO3D (table 3) and almost all baselines in ShapeNet (ta-
ble 2). VisionNeRF [2 1] outperforms our method in LPIPS,
likely due to their use of the much stronger ViT-based 2D
feature extraction (our 2D feature extractor is much smaller,
consisting of only 5 convolutional layers). On challenging
CO3D classes (Teddybear, Plant, Vase), the deterministic
baselines achieve better PSNR, possibly because more than
100 samples are required to adequately sample the space of
reconstructions for these more complex objects.

4.3. Unconditional generation

Viewset Diffusion supports unconditional generation by
setting the number of clean input views to 0. To gener-
ate 3D prior works [26, 34, 46] require 3D ground truth at
training time, while we only use 3 views per object® (at test
time, we can generate any number of 3D consistent views).
In fig. 7 we compare samples from our method (network

SFor Minens dataset this is precisely true. In CO3D and ShapeNet dif-
ferent viewsets may come from the same objects due to data limitations,
but they are treated independently by the training algorithm.

Hydrant Teddybear Plant Vase

Method PSNRT SSIM1 LPIPS| PSNRT SSIM{ LPIPS| PSNR1 SSIM{ LPIPS| PSNR{ SSIM{ LPIPS|
RenderDiffusion 17.43 0.70 0.263 14.71 0.48 0.444 17.30 0.46 0.467 18.92 0.68 0.288
PixeINeRF 18.07 0.67 0.297 15.01 0.43 0.451 17.62 0.41 0.460 17.98 0.61 0.329
RenderDiffusion++ 21.61 0.69 0.282 19.58 0.65 0.303 19.85 0.49 0.399 21.51 0.65 0.292
Ours w/o D 22.06 0.78 0.217 19.73 0.65 0.309 20.33 0.51 0.382 21.89 0.68 0.264
Ours w D - best 22.36 0.80 (0.176) 19.68 0.70 (0.267) 20.23 0.58 (0.339) 21.36 0.75 (0.210)
Ours w D - mean (20.52) (0.77) 0.199 (17.28) (0.64) 0.309 (19.47) (0.40) 0.366 (20.05) (0.71) 0.237

Table 3: Single view reconstruction - CO3D. Our method improves over baselines in CO3D classes on SSIM and LPIPS.

Input PixelNeRF VisionNeRF Ours Ground truth

P / CBA e

Input PixelNeRF RenderDiff.

)

PixelNeRF RenderDiff. Ours

Ground truth

Ours

Input Ground truth

Figure 6: Single view reconstruction.
sharper shapes than prior work. The solutions are ambiguous,
therefore our samples do not match the ground truth exactly but
are more plausible than deterministic baselines.

Our method outputs

from section 3.4, Ny > 1), RD++ (network from sec-
tion 3.4, Njyr = 1) and RD (network from [1], Njyr = 1).
Viewset Diffusion samples are sharper from all viewpoints,
which demonstrates the advantage of diffusing more than
one view jointly. Intuitively, in the last step of diffusion,
Viewset Diffusion essentially performs reconstruction from
3 < Nix¢ < 5 (nearly) clean views of the object, whereas
RD and RD++ do so from a single view, which results in
blurry images from other viewpoints.

PSNR 1 LPIPS |

Full model 20.36 0.075
O diffusion D 18.85 0.101
© attention in aggregation 19.54 0.100
© unprojection 18.26 0.164

Table 4: Ablations. Impact of removing component from our
method on reconstruction quality.

4.4. Ablations

We assess the importance of different components of our
method: input image unprojection, attention-based aggre-
gation of features from different views, and using diffusion
(D). We use the ‘Ambiguous’ Minens dataset and evaluate
best PSNR and average LPIPS in the unseen novel views.
We train smaller models (half the number of U-Net con-
volutional layers and no self-attention layers) for fewer it-
erations (60k) due to the computational cost. Results are
reported in table 4. Not using diffusion (6; = {0}, us-
ing notation from section 3.5) leads to a drop in PSNR and
worse perceptual quality due to the reconstructions being
blurry in the presence of ambiguity. Removing attention-
based feature aggregation (section 3.4, 4.) across frames
and aggregating them with a simple mean prohibits the net-
work from reasoning about viewpoints and occlusion when
pooling the features from different views. Finally, removing
unprojection (section 3.4, 2.) hinders the learning process
due to the removal of local conditioning which is known to
improve the learning process [53].

