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Preclinical characterization of ISB 1342, a CD38 ×
CD3 T-cell engager for relapsed/refractory
multiple myeloma
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• ISB 1342 exhibits
potent killing of
primary MM cells and
MM cell lines with low
sensitivity to
daratumumab.

• ISB 1342 induced
complete MM tumor
eradication in 2 in vivo
mouse models.
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Although treatment of multiple myeloma (MM) with daratumumab significantly extends
the patient’s lifespan, resistance to therapy is inevitable. ISB 1342 was designed to target
MM cells from patients with relapsed/refractory MM (r/r MM) displaying lower sensitivity
to daratumumab. ISB 1342 is a bispecific antibody with a high-affinity Fab binding to
CD38 on tumor cells on a different epitope than daratumumab and a detuned scFv domain
affinity binding to CD3ε on T cells, to mitigate the risk of life-threatening cytokine release
syndrome, using the Bispecific Engagement by Antibodies based on the TCR (BEAT)
platform. In vitro, ISB 1342 efficiently killed cell lines with different levels of CD38,
including those with a lower sensitivity to daratumumab. In a killing assay where multiple
modes of action were enabled, ISB 1342 showed higher cytotoxicity toward MM cells
compared with daratumumab. This activity was retained when used in sequential or
concomitant combinations with daratumumab. The efficacy of ISB 1342 was maintained in
ain.pdf by guest on 30 
daratumumab-treated bone marrow patient samples showing lower sensitivity to daratumumab. ISB 1342 induced
complete tumor control in 2 therapeutic mouse models, unlike daratumumab. Finally, in cynomolgus monkeys, ISB
1342 displayed an acceptable toxicology profile. These data suggest that ISB 1342 may be an option in patients with
r/r MM refractory to prior anti-CD38 bivalent monoclonal antibody therapies. It is currently being developed in a
phase 1 clinical study.
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Introduction
Multiple myeloma (MM) is the second most common hemato-
logical malignancy worldwide, with 35 500 and 54 600 new
cases anticipated in 2025 in the United States and Europe,
respectively.1 The emergence of CD38-targeted therapies has
significantly prolonged the survival of patients with relapsed/
refractory MM (r/r MM) who were treated with ≥2 previous
therapies. Daratumumab, a human IgG1 monoclonal antibody
targeting CD38, is associated with a median overall survival of
20.1 months in patients refractory to proteasome inhibitors and
immunomodulatory drugs.2,3 Mechanistically, daratumumab
UME 142, NUMBER 3
induces the killing of MM cells via antibody-dependent
phagocytosis (ADCP), complement-dependent cytotoxicity
(CDC), antibody-dependent cellular cytotoxicity (ADCC), and
direct apoptosis via FcγRs-mediated crosslinking.4-6 Clinical
outcomes have further improved with the approval of dar-
atumumab combinations compared with monotherapy.4,7,8

Despite such progress, most patients continue to relapse
because of multiple primary and acquired resistance mecha-
nisms to anti-CD38 therapies.4,9,10 Among those mechanisms,
transient downregulation of CD38 expression on the surface of
MM cells, which never fully recovers expression, has been
observed in patients treated with daratumumab.11 ISB 1342 was
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therefore designed to be active regardless of CD38 expression
and to overcome preexisting resistance to daratumumab’s
many mechanisms of action. ISB 1342 was engineered using the
BEAT platform (Bispecific Engagement by Antibodies based on
the TCR platform)12-14 to target the cluster of differentiation
(CD)3-epsilon (CD3ε) and CD38. ISB 1342 aims to treat r/r MM
by targeting and depleting CD38+ MM cells via T-cell–
redirected killing by crosslinking the CD3ε molecules on T cells
and the CD38 molecules on MM cells. This bridging activates
T cells in a polyclonal manner, independent of the involvement
of a specific antigenic peptide presented on the major histo-
compatibility class proteins or costimulatory molecules.15,16

Here, we evaluated the ability of ISB 1342 to kill MM cells,
which model some resistance mechanisms to daratumumab in
patients. We demonstrate that ISB 1342 can successfully induce
the killing of MM cell lines in vitro and in vivo, as well as primary
MM cells in bone marrow aspirates (BMA) from patients previ-
ously exposed to daratumumab, whereas the latter possesses
limited activity under these conditions. Studies in cynomolgus
monkeys revealed an acceptable toxicology profile and sup-
ported the advancement of ISB 1342 into an ongoing phase 1
dose-escalation clinical study in patients with r/r MM.

