
How Good is Good Enough? Strategies
for Dealing with Unreliable Segmentation

Annotations of Medical Data

Ziyang Wang
St Hilda’s College

Department of Computer Science
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Michaelmas 2023





Acknowledgements

My DPhil thesis would not have been possible without the guidance and help
of many people.

I would like to express my sincere appreciation to my supervisor Professor
Irina Voiculescu. Professor Irina Voiculescu is very knowledgeable, thoughtful,
and empathetic. She always can support and guide me with my study and life.
She has always been with me to listen, give me detailed advice, and make my
study in the right direction. My DPhil study was guided and inspired by her
thorough and responsible living mind.

I would like to express my appreciation to St-Hilda’s College team, the Com-
puter Science Department team, collaborators, and friends who helped me during
my DPhil study.

I would also like to express my gratitude to my parents, and my wife for their
strong support of my DPhil study. I am not worried about any difficulties during
the 4-year study with their financial and emotional support.





Abstract

Medical image segmentation is an essential topic in computer vision and medical
image analysis, because it enables the precise and accurate segmentation of organs
and lesions for healthcare applications. Deep learning has dominated in medical
image segmentation due to increasingly powerful computational resources, successful
neural network architecture engineering, and access to large amounts of medical
imaging data with high-quality annotations. However, annotating medical imaging
data is time-consuming and expensive, and sometimes the annotations are unreliable.

This DPhil thesis presents a comprehensive study that explores deep learning
techniques in medical image segmentation under various challenging situations
of unreliable medical imaging data. These situations include: (1) conventional
supervised learning to tackle comprehensive data annotation with full dense masks,
(2) semi-supervised learning to tackle partial data annotation with full dense masks,
(3) noise-robust learning to tackle comprehensive data annotation with noisy dense
masks, and (4) weakly-supervised learning to tackle comprehensive data annotation
with sketchy contours for network training.

The proposed medical image segmentation strategies improve deep learning
techniques to effectively address a series of challenges in medical image analysis,
including limited annotated data, noisy annotations, and sparse annotations. These
advancements aim to bring deep learning techniques of medical image analysis
into practical clinical scenarios. By overcoming these challenges, the strategies
establish a more robust and reliable application of deep learning methods which
is valuable for improving diagnostic precision and patient care outcomes in real-
world clinical environments.
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1.1 Background

Medical image segmentation is an essential research topic within the field of

computer vision and medical imaging [1–7]. The accurate segmentation of Region

of Interest (ROI) including organs, tissues, and lesions is essential for various

healthcare applications, such as diagnosis, treatment planning, computer-aided

surgery, and monitoring disease progression [8–13]. The importance of medical

image segmentation is further heightened by the rapid advancements in medical

imaging technology, leading to an increasing amount of high-resolution raw imaging

data. These advancements have prompted the need for robust, efficient, and

accurate segmentation methods that can keep pace with the growing volume and

1
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complexity of medical imaging data.

In recent years, deep learning techniques have emerged as the dominant method

for medical image segmentation, surpassing traditional image processing methods [2–

7, 14–17]. Machine learning, especially deep learning, has demonstrated remarkable

performance in various medical imaging tasks, such as segmentation [3–5, 17],

registration [18–20], and detection [21–24]. This success can be attributed to the

increasingly powerful computational resources, continuous improvements in neural

network architecture engineering, and the increasing availability of large, annotated,

high-quality medical imaging datasets.

One of the main obstacles to deploying deep learning in real clinical settings

is the acquisition of high-quality reliable annotations for medical imaging data.

Annotating medical imaging data, particularly in image semantic segmentation, is

a time-consuming and expensive process that often requires input from experienced

medical professionals [25–29]. Furthermore, the annotations provided may be

subject to human error and inconsistencies such as inter-observer variability, leading

to unreliable training data [17, 30, 31].

To address the challenges associated with unreliable annotations, this DPhil

thesis presents a comprehensive study exploring deep learning techniques for medical

image segmentation under various challenging scenarios. These scenarios include: (1)

Comprehensive data annotation with full dense masks; (2) Partial data annotation

with full dense masks; (3) Comprehensive data annotation with noisy dense masks;

and (4) Comprehensive data annotation with sketchy contours. Specifically, ‘full

dense masks’ denote that each pixel of a medical image is precisely labeled as

belonging to either ROI or background. ‘Noisy dense masks’ mean that each pixel

is labeled similarly, but some pixels have incorrect labels. The primary objective

of this research is to develop a series of strategies to address these unreliable

annotation situations while maintaining promising and robust segmentation results

by deep learning-based networks.
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1.2 Motivation

In this thesis, we raise the question of ‘how good is good enough’ for the machine

learning community when studying medical imaging. This inquiry is rooted in

the observation that there may be a potential overemphasis on achieving the

best performance on a given dataset within the field. Such a singular focus,

while aiming for excellence, can inadvertently lead to overfitting while developing

deep learning networks. The focus on achieving State-of-the-Art (SOTA) results

can limit the practical application of deep learning networks in clinical settings,

where the primary concern is their effectiveness in the real world, not just their

performance in laboratory conditions.

This question also brings to another significant aspect: the quality of ground

truth in medical imaging. Ground truth annotations, often considered the bench-

mark for training and evaluating networks, come with their own set of challenges. In

real-world scenarios, achieving 100% accuracy in annotations is not only challenging

but also resource-intensive. As we venture into the realms of semi-supervised,

noise-robust, and weakly-supervised learning, we find that annotations with 90-

95% accuracy, albeit less costly and more efficient to produce, can be sufficient.

The effectiveness of our proposed strategies demonstrates that even with par-

tially labeled or sparsely annotated data, deep learning networks can achieve

commendable performance.

The thesis explores how networks can be trained to be robust to the ‘unreliable

annotation’ inherent in less-than-perfect annotations. The unreliable annotation

can stem from a variety of sources, such as variability among different annotators

or the inherent complexity and ambiguity present in medical images. By developing

and implementing strategies that can handle and learn effectively from such data,

we can make significant strides in applying machine learning more broadly and

effectively in clinical settings.

Thus, the focus of this thesis extends beyond the pursuit of high accuracy on

a single dataset to address the practicalities of network training and deployment

in the medical field. We emphasize the need for a more realistic and pragmatic



4 1.2. Motivation

approach, where the success of a network is not just measured by its performance

on a dataset but also by its adaptability, robustness, and utility in a real-world

clinical environment, i.e. unreliable annotations.

Several factors contribute to the significance of this research:

1. Addressing Clinical Annotation Challenges: Accurate medical image segmen-

tation is important for various clinical applications, including disease diagnosis,

treatment planning, and monitoring disease progression. High-quality annota-

tions, however, are time-consuming, expensive, and subject to human error

for clinicians. This thesis aims to overcome these annotation challenges by

developing deep learning techniques robust to unreliable annotations, thereby

enhancing the overall clinical utility of deep learning.

2. Comprehensive Validation: The medical image segmentation triathlon in-

troduced in this research provides a valuable benchmark for evaluating the

performance of deep learning techniques under various annotation scenarios.

This benchmark is designed to comprehensively compare and validate existing

methods, fostering progress in the field and facilitating the development of

more effective segmentation algorithms.

3. Methodological Advancements: By proposing novel strategies to tackle un-

reliable annotation situations in medical image segmentation, this research

contributes to the ongoing methodological advancements in the field of deep

learning and medical image analysis.
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1.3 Terminology Disambiguation

The vast majority of work in computer vision concerns the identification of features

in the absence of full dense masks. The community uses a variety of terms for

slightly different technical problems, and the vocabulary around these problems is

still unsettled. This thesis deals with a variety of scenarios where full dense

masks are not available.

The choice of terminology in each chapter follows the following pattern:

1.3.1 Imprecise Annotated Data

These illustrate a scenario where a clinician sets out to draw complete closed

contours around an anatomical feature but they are imprecise, and part of the

annotation contains false information due to lacked experience or uncertainty about

the situation. The masks used in the labels therefore do not follow the precise

contour of the feature, but can move slightly outside or slightly inside the ideal mask.

An example raw image, ground truth, and imprecise annotations are briefly

sketched in Figure 1.1. This scenario is named noisy labels and is dealt with in Chap-

ter 6.

Figure 1.1: Example Images of CT Spine. (a) CT Image, (b) Ground Truth, (c,d)
Imprecise Annotated Data Generated by Erosion, and Dilation.

1.3.2 Low-Quality Annotated Data

A separate scenario where a clinician draws simple lines or ‘scribbles’ over the

areas of the image that they want to label and have not got the the time to draw
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accurate contours. The scribble helps guide the process of identifying and labeling

specific regions of interest within an image. An example raw image, ground truth,

and low-quality annotation are sketched in Figure 1.2. This scenario is named

scribble and is dealt with in Chapter 7.

Figure 1.2: Example Images of MRI Cardiac. (a) MRI Image, (b) Ground Truth Labeled
by a Clinical Expert, (c) Low-Quality Annotated Data.

1.4 Publications Based on The Thesis

The publications as the past work presented in this DPhil thesis are as follows.

1. Wang, Z. and Voiculescu, I., 2023, October. Exigent examiner and mean

teacher: An advanced 3d cnn-based semi-supervised brain tumor segmentation

framework. In Workshop on Medical Image Learning with Limited and Noisy

Data (pp. 181-190). Cham: Springer Nature Switzerland.

2. Wang, Z. and Voiculescu, I., 2023, October. Weakly supervised medical

image segmentation through dense combinations of dense pseudo-labels. In

MICCAI Workshop on Data Engineering in Medical Imaging (pp. 1-10).

Cham: Springer Nature Switzerland. [Best Paper Award]

3. Wang, Z., Dong, N. and Voiculescu, I., 2022, October. Computationally-

efficient vision transformer for medical image semantic segmentation via dual

pseudo-label supervision. In 2022 IEEE International Conference on Image

Processing (ICIP) (pp. 1961-1965). IEEE.
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4. Wang, Z. and Voiculescu, I., 2022, September. Triple-view feature learning

for medical image segmentation. In MICCAI Workshop on Resource-Efficient

Medical Image Analysis (pp. 42-54). Cham: Springer Nature Switzerland.

5. Wang, Z., Zheng, J.Q. and Voiculescu, I., 2022, July. An uncertainty-aware

transformer for MRI cardiac semantic segmentation via mean teachers. In

Annual Conference on Medical Image Understanding and Analysis (pp. 494-

507). Cham: Springer International Publishing.

6. Wang, Z., Zhang, Z. and Voiculescu, I., 2021, September. RAR-U-Net: a

residual encoder to attention decoder by residual connections framework for

spine segmentation under noisy labels. In 2021 IEEE International Conference

on Image Processing (ICIP) (pp. 21-25). IEEE.

7. Wang, Z. and Voiculescu, I., 2021, November. Quadruple augmented pyramid

network for multi-class COVID-19 segmentation via CT. In 2021 43rd Annual

International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC) (pp. 2956-2959). IEEE.

8. Wang, Z. and Voiculescu, I., 2023. Dealing with unreliable annotations:

a noise-robust network for semantic segmentation through a transformer-

improved encoder and convolution decoder. Applied Sciences, 13(13), p.7966.
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1.5 Thesis Outline

This thesis begins with a comprehensive literature review of deep learning techniques

in medical image segmentation, providing a solid foundation for understanding the

development of SOTA deep learning segmentation networks and identifying potential

areas of improvement. Next, a medical image segmentation triathlon is introduced,

which includes various medical imaging modalities (CT, MRI, ultrasound, and

histology images), data preprocessing techniques, the computational platform for

experiments, and evaluation metrics utilized in this thesis. The core of the thesis is

to develop novel segmentation network and network training strategies to tackle the

aforementioned challenging annotation scenarios. Finally, the experimental results

demonstrate that the proposed strategies outperform other methods in the literature

in terms of segmentation accuracy and robustness. By addressing the challenges

associated with unreliable annotations, the proposed medical image segmentation

strategies have the potential to advance deep learning in medical image analysis and

contribute to the improvement of healthcare applications in real clinical scenarios.