5. Conclusions

We have presented Viewset Diffusion, a method to learn
a model for probabilistic single-view 3D reconstruction and
generation. By diffusing viewsets, we can learn a DDPM
from multi-view 2D supervision and still learn to gener-
ate 3D objects, having only 3 views per object and no ac-
cess to 3D ground truth. Viewset Diffusion also unifies
3D reconstruction and generation, and enables feed-forward

RenderDiffusion+-+ RenderDiffusion

Figure 7: Unconditional generation - Cars, Minens, Hydrants, Teddybears, Vases, Plants. Samples from our method show higher
visual detail than RenderDiffusion [1] and our improvement over it, RenderDiffusion++.

probabilistic 3D reconstruction with diffusion models. We
have shown empirically that a probabilistic approach to the
single-view reconstruction problem leads to higher-quality
results and less blurry solutions than deterministic alterna-
tives.

Ethics. We use the ShapeNet and CO3D datasets in a
manner compatible with their terms. The images used in
this research do not contain personal information such as
faces. For further details on ethics, data protection, and
copyright please see https://www.robots.ox.ac.
uk/~vedaldi/research/union/ethics.html.

Acknowledgements. S. Szymanowicz is sup-
ported by an EPSRC Doctoral Training Part-
nerships (DTP) EP/R513295/1 and the Oxford-

Ashton Scholarship. ~ A. Vedaldi and C. Rupprecht
are supported by ERC-CoG UNION 101001212.
C. Rupprecht is also supported by VisualAl
EP/T028572/1.

References

[1] Titas Anciukevicius, Zexiang Xu, Matthew Fisher, Paul Hen-
derson, Hakan Bilen, Niloy J. Mitra, and Paul Guerrero.
RenderDiffusion: Image diffusion for 3D reconstruction, in-
painting and generation. In Proc. CVPR, 2023. 3, 4,7, 8,
9

[2] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In Proc. CVPR, 2022. 2

[3] Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexan-
der W. Bergman, Jeong Joon Park, Axel Levy, Miika Ait-
tala, Shalini De Mello, Tero Karras, and Gordon Wetzstein.

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

(12]

GeNVS: Generative novel view synthesis with 3D-aware dif-
fusion models. In arXiv, 2023. 3

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Proc.
ECCV, 2016. 2

Angela Dai, Charles Ruizhongtai Qi, and Matthias Niefner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In Proc. CVPR, 2017. 3

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
models beat GANs on image synthesis. In Proc. NeurlPS,
2021. 2

Vincent Dumoulin, Ethan Perez, Nathan Schucher Florian,
Strub Harm de Vries, Aaron Courville, and Yoshua Bengio.
Feature-wise transformations. In Distill, 2018. 5

Jiatao Gu, Alex Trevithick, Kai-En Lin, Joshua M Susskind,
Christian Theobalt, Lingjie Liu, and Ravi Ramamoorthi.
Nerfdiff: Single-image view synthesis with nerf-guided dis-
tillation from 3d-aware diffusion. In Proc. ICML, pages
11808-11826. PMLR, 2023. 3

Pengsheng Guo, Miguel Angel Bautista, Alex Colburn,
Liang Yang, Daniel Ulbricht, Joshua M. Susskind, and Qi
Shan. Fast and explicit neural view synthesis. In Proc.
WACYV, 2022. 7

Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Bar-
las Oguz. 3DGen: Triplane latent diffusion for textured mesh
generation. corr, abs/2303.05371, 2023. 3, 4

JunYoung Gwak, Christopher B Choy, Manmohan Chan-
draker, Animesh Garg, and Silvio Savarese. Weakly super-
vised 3d reconstruction with adversarial constraint. In Proc.
3DV, 2017. 1,3