Material and Methods
Additional detailed methods are presented in the supplemental
Materials and methods, available on the Blood website.

Human samples and cell lines
BMA or peripheral blood samples from patients with MM were
obtained from University Hospital Geneva, CHU Nantes
(MYRACLE cohort17), and Oxford University Hospitals with
informed consent under each site’s ethical approval. Human
peripheral blood mononuclear cells (hPBMCs) and bone
marrow mononuclear cells (BMMCs) from healthy donors and
patients with MM were isolated using Ficoll gradients. All cell
lines were of human origin (from DSMZ or Sigma-Aldrich) and
cultured in the media recommended by the supplier.

Redirected lysis (RDL) assay
MM cell lines were labeled with eFluor670 dye (2 μM) or CFSE
(1 μM) and cocultured for 48 to 72 hours with hPBMCs at an
effector-to-target ratio (E:T) of 10:1 or 5:1 with ISB 1342 or
control molecules and additional treatments (soluble CD38,
dexamethasone). The MM cell killing was measured as the
decrease in the remaining live target cell count after treatment
(based on viability dye staining) normalized with the untreated
and noneffector cell conditions. The T-cell response was
measured as the proportion of live CD8+ T cells expressing
CD25, Ki-67, and granzyme B/perforin (supplemental
Tables 1-2).

Multiple mode of action killing assay (MMoAK)
hPBMCs were cocultured with MM cell lines previously labeled
with eFluor670 (2μM) in medium containing 50% human serum
and 100 U/mL hIL-2 at an E:T of 5:1 to enable ADCC, ADCP,
CDC, and T-cell–mediated cytotoxicity. Cocultures were then
incubated with ISB 1342, daratumumab (Darzalex, Janssen
Biotech Inc), or control molecules. The MM cell killing was
measured as the decrease in the remaining live target cell count
CD38 × CD3 BISPECIFIC ANTIBODY IN MULTIPLE MYELOMA
after treatment (based on viability dye staining) normalized
with the untreated and noneffector cell conditions. The
T-cell response was measured as the proportion of live CD8+

T cells expressing CD25, CD69, and CD107a (supplemental
Tables 1-2).

Ex vivo assay on samples from patients with MM
Baseline phenotype analysis was performed on 0.2 × 106 to
0.5 × 106 BMMCs and MM cell lines to assess the phenotype of
MM cells and T cells (supplemental Table 1). The killing assay
was performed on 0.1 × 106 to 0.2 × 106 BMMCS treated with
ISB 1342 or daratumumab in medium containing 10% HS and
hIL-6 (3 ng/mL) for 17 to 32 hours at 37◦C (supplemental
Table 2). Tumor cell killing was calculated as the decrease of
the remaining live target cell count, defined as CD138+, after
treatment, normalized to the untreated condition. The T-cell
response was measured as the proportion of live CD8+ T cells
expressing CD25, CD69, and CD107a.

In vivo efficacy mouse model
The in vivo study was performed with 6-/7-week-old immuno-
deficient female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice
(8 mice per group) from Charles River Laboratories and con-
ducted according to the Swiss Animal Protection Law with
authorization from the cantonal and federal veterinary author-
ities. A total of 10 × 106 KMS-12-BM cells were injected subcu-
taneously, and 10 × 106 hPBMCs were injected intraperitoneally.
Treatments were injected IV 9 days later, when tumors reached
an average volume of 150 mm3, and then once (ISB 1342) or
twice (daratumumab) per week for 3 weeks. Immunoglobulins
were injected IV 1 day before each treatment injection. When
animals reached maximum tumor size (1000 mm3) before the
study end point, they were euthanized, and the last observation
carried forward was used. The tumor size was evaluated 3 times
per week. For the flow cytometry analysis, tumors were harvested
7 days after the first treatment injection and dissociated with an
enzymatic cocktail from a tumor dissociation kit using a Gentle-
MACS dissociator. Cells in suspension were filtered, red blood
cells (RBC) were lyzed, and they were stained for human immune
cell infiltration and CD38 expression on tumor cells
(supplemental Table 1).