This DPhil thesis is organized as follows:

Chapter 2: Literature Review - This chapter provides a comprehensive review of

the existing literature on deep learning techniques for medical image segmentation,

focusing on the key challenges, methodologies, and advancements in network

development and training strategy. The literature review serves as a foundation for

the subsequent chapters and helps to identify potential areas for improvement.

Chapter 3: Medical Image Segmentation Triathlon - This chapter introduces the

medical image segmentation triathlon, which includes dataset with various medical

imaging modalities, data preprocessing techniques, the computational experimental

platform, and evaluation metrics used in this research. The triathlon serves as

a benchmark for comprehensively and fairly evaluating the performance of the

proposed deep learning techniques under different annotation scenarios.

Chapter 4: Conventional Supervised Learning - This chapter investigates the

performance of deep learning techniques for medical image segmentation in a conven-

tional supervised learning setting, using datasets assumed to be sufficient and perfect.
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Chapter 5: Semi-Supervised Learning - This chapter explores semi-supervised

learning techniques for medical image segmentation, focusing on situations where lim-

ited annotated data and a large amount of raw data are available for network training.

Chapter 6: Noise-Robust Learning - This chapter studies noise-robust learning

techniques for medical image segmentation, addressing scenarios with large amounts

of annotated data containing incorrect labels for network training.

Chapter 7: Weakly-Supervised Learning - This chapter studies weakly-supervised

learning techniques for medical image segmentation, targeting situations where all

medical data is sparsely annotated, such as with scribbles, for network training.

Chapter 8: Conclusion and Discussion - This final chapter summarizes the main

contributions and discusses potential directions for future research in the area of

deep learning for medical image segmentation under unreliable annotation scenarios.
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Deep Learning in Medical Image

Segmentation
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2.1 Architecture Engineering of Segmentation
Network

Medical image segmentation networks aim to classify each pixel of an input image,

distinguishing between ROI and background elements. It is an essential study

topic in computer vision, as it is the foundational technique to the concept of

scene understanding and explaining the global context of an image. This section

11
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reviews the advancements and methodologies in the architecture engineering of

deep learning networks for image segmentation. The architecture engineering

of segmentation network is categorized into three groups based on the general

contributions: (1) Fundamental image segmentation backbone networks, such as

FCN [3], UNet [4], SegNet [32], Deeplab [33], RefineNet [34], and SegFormer [7]; (2)

Segmentation network blocks, such as attention mechanisms [35–39], normalization

techniques [40–43], and multi-scale studies [22, 33, 44]; and (3) Segmentation

network training strategies, including the design of loss functions [45, 46], optimizer

[47, 48], and learning rate settings.

An overview of architecture engineering of deep learning segmentation networks

including backbone network, network block, and training strategy is shown in

Figure 2.1, and some of essential are detailed in Table 2.1.

Figure 2.1: Overview of Architecture Engineering of Deep Learning Network for Image
Segmentation. In each group of contribution including backbone network, network block,
training strategy, there are various options of ‘ingredients’ for researchers to utilize.
Example studies of ‘ingredients’ are summarized in Table 2.1.
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Segmentation
Network

Backbone
Network

Network
Block

Training
Strategy+ +

Segmentation Network Development

Medical Imaging Segmentation Inference

EvaluationRedevelopment

UNet +

We have a SOTA Network !!!

CNN

ViT

Residual

Early Stop

Focal Loss

Attention

Normalization

Adaptive Pooling

Adam

Atrous CNN

Shift Window

SGD

MixUp

=

ResUNet

Unet++

UNet3+

SwinUNet

DenseUNet

TransUNet

Attention UNet

R2 UNet

MultiRes UNet

RA UNetAugmentation

ASPP

=
3D UNet

RAR UNet

nnUNet

MDUNet

ResUNet-a

ST-UNet

Figure 2.2: Overview of Deep Learning Segmentation Network Development. Each
network relies on raw data input and outputs a proposed segmentation. Each setup
makes a choice of backbone network, network block and training strategy (loss function,
optimizer, etc). The relative combinations of these ‘ingredients’ gives a slightly different
network in each case. For the particular example of UNet, some of the options and names
are given specifically as a UNet family.
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In past studies of medical image segmentation, different combinations of the

above novel contributions on a specific medical dataset can be considered as a

network with SOTA performance (Seen in Figure 2.2) including CT [17, 162–166],

MRI [8, 167, 168], histology [4, 169, 170], and Ultrasound [13, 160, 171, 172].

For example, many of past studies explore advanced network blocks for UNet

segmentation backbone network resulting in a ‘UNet Family’: VNet [5], 3DUNet

[173], H-DenseUNet [162], nnUNet [6], GP-UNet [174], UNet++[175], RA-UNet

[176], MultiResUNet [177], Attention UNet [178], U2-Net [179], RAR-Unet [17],

UNet3+ [180], TransUNet [181], and SwinUNet [182].

2.1.1 Backbone Network
CNN-based Segmentation Backbone Network

The Convolutional Neural Network (CNN) serves as a primary deep learning

architecture for image processing tasks. It comprises a series of artificial neural

layers that employ convolutional operations within a limited-sized receptive field.

An example convolutional operation, illustrated in Figure 2.3, is defined as:

Y = K × X (2.1)

where X is the input feature, K is the 3 × 3 kernel, and Y is the output feature.

The convolutional operation can be defined mathematically as:

(K × X)(i,j) =
1∑

m=−1

1∑
n=−1

Km+1,n+1 · Xi−m,j−n (2.2)

where (i, j) represents the position of the output pixel, and m and n represent

the positions within the 3 × 3 kernel.

The deep CNN-based network is frequently used for feature extraction in

computer vision tasks as CNN-based backbone network. Certain CNN-based

backbones have become milestones in network architecture design including LeNet

in 1998 [146], AlexNet in 2012 [183], VGG in 2014 [148], InceptionNet in 2014

[159], ResNet in 2015 [56] and DenseNet in 2017 [147].
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LeNet [146] is the first deep neural network study utilizing gradient-based

learning, featuring a 5 × 5 CNN, 2 × 2 Pooling, and a fully connected network at

the end of the network. It is the first efficient CNN-based network for handwritten

number classification. AlexNet [183] introduces a deeper CNN through two separate

branches, achieving higher accuracy compared to traditional methods on ImageNet.

VGG [148] explores further by employing smaller-sized but more than 15 layers of

CNN, while ResNet [56] introduces residual learning to address the vanishing gradient

problem, making it possible to develop networks with hundreds of CNN layers.

In recent years, InceptionNet [159] has explored the use of multiple convolutional

filters of different sizes simultaneously to handle different scales of image details.

SqueezeNet [152] reduces the number of channels using a 1 × 1 CNN and fewer

pooling layers, thereby increasing the receptive field. MobileNet [154] introduces

depthwise separable convolution, which efficiently decreased trainable parameters.

ShuffleNet [153] employs group convolution, dividing the feature map by channel

shuffle and pointwise group convolution.

Figure 2.3: An Example of 2D Convolutional Operation in CNN-based Backbone
Network.

More specifically, for pixel-level classification in semantic segmentation, encoder-

decoder architectures have shown great promise. The encoder reduces the spatial

dimensions while extracting features, and the decoder restores these dimensions

to output a segmentation map that matches the input size. Notable architectures

include FCN [3], UNet [4], and Deeplab [184]. FCN is the first CNN-based image
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Figure 2.4: An Example of 2 Successive CNN Layers in CNN-based Backbone Network.

segmentation work that utilize a deconvolution in the end of network to enable

the output size is same with the input image size. Deeplab’s main contribution

is the design of atrous CNN. Atrous, also known as dilated, CNN is introduced

in 2018 [33, 54]. Atrous convolution embeds zeros between non-zero filter taps to

sample the feature map. The proposing of atrous CNN directly lead to a series of

state-of-the-art segmentation network such as DeeplabV1 [184], DeeplabV2 [33],

PSPNet [44], and Deeplabv3 [185]. DeeplabV1 explores on atrous CNN with VGG

[148] to enlarge the receptive field, and DeeplabV2 [33] studies on atrous CNN with

ResNet by atrous spatial pyramid network (ASPP). ASPP consists of parallel atrous

convolutions with varying rates to accommodate different object scales. Finally,

DeeplabV3 [185] further explores atrous CNN through multi-grid, maintaining a

constant stride for each convolution, thereby enlarging the field-of-view without

increasing the number of parameters or the computational workload. UNet [4] is

one of the most promising segmentation networks with symmetric encoder-decoder

style architecture. The encoder is to collect pixel location features, and then the

decoder restores the spatial dimension and pixel location features. To recover

the pixels’ location information lost in the pooling operation, encoder-decoder

architecture based networks are proposed introducing opposite operations including

convolution and deconvolution (or transpose convolution), down sampling and

up sampling. Therefore, the information of feature and pixel location can be

fully retained and analyzed.
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ViT-based Segmentation Backbone Network

Image semantic segmentation, a dense prediction task, is one of a most challenging

computer vision tasks, and CNN has been mainly studied since 2015 [3]. These

methods, however, are limited by their finite receptive field [33, 54], and until the

advent of ViT [186] demonstrates exceptional performance [186].

The success of self-attention mechanisms in natural language processing [39] has

inspired their application in image processing tasks, treating images as sequences

for sequence-to-sequence problems. ViT demonstrates the efficacy of self-attention

in image recognition [186], conceptualizing the input image as a ‘sentence’ split

into patch ‘words’, thus modeling global dependencies via multi-head self-attention

(MSA). Various purely ViT-based backbone networks for dense prediction, such

as Swin-ViT [79] and DeiT [187], have been proposed for diverse image processing

tasks [15, 188–192]. In medical image segmentation, the combination of UNet and

ViT has been particularly influential [181, 193, 194]. TransUnet is a ViT-based

medical image segmentation network integrating ViT encoders with CNN tokenized

image patches and decoders for upsampling encoded features [181]. SwinUNet then

is explored by replacing the whole decoder with Swin-Transformer blocks, creating

a ViT-based encoder-decoder U-shape network [193].

As shown in Figures 2.5 and 2.6, a sequence of patches X′ = [x′
1 · · · x′

N ]⊤ ∈ RN×P 2

is extracted from a medical image X ∈ Rh×w, where P is the patch size, and

N = h×w
P 2 represents the total number of patches per image. Each patch is flattened

into a 1D vector and projected via patch embedding X0 = [E1 · · · EN ]⊤, E1···N ∈

RD×P 2 . Positional embeddings pos = [pos1 · · · posN ]⊤ ∈ RN×D are added to capture

positional information, forming the final input sequence of tokens for the encoder

Z0 = X0 + pos. The Transformer encoder includes a MSA block and a two-

layer point-wise MLP block. Each block applies residual connections and layer

normalization (LN). The details of MSA and MLP blocks for feature learning

are outlined in Equations 2.3 & 2.4, with i ∈ {1 · · · L}, where L is the number of

layers in the encoder. The self-attention mechanism comprises three point-wise

linear layers mapping tokens to intermediate representations: queries Q, keys K,
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Figure 2.5: An Example of Self-Attention in ViT-based Layer.

Figure 2.6: An Example of 2 Successive Self-Attention-Based Layers in ViT-based
Backbone Network.

and values V, as described in Equation 2.5. This process enables the Transformer

encoder to map the input sequence Z0 = [z0,1 · · · z0,N ] with positional information

to ZL = [zL,1, ..., zL,N ]. These settings follow the previous work detailed in [186],

facilitating the comprehensive utilization of rich semantic features in the encoder.