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong
Chen, Han Hu, Xin Geng, and Baining Guo. Efficient diffu-
sion training via min-snr weighting strategy. In arXiv, 2023.
3,6

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Ro-
man Shapovalov, Tobias Ritschel, Andrea Vedaldi, and
David Novotny. Unsupervised learning of 3d object cate-
gories from videos in the wild. In Proc. CVPR, 2021. 2
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Hugo Larochelle, Marc’ Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Proc. NeurIPS, 2020. 2, 3,5

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proc. ICCV, pages 5885-5894, October 2021. 2
Wonbong Jang and Lourdes Agapito. CodeNeRF: Disentan-
gled neural radiance fields for object categories. In Proc.
ICCV, 2021. 2,7

Heewoo Jun and Alex Nichol. Shape-E: Generating condi-
tional 3d implicit functions. arXiv, 2023. 3

Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proc. ECCV, 2018. 2
Animesh Karnewar, Andrea Vedaldi, David Novotny, and
Niloy Mitra. Holodiffusion: Training a 3D diffusion model
using 2D images. In Proc. CVPR, 2023. 3

Gang Li, Heliang Zheng, Chaoyue Wang, Chang Li, Chang-
wen Zheng, and Dacheng Tao. 3ddesigner: Towards pho-
torealistic 3d object generation and editing with text-guided
diffusion models. arXiv, 2022. 3

Kai-En Lin, Lin Yen-Chen, Wei-Sheng Lai, Tsung-Yi Lin,
Yi-Chang Shih, and Ravi Ramamoorthi. Vision transformer
for nerf-based view synthesis from a single input image. In
Proc. WACV, 2023. 2,7

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In arXiv, 2023. 2, 3
Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proc. CVPR, 2021. 3

Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Realfusion: 360° reconstruction of any ob-
ject from a single image. In Proc. CVPR, 2023. 3

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. ECCV, 2020. 2

Norman Miiller, , Yawar Siddiqui, Lorenzo Porzi, Samuel
Rota Bulo, Peter Kontschieder, and Matthias Nieiner. Diffrf:
Rendering-guided 3d radiance field diffusion.
CVPR, 2023. 3,5,7

Norman Miiller, Andrea Simonelli, Lorenzo Porzi,
Samuel Rota Bulo, Matthias NieBner, and Peter
Kontschieder. AutoRF: Learning 3D object radiance fields
from single view observations. CoRR, abs/2204.03593,
arXiv.cs. 2

In Proc.

Alex Nichol and Prafulla Dhariwal. Improved denoising dif-
fusion probabilistic models. In Proc. ICLR, 2021. 5
Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. Proc.
ICLR, 2023. 3

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

(44]

[45]

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. In Proc. ICCV, 2021. 2,
6

Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. ShaRF: Shape-conditioned radiance fields from a
single view. In Proc. ICML, 2021. 2

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proc. CVPR, 2022. 3
Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. In Proc.
NeurIPS, 2021. 2

J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In Proc. CVPR, 2023. 3,4, 7
Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Proc.
ICLR, 2015. 6

Vincent Sitzmann, Semon Rezchikov, William T. Freeman,
Joshua B. Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. In Proc. NeurIPS, 2021. 2,7

Vincent Sitzmann, Michael Zollhéfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Proc.
NeurIPS, 2019. 6,7

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. Proc. ICLR, 2021. 6
Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Generalizable patch-based neural render-
ing. In Proc. ECCV, 2022. 2

Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In Proc.
CVPR, 2023. 2

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proc. CVPR, 2022. 5

Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In Proc. CVPR,
2017. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 5
Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lifting
pretrained 2d diffusion models for 3d generation. In Proc.
CVPR, 2023. 3

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proc. CVPR,
2021. 2

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin
Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, and Baining Guo. Rodin: A genera-
tive model for sculpting 3d digital avatars using diffusion. In
Proc. CVPR, 2023. 3,4,7

Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. In
Proc. ICLR, 2023. 2, 3,7

Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong
Zhang, William T. Freeman, and Joshua B. Tenenbaum.
Learning shape priors for single-view 3D completion and re-
construction. In Proc. ECCV, 2018. 1,3

Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and An-
drea Vedaldi. Dove: Learning deformable 3d objects by
watching videos. IJCV, pages 1-12, 2023. 2

Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rup-
precht, and Andrea Vedaldi. MagicPony: Learning articu-
lated 3d animals in the wild. In Proc. CVPR, 2023. 2

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey
Shi, and Zhangyang Wang. SinNeRF: Training neural radi-
ance fields on complex scenes from a single image. In Proc.
ECCV,2022. 2

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3d object reconstruction without 3d supervision. In
Proc. NeurlIPS, 2016. 2

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
PixelNeRF: Neural radiance fields from one or few images.
In Proc. CVPR, 2021. 2,7, 8

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. CVPR, 2018. 6
Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Dis-
tilling view-conditioned diffusion for 3d reconstruction. In
Proc. CVPR, 2023. 3

arXiv:2306.07881v2 [cs.CV] 1 Sep 2023

Viewset Diffusion: (0-)Image-Conditioned 3D Generative Models from 2D Data
Supplementary Material

Stanislaw Szymanowicz

Christian Rupprecht

Andrea Vedaldi

Visual Geometry Group — University of Oxford

{stan, chrisr,vedaldi}@robots.ox.ac.uk

1. Additional results

Visit the project website https://szymanowiczs.
github.io/viewset-diffusion.html for more
visualisations of non-cherry-picked results of single-view
3D reconstruction and unconditional 3D generation across
all classes.

2. Minens Dataset

We provide further details on the Minens dataset we con-
tribute as part of this work, in particular: distribution of
camera poses, distribution of character articulation poses,
image backgrounds, validation images and visualisations of
both the training set and the ‘Ambiguous’ test set.

Cameras. Cameras are placed at a fixed distance from the
origin, are directed towards the origin and have identical fo-
cal lengths and principal points. Camera location is there-
fore parameterised by the azimuth and elevation angles that
it forms with the world x-axis (the radius is fixed). Yaw
and elevation are sampled randomly and independently for
each camera: azimuth is distributed uniformly in [0, 2] and
elevation is distributed uniformly in [—%; Z].
Articulation. Characters have a fixed torso location and
orientation, facing in the direction of positive z-axis. Both
arms, both legs and the head are randomly and indepen-
dently articulated. Pitch of arms is distributed uniformly
in [—20°,45°]; roll is distributed uniformly in [0°,10°]
for the left arm and [—10°,0°] for the right arm. Pitch
of legs is distributed uniformly in [—30°,30°]; roll is dis-
tributed uniformly in [0°, 10°] for the left leg and [—10°, 0°]
for the right leg. Head pitch is distributed uniformly in
[—10°,10°], head pith is distributed uniformly in [—5°, 5°]
and head yaw is distributed normally with mean 10° and
standard deviation 10°.

Backgrounds. Character skins have varied colours, so
there is no single background colour on which all skins
clearly stand out from the background. Therefore, for each
example we choose a random background colour, with RBG
distributed uniformly in [0,255]. The training examples

are available with the alpha channel, therefore allowing for
sampling of random backgrounds in every training iteration.
Testing examples are saved with a fixed, randomly chosen
background channels so that metrics are consistently mea-
sured between different training runs. Alpha channel was
not used in any way other than to apply randomly coloured
backgrounds, i.e. we did not use masks to aid network train-
ing.

Validation viewpoints. Each training example consists of
3 images and camera poses. In addition to the training im-
ages, each example (i.e. each articulated character) is asso-
ciated with a fourth image and camera pose which we do
not use for training (i.e. our network does not have access
to it). However, we can render the reconstructed character
from the unseen viewpoint and we use the error in that view-
point as the validation loss that approximates the quality of
3D shapes output by our method.