Studies in cynomolgus monkeys
Monkey studies were conducted at Shin Nippon Biomedical
Laboratories USA Ltd (SNBL), an Association for Assessment
and Accreditation of Laboratory Animal Care–accredited facil-
ity. Purpose-bred (Cambodian origin), naïve male and female
cynomolgus monkeys were used in the non–good laboratory
practice study. The study protocol and amendments were
approved by the study director and SNBL’s Institutional Animal
Care and Use Committee. All procedures were performed in
compliance with the SNBL standard operating procedures.
cynomolgus monkeys (1 male and 1 female) received a single IV
bolus injection at escalating doses of ISB 1342 (1, 100, and
1000 μg/kg at days 1, 29, and 57, respectively). Clinical
observations and blood samples were collected for clinical
pathology, cytokines, antidrug antibody (ADA), and flow
cytometry analysis of leukocyte populations (supplemental
Table 1). The serum concentrations of ISB 1342 were
measured using an exploratory hybrid IP-LC/MS/MS method at
Q2 Solutions (Ithaca, NY).
20 JULY 2023 | VOLUME 142, NUMBER 3 261
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Results
ISB 1342 engineering and biophysical
characterization
The anti-CD3ε scFv portion of ISB 1342 was genetically engi-
neered by fusing the variable heavy chain and light chain
domains of a humanized version of the SP34 mouse antibody
via a 15-amino acid linker ((Gly4Ser)3). The resulting scFv
domain is connected to the hinge region via a short 5-amino
acid linker (Gly4Thr). The Fab portion is based on a human-
ized mouse antihuman CD38 antibody, 9G7, developed by
Ichnos and dubbed humanized 9G7 (h9G7). Fc receptors
expressed on human peripheral blood cells drive cytotoxic,
phagocytic, and inflammatory functions.18,19 To prevent FcγR-
mediated binding, which may act as an antibody sink and
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Figure 1. ISB 1342 properties and binding. (A) Schematic 3D representation of ISB 1342
scFv targeting CD3e, and a Fc carrying the LALA (L234A, L235A) mutation. The model was
SD of KD determined either on CD38- T cells (n = 12 donors in 3 independent expe
experiments), NCI-H929 (12 measures from n = 5 independent experiments) and MOLP-8
CD3eδ (n = 5 independent experiments) and CD38 (n = 3 independent experiments). (C)
4 donors) and KMS-12-BMMM cell line (1 representative measurement from 1 experiment
represent the CD38 residues in a 4 Å radius from the daratumumab chain in the crystal stru
were used to determine the binding epitope of ISB 1342 on CD38, shown in green on the
with daratumumab and can engage CD38 prebound by daratumumab. Biotinylated hu
immobilized CD38 was then dipped in a solution of daratumumab in kinetic buffer to reac
solution of daratumumab + ISB 1342 at equimolar concentrations (red curve) or daratum
(response, in nm; y-axis) vs time (in sec; x-axis).
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potentially crosslink FcγR-expressing immune cells with T cells,
and to minimize nonspecific T-cell activation (in the absence of
target cell engagement), 2 mutations, LALA (L234A/L235A, EU
numbering), were introduced into the CH2 domains of ISB 1342
(Figure 1A). These mutations decrease the binding of human IgG1
molecules to human FcγR.20,21 ISB 1342 interacted weakly with all
FcγR compared with its Fc-competent counterpart (supplemental
Figure 1A-B). ISB 1342 was designed to bind to CD38-
expressing tumor cells with high affinity while mitigating the risk
of life-threatening cytokine release syndrome (CRS) in the clinic by
detuning the affinity to CD3ε to an effective level.22 ISB 1342
binding to human CD38 and CD3εδ recombinant proteins dis-
played KD of 1.1 ± 0.15 nM and 125 ± 2.8 nM, respectively, when
surface plasmon resonance (SPR) results were analyzed using the
Langmuir 1:1 model (Figure 1B; supplemental Figure 1C). On MM
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cell lines expressing different levels of CD38, such as KMS-12-
BM (CD38+), NCI-H929 (CD38++), and MOLP-8 (CD38+++),
ISB 1342 affinity was higher (KD = 2.5 ± 1.8 nM on KMS-12-BM)
than on human CD3+CD38− T cells (KD = 230.4 ± 44.8 nM)
(Figure 1B-C). ISB 1342 was designed to target an epitope
different from daratumumab, as shown by the nonoverlapping
antigen-binding footprints on the 3D structure of CD38
(Figure 1D). The lack of competition was confirmed by the
ability of ISB 1342 to bind CD38 despite preincubation of CD38
with daratumumab in a biolayer interferometry assay
(Figure 1E).
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Figure 2. ISB1342 induces the killing of MM cell lines in vitro via T-cell engagement.
(green) and KMS-12-BM MM cell line (blue) acquired with Zeiss LSM 800 inverted conf
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CD38 × CD3 BISPECIFIC ANTIBODY IN MULTIPLE MYELOMA
ISB 1342 induces killing of MM cell lines
We explored the ability of ISB 1342 to specifically kill MM cell
lines by engaging T cells in vitro using a RDL assay with hPBMCs
as effectors. First, we evaluated the ability of ISB 1342 to
mediate synapse formation by confocal microscopy. ISB 1342
was located and enriched at the interface between T cells and
KMS-12-BM after at least 4 hours, suggesting the formation of
an immunological synapse (Figure 2A; supplemental Figure 2A).
Next, we evaluated whether ISB 1342 induced killing of KMS-
12-BM cells compared with molecules with 1 or both arms
replaced by null arms. ISB 1342 killed with an average
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half-maximal effective concentration (EC50) of 1.23pM, whereas
controls did not induce sufficient killing to calculate an EC50