Ai−1 = MSA(LN(Z i−1)) + Z i−1 (2.3)

Z i = MLP(LN(Ai−1)) + Ai−1 (2.4)
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where MSA is calculated by:

MSA(Z ′) = softmax(QK√
D

)V , (2.5)

and the Q, K , V are given by:

Q = LinearQ(Z ′), K = LinearK(Z ′), V = LinearV(Z ′) (2.6)

The sequence of ZL is subsequently decoded into a dense map S ∈ Rh×w×k,

representing the segmentation results, where k denotes the number of classes. The

decoder functions by mapping the patch sequence from the encoder and upsampling

it to generate pixel-level probability maps for each class [15]. This output patch

sequence is reshaped into a 2D mask and bi-linearly upsampled to match the original

image size, thus forming the prediction results. In the transformer mask decoder,

class embeddings and patch sequences are processed conjointly, enabling the final

inference of the semantic segmentation mask.

2.1.2 Network Block

In recent years, there has been significant research interest in network blocks that

can be attached to backbone networks to improve performance. Some of the widely

studied network blocks include attention mechanisms [35–39], feature normalization

[40–43], dropout [195], residual networks [56], and densely connected networks [147].

These advanced network blocks are generally simple yet effective in improving the

performance of various backbone networks. Two popular network blocks, attention

mechanisms and feature normalization, are selected and discussed in this section.

Attention mechanisms aim to enhance the performance and explainability of

the network by enabling the CNN to focus on key information from the feature maps

[35–39]. Visual attention blocks typically assign weights to the feature map, allowing

the network to selectively extract features according to their importance. The most

classical attention mechanisms include non-local [35], channel attention [38], and

dual attention [68]. Non-local attention is a kind of attention mechanism that is

first utilized in image analysis [35]. The non-local operation, which establishes
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long-range dependencies (e.g., between two pixels that are a certain distance apart),

is detailed in Equation 2.7.

Yi = 1
C(X)

∑
νj

f(Xi, Xj)g(Xj) (2.7)

where X is the input features, such as feature map in computer vision task, Yi

is the output and i is the index of location (space location, sequence of time), a

pairwise function f(Xi, Xj) computes a scalar (representing relationship such as

affinity) between i and all j, g(Xj) is the feature extracted on j, and C(X) is a

normalization function. In general, i is the representation of local feature, j is the

representation of global feature, and the non-local weighting is calculated as Yi.

Squeeze-and-Excitation is the first channel attention that adaptively adjusts

the response values of each channel [62]. To facilitate feature re-calibration, global

pooling is used to selectively emphasize important features while suppressing less

useful ones. The channel information is detailed in Equation 2.8:

Fsq(Uc) = 1
H × W

H∑
i=1

W∑
j=1

Uc(i, j) (2.8)

where H, W , c illustrate the dimension of feature map, Uc is the global average

pooling, and Fsq is to extract global spatial information into channel, so that the

output size is 1 × 1 × C. Convolutional Block Attention Module (CBAM) is an

attention module that can be integrated into CNN [38]. CBAM achieve channel

attention and spatial attention by cascaded connecting. The Dual Attention

Network (DANet) incorporates two types of attention including channel attention

and position attention module in conjunction with Atrous FCN for enhanced image

semantic segmentation [68]. This integration captures rich contextual relationships

by focusing on relevant features across both spatial and channel dimensions.

Feature Normalization is to adjust numeric values within a dataset to

a common scale without distorting their range or losing information. Typical

normalization layer in deep learning network is producing normalized activation

maps by subtracting the mean and dividing by the standard deviation aiming

at the output to be a normal distribution with a mean of 0 and a variance of 1.
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Normalization is beneficial to network because it can improve convergence rate of

networks with gradient descent, and improve the accuracy of network. Classical

normalization includes Batch Normalization (BN) [43], Layer Normalization (LN)

[40], Instance Normalization (IN) [112], and Group Normalization (GN) [42] shown

in Figure 2.7, and illustrated in Equation 2.9.

Figure 2.7: Examples of Feature Normalization: Batch Normalization, Layer Normaliza-
tion, Instance Normalization, Group Normalization.

Each normalization address their concern and is advanced under different

conditions. BN process on N, H, W dimension and the dimension of the channel is

retained, however it require a proper batch sizes. LN address the limited number

of batch concern and can also be utilized on RNN. GN is to control the number

of feature instances used so that offer neither noisy nor confused statistic for

different batch sizes.

y = γ(x − µ(x)
σ(x) ) + β (2.9)

where µ(x) is the mean, σ(x) is the standard deviation, and γ is linear mapping/

re-scale parameter, and β is re-shift parameter.

Batch Normalization is defined as follows:

µi = 1
NHW

N∑
n=1

H∑
h=1

W∑
w=1

xnchw (2.10)

σi =
√

1
NHW

∑
(xnchw − µi)2 (2.11)

Layer Normalization is defined as follows:

µi = 1
vHW

∑
xi (2.12)
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σi =
√

1
vHW

∑
(xi − µi)2 (2.13)

Instance Normalization is defined as follow:

µnc = 1
HW

H∑
h=1

W∑
w=1

xnchw (2.14)

σnc =

√√√√ 1
HW

H∑
h=1

W∑
w=1

(xnchw − µnc)2 (2.15)

Group Normalization is defined as follow:

µng = 1
(C/G)HW

(g+1)C/G∑
c=gC/G

H∑
h=1

W∑
w=1

xnchw (2.16)

σng =

√√√√√ 1
(C/G)HW

(g+1)C/G∑
c=gC/G

H∑
h=1

W∑
w=1

(xnchw − µng)2 (2.17)

Latest studies have further explored the feature normalization strategy to

improve network performance. Centered Weight Normalization (CWN) introduces

an additional trainable parameter to the feature normalization [113]. Recurrent

Batch Normalization (RBN) applies BN to the hidden transformations within

RNN, optimizing performance across sequential data [41]. Moving Average Batch

Normalization focuses on refining batch statistics during backward propagation,

ensuring more stable updates [196]. The recent study named Batch Group Nor-

malization (BGN) addresses the challenges posed by small or extremely large

batch sizes in Batch Normalization by integrating across channel, height, and

width dimensions. This method demonstrates superior performance compared to

traditional normalization methods such as BN, LN, GN, and IN [118].

2.1.3 Training Strategy

The training strategy is a crucial step in engineering a deep learning network

architecture for segmentation. It involves various aspects, including dataset augmen-

tation, preprocessing, splitation, loss function, optimizer, batch sizes, distributed

learning, etc. Along with the backbone network and network block, the training

strategy plays a critical role in determining the network’s performance, such as
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loss design. Typical segmentation loss includes cross entropy [197], weighted cross

entropy, Dice-efficient-based loss [88], tversky loss [198], boundary based loss [199]

and etc. Regarding the optimizer in machine learning, it is able to tweak and

change the trainable parameters of network in the training process to minimize

the loss function. Commonly used optimizer includes SGD [130], AdaGrad [200],

RMSProp [132], and Adam [48]. The learning rate needs to be set appropriately

for effective training. A common strategy is to use ReduceLROnPlateau, where

the learning rate is decreased by a factor after a specified number of epochs if

there’s no improvement in performance. Another approach is CosineAnnealingLR,

which applies cosine annealing to modify the learning rate. Additionally, early

stopping is a prevalent regularization technique used to prevent overfitting. It halts

training when there’s no improvement in the network’s performance during iterative

training processes. The details of classical techniques of network architecture

engineering are summarized in Table 2.1.

2.1.4 Experimental Analysis of the State of the Art

In recent studies, numerous segmentation networks have been proposed, each

claiming SOTA performance within specific experimental setting, such as particular

datasets. Even for similar ROI segmentation tasks, e.g. CT COVID-19 segmentation

[163, 164, 201–204], researchers employ different training strategies, loss functions,

optimizers, and learning rates to achieve what they each claim to be ‘SOTA’

performance. Table 2.2 summarises these combinations of these ‘ingredients’, and

the evaluation metrics used (mostly Accuracy, Dice and IoU). The existence of

numerous SOTA networks complicates the selection process for clinicians, who

must understand the network’s practical effectiveness in clinical settings. Moreover,

the risk of overfitting to one dataset while underperforming in practical clinical

environments remains a significant concern.

Since these algorithms are available publicly, the most logical way to compare

them against each other is to apply them to the same dataset, in the same conditions,

and evaluate them with the same set of metrics. Table 2.3 summarises the outcome
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of our preliminary experiments carried out in this controlled manner. We employ

residual learning [56], attention mechanism [38], densely connected [147], dilated

CNN [33], and some other network blocks on segmentation backbone networks

including UNet [4], LinkNet [205], and FPN [21]. As shown in Table 2.2 and

Table 2.3, deep learning network architecture engineering lacks clear formatting

rules, and the performance of proposed different combinations of network blocks,

backbone networks and training strategies may perform better or worse on another

dataset. This situation leading researchers to typically select different combinations

of advanced technique,and experiment in an iterative manner to identify the best

network for a specific dataset, as illustrated in Figure 2.2. Researchers have

investigated the generalization of segmentation networks across different modalities,

such as transferring knowledge from CT to MRI bone segmentation, a process

known as domain adaptation. While effective in specific cases, achieving broad

generalization across all datasets and modalities remains a significant challenge.

Everyone working in this area is caught in an overfitting race, which further leads

to difficulties in applying machine learning research to actual clinical practice.
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Table 2.3: The Direct Comparison of Existing Methods, Illustrating Their Relative
Performance on the Same CT Spine Dataset. Although they each claimed SOTA
performance, this is not necessarily justifiable at the time of their publication due
to the different experimental conditions. The best performance is highlighted with Bold.

Network Dice Acc Pre Sen Spe
2D UNet 0.8360 0.9863 0.8832 0.7936 0.9952
2D Residual-UNet 0.8810 0.9898 0.9097 0.8540 0.9961
2D Densely-UNet 0.8316 0.9860 0.8832 0.7857 0.9952
2D M-UNet 0.9478 0.9954 0.9512 0.9444 0.9978
2D M-Densely-UNet 0.9517 0.9958 0.9524 0.9508 0.9978
2D UNet-VGG16 0.9138 0.9925 0.9235 0.9043 0.9966
2D UNet-VGG19 0.9024 0.9914 0.9029 0.9019 0.9955
2D UNet-ResNet34 0.6626 0.9689 0.6333 0.6947 0.9815
2D UNet-SE-ResNet34 0.7306 0.9762 0.7265 0.7347 0.9873
2D UNet-ResNeXt101 0.7597 0.9765 0.6909 0.8438 0.9826
2D UNet-DenseNet121 0.7982 0.9811 0.7526 0.8498 0.9872
2D UNet-InceptionV3 0.8109 0.9837 0.8250 0.7972 0.9922
2D UNet-MobilenetV2 0.5671 0.9586 0.5240 0.6179 0.9742
2D UNet-EfficientNet 0.8358 0.9857 0.8431 0.8286 0.9929
2D MultiRes-UNet 0.8542 0.9864 0.8094 0.9043 0.9902
2D LinkNet 0.8958 0.9908 0.8919 0.8999 0.9950
2D FPN 0.8804 0.9893 0.8675 0.8936 0.9937
3D UNet 0.8078 0.9874 0.7788 0.8390 0.9922
3D Residual-UNet 0.7757 0.9850 0.7360 0.8198 0.9904
3D Densely-UNet 0.7921 0.9860 0.7450 0.8456 0.9906
3D Attention UNet 0.8623 0.9870 0.8129 0.9182 0.9902
3D UNet-ResNet34 0.6114 0.9749 0.4424 0.9896 0.9746
3D UNet-VGG16 0.7377 0.9770 0.7237 0.7523 0.9871
3D UNet-MobileNet 0.7731 0.9830 0.6465 0.9614 0.9837
3D UNet-Inceptionv3 0.7148 0.9799 0.5634 0.9775 0.9800
3D UNet-DenseNet121 0.4773 0.9693 0.3144 0.9910 0.9689
3D LinkNet-ResNet34 0.7468 0.9803 0.6514 0.8749 0.9839
3D LinkNet-VGG16 0.8185 0.9859 0.7092 0.9678 0.9865
3D LinkNet-MobileNet 0.6776 0.9777 0.5240 0.9584 0.9782
3D LinkNet-Inceptionv3 0.5267 0.9711 0.3604 0.9780 0.9710
3D LinkNet-DenseNet121 0.5046 0.9699 0.3432 0.9620 0.9702
3D FPN-ResNet34 0.7074 0.9796 0.5517 0.9855 0.9795
3D FPN-VGG16 0.8191 0.9861 0.7011 0.9848 0.9862
3D FPN-MobileNet 0.6775 0.9778 0.5227 0.9623 0.9781
3D FPN-Inceptionv3 0.7484 0.9813 0.6231 0.9369 0.9826
3D FPN-DenseNet121 0.8081 0.9836 0.7718 0.8481 0.9893
3D Atrous-ResUNet 0.8493 0.9861 0.8734 0.8265 0.9940
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2.2 Supervision of Deep Learning Network

In order to address the various data situations encountered in real clinical scenar-

ios, this thesis proposes various advanced supervision strategies of deep learning

segmentation networks, including supervised learning, semi-supervised learning,

noise-robust learning, and weakly-supervised learning, each addressing specific

challenges in real clinical data situations.