Samples. Fig. | shows random samples from the Minens
training dataset: 3 images per character, rendered from dif-
ferent camera viewpoints. Fig. 2 shows samples of test ex-
amples in the ‘Ambiguous’ test set. Ambiguities can be due
to occlusion, where one limb is occluded by the torso. An-
other type of ambiguity is projective ambiguity, i.e. from a
frontal image it can be ambiguous if a leg is in front of the
body or behind the body. Finally, there are ambiguities due
to symmetry — from a side image it can be ambiguous if the
right leg is in front of the body and the left leg is behind, or
if it is the other way around. Samples in the ‘Ambiguous’
test set exhibit more ambiguity than a randomly chosen test
set would. Our method shows the most improvement on the
‘Ambiguous’ test set when compared to baselines.

Reproducing. We release the dataset in the form of code
to run to exactly render the Minens dataset used for training,
validation and testing.

Figure 1: Minens dataset — training samples. We show 24 random examples from the dataset. Each training example

consists of 3 images (shown) and associated camera poses.

3. Data
3.1. CO3D Preprocessing

The data normalisation protocol for CO3D [5] objects
aims to make objects approximately the same scale, place
them in the centre of the voxel grid and align them vertically
with the ‘world’ vertical direction.

1. Translation normalization. We find the centre of
mass of the point cloud Z, shift the point cloud {z("}
so that its new centre of mass is at the world centre:
{z} = {2 — 7} and move the cameras accord-
ingly: T/ 5. = TRu2e + Tw2e-

2. Rotation normalisation. We estimate the world "up’
direction by leveraging photographer’s bias, i.e. as-
suming that photos are taken with approximately zero
yaw. Under this assumption, the camera x-vector is ap-
proximately perpendicular to the world direction. We
form a matrix by stacking x-vectors of all cameras in
a sequence (normalized to 0 mean) and run Singular
Value Decomposition (SVD).

Usv” = SVD([1,0,0]RL,.)

w2c
§=VI0,0,1]"

SVD is only defined up to a direction ambiguity, there-
fore we set the world ‘up’ vector and the camera vec-
tors to point in the same direction, i.e. ensure that
Jworld * Yeam > 0 and flip g if needed. We use the the

first camera for y.,, but check that all cameras satisfy
Yeaml - Yeam2 > 0 and exclude the sequence from train-
ing if that is not the case. We also verify that that our
assumption of the photographer’s bias is valid in a se-
quence by checking that 07 /03 < 03 /03 and exclude
a sequence if that is not the case. We find that most se-
quences pass these checks successfully therefore con-
firming our intuition about photographer’s bias. A vi-
sualisation of rotation normalisation is shown in Fig. 3.

Scale normalization. To normalise scale we first shift
the point cloud and cameras so that world centre is
halfway between the top and bottom of the point cloud
{zOV" = {2} — (ypmaw — Ymin). This has effec-
tively the same purpose as translation normalisation,
but most videos are taken from above an object, so the
point clouds are denser at the top of objects, meaning
the point cloud mean Z is nor an accurate object centre
in the vertical direction. Finally, we want the scale of
objects to be normalised across sequences, SO We nor-
malise the scene by the maximum absolute value of
any point coordinate. The scaling factor s for a voxel
grid with side length d is

d % 0.95
5= .
2 x max;||z()]] o

All point coordinates z(Y) and camera locations are
scaled by factor s.

We verify that after the normalisation the distances of the

ol !

Figure 2: Minens ‘Ambiguous’ test set. We show 10 ran-
dom examples from the ‘Ambiguous’ test set. In each ex-
ample, left image is the input conditioning and right image
is the ground truth testing view.

rotation_normalization

+ post_translation
+ post_rotation
=~ post_translation_cameras

wt' MM s ﬂ* ~—— post_rotation_cameras

B amn e g - x_axis

y_axis

_ ,‘ © Z_axis
4 .4&?
z"& of

Figure 3: Rotation normalization. Red point cloud and
purple cameras correspond to the translation and rotation
aligned object. Blue points and green cameras correspond
to the object after translation normalization, before rotation
normalization.