(Figure 2B). This killing was paired with increased expression of
CD25 on CD8+ (Figure 2C) and CD4+ T cells (data not shown),
elevated T-cell proliferation (Ki-67 staining), and Granzyme B
and Perforin (Figure 1D-E; supplemental Figure 2B). No signif-
icant increases for any of these markers were seen with control
molecules. Cell staining confirmed efficient binding of ISB 1342
(supplemental Figure 2C) to both cell types, whereas controls
bound at similar levels to tumors (CD38-only control) and T cells
(CD3-only control). We then evaluated potential T-cell fratricide
by ISB 1342. A549 cells expressing CD38 and endothelial
growth factor receptor were targeted by a T-cell engager (TCE)
with the same CD3 arm as ISB 1342 but targeting endothelial
growth factor receptor, which is not expressed on T cells and
therefore not expected to induce any T-cell fratricide. In these
conditions, both TCE had similar cytotoxic activity and dis-
played similar counts of CD8+CD38+ T cells, which suggests
that ISB 1342 is not inducing T-cell fratricide (supplemental
Figure 2D-E). Taken together, these data indicate that ISB
1342 induces coengagement of CD38 on tumor cells and CD3ε
on T cells, mediating T-cell activation and killing of tumor cells.

We next tested whether the cytotoxicity of ISB 1342 could be
influenced by soluble CD38, which is found in patients with MM
at concentrations up to 2.8 ng/mL in serum.23,24 At this con-
centration, no effect was observed on the cytotoxicity of ISB
1342 (Figure 2F). Patients with MM undergoing treatment with
TCE often receive corticosteroids, such as dexamethasone, to
treat cytokine-associated toxicities, including CRS.25 Treatment
with dexamethasone induced a significant reduction in ISB
1342 cytotoxicity but no change in maximum killing (Figure 2G).
In contrast, maximum cytokine release was reduced for TNF-α,
IL-6, and IL-2 in the presence of dexamethasone (Figure 2H).
Taken together, these data support that ISB 1342–induced
cytokine release may be manageable with dexamethasone,
whereas maximum killing of tumor cells is sustained.

ISB 1342 induces potent killing of MM cells with
low sensitivity to daratumumab
Nihof et al. show that the level of CD38 expression on cells from
patients with MM is associated with response to daratumumab
therapy.11 To explore the relative impact of CD38 expression
on ISB 1342 and daratumumab activities, 4 cell lines with
different CD38 expression levels (Figure 3A) were evaluated.
KMS-12-BM and NCI-H929 resemble patients with r/r MM with
lower CD38 expression, whereas expression on RPMI-8226 and
MOLP-8 is high. We noted reduced CDC and ADCP on KMS-
12-BM and NCI-H929 compared with MOLP-8 with dar-
atumumab (Figure 3B-C). However, similar ADCC levels were
observed with all cell lines (Figure 3D). These observations
indicate that KMS-12-BM and NCI-H929 indeed exhibit some
resistance features of patient-derived MM cells with reduced
sensitivity to daratumumab-mediated killing. With ISB 1342,
similar cytotoxicity was observed for all 3 cell lines in a RDL
assay (Figure 3E), suggesting that the activity of ISB 1342 does
not depend on CD38 expression levels.