2.2.1 Supervised Learning

Supervised learning is a machine learning strategy where a network is exclusively

trained using labeled data available for the entire training set. In medical image

segmentation, this strategy involves labeling every pixel of a medical image with its

corresponding class, such as tissue, organ, tumor, or background. The goal is to train

a deep learning network fθ : X 7→ Y that maps input X to output Y using a perfect

and sufficient training dataset D consisting of pairs D = {(X i, Y i)|i = 1, ..., N},

where N representing the number of images in dataset, X ∈ Rh×w representing a

2D image. The training process is to update parameters θ of network f to minimize

the loss with back propagation. The supervised segmentation loss is illustrated as

L(θ) = ∑N
i=1 L(yi, ypredi

), where L(yi, ypredi
) is the difference (loss) between ground

truth and predicted segmentation map. A brief supervised learning pipeline for

image segmentation is sketched in Figure 2.8.

Figure 2.8: Overview of Supervised Learning for Image Segmentation
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2.2.2 Semi-Supervised Learning

Semi-supervised learning is a machine learning strategy that leverages both labeled

and unlabeled data during training. This is particularly useful in medical image

segmentation, where obtaining labeled data can be expensive and time-consuming

and where unlabeled data comes from in great quantity. The goal is to train

a deep learning network fθ : X 7→ Y that maps input X to output Y by

utilizing the information from the available labeled data (X , Y gt) ∈ Dl and the

unlabeled data (X) ∈ Du. Dl = {(xi, yi)|i = 1, ..., Nl}, Du = {xj|j = 1, ..., Nu}

where Nl, Nu representing the number of images in labeled set and unlabeled set.

The semi-supervised segmentation loss is illustrated as L(θ) = Lsup + λLsemi =∑Nl
i=1 L(yi, ypredi

) + λ
∑Nu

j=1 L(xj), where λ is a hyperparameter controlling the trade-

off between the supervised loss Lsup and the consistency loss Lsemi, which encourages

similar predictions for perturbed versions of the same unlabeled data. A brief semi-

supervised learning for image segmentation is sketched in Figure 2.9.

Figure 2.9: Overview of Semi-Supervised Learning for Image Segmentation.
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2.2.3 Noise-Robust Learning

Noise robust learning aims to train a network that is resilient to label noise in the

training data. This is also particularly relevant in medical image segmentation,

where ground truth annotations might be subject to errors or inconsistencies. The

goal is to train a deep learning network fθ : X 7→ Y that maps input X to output

Y by utilizing the information from the available labeled data with noise (X , Y gt +

noise) ∈ Dn. Dn = {(xi, yi + noise)|i = 1, ..., N}, with yi is with potentially noisy.

The training process of noise-robust learning is developed to minimize the influence of

noise. A brief noise-robust learning for image segmentation is sketched in Figure 2.10.

Figure 2.10: Overview of Noise-Robust Learning for Image Segmentation.
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2.2.4 Weakly-Supervised Learning

Weakly-supervised learning utilizes with sparse or coarse annotations instead of

pixel-level annotated segmentation masks. For medical image segmentation, the

network can be trained with image-level labels, bounding boxes, points, and scribbles.

The goal is to train a deep learning network fθ : X 7→ Y that maps input X to

output Y by utilizing the information from the available sparse labeled data

(X , Y weak) ∈ Dw. Y weak is with limited signal compared with Y gt in supervised or

semi-supervised learning. Loss design: L(θ) = Lweak = ∑N
i=1 L(yweaki, ypredi

), where

L(ai, ypredi
) is the loss function adapted to accommodate weak annotations. A brief

weakly-supervised learning for image segmentation is sketched in Figure 2.11.

Figure 2.11: Overview of Weakly-Supervised Learning for Image Segmentation.
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2.2.5 Further Details

Each of the strategies described in Section 2.2 have been studied in detail and are

described in appropriate contexts in Chapters 4 to 7.
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3.1 Motivation

In recent years, there has been a significant increase in the number of research

studies focusing on medical image segmentation using deep learning techniques [3,

4, 7, 29, 32–34, 163, 175, 176, 178, 180, 205, 207, 211, 213–217]. These studies

present various deep learning-based networks with different architectures, validated

across diverse datasets, experimental settings, and evaluation metrics, each claiming

33
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SOTA performance (seen in Table 2.2 and Table 2.3). This diversity makes it

challenging to directly compare their relative performance. The name of Triathlon

motivated by ‘Medical Image Segmentation Decathlon’ [218] is proposed, and the

main motivation behind the Medical Image Segmentation Triathlon is to establish

a standardized framework that facilitates a solid and comprehensive evaluation of

different deep learning methods for medical image segmentation. This framework

aims to address the following concerns:

1. Diverse Medical Imaging Modalities: Many studies focus on a single modality,

such as CT or MRI, which limits the generalizability of the findings. The

Medical Image Segmentation Triathlon incorporates multiple imaging modali-

ties (CT, MRI, ultrasound, and histology images) to ensure that the proposed

methods are robust and applicable across different types of medical images.

2. Consistent Experimental Settings: Variations in data preprocessing, network

architectures, and training strategies can significantly affect the performance

of segmentation networks. The Triathlon provides a standardized approach to

data preprocessing, network implementation, and training strategies, ensuring

that all methods are evaluated under fair and comparable conditions.

3. Comprehensive Evaluation Metrics: Different studies often use various evalua-

tion metrics, complicating comparisons. The Medical Image Segmentation

Triathlon simultaneously employs multiple evaluation metrics, such as region-

based metrics: Dice Coefficient, Jaccard Index, Sensitivity, Specificity, and

boundary-based metrics: Hausdorff Distance, and etc providing a comprehen-

sive assessment of the performance of various methods.

4. Real-world Challenges: Many existing studies focus on scenarios with perfect

or near-perfect annotations, which is often not the case in real-world clinical

settings. The Triathlon addresses this by simulating various challenging

situations with unreliable annotations, including semi-supervised learning,

noise-robust learning, and weakly-supervised learning. This approach enables
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a more realistic evaluation of the proposed techniques and their potential

applicability in real-world clinical scenarios.

In summary, the Medical Image Segmentation Triathlon aims to establish a

rigorous and standardized framework for evaluating deep learning techniques in

medical image segmentation. By addressing the diversity of imaging modalities,

ensuring consistent experimental settings, using comprehensive evaluation metrics,

and simulating real-world challenges, the Triathlon framework can help researchers

and clinicians better understand and compare the performance of various segmen-

tation methods, ultimately contributing to the development of more effective and

robust solutions for medical image analysis.
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3.2 Datasets

To conduct a comprehensive evaluation of medical image segmentation methods, we

utilize a diverse collection of medical imaging datasets. These datasets cover a wide

range of medical imaging modalities, including CT, MRI, ultrasound, and histology

images. Each dataset contains images of different organs and pathologies, providing

a triathlon test bed for assessing the performance of segmentation techniques.

The datasets are introduced respectively as follows:

1. CT Spine [219]: A dataset containing CT spine dataset published from

California and NIH, consisting of CT scans from 10 patients aged from 16 to

35 years with up to 600 slices per scan, at a resolution of 512 × 512, and 1mm

inter-slice spacing. Example images are briefly sketched in Figure 3.1.

2. CT COVID-19 [220]: A dataset containing CT scans of patients affected by

COVID-19 from MedSeg, a commercial AI medical company. The dataset

consists of 20 CT scans with up to 630 slices per scan and is aimed at improving

the detection and analysis of COVID-19 related lung abnormalities. Example

images are briefly sketched in Figure 3.2.

3. MRI Cardiac [8]: A dataset comprises cardiac MRI scans that include

annotations for various cardiac structures. The dataset consists of data

collected from 100 patients, totaling nearly 6,000 images. These images

represent diverse feature information distributions across five subgroups:

normal, myocardial infarction, dilated cardiomyopathy, hypertrophic car-

diomyopathy, and abnormal right ventricle. Example images are briefly

sketched in Figure 3.3.

4. MRI Brain Tumor [9]: A dataset of multi-modal MRI scans of brain tumor

patients, containing annotations for different types of brain tumors. The

dataset is aimed at enhancing the understanding and treatment of brain

tumors. It contains routine clinically-acquired 3T multimodal MRI scans, with
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accompanying ground-truth masks annotated by neuro-radiologists. Example

images are briefly sketched in Figure 3.4.

5. Ultrasound Nerve [221]: A dataset of ultrasound images with annotations

for peripheral nerves. Identifying nerve structures in ultrasound images is

critical for inserting a patient’s pain management catheter. Example images

are briefly sketched in Figure 3.5.

6. Histology Nuclei [169]: A dataset of digitized histological sections with

annotations for cell nuclei from the University of Warwick. The dataset

is aimed at enhancing the understanding and analysis of various cancer types.

Example images are briefly sketched in Figure 3.6.

Figure 3.1: Example CT Spine Images with Segmentation Ground Truth. The White
Pixels Representing the Spine, and the Black Pixels Representing Background.

These diverse datasets provide a comprehensive platform to evaluate and

compare the performance of various medical image segmentation methods. By

analyzing the performance of the techniques on these datasets, we can better

understand their strengths and weaknesses and determine their suitability for

specific clinical applications.
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Figure 3.2: Example CT COVID-19 Images with Segmentation Ground Truth. The
White Pixels Representing the Lung, and the Black Pixels Representing Background.

Figure 3.3: Example MRI Cardiac Images with Segmentation Ground Truth. The White
Pixels Representing the Right Ventricle (RV), Myocardium (Myo), and Left Ventricle
(LV), and the Black Pixels Representing Background.
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Figure 3.4: Example MRI Brain Tumor Images with Segmentation Ground Truth.
The White Pixels Representing the Brain Tumour, and the Black Pixels Representing
Background.

Figure 3.5: Example Ultrasound Nerve Images with Segmentation Ground Truth.
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Figure 3.6: Example Histology Nuclei Images with Segmentation Ground Truth.
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3.3 Computational Platform

To conduct the experiments presented in this thesis, we utilized a self-built dedicated

deep learning workstation (Seen in Figure 3.7) specifically designed for efficient

execution of medical image segmentation tasks. The hardware components of

this workstation include:

CPU: An Intel Core i9-10900K processor with 10 cores and 20 threads, providing

a base clock speed of 3.7 GHz and a turbo boost frequency of 5.3 GHz. This high-

performance processor ensures smooth execution of pre-processing, post-processing,

and other non-GPU tasks.

GPU: Four NVIDIA GeForce RTX 3090 graphics cards, each featuring 24

GB of GDDR6X memory and 10,496 CUDA cores. These powerful GPUs en-

able the efficient training and evaluation of deep learning networks for medical

image segmentation.