cameras are in sensible locations. In particular, for a volume
of side length 1.2 (which we use) we filter out sequences
that have cameras very close to the centre, i.e. with camera
translation magnitude ||7’||2 < 0.85. These sequences cor-

respond to sequences with poor point cloud quality where
some cameras were incorrectly estimated to be very close to
the surface of the objects We also filter out sequences with
cameras very far from the centre, i.e. with camera transla-
tion magnitude ||T’||2 > 6.5. Such sequences correspond to
a failures in foreground / background segmentation which in
turn lead to background being included in the point cloud.
As aresult, scaling using maximum point location results in
downscaling the scene too much.

Finally, some sequences in CO3D correspond to cameras
being moved in front of a screen displaying objects instead
of actual objects. We filter out such sequences by imposing
a minimum on standard deviation in depth values. In total,
filtering removes 99 sequences for the Hydrant class, 382
sequences for the Plant class, 293 sequences for the Vase
class and 473 sequences for the Teddy bear class. We do
not remove any testing sequences.

We rescale all images to 128 x 128 resolution. As the fo-
cal lengths and principal points are provided in Normalised
Device Coordinates, we do not need to rescale them when
scaling the images or rescaling the world size.

3.2. Pose encoding

We encode the camera pose information in the tensor we
pass to the network, similarly to 3DiM [§]. Each pixel RGB
value is appended with an embedding of length 6, hold-
ing the location of the camera origin in world coordinates
(Iength 3) and the normalised ray direction of the ray from
the camera origin through the pixel (also length 3). The
pose encoding is appended along the channel dimension to
the input RGB images.

4. Baselines
4.1. PixeINeRF

In PixelNeRF [10] we use learning rate of 1le — 5 and
use a batch size of 4 for CO3D data (corresponding to 132
images, as each batch contains 32 images of the same ob-
ject) and 32 for Minens data (corresponding to 96 images
as each batch contains 3 images of one object). We use
Softplus activation and tune the beta parameter that prevents
collapse into 0 density region - 1.0 for coarse network and
3.0 for fine network. We train for single-view reconstruc-
tion for 100k iterations for the Minens dataset and 600k it-
erations for CO3D datasets. We use 64 coarse samples and
64 fine samples at training time in the NeRF network for
Minens dataset and 128 coarse samples and 64 fine sam-
ples for CO3D data. We use the same normalised CO3D
data for PixelNeRF and for our method. For evaluation on
ShapeNet-SRN we use pretrained PixeINeRF models with
official evaluation code and metrics reported in the Pixel-
NeRF paper [10].

4.2. RenderDiffusion

See Table 1 for a summary of the baseline architectures,
using notation from Sec.3.5 in the main paper.

RenderDiffusion re-implementation (RD). We re-
implemented RenderDiffusion with the publicly available
information and we include the details and results here.
As in the original paper, we modified the U-Net [2, 6]
commonly used in diffusion models so that its output has
3ny channels and reshaped it to form a triplane. We used
ny = 32 channels and a two-layer rendering MLP, with 32
hidden units and an intermediate Softplus activation func-
tion. Training was done for the same number of iterations
as in our method with Adam [4] optimiser and the same
hyperparameters as in our method. The noise schedule
used was the same as in our method. We will release code
for RenderDiffusion re-implementation together with our
code.

RenderDiffusion++ (RD++). Our initial experiments
with the architecture that RenderDiffusion uses indicate that
the textures that RD outputs are low frequency and lack
high-frequency details present in the conditioning images,
likely due to the absence of local conditioning. Another
issue we noticed was that the shapes output by RenderDif-
fusion are not necessarily plausible, e.g. a reconstruction of
a Minens character with three legs, possibly because the su-
pervision in RenderDiffusion is single view. While the re-
constructions shown in the figures of RenderDiffusion have
plausible shapes, they are only demonstrated for simple
shapes from ShapeNet and CLEVR datasets with little am-
biguity (i.e. a single image is enough to reconstruct the 3D
shape, e.g. with symmetry constraints). Our Minens dataset
exhibits more ambiguity (e.g. due to articulation) and thus
the reconstructions output by RenderDiffusion are an aver-
age between the different plausible shapes. Thus, for fair
comparison, we also compare to RD++: RenderDiffusion,
but with our architecture and with multi-view supervision.
We train a network that receives a single image of an object,
with added Gaussian noise, and is tasked with predicting a
reconstruction of the clean object.