To evaluate the combined effect of these observations directly
in a single assay, we developed a MMoAK where ADCC, ADCP,
CDC, and T-cell–mediated cytotoxicity are enabled (Figure 3F).
264 20 JULY 2023 | VOLUME 142, NUMBER 3
To achieve this, hPBMCs were cocultured with MM cells in 50%
human serum as a source of complement and interleukin-2 (hIL-
2) to facilitate natural killer cell functions.26 On KMS-12-BM,
NCI-H929, and RPMI8226 (CD38++++), we observed a higher
cytotoxicity for ISB 1342 compared with daratumumab
(Figure 3F-H), notably with both a lower EC50 in all cell lines
tested and a higher maximal killing for NCI-H929 and
RPMI8226. ISB 1342 was able to kill the 3 cell lines at similar
levels, independently of CD38 expression, and also efficiently
activate T cells in this model (Figure 3G; supplemental
Figure 3A-B).

Given the use of daratumumab in early lines of therapy, we
intended to determine whether cotreatment or pretreatment
with this drug could influence the cytotoxicity of ISB 1342
in vitro. In a concomitant MMoAK model (Figure 4A), dara-
tumumab (at a predetermined EC50 = 0.2 nM) did not influence
cytotoxicity, maximum killing, or T-cell activation/degranulation
of ISB 1342 (Figure 4B-C). In the sequential treatment model
(Figure 4D), ISB 1342 potency and T-cell activation/degranula-
tion were also unchanged before and after pretreatment with
daratumumab (Figure 4E-F). In both models, the percentage of
CD8+CD38+ T cells was higher in the presence of ISB 1342 but
not with daratumumab alone, whereas the absolute numbers
were reduced with ISB 1342 in the sequential model only
(supplemental Figure 3C). These results suggest that at 72
hours, in this model, T-cell viability starts reducing upon acti-
vation by ISB 1342, whereas daratumumab is not affecting T
cells. Thus, the use of ISB 1342 in daratumumab-pretreated
patients after a limited washout period should be possible
because residual daratumumab should not interfere with ISB
1342 efficacy.

ISB 1342 induces killing of primary MM cells from
patients
We evaluated the activity of ISB 1342 and daratumumab in
samples from patients not previously treated with dara-
tumumab (dara-naïve), including smoldering MM, newly
diagnosed MM, newly diagnosed plasma cell leukemia, and
patients at relapse vs patients previously treated with dara-
tumumab (dara-exposed), including heavily treated r/r patients
(supplemental Table 3). Both daratumumab and ISB 1342
achieved efficient killing of dara-naïve MM cells, whereas only
ISB 1342 was able to achieve efficient killing of dara-exposed
MM cells or a single plasma cell leukemia sample (with an
EC50 of 77.7 pM) (Figure 5A-D). The viability of MM cells was
similar at baseline and after 18 to 24 hours in culture
(supplemental Figure 4A-B). Dara-exposed patients had signif-
icantly lower CD8+ T cells, natural killer (NK) cells, and mono-
cytes/macrophages to MM cells ratios than dara-naïve patients
(Figure 5E; supplemental Figure 4C-E). Thus, the activity of
daratumumab correlated with the ratios of NK cells and
monocytes/macrophages to MM cells, whereas we observed no
correlation between the CD8+ T-cell:MM-cell ratio and ISB
1342 cytotoxic activity (supplemental Figure 4F-H). Counts of
CD8+CD38+ T cells were slightly higher in the presence of ISB
1342 compared with daratumumab, and counts of NK cells and
monocytes/macrophages were not affected by daratumumab
or ISB 1342 treatments (supplemental Figure 5A-C), suggesting
an absence of on-target off-tumor killing and T-cell fratricide
under these conditions. ISB 1342 was also able to efficiently
POULEAU et al
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Figure 3. ISB 1342 induces potent killing of cell lines showing reduced sensitivity to daratumumab. (A) Absolute number of specific antibody bound per cell (sABC)
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induce cytotoxicity toward tumor cells from patients with Wal-
denstrom macroglobulinemia and T-cell acute lymphoblastic
leukemia, both expressing low levels of CD38 (supplemental
Figure 5D-E). Importantly, all patient samples, irrespective of
the group considered, responded to ISB 1342 and showed an
increased fraction of activated CD4+ and CD8+ T cells as
measured by the increase in CD25+ and CD69+ T cells
(Figure 5F-G; supplemental Figure 5F).
ISB 1342 exhibits antitumor activity in vivo
We evaluated the antitumor activity of ISB 1342 in 2 mouse
models. NSG mice were engrafted subcutaneously with KMS-
12-BM and injected intraperitoneally with hPBMCs (Figure 6A).
In this model, ISB 1342 was able to control tumor growth by day
CD38 × CD3 BISPECIFIC ANTIBODY IN MULTIPLE MYELOMA
12, whereas we detected no tumor regression with dar-
atumumab compared with vehicle control (Figure 6B). In addi-
tion, an increase in the number of tumor-infiltrating hCD45+