RAM: 64 GB of DDR4 memory with a speed of 3200 MHz, ensuring sufficient

memory capacity for handling large medical datasets and facilitating efficient data

loading during network training and evaluation.

Storage: A 2 TB NVMe SSD for the operating system and essential software,

as well as a 4 TB SATA SSD for storing medical imaging datasets and network

checkpoints. This storage configuration ensures rapid data access and smooth

system operation.

Cooling: A high-performance liquid cooling system to maintain optimal

temperatures for the CPU and GPUs, preventing thermal throttling and ensuring

the stability and longevity of the components.

Power Supply: One 2000W and one 750W 80 PLUS Platinum certified

Power Supply Unit(PSU), providing stable and efficient power delivery to all

components of the workstation.

The deep learning workstation’s hardware configuration is selected to ensure

the efficient execution of medical image segmentation tasks, allowing for rapid

experimentation and comprehensive evaluations. By using this powerful compu-

tational platform, we are able to test various deep learning techniques on diverse
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medical imaging datasets, enabling a thorough assessment of their performance

in real clinical scenarios. The running times relevant to each experiment are

reported in each Chapter.

Figure 3.7: GPU Workstation as Computational Resources for Medical Image Segmen-
tation Triathlon.
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3.4 Practical Segmentation Annotations Simula-
tion Scenarios

In this section, we introduce the data preprocessing approaches to adapt various

medical imaging datasets to the different data scenarios addressed in this thesis.

These scenarios includes comprehensive data annotation with full dense masks,

partial data annotation with full dense masks, comprehensive data annotation with

noisy dense masks, and comprehensive data annotation with noisy dense masks.

Notably, all these data scenarios are simulated once and then used to validate all

baseline methods and proposed method to ensure a fair comparison. The simulation

algorithms are developed to align with real-world clinical settings.

3.4.1 Comprehensive Data Annotation with Full Dense
Masks

For conventional sufficient annotated data, the preprocessing steps focus on ensuring

that the data is clean, well-organized, and ready for use in supervised learning

tasks. The following preprocessing steps are performed:

Image normalization: The intensities of the medical images are normalized to

a common range (e.g., [0, 1]), ensuring that the values can be effectively processed

by the deep learning network.

Data augmentation: To improve the network’s generalization capabilities,

various data augmentation techniques, such as rotation, scaling, and flipping,

are randomly applied to the original images and their corresponding annotations.

All images are resized to 256 × 256 for CNN, and resized to 224 × 224 to align

with ViT fashion.

Splitting the dataset: The dataset is split into training, validation, and

testing subsets to ensure that the network can be effectively trained, fine-tuned, and

evaluated on separate data. Images are randomly selected and there is no overlap

between the training, validation, and testing subsets. The randomly selection

is conducted only once when comparing the proposed methods with all baseline

methods for a fair comparison.
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3.4.2 Partial Data Annotation with Full Dense Masks

For the scenario involving massively unannotated data, the preprocessing steps aim

to prepare both the limited annotated data and the large volume of unannotated

data for semi-supervised learning tasks as labeled data. In addition to the steps

performed for conventional sufficient annotated data, the following preprocessing

steps are performed:

Splitting the dataset: We randomly select different ratios of the training set

to split as labeled and unlabeled subsets such as 5%, 10% or 20% of training data

as labeled data. This allows us to explore the performance of the semi-supervised

learning methods under various proportions of labeled and unlabeled data.

3.4.3 Comprehensive Data Annotation with Noisy Dense
Masks

For the scenario with noisy annotated data, the preprocessing steps focus on

introducing noise to the dataset in a controlled manner. In addition to the steps

performed for conventional sufficient annotated data, the following preprocessing

steps are performed:

Noise introduction: We manually add noise to the ground truth annotations

by applying morphological operations such as erosion and dilation, as well as elastic

transformation. This simulates the presence of annotation noise in real-world

clinical scenarios, following our previous work [17, 31]. Example annotated data

with noise is shown in Figure 1.1.

Splitting the dataset: In order to maintain the authenticity of our evaluation,

the dataset is partitioned such that the noisy annotations are restricted to the

training and validation sets, while the testing set retains the original, noise-free

annotations. This allows for a fair comparison of our proposed noise-robust learning

strategies against other methods under realistic circumstances.
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3.4.4 Comprehensive Data Annotation with Sketchy Con-
tours

For the scenario with scribble-based annotated data, the preprocessing steps focus

on generating sparse scribble annotations from the provided perfect ground truth

dense annotations. In addition to the steps performed for conventional sufficient

annotated data, the following preprocessing steps are performed:

Scribble generation: We manually generate scribbles by using an automatic

software that creates sparse annotations based on the provided perfect ground

truth dense annotations. These scribbles serve as the input for weakly-supervised

learning tasks. Example annotated data with scribble is sketched in Figure 1.2.

The scribble generation is following our previous work [222].

Splitting the dataset: The dataset is divided such that the sparse scribble

annotations are allocated to the training and validation sets, while the testing set

retains the original, dense annotations. This setup ensures an unbiased evaluation

of our proposed weakly-supervised learning strategies, as it mirrors the conditions

faced in real-world applications.
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3.5 Evaluation Metrics

In the general evaluation of deep learning-based methods for medical image seg-

mentation tasks, Dtrain, Dtest normally denote as a training set, and a test set. A

batch of labeled training set is denoted as (X l, Y gt) ∈ Dtrain, a batch of testing

set as (X t, Y gt) ∈ Dtest, where X l, X t ∈ Rh×w, and Y gt ∈ [0, 1]h×w represent 2D

grey-scale images, and their corresponding ground-truth annotations, respectively.

A prediction Y p ∈ [0, 1]h×w is generated by a segmentation network f(θ) : X 7→ Y p

using the parameters θ of the network f . The pair of (Y gt, Y p) on Dtrain can be

used to update the parameter θ as network f training, and the evaluation metrics

is to validate the network by calculating the difference of pair (Y gt, Y p) on Dtest.

This section divides evaluation methods into qualitative analysis, region-based

metrics, and boundary-based metrics.

3.5.1 Qualitative Analysis

The qualitative analysis allows us to visually assess the performance of the methods

and better understand their strengths and weaknesses.

The qualitative analysis involves the visualization of example images, ground

truth annotations, and segmentation results generated by the deep learning networks.

In these visualizations, we use the following color scheme to facilitate the comparison

between the inference and the ground truth:

• Yellow: True positive (TP) – correctly segmented pixels that belong to the

target region.

• Red: False positive (FP) – segmented pixels that do not belong to the target

region.

• Green: False negative (FN) – missed pixels that should have been segmented

as part of the target region.

• Black: True negative (TN) – correctly identified background pixels.
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An example of qualitative analysis is illustrated in Figure 3.8 where yellow, red,

green, and black demonstrates the quality of inference of network. The prediction

is multi-class classification, i.e. glass, consolidation, lung other, and background,

respectively. By visualizing the segmentation results using this color scheme, we can

easily identify the areas where the network performs well and the regions where it

struggles. Such qualitative analysis provides valuable insights into the behavior of the

segmentation methods, complementing the quantitative metrics, and helping to guide

the improvement of the networks for better performance in real clinical scenarios.

3.5.2 Region-based Evaluation Metrics

Region-based evaluation metrics focus on the similarity between the predicted and

ground truth segmented regions. To simplify the expression of different evaluation

metrics, several parameters and notations are defined in detail. k + 1 classes of

target Organ O areas (e.g. O0 refers to a lung, O1 refers to a kidney, Ok refers to

background and etc.), and the total of Pixels P (Pij refers to the number of pixels

organ Oi are predicted to belong to the class of organ Oj) are considered. In other

words, Pii refers to the TP number of pixels. Pij refers to the FP number of pixels.

Pji refers to the FN number of pixels. Pjj refers to the TN number of pixels.

Pixel Accuracy (PA) is a ratio between the number of correctly classified pixels

and the total number of pixels.

PA =
∑k

i=0 Pii∑k
i=0

∑k
j=0 Pij

(3.1)

Mean Pixel Accuracy (MPA) is a average ratio for all classes of organs between

the number of correctly classified pixels and the total number of pixels.

MPA = 1
k + 1

k∑
i=0

Pii∑k
j=0 Pij

(3.2)

Pixel Precision (PP) is a ratio between the number of correctly classified positive

pixels and the total number of positive predicted pixels.
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PP =
∑k

i=0 Pii∑k
i=0(Pii + Pij)

(3.3)

Mean Pixel Precision (MPP) is a average ratio for all classes of organs between

the number of correctly classified positive pixels and the total number of positive

predicted pixels.

MPP = 1
k + 1

k∑
i=0

Pii

Pii + Pij

(3.4)

Pixel Recall (PR) is the proportion of boundary pixels in the ground truth

that are correctly classified by the segmentation.

PR =
∑k

i=0 Pii∑k
i=0 Pii +∑k

j=0 Pjj

(3.5)

Mean Pixel Recall (MPR) is the average ratio for all classes of organs between the

number of true positive pixels and the sum of true positive and false negative pixels.

MPR = 1
k + 1

k∑
i=0

Pii

Pii + Pjj

(3.6)

Pixel Specificity (PS) is the ratio between the number of true negative pixels

and the sum of true negative and false positive pixels.

PS =
∑k

i=0 Pjj∑k
i=0(Pjj + Pij)

(3.7)

Mean Pixel Specificity (MPS) is the average ratio for all classes of organs

between the number of true negative pixels and the sum of true negative and

false positive pixels.

MPS = 1
k + 1

k∑
i=0

Pjj

Pjj + Pij

(3.8)

Dice Coefficient (DSC) also known as Sørensen–Dice index, is a statistic used

to gauge the similarity of two boundary.

DSC = 2 ∗∑k
i=0 Pii

2 ∗∑k
i=0 Pii +∑k

i=0
∑k

j=0(Pij + Pji)
(3.9)
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Mean Dice Coefficient (MDSC) is the average Dice Coefficient for all classes

of organs, providing a measure of the overall similarity between the predicted and

ground truth segmentation across all organ classes.

MDSC = 1
k + 1

k∑
i=0

2Pii

2Pii +∑k
j=0(Pij + Pji)

(3.10)

Intersection Over Union (IoU) also known as Jaccard index, is the percent

overlap between the target mask and the prediction output.

IoU =
∑k

i=0 Pii∑k
i=0

∑k
j=0 Pij −∑k

j=0 Pjj

(3.11)

Mean Intersection Over Union (MIoU) is the average percent overlap for each

class between the target mask and the prediction output.

MIoU = 1
k + 1

k∑
i=0

Pii∑k
j=0 Pij +∑k

j=0 Pji − Pii

(3.12)

3.5.3 Boundary-based Evaluation Metrics

Boundary-based evaluation metrics focus on the accuracy of the boundaries in

the segmented regions. These metrics provide an assessment of how well the

segmentation methods capture the precise contours of the target structures:

Hausdorff Distance (HD) is a metric that calculates the maximum distance

between the boundaries of the predicted and ground truth segmentation. It measures

the worst-case similarity between the boundaries, providing an indication of the

maximum error in the segmentation.

HD = max(h(P, G), h(G, P )) (3.13)

where h(P, G) and h(G, P ) are the directed Hausdorff distances, computed as:

h(P, G) = max
p∈P

min
g∈G

d(p, g) (3.14)

h(G, P ) = max
g∈G

min
p∈P

d(g, p) (3.15)
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Here, P and G represent the boundaries of the predicted and ground truth

segmentation, respectively, and d(p, g) denotes the Euclidean distance between

points p and g.

Average Surface Distance (ASD) is the mean distance between the boundaries

of the predicted and ground truth segmentation. This metric provides an estimate

of the overall discrepancy between the segmented boundaries.