5. Technical details
5.1. Optimization.

We optimise the parameters of our network with
Adam [3] optimizer and learning rate 2 x 107°. We
use batch size 16 and optimise all diffusion networks for
100k (ShapeNet) / 200k (Minens, Hydrant, Teddybear)
/ 256k (Vase) / 280k (Vase) iterations and the networks
without diffusion for 40k iterations. Timestep-dependent
weighting strategy w(o(?)) is the Min-SNR-5 strategy [1]:
w(e®) = min{SNR(™ 5}. SNR is the Signal-to-Noise
Ratio: SNR® = (1 — ¢(¥2) /5()2, Hyperparameter \ for

penalising unseen view is A = 0.1 in Minens and ShapeNet
and A = 0.2 in CO3D.

5.2. Diffusion.

We use a diffusion schedule with 1000 diffusion steps
and a cosine noise schedule. Our networks are trained
with “z(” formulation. At inference, we use 250 steps
of DDIM [7] sampling. Quantitative single-view recon-
struction results cited in the main paper were obtained with
N — 1 noisy views and 1 clean view in the viewset, where
N = 3 for ShapeNet-SRN, N = 4 for Minens and N = 5
for CO3D. For generation we used a the same models and
viewsets with the same size IV, but without any clean views.
Varying numbers of images in the viewset are due to vary-
ing complexity of data and varying amount of ambiguity.

5.3. Architecture

Our architecture takes in N input frames, each of which
can be clean or noisy, and outputs one volume of size S X
S x 5. In Minens S = 32, in all other datasets S = 64.
Each entry in the output volume holds 4 values: 3 for RGB
colour and 1 for opacity.

Encoder. Each of the N images is first passed through
a small 2D CNN and an ‘Unprojector’ (Fig. 4, top left)
which pools the RGB colours from the image into a 3D
volume along camera rays. Next, each image is inde-
pendently passed through an encoder which contains a
series of 3D ResNet and MaxPool blocks (Fig. 4, bot-
tom). All convolutions are done with 3 x 3 x 3 kernels.
GroupNorm layers [9] with 8 groups are applied in ev-
ery ResNet block to the intermediate output (Fig. 4, top
right). There are 4 Convolutional Downscaling Blocks in
the encoder, outputting M = 5 feature maps for each of
N images I’, i € 1,...,N. We use channel dimensions
C1,C,C5,Cy,Cs = 64, 64,128,256, 512.

Aggregator. Given NN feature maps W; at level j com-
ing from N images (Fig. 5, left), the ‘Aggregator’ is tasked
with aggregating the features into one feature volume W]’
at level j (Fig. 5, right). Each feature volume is flattened
(Fig. 5, top left) and the flattened vectors are concatenated
along the sequence dimension, forming a tensor of size
NxH;W;D;xCj, whichis input to an Attention layer with
a GroupNorm layer and a residual skip-connection (Fig. 5,
bottom middle). Concatenated features F); are input as the
Keys and Values to the attention layer, with the number of
frames IV being the sequence dimension and the flattened
voxels being the batch dimension. Query volume @; for
feature level j has size 1 x H;W;D; x C; and comes ei-
ther from the previous layer of the decoder (next section) or,
for the lowest feature level, is learnt and is the same for all
inputs.