cells and T cells was detected specifically in mice treated with
ISB 1342 on day 7 (Figure 6C-D), as expected from TCE
mechanism of action.27-30 We also observed a substantial
increase in CD25+ and/or CD69+ tumor–infiltrating T cells,
reflecting their activated status (Figure 6E). A second model
expressing very high levels of CD38 (Daudi) showed similar
tumor control to ISB 1342. In this model, daratumumab was
able to induce partial control of tumor growth, and no tumor
control was detected with the CD3-only control (supplemental
Figure 6). These in vivo results show that ISB 1342 tumor cell
killing is triggered in vivo independently of CD38 expression
levels, unlike daratumumab.
20 JULY 2023 | VOLUME 142, NUMBER 3 265
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ISB 1342 shows an adequate profile in
pharmacokinetic/pharmacodynamic and safety
studies
Cancer immunotherapies are often associated with toxicity and
tolerability events, generally caused by elevated cytokine
release.31 Because CD38 is expressed on human immune cells,
in particular on NK, B, and myeloid cells, at similar levels to
KMS-12-BM MM cells (supplemental Figure 7A), we therefore
examined the ability of ISB 1342 to influence peripheral
immune cells in a high-density PBMC assay. Indeed, this assay
has been previously reported to increase the sensitivity to T-cell
responses and is commonly used for the evaluation of the
toxicity of TCE.32,33 In this assay, we did not observe any
depletion of peripheral leukocytes in vitro compared with the
untreated condition (supplemental Figure 7B). In addition, we
CD38 × CD3 BISPECIFIC ANTIBODY IN MULTIPLE MYELOMA
found that less ISB 1342 bound to CD38 on RBC compared with
daratumumab and observed no sensitization of RBC to hem-
agglutination compared with positive controls (supplemental
Figure 7C-D). We then investigated the pharmacodynamic
(PD) changes in peripheral leukocyte populations, cytokine
levels, and ISB 1342 PK using cynomolgus monkeys injected IV
with consecutive doses of ISB 1342. In cynomolgus monkeys,
expression of CD38 on peripheral leukocytes was observed at a
significantly higher level on B cells compared with monocytes,
CD4+, and CD8+ T cells (Figure 7A); and resulted in detectable
levels of ISB 1342 binding to B cells (Figure 7B). One male and
1 female cynomolgus monkeys received ISB 1342 on days 1 (1
μg/kg), 29 (100 μg/kg), and 57 (1000 μg/kg). ISB 1342 induced
an initial reduction in B-cell numbers after each dose compared
with baseline counts, which rebounded over time but not to
20 JULY 2023 | VOLUME 142, NUMBER 3 267
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baseline levels (Figure 7C). A similar profile was observed for
monocytes; however, levels returned to baseline after the first 2
doses (Figure 7D). Such a transient reduction in peripheral
populations could reflect the redistribution of these cells rather
than their depletion. The number of CD4+ and particularly of
CD8+ T cells, including activated CD69+ T cells, substantially
increased above the baseline in the circulation of animals
administered with 100 μg/kg, indicating T-cell activation and
expansion in the periphery (Figure 7E-H). A substantial dose-
dependent elevation in serum cytokines, such as IFN-γ was
also observed (Figure 7I). ISB 1342 serum concentration profiles
followed a biphasic disposition with a short distribution phase
followed by a longer terminal elimination phase. The terminal
elimination half-life, not confounded by ADA, was ~4.75 days
(Figure 7J). The reduced half-life of ISB 1342 observed at 1000
μg/kg may reflect ADA appearance at this dose (Table 1). These
observations were confirmed with the single dose study at 100
μg/kg (supplemental Figure 8; supplemental Table 4). Overall,
here, the dose-limiting toxicity was considered to be the CRS,
and the maximum tolerated dose was 100 μg/kg using the IV
268 20 JULY 2023 | VOLUME 142, NUMBER 3
route. ISB 1342 therefore revealed the most common dose-
limiting toxicity of TCE and adequate PD and PK profiles to
highlight a potential therapeutic window.