ASD = 1
2(a(P, G) + a(G, P )) (3.16)

where a(P, G) and a(G, P ) are the directed average surface distances, computed

as:

a(P, G) = 1
|P |

∑
p∈P

min
g∈G

d(p, g) (3.17)

a(G, P ) = 1
|G|

∑
g∈G

min
p∈P

d(g, p) (3.18)

In this case, |P | and |G| represent the number of points on the boundaries of

the predicted and ground truth segmentation, respectively.

Relative Volume Difference (RVD) is a metric that measures the discrepancy in

the segmented region volumes between the predicted and ground truth segmentation.

It provides an assessment of the overall volume error in the segmented regions and is

useful for evaluating the segmentation methods in terms of volumetric consistency.

RV D = VP − VG

VG

(3.19)

Here, VP and VG represent the volumes of the predicted and ground truth

segmentation, respectively. A lower RVD value indicates better volume agreement

between the predicted and ground truth segmentation. Negative RVD values signify

that the predicted segmentation has a smaller volume compared to the ground

truth, while positive RVD values indicate a larger predicted segmentation volume.

Directed Boundary-based method as novel evaluation metrics from previous

work [223] have also been utilized and reported including Directed Boundary Dice
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relative to GT (DBDG), Directed Boundary Dice relative to MS (DBDM) and

Symmetric Boundary Dice (SBD) In a von Neumann neighbourhood Nx of each

pixel x on the boundary ∂G of the ground truth or machine segmentation ∂M ,

DBDG =

∑
x∈∂G

Dice(Nx)

|∂G|
(3.20)

DBDM =

∑
x∈∂M

Dice(Nx)

|∂M |
(3.21)

SBD =

∑
x∈∂G

Dice(Nx) + ∑
y∈∂M

Dice(Ny)

|∂G| + |∂M |
(3.22)
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Figure 3.8: Example CT COVID-19 Segmentation Multi-Class Inference of a Network
Against Ground Truth with TP, TN, FP, and FN Pixels on Consolidation, Glass, Lung
Other, and Background.



4
Supervised Learning: Comprehensive Data

Annotation with Full Dense Masks

Contents
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Supervised Learning Framework Setup . . . . . . . . . . 55
4.2.2 Segmentation Backbone Network . . . . . . . . . . . . . 55
4.2.3 Network Block . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Study of Supervised Learning Segmentation . . . . . . . 66

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . 72
4.3.1 Implementation Details . . . . . . . . . . . . . . . . . . 72
4.3.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Contribution and Discussion . . . . . . . . . . . . . . . . 79

4.1 Motivation

Supervised learning is one of the most popular studies that leverage deep learning

in the medical image segmentation. These techniques rely on a large number of

medical images with corresponding high-quality precise annotated data. Supervised

learning strategy can make network learn from data during the training process

and apply the learned knowledge to unseen testing data, facilitating accurate
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and precise segmentation.

This thesis, however, claims that obtaining high-quality annotations for medical

images can be a labor-intensive and costly process. It involves expert radiologists

and physicians manually label the ROI on pixel level, which can often be time-

consuming given the complexity and volume of the medical images. Moreover,

the process can be prone to inter- and intra-observer variability, introducing noise

into the labeled data. Despite these challenges, the reliance on supervised learning

approaches continues due to their effectiveness and the richness of the information

that labeled data provide.

In this chapter, we study on the supervised learning for medical image segmen-

tation. We aim to explore and enhance the capabilities of these techniques of neural

network architecture engineering in this conventional scenario. We reproduce various

advanced methods including backbone networks, network blocks, and training

strategies, evaluate their performance, and propose new modified networks to

improve segmentation performance.
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4.2 Methods

4.2.1 Supervised Learning Framework Setup

In the task of supervised learning, Dtrain, Dtest normally denote precise and perfect

labeled training set, and testing set. We denote a batch of labeled data as (X , Y gt) ∈

Dtrain, (X , Y gt) ∈ Dtest, where X ∈ Rh×w representing a 2D image with the size

h × w, and Y gt ∈ [0, 1]h×w×c representing the annotation on each pixel whether

0 is background and 1 is ROI, and c is the number of classes of ROI. Y p is

the dense map predicted by the segmentation network f(θ) : X 7→ Y p. Lsup :

(Y p, Y gt) 7→ R represents supervised segmentation loss. In general, the training is

to update the parameter θ of segmentation network f(θ) aiming to minimize the

loss Lsup on training set Dtrain. The final evaluation is to calculate the difference

of (Y p, Y gt) 7→ R on testing set.

4.2.2 Segmentation Backbone Network

Following the literature review of neural network architecture engineering in

Chapter 2, the supervised learning with segmentation networks in this chapter

are primarily revolve around Convolution Neural Network (CNN) [3, 4, 17, 194]

and Vision Transformer (ViT) [39, 79, 182, 186] based U-shape Encoder-Decoder

style networks with the exploration of various advanced network blocks to further

improve performance. Both of CNN and ViT layers with Encoder-Decoder style

network have demonstrated remarkable success in image segmentation due to their

ability to learn hierarchical representations and capture long-range dependencies

in the data. The related U-shaped Encoder-Decoder style segmentation networks

are illustrated in Figure 4.1.

CNN-based Segmentation Network

CNN, one of the fundamental neural network architecture, has been domi-

nated in medical image segmentation. Our research leverage the power of these

networks, specifically employing U-shaped encoder-decoder style segmentation

networks. Inspired by the CNN-based UNet [4] and its modifications [175, 180–182],
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Figure 4.1: The Conventional U-shaped Encoder-Decoder Segmentation Backbone
Network with Various Modified Networks developed by CNN or ViT Network Blocks,
including UNet, TransUNet, SwinUNet, Unet3+, and UNet++. The green CNN-based
block consists of two successive CNN layers. The yellow ViT-based block consists of two
successive ViT layers.
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these architectures have demonstrated promising performance in medical image

segmentation tasks. An example of 2 successive CNN layers including convolutional

operations, batch normalization, and dropout for each level of Encoder and Decoder

is sketched in the bottom of Figure 4.1.

ViT-based Segmentation Network

Recently, ViT has gradually been explored and outperforms CNN in computer

vision and medical image segmentation [186]. Different with CNN leverage local

spatial correlations within images, ViT is originally designed to model long-range

dependencies for sequence-to-sequence tasks [39, 79, 186]. In ViT network study,

the image can be considered as a sequence of patches, capturing global dependencies

through ViT’s self-attention scheme. We expand ViT by exploring the application

of ViT-based networks with same U-shape Encoder-Decoder network for medical

image segmentation. An example of 2 successive ViT layers including shift-window-

based multi-head self-attention, layer normalization, and multi-layer perception

for a Encoders and Decoders is sketched in the bottom of Figure 4.1. All of the

experimental design in this chapter incorporates the prevalent U-shape style Encoder-

Decoder segmentation network architecture, as illustrated in Figure 4.1. This is

done to ensure a fair comparison across experiments with the same architecture of

backbone network. Each level of the encoder or decoder is constructed using

either 2 successive CNN layers comprising of 3 × 3 convolutional operations,

batch normalization, and dropout, or 2 successive ViT layers, which include layer

normalization, multi-head self-attention, and multi-layer perception.

Figure 4.1 provides a brief sketch of example UNet [4] and with several modified

UNets which either based on CNN or ViT including TransUNet [181], SwinUNet

[182], UNet++ [175], and UNet3+ [180].

4.2.3 Network Block

Network block which is an architectural engineering strategies that can be integrated

into the segmentation backbone network, leading to a substantial enhancement

of feature learning performance. These blocks normally includes residual learning
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Figure 4.2: A Residual Connection Between 2 CNN Layers.

[56, 155, 161, 224], densely connections [75, 147, 214, 225], attention mechanisms

[38, 82, 85, 178], pyramid pooling [44, 194] and etc. This section explores classical

network blocks and introduces our proposed novel network blocks, which is from

the part of our past work [17, 31, 167, 168, 194].

Residual Connections

Inspired by residual learning from ResNet [56], we incorporate a concatenation

function within each 2 successive CNN layer block of the segmentation network [17].

This architectural modification, as illustrated in Figure 4.2, aims to augment the

network’s capability to express features and facilitate gradient information propaga-

tion. The features from a previous layer are obtained and subsequently processed

through a unique feature extraction sequence. This sequence is characterized by

the successive application of two 3 × 3 unpadded convolutions, each followed by a

Rectified Linear Unit (ReLU) [226]. Post the first 3 × 3 convolution operation, the

number of feature channels is doubled in comparison to the preceding layer. The

final step of this process involves concatenating the input feature with the output

emanating from the second 3 × 3 convolution operation. This operation is tailored

to establish intricate interconnections across different layers, thereby enabling the

network to sufficient transfer feature information and alleviate the challenge of

vanishing gradients. This is part of past work in residual encoder [17].
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Figure 4.3: A Dense Connection Among 3 CNN Layers.

Densely Connections

Densely connected network (DenseNet) [147] represents an innovative design strategy

that has been proven to improve the performance of segmentation networks [162,

227]. Inspired by DenseNet [147], dense connections, as illustrated in Figure 4.3,

can be incorporated within multi-layer-based network block as an enhanced feature

information flow throughout the network. Within a densely connected block, each

layer connects to every other layer in a feed-forward fashion, thus facilitating

the direct propagation of features and gradients across layers. Consequently, the

network is beneficial with sufficient feature information with deep architectures

without being subjected to the common pitfalls, such as the phenomena of vanishing

gradients and feature degradation.

Attention Mechanism

To improve the performance of the pixel-wise decoder classification, an attention

mechanism is explored. This is part of past work in attention encoder [17]. In

contrast to a traditional attention gate that filters features from skip connec-

tions [178], an attention module can be typically incorporated with convolutional

layers to enable the CNN focus on key feature information of the feature map

[38]. The proposed attention module for the convolutional layer of the decoder is

illustrated in Figure 4.4. The module contains two components related to channel
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Figure 4.4: (a) The Convolutional Attention Network Block. (b) Channel Attention
Module. (c) Spatial Attention Module.

and spatial attention of different feature maps. Both components are developed by

pooling layers and Sigmoid activation. Average and max pooling layers mitigate

the influence of noisy label gradients to maintain the integrity of trunk parameters

[17]. The Sigmoid function, concurrently, generates an attention weight value

for each pixel location and channel.

As demonstrated in Figure 4.4, a feature map F ∈ RW ×H×C with the size of

W × H × C from a preceding CNN is dispatched to the attention module pipeline.

The feature maps derived from average and max pooling layers along the spatial

dimensions W × H are represented as F Avg
Spatial and F Max

Spatial ∈ RW ×H×1. Similarly,

F Avg
Channel and F Max

Channel ∈ R1×1×C denote the feature maps derived from average and
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Figure 4.5: The Residual Block Path.

max pooling layers across the channel dimension C.

Both the spatial attention value WSpa and channel attention value WChannel are

computed via Sigmoid activation σ. The final output feature map Fout is adaptively

refined from feature map F through successive application of a spatial attention

layer and a channel attention layer, thereby capturing essential information as

illustrated in Equation 4.1, where ⊗ denotes as element-wise multiplication.

WSpa = σ(F Avg
Spa + F Max

Spa )

WChannel = σ(F Avg
Channel + F Max

Channel)

Fout = WSpa(WChannel(F ) ⊗ F ) ⊗ (WChannel(F ) ⊗ F )

(4.1)

Residual Block Path

This is part of past work in residual connections [17]. To address the significant

disparity between encoders and decoders in UNet [4], which could potentially

impair segmentation performance, we modify the skip connections by implementing

residual block paths. We incorporate residual learning to bridge each layer of

the encoder and decoder.

The network block of the residual block path is illustrated in Figure 4.5,

which is based on InceptionNet [149], and MultiResUNet [177]. Formally, let

x and y represent the input and output vectors of the layers, respectively. The

relationship is expressed as:

y = F (x, {Wi}) + x (4.2)

where F (x, {Wi}) denotes the residual mapping to be learned. For instance, in

Figure 4.5, for a layer with a 3 × 3 filter, F is represented as σ(W1x), with σ
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and W indicating the ReLU activation function and weight matrix, respectively.