3D 3D 3D

Method Representation ot Nirain Ning A =0 Generation? Reconstruction
RD Triplane {5+} 1 1 Yes Yes Deterministic

RD++ Grid {5+} 1 1 No Yes Deterministic

Ours w/o D Grid {0},{0,0} 1-2 1 No No Deterministic

Ours D Grid {5¢}, {5+, 0}, {5+, 0+ } 1-2 3-5 No Yes Generative

Table 1: Baseline methods. We summarise key differences of baselines which we compare Viewset Diffusion (Ours w D)
against. The methods vary in number of images used at input in training N4, and inference N;,, r and what levels of noise
o are applied to the input images during training. In some baselines the unseen view is not penalised A = 0, only a subset of
them is able to perform 3D Generation and only our method performs 3D Reconstruction in a generative manner.

Unprojector 3D Block
Cin X _ Cout X
HXW XD HXWXD
_+r .
2D [t — o — 3D [!
3D ResNet Block
| 3D 3D 3D 3D
Block lf N W Block Bl Block W SN W Block MK
CXHimgXWimg CXHXW XD
3D U-Net Encoder
. Cl XHXW XD

3DI! 3DR

1 i
XXXy ,
cD Wy

CxHxWxD
37474 T)
W3
Conv l H W D
Downscale Ca ¥ r) X§ X§ .
wy
€)D)i8l 3D ResNet Block CXHXWXD
esiet Bloe 57716 “16 " 16

Self-Attention

Figure 4: Encoder. Each image I* out of N images input to the reconstructor is first unprojected to 3D (top left) and passed
through a series of 3D ResNet Blocks (top right) and Max Pooling layers to output M = 5 feature maps Wj’

E+
@
ﬂ
=
V
17
B

Decoder and query volume. The decoder takes M N fea-
ture volumes as input: N feature volumes W}, ..., W} for
each of M feature levels j (Fig. 6, left). Additionally, it
takes as input a learnt feature volume (5, which is identi-
cal for all inputs. At each feature level 7, the decoder aggre-
gates feature maps (Fig. 5) W}, ..., W} using query vol-
ume (); to output an aggregated feature volume W]/ Fea-

ture volumes (); and WJ/ are upscaled, concatenated and
passed it through a 3D ResNet Convolutional Block (Fig. 6,

bottom right). Once feature maps from all levels have been
aggregated, the feature volume of size C7 x H x W x D is
passed through a small 5-layer convolutional upscaling sub-
network. Finally, we apply a 1 x 1 x 1 non-activated con-
volution layer which outputs the radiance field v of shape
4x HxW x D.

GxHyxW;xD;

CjxHjxW;xD;

CixH; XxW;XD; m
VV}-N] J J J F}-N

Cross-frame aggregator

NXH;W;D;xC;

Queries

Values

Multi-Head

Q;

CiXH;xW;XD; 1XH;W;D;XC;
Flatten

Attention Reshape

Figure 5: Aggregator takes in N feature volumes Wj’ at level j as well as a query volume @); and outputs an aggregated

!
feature volume Wj.

Decoder
wit W 1
. e
wi..wN T,
Wi wy —

Q4

vy 2 —
e - |

Concat.

B—

Figure 6: Decoder takes sets of feature maps at different levels and a learnt start query volume Q5. Feature volumes from
different images are aggregated, upscaled and passed through convolutional layers. After the features have been decoded,
they are passed through a single convolutional layer to output the radiance field v. Self attention layers SA are applied when

leading to (4, @3, (2, but not when outputting Q).

References

[1] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong
Chen, Han Hu, Xin Geng, and Baining Guo. Efficient diffu-
sion training via min-snr weighting strategy. In arXiv, 2023.
4

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Hugo Larochelle, Marc’ Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Proc. NeurIPS, 2020. 4

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proc. ICLR, 2015. 4

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon Objects in 3D: Large-scale learning and evaluation of
real-life 3D category reconstruction. In Proc. CVPR, 2021.
2

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Proc. MICCAI, 2015. 4

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. Proc. ICLR, 2021. 4

Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. In
Proc. ICLR, 2023. 3

Yuxin Wu and Kaiming He. Group normalization. In Proc.
ECCV,2018. 4

[10] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
PixelNeRF: Neural radiance fields from one or few images.
In Proc. CVPR, 2021. 3