Discussion
Advancement in the therapy of MM has substantially improved
with the introduction of CD38-targeted monoclonal anti-
bodies.34,35 Daratumumab, the first-approved CD38-targeting
monoclonal antibody, has shown significant efficacy in MM36

both as a single therapy37 and as a combination.7,38,39

Despite these results, most patients relapse and become
refractory to daratumumab. Though efficacious, isatuximab, the
second-approved anti-CD38 monoclonal antibody,40 cannot
be used as salvage therapy as it targets CD38 with a similar
mode of action, and therefore will be unable to overcome the
escape mechanisms of daratumumab treatment.10 The use of
TCE, such as ISB 1342, could instead be an option for these
patients. The data presented here show that ISB 1342 exhibits
more potent cytotoxicity than daratumumab when tested on
POULEAU et al
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Figure 7. Impact of ISB 1342 on circulating leukocytes and systemic soluble factors in cynomolgus monkeys. (A) Expression profile of CD38 on leukocyte populations
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compared using a 1-way ANOVA followed by Dunnett post hoc comparison, *P ≤ .05. (B) Representative binding of ISB 1342 or isotype control on cynomolgus monkey B cells.
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MM cell lines with varying CD38 expression and lower sensi-
tivity to daratumumab, on patient BMA, or in vivo. Importantly,
the potency of ISB 1342 was not affected when combined with
daratumumab or in the presence of soluble CD38.

The concept of a CD38 × CD3 TCE12,41 is explored in 2 other
disclosed programs: 1) AMG424 (Xencor and Amgen)23 and 2)
CD38 × CD28 × CD3 trispecific antibody (Sanofi).42 AMG424
showed good killing activity both in vitro and in vivo. This TCE
presents a higher affinity to CD3 (15 nM in SPR) than ISB 1342
and a similar affinity to CD38 (7.7 nM). Unlike the observations
we describe here for ISB 1342, AMG424 seems to induce sig-
nificant depletion of peripheral immune cell populations both
in vitro and in vivo.23 The sponsor is currently testing this
candidate in the context of T-cell acute lymphoblastic leukemia
and acute myeloid leukemia (NCT05038644). The trispecific
CD38 × CD28 × CD3 may enhance the potency and persis-
tence of T cells by providing costimulatory signals. The
reported in vitro/in vivo results warranted a clinical trial
(NCT04401020). Another CD3 × CD38 TCE was described
recently and is not currently in clinical development.43 The
activity of this TCE seems to depend on the expression levels of
CD38 but does not induce depletion of peripheral immune
cells. Despite these advantages in terms of the absence of
on-target off-tumor activity and the lack of dependency on
CD38 levels of ISB 1342 compared with published CD3 × CD38
Table 1. Summary PK parameters of ISB 1342 in cynomolgu

Dose level
(μg/kg)

C0

(ng/mL)
Cmax

(ng/mL) Tmax (h)
AUC0-t

(h × ng/m

1 NE 0.44 4.0 8.8

100 206 131 4.0 4589

1000 462 165.95 4.0 2193

AUC0-∞, area under the (serum) concentration-time curve extrapolated out to infinity; AUC0-t,
centration; NE, not estimable; t½, terminal elimination half-life; tlast, time of the last measurab
administration.

*N = 1.
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TCEs, a direct comparison of ISB 1342 to these based on
published data is not straightforward without a side-by-side
investigation in vitro and in vivo.

ISB 1342 was designed with the advantage that it targets a
different epitope from daratumumab to avoid long washout
periods. Indeed, a minimal washout period of 3 to 6 months is
usually necessary with other anti-CD38 therapies targeting
overlapping epitopes or with daratumumab retreatments due
to the decrease in CD38 expression and potential competi-
tion.11 This delay in treating patients can be problematic and
favors the occurrence of resistant clones.44 The key resistance
mechanisms described for daratumumab include: down-
regulation of CD38,4,11 increased expression of complement
inhibitors (CD46, CD55, and CD59) limiting CDC,11 and upre-
gulation of CD47, which interferes with phagocytosis.10 Here,
we modeled lower sensitivity to daratumumab using cell lines
displaying some of these features and patient samples post-
daratumumab therapy. In agreement with the literature, the
activity of daratumumab was also influenced by the ratio of
effector to MM cells in patient samples.45 However, the data
presented here show that the mode of action of ISB 1342 is
mediated by T cells, making it insensitive to the features of
daratumumab resistance such as upregulation of complement
inhibitor proteins or CD47. We also show that ISB 1342
can efficiently kill MM cells regardless of CD38 expression,
s monkeys: consecutive-dose study

L)
tlast
(h)

AUC0-∞

(h × ng/mL) t1/2 (h) ADA detected

36 NE NE None

252 4863 58.2* Day 43

16 4355* 2.8 Day 43

area under the plasma concentration-time curve from time zero to time t; C0, initial con-
le (positive) concentration; Tmax, time to reach maximum serum concentration after drug
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T cell-to-MM cell ratio and recent treatment with daratumumab,
providing a rationale for using ISB 1342 in patients relapsing
after daratumumab treatment.