Biases are omitted for simplicity. The operation F + x is executed via a shortcut

connection and element-wise addition. Additionally, a 1 × 1 convolution is applied

to align the channel dimensions.

Figure 4.6: The Proposed Network Blocks in Pyramid CNN.

Pyramid CNN

This is part of past work in [194]. Convolutional layers have significantly advanced

computer vision tasks. Unlike densely connected neural networks that extract

features from all input nodes, CNN selectively extract a limited number of nodes

from an input image, known as the Receptive Field (RF). However, multi-layer

CNN encounter challenges such as vanishing or exploding gradients, which can be

detrimental to semantic segmentation tasks. This is because pixel-level features

may not be effectively transferred through multiple CNN layers and downsampling
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processes. To address this issue and capture features of varying sizes, an alternative

approach is the use of Atrous CNN [33, 228]. Atrous CNN increases RF by inserting

zeros between non-zeros of filters. These networks increase the RF without additional

computational costs by introducing spaces within convolutional filters. Figure 4.6

illustrates an example of multi atrous CNN layers, where the dilation rate is set

to [1,2,4] and [1,3,9]. We consider a CNN filter whose size is f ∗ f with setting of

Dilation Rate dr, the RF can be increased without additional computational cost.

The size of receptive field denoted as RF ∗RF can be calculated by Equation 4.3.

RF = f + (dr − 1)(f − 1) (4.3)

The dilation rate setting, however, has not been clearly studied, and Atrous CNN

lead to gridding effect [229]. To simplify the relationship between RF and dr

study, a one-dimensional (1D) feature map size is selected without considering

the use of non-linear modules like ReLU or Sigmoid. In this setup, F n represents

the feature map calculated by the nth Atrous CNN. Here, F 0 is the input feature

map, while F n is the output. The RF for the final layer is determined using the

formula outlined in Equation 4.4.

RF n = f + (dr0 − 1)(f − 1) +
n∑
1

drn (4.4)

Although the use of Atrous CNN in encoders and decoders can expand the RF

without additional computational costs, there is a potential drawback. The insertion

of non-trainable zeros into the filter can lead to certain feature nodes not being

captured. We can calculate the number of these uncollected nodes, denoted as UNn,

after the nth Atrous CNN. This calculation is detailed in Equation 4.5.

UNn = (f − 1) ∗ (dr0 − n ∗
n∑
1

drn) (4.5)

If the value of UNn is negative, it implies that no nodes are left uncollected

and that some nodes have been processed multiple times.
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To assess the effectiveness of the dilation rate setting, an Evaluation Ratio (ER)

is established. This ratio, calculated using Equation 4.6, compares the Receptive

Field (RF ) to the number of uncollected nodes (UNn).

ER = UNn/RF n (4.6)

For an optimal configuration of atrous CNN layers, the ER must be minimized

while maintaining a fixed number of layers, n. This is achieved by integrating

Equation 4.4 and Equation 4.5 into Equation 4.6. Consequently, the dilation rate

setting, dr, should adhere to a geometric progression as outlined in Equation 4.7.

This approach aims to maximize the RF size while minimizing the number of UNn,

thereby ensuring efficient feature capture with the available atrous CNN layers.

dr = [1, ..., (dr)n−1] (4.7)

An intuitive example is illustrated in Figure 4.7. The setting of DR with

[1,2,4] and [1,3,9] is visualized and compared against the setting of DR with

[1,3,4] which potentially results in glidding effects or [1,2,9] which leads to several

uncollected feature nodes.

Drawing inspiration from the Inception module [149], we develop an atrous CNN

module rooted in a dual-layered atrous CNN pyramid structure. This module aims

to bridge the gap between the encoder and decoder components of a network [177],

enhancing the transfer of feature information to the decoder. To accommodate

various levels of detail in feature extraction, the module incorporates a range of

atrous CNN blocks, specifically arranged in a descending order from four to one

across the network paths. This configuration allows for a balanced processing of

both down-sampled and up-sampled features, ensuring a comprehensive feature

representation in the final output.

Pyramid Pooling

Pooling layers are commonly utilized with CNN in various computer vision tasks.

The main functions of pooling layers include: (1) providing translation, rotation,
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Figure 4.7: Example Sequence of 1D Atrous CNN Layers with Different Dilation Rate
Setting.

and scale invariance; (2) reducing computational costs through down-sampling; (3)

preventing overfitting; and (4) enhancing the generalization ability of the network.

Max pooling is favored for its proficiency in extracting prominent features like

boundaries and textures by focusing on the maximum pixel values. This approach

is especially effective under conditions like noisy labels, varied scene contexts, and

strong contrast variations. Conversely, average pooling is adept at minimizing the

deviation of the estimated mean, offering better performance in specific scenarios

compared to max pooling. Therefore, the proposed pyramid pooling integrates

both max and average pooling to capture a comprehensive range of features. The

pooling operations vary in size, ranging from 4 × 4 to 10 × 10, with each output

resized by interpolation (except for the 4 × 4 layer) to ensure uniformity in feature

concatenation along the channel axis. This design as illustrated in Figure 4.8 results

in a feature map size reduced to a quarter of the input, effectively capturing diverse

feature sizes while maintaining computational efficiency.
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Figure 4.8: The Proposed Network Blocks in Pyramid Pooling.

4.2.4 Study of Supervised Learning Segmentation

Considering the above segmentation backbone network architecture achievements,

and advanced network blocks development, we explore and develop several novel

networks for medical image segmentation including RARUNet [17], QAPNet [194],

SwinUNet [167, 168, 193], and NRUNet [31, 181].

RARUNet

This is part of past work in RARUNet [17]: we propose a Residual encoder to

Attention decoder by Residual connections network for medical image segmentation,

which we explore several advanced network blocks for an Encoder-Decoder network.

Its main novelty consists of: (1) skip interconnections on the four down-sampling

blocks as residual encoders, to enhance gradient information transfer. (2) residual-

block-based concatenation to mitigate the disparity between encoders and decoders.
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Figure 4.9: The Residual Encoder to Attention Decoder by Residual Block Path for
Medical Image Segmentation.

(3) convolutional attention module on four up-sampling blocks to capture essential

information. The architecture of RARUNet is illustrated in Figure 4.9.

QAPNet

This is part of past work in QAPNet [194]. We introduce the innovative Quadruple

Augmented Pyramid Network (QAPNet), detailed in [194], designed for multi-

class medical image segmentation. This network addresses the limitations of

conventional multi-CNN layer pipelines in capturing and transferring image features

effectively. QAPNet’s uniqueness lies in its integration of pyramid CNN and pyramid

pooling within an Encoder-Decoder framework. The network features four pyramid

network blocks, each based on various sizes of pooling layers and atrous CNN with

differing dilation rates. This augmented pyramid network is further diversified by

experimenting with different pooling layers and dilation rate settings. The atrous

CNN-based pyramid network, arranged in parallel, serves as a skip connection,

ensuring the transfer of both global and local information for precise pixel-level

segmentation. Additionally, the pooling-based pyramid network, incorporating both

average and max pooling, enhances the network’s robustness and efficiency. The

QAPNet architecture, as illustrated in Figure 4.10, demonstrates a sophisticated
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balance of feature extraction, computational efficiency, and adaptability to variations

in image size and orientation.

Figure 4.10: Quadruple Augmented Pyramid Network for Medical Image Segmentation.

NRUNet

This is part of past work in NRUNet [31]. We introduce a novel network architecture

for medical image segmentation, integrating ViT enhanced encoders with CNN-

based decoders. The NRUNet, as shown in Figure 4.11, features a symmetrical

design with multiple encoder and decoder levels, symbolized as Eni and Dei where

i ∈ [1, 2, 3, 4] indicates the level of Encoders and Decoders. This design facilitates

effective transfer of feature maps across corresponding levels, utilizing a methodology

akin to that in UNet. The CNN components in the encoders/decoders consist of

dual-layer CNN combined with Batch Normalization and sampling operations. The

ViT components are intricately woven into the encoders, particularly at the En4 level,

incorporating a bottleneck structure to optimize feature extraction. The ViT layers

encompass Layer Normalization (LN), Multi-Head Self-Attention (MSA), and Multi-

Layer Perceptron (MLP), drawing on the foundational concepts from the original

Transformer network. This design ensures efficient processing of input features,

transformed into a series of non-overlapping patches and then linearly embedded.
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Positional encoding enriches these embedded tokens with spatial context before they

undergo sequential processing through the ViT layers, which is essential in capturing

long-range dependencies achieving high-quality medical image segmentation.

(1) Tokenization is performed by reshaping the input image x which width and

length of image is H × W into a sequence of flattened 2D patches xp
i ∈ RP 2·C |

i = 1, . . . , N , where each patch has a size of P × P and N = H×W
P 2 represents the

number of image patches (i.e. the input sequence length).

(2) The patches are then mapped to vectors xp in a latent D-dimensional

embedding space using a trainable linear projection. The network feature learning

capability normally benefit with the high value of D, but high value of D also leads

to increase in computational cost. To encode spatial information of the patches,

learnable position embeddings are added to the patch embeddings, as follows:

z0 = [xp
1E; xp

2E; . . . ; xp
NE] + Epos (4.8)

where E ∈ R(P 2·C)×D represents the patch embedding projection, and Epos ∈ RN×D

denotes the position embedding, and z0 is the feature map which is feed to the

first ViT layer.

(3) The Transformer encoder consists of L layers, each containing an MSA and

an MLP. Consequently, the output of the lth layer can be expressed as:

z
′

l = MSA(LN(zl−1)) + zl−1 (4.9)

zl = MLP(LN(z′

l)) + z
′

l (4.10)

where LN(·) represents the layer normalization operator, and zl is the encoded

image representation.

(4) Specifically, the MLP is a fully connected feed forward neural network

that consists of multiple layers of nodes, also known as neurons. In proposed

NRUNet, the MLP is employed to further refine the features extracted by the



70 4.2. Methods

MSA mechanism. The MLP consists of two linear layers with a GELU activation

function [99] applied in between:

MLP(z′

l) = Linear2(GELU(Linear1(z
′

l))) (4.11)

where Linear1 and Linear2 represent the first and second linear layers, respectively.

The following MSA consists of multiple self-attention heads that operate in parallel

to capture different aspects of the input tokens. Each self-attention head computes

the attention scores using Query (Q), Key (K), and Value (V ) matrices, which are

derived from the input tokens through linear transformations:

Q = z
′

lWQ, K = z
′

lWK , V = z
′

lWV (4.12)

where WQ, WK , and WV are learnable weight matrices [39].

The attention scores are computed by taking the dot product of the Query and

Key matrices, followed by a scaling operation and a softmax normalization:

Attention(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V (4.13)

where dk is the dimension of the Key vectors.

The output of the individual self-attention heads is then concatenated and

linearly transformed to produce the final MSA output:

MSA(z′

l) = Concat(Head1, . . . , HeadH)WO (4.14)

where Headi represents the output of the i-th self-attention head, H is the number

of heads, and WO is a learnable weight matrix.

SwinUNet

This is part of past work in CESSViT, UAMTViT [167, 168]. We introduce

SwinUNet, a pure Swin ViT-based encoder-decoder U-Shape network, as a novel

approach to medical image segmentation. SwinUNet addresses the limitation of

conventional CNN-based networks, which tend to blur image features after multiple

encoding layers. While UNet uses copy and crop techniques to transfer semantic
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Figure 4.11: ViT-Improved-Encoder to CNN-based Decoder Network for Medical Image
Segmentation.

features effectively, the fine details, particularly at the edges of regions of interest,

can be lost. SwinUNet, by employing a purely self-attention-based mechanism,

aims to capture the global context of images more effectively, preserving crucial

boundary information. This architecture, as shown in Figure 4.12, replaces the

conventional encoders and decoders with successive Swin ViT layers, thus harnessing

the potential of ViT for enhanced segmentation performance.

Figure 4.12: Pure Swin ViT-based U-Shape Network for Medical Image Segmentation.
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4.3 Experiments and Results

4.3.1 Implementation Details

We implemented supervised learning studies using Python and TensorFlow. Training

all networks for 50 epochs. The training batch size is set to 4. The Adam optimizer

[48] is employed, with a learning rate of 10−5. Our loss function is based on

the Dice coefficient, a commonly used metric for evaluating overlap in semantic

segmentation, particularly suited to tackling the unbalance between ROI and

background. Two datasets including Spine CT dataset [219], and COVID-19 CT

dataset [220] are utilized for evaluation.

4.3.2 Qualitative Results

Figure 4.14 and Figure 4.13 illustrates eight examples on CT Spine and eight

examples on CT COVID-19 of raw images, ground truth, and the predicted result

of a number of different networks: UNet [4], Residual UNet [214], Dense UNet [214],

MultiResUnet [177], LinkNet [205], FPN [22], UNet++ [175], UNet3+ [180],

VNet [5], RARUNet [17], and QAPNet [194]. Figure 4.13 further illustrates example

raw images and the predicted results of four classes including consolidation area,

glass area, and other lung area(which is not infected by diseases), and background

against ground truth for selected networks: UNet [4], FPN [22], and QAPNet [194].

4.3.3 Quantitative Results

The quantitative comparison of proposed U-Shape Encoder-Decoder segmentation

networks, i.e. RARUNet [17], QAPNet [194], and NRUNet [31] with other baseline

methods including FPN [22], VNet [5], LinkNet [205], UNet [4], Residual UNet [214],

Dense UNet [214], MultiRes UNet [177], and UNet++ [175] are given in Table

4.1, and Table 4.2 respectively depending on CT Spine test set and CT COVID-19

test set. The average performance of Dice-coefficient, IoU, accuracy, precision,

sensitivity, and specificity are reported. Our proposed methods are highlighted

with Bold. The best performance are with Bold, and the second best performance

with the proposed methods are with Underline.
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Table 4.1: The Direct Comparison of Existing Methods on CT Spine Test Set.

Network Dice IoU Acc Pre Sen Spe
UNet [4] 0.9580 0.9193 0.9963 0.9619 0.9541 0.9983
VNet [5] 0.9446 0.8950 0.9950 0.9202 0.9703 0.9961
LinkNet [205] 0.9524 0.9091 0.9959 0.9662 0.9390 0.9985
Residual UNet [214] 0.9416 0.8897 0.9949 0.9481 0.9353 0.9976
Dense UNet [214] 0.9612 0.9252 0.9966 0.9600 0.9624 0.9982
MultiRes UNet [177] 0.9644 0.9312 0.9969 0.9633 0.9655 0.9983
UNet++ [175] 0.9659 0.9340 0.9970 0.9676 0.9642 0.9985
SwinUNet [193] 0.9601 0.9233 0.9948 0.9640 0.9563 0.9975
RARUNet [17] 0.9674 0.9369 0.9972 0.9721 0.9629 0.9987
QAPNet [194] 0.9690 0.9399 0.9973 0.9715 0.9666 0.9987
NRUNet [31] 0.9703 0.9424 0.9974 0.9740 0.9667 0.9988

Furthermore, each of image on test set is also validated individually. The

distribution of Dice Coefficients is visually represented in Figure 4.15. This graphical

depiction offers insights into the performance variability among networks. Networks

with a higher median and a more compact box plot generally indicate superior

and more consistent performance across various image slices. Additionally, we

conducted pairwise t-tests to statistically compare the performance differences in

Dice coefficients between NRUNet [31] and UNet [4]. The resulting t-statistic is 2.64,

with a significant p-value of 0.0085. This low p-value, typically considered significant

if below 0.05, underscores a statistically significant performance disparity between

the two networks, reinforcing the empirical observations from the box plot analysis.

In addition, we conduct t-statistic for all baseline methods with NRUNet, and the p-

value is always below 0.05. This rigorous statistical approach provides a robust basis

for comparing and validating the performance of different segmentation networks.

4.3.4 Ablation Study

To evaluate the impact of various components and their combinations on the U-Shape

Encoder-Decoder segmentation network, a detailed ablation study is introduced.

Ablation Study on RARUNet

The ablation study of RARUNet is indicated in Table 4.3 revealing that

omitting certain elements leads to a noticeable drop in performance. We explored
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Table 4.2: The Direct Comparison of Existing Methods on CT COVID-19 Test Set.

Network Dice IoU Acc Pre Sen Spe
UNet [4] 0.8489 0.7374 0.9894 0.8133 0.8792 0.9924
VNet [5] 0.7869 0.6487 0.9908 0.8212 0.7554 0.9962
LinkNet [205] 0.7598 0.6126 0.9833 0.7181 0.7783 0.9883
Attention UNet [178] 0.7167 0.5585 0.8234 0.5871 0.9157 0.8251
Residual UNet [214] 0.8649 0.7620 0.9895 0.8287 0.9005 0.9923
Dense UNet [214] 0.7133 0.5544 0.7772 0.5871 0.8921 0.7788
MultiRes UNet [177] 0.5979 0.4264 0.9294 0.4328 0.9757 0.9276
SwinUNet [193] 0.8243 0.7011 0.7350 0.9952 0.7035 0.9740
RARUNet [17] 0.8817 0.7884 0.9969 0.8536 0.9120 0.9982
QAPNet [194] 0.8989 0.8163 0.9976 0.8460 0.9580 0.9980
NRUNet [31] 0.8911 0.8035 0.9912 0.9217 0.8623 0.9970

Table 4.3: The Ablation Study on Contributions of RARUNet.

Residual Encoders Residual Connections Attention Decoders IoU
0.7182

✓ 0.7873
✓ 0.9119

✓ 0.8927
✓ ✓ 0.9070
✓ ✓ 0.9126
✓ ✓ ✓ 0.9369

combinations involving residual encoders, residual block paths, and attention

decoders, assessing the corresponding performance. This ablation study is conducted

on CT Spine dataset.

Ablation Study on QAPNet

Similarly with RARUNet, for QAPNet, as presented in Table 4.4, we observed

that the exclusion of specific components adversely affects the overall effectiveness

of the network. The different combinations of dual pyramid CNN networks and dual

pyramid pooling networks are explored, again measuring both their influence of

network performance. This ablation study is conducted on CT COVID-19 dataset.
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Table 4.4: The Ablation Study on Contributions of QAPNet.

CNN Pyramid Net Pooling Pyramid Net MIoU
1 3 9 1 2 4 Max Avg

0.5331
✓ 0.7469

✓ 0.7966
✓ ✓ 0.7996

✓ 0.7419
✓ 0.7872

✓ ✓ 0.7373
✓ ✓ ✓ 0.8072
✓ ✓ ✓ 0.8023
✓ ✓ ✓ ✓ 0.8163
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Figure 4.13: Example Results on CT COVID-19 Test Set. Given a batch of CT images,
each of FPN, UNet, and the proposed QAPNet provides the segmentation inference
of four classes of ROI including consolidation area, glass area, other part of lung, and
background.
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Figure 4.14: Example Results on CT Spine Test Set. Given a batch of CT images, each
of baseline networks and proposed networks provides the segmentation inference of binary
classification of spine.
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Figure 4.15: Box Plot for the Dice-Coefficient Distribution of Prediction by Each Network
on CT Spine Test Set. Our proposed modified RARUNet, QAPNet, and NRUNet are
more likely to predict segmentation results with high dice score.
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4.4 Contribution and Discussion

This chapter provides a comprehensive exploration of utilizing various network blocks

within segmentation backbone networks, resulting in several novel segmentation

networks with competitive performance against existing methods. Specifically, we

introduce residual learning, densely connected layers, attention mechanisms, and

other critical network blocks that significantly improve the performance of CNN-

or ViT-based segmentation networks. Our exploration provides examples into the

development and application of integrating network blocks with the segmentation

backbone network.

The important point of this thesis, however, is to consider that the effectiveness

of a certain combination of network blocks is inherently dependent on the specific

dataset used. We observed that some combinations excel in specific contexts, while

may also perform worse under different conditions. This highlights the complex

interplay between network architecture and data characteristics, reminding us that

there is no single network architecture design for different segmentation tasks.

Another concern is the quality of the datasets we use to train our networks

in practical scenarios. In supervised learning studies, we assume that the data

provided is accurate and correctly annotated. The reality of clinical scenarios,

however, is that data can often be noisy, incomplete, or mislabeled. We need to

question ‘how good is good enough’? A network that achieves a high score on a

given dataset is not necessarily one that will perform well in real-world scenarios.

And also, ‘how good’ does the annotation need to be? The gold standard of

success should not be the ability to overfit to a particular dataset but the ability

to generalize and perform well on unseen data.

Finally, it is essential to recognize that supervised learning networks, despite

their impressive performance, still have their limitations. Many of the previous

works in this domain could be seen as an ‘overfitting game’, where networks are

designed to perform exceptionally well on a specific task but fail to generalize

to real-world scenarios.
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In conclusion, while our exploration of various network blocks for the segmen-

tation backbone network shows promising results, it also highlights the need for

research between network architecture engineering and data situations in real world.
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5.1 Motivation

While supervised learning has seen significant advancements in medical image

segmentation, the practical situation is often with a substantial obstacle of utilizing

81
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developed methods into real-world clinical settings - the limitation of fully annotated

medical images. The process of obtaining annotated medical images is costly, time-

consuming, and requires the expertise of trained medical professionals. Consequently,

the majority of medical images in real-world scenarios remain unlabeled, thereby

limiting the potential of purely supervised learning techniques.

Semi-Supervised Learning (SSL) leverages both labeled and unlabeled data

for network training. The application of SSL in medical imaging tasks has the

potential to significantly improve the performance of the networks and decrease

the annotation cost of clinicians.

By successfully navigating these challenges through SSL, this chapter propose a

series of strategies to train more robust and reliable medical image segmentation

networks by exploring the full potential of medical data.

5.2 Literature

5.2.1 Consistency-Aware Learning

Consistency-aware is currently the most important approach in the study of semantic

segmentation with SSL. Consistency regularization operates under the premise that

when slight changes, known as perturbations, are made to unlabeled data, the

predictions of the network should not vary significantly. It is about training a network

to give consistent outputs, even when minor variations are introduced to its inputs.

The network training process is designed to enable consistency output under

various perturbation normally consisting of data perturbation and network pertur-

bation. In the context of data perturbation, various methods have been explored.

These include data perturbations such as Ouali et al. [230] and Chen et al. [231],

where the idea is to introduce small, controlled changes in the input data of the

network to test and enhance the robustness of the network. Data augmentation

techniques such as CutMix [232] creatively blends parts of images. MixMatch

[233] takes this further by assigning low-entropy high-confidence labels to augment

unlabeled examples and then combines labeled and unlabeled data using a technique
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called MixUp [234]. FixMatch [235] leverages pseudo labels on mildly augmented

data to guide the network’s behavior on more strongly augmented data.

Network perturbation focuses on varying the neural network architecture itself.

This includes employing different network designs like dual-students [236], which

introduces an extra ‘student’ network alongside the primary one to add a stabilization

constraint, reminiscent of the Student-Teacher SSL style [237]. TriNet [238] explores

a shared encoder with three distinct decoders, each processing different types of

data for classification. Triple-view learning [170] extends this concept to multi-view

learning for image semantic segmentation.

Some popular methods in consistency-aware learning include network-ensembling

learning [237], cross pseudo learning [239]. Various schemes aiming at general

improve SSL performance have also been developed, such as dynamic pseudo label

ensembling [240], which dynamically adjusts the labels used for training, uncertainty-

aware strategies