Patients with MM showing a T-cell exhaustion profile are more
likely to develop progressive disease compared with those with
less exhaustion.46 Indeed, patients undergoing autologous
stem cell transplantation plus lenalidomide as maintenance
therapy exhibit signs of T-cell exhaustion before relapsing.47

Similar preclinical findings were observed in the context of
TCEs. In fact, when blinatumomab was continuously adminis-
tered for 28 days, T cells developed an exhausted phenotype
and could not kill target cells, whereas with intermittent dosing,
T cells retained their memory TCF1+ phenotype and could
control tumor growth in the presence of blinatumomab.48 The
quality of T cells defines the activity of TCEs. Hence, some
bispecific antibodies are displaying potent cytotoxicity on pri-
mary MM, mostly in the presence of healthy T cells,49 but
showing reduced activity when exhaustion is detected.50

Several preclinical studies have also shown that a combination
with an anti-PD-1 antibody can enhance tumor control by a
TCE.51,52 More studies are required to understand how treat-
ment with ISB 1342 will influence T-cell phenotype in the long
term, but recent studies demonstrate that patients may benefit
from a sequence of 2 different TCE therapies.53 With the recent
approval of teclistamab (BCMA TCE, Janssen Biotech) in
patients with r/r MM, these findings are key to supporting the
development of ISB 1342 in the clinic, which is likely to be
administered to patients previously treated with other TCEs.
Despite the development and approval of efficient BCMA-
targeted therapies, studies have characterized antigen loss,
biallelic deletion on chromosome 16 encompassing the BCMA
locus, point mutations, shedding, and ADA as mechanisms of
resistance to anti-BMCA therapies.54-58 Therefore, it remains
essential to monitor biomarkers indicative of these mechanisms
and to develop TCE against other validated antigens, such as
CD38, to guarantee a range of therapeutic options for patients
depending on the features associated with their relapse.

TCE therapies are associated with systemic cytokine release,
which is a product of their mode of action. However, this
functional cytokine release can progress into CRS, which usually
requires intensive care.59-62 Mitigating CRS while maintaining
the potential for a beneficial antitumor response is key for TCE
therapies, including ISB 1342.63 However, risk factors such as
tumor burden and comorbidities often associated with severe
CRS should be carefully considered. Corticosteroid treatment is
often used to mitigate CRS in the clinic, and data shown here
demonstrate that the use of dexamethasone does not strongly
affect ISB 1342 cytotoxicity and led to a significant reduction of
CRS-associated cytokines in vitro. Using a priming dose or step-
up dosing regimen could also mitigate CRS. Indeed, in the
teclistamab trial, 40 patients received 1500 μg/kg after 60 μg/
kg and 300 μg/kg step-up doses, and no dose-limiting toxicities
were observed.64 Finally, the use of monoclonal antibodies
before injection of a TCE to reduce peripheral tumor burden
could also mitigate CRS. For instance, such an approach was
tested for glofitamab,27,65 an anti-CD20 TCE, which was
administered after 1 dose of obinutuzumab (anti-CD20 anti-
body, Roche). This strategy resulted in a manageable CRS while
preserving strong potency.66 Whether such approaches could
be used for ISB 1342 remains to be clarified in clinical trials.
CD38 × CD3 BISPECIFIC ANTIBODY IN MULTIPLE MYELOMA
Although preclinical models can assess cytokine release in
response to TCE, the field lacks models that accurately predict
the occurrence and intensity of CRS in humans. Thus, more
studies are warranted to fully assess CRS and to design better
options to efficiently mitigate it, such as JAK, mTOR, and Src/
Ick inhibitors currently under investigation.67

In conclusion, ISB 1342 is a potent TCE that may be used
immediately after or concomitantly with daratumumab to
circumvent escape via CD38 downregulation and other mech-
anisms described previously. Our study suggests that ISB 1342
could elicit antitumor clinical responses in patients with r/r MM
who have previously received daratumumab therapy. Based on
this encouraging preclinical data and the differentiation from
other CD38-targeting therapeutics used in the clinic, a phase 1
clinical trial of ISB 1342 in patients with r/r MM is ongoing
(NCT03309111).68
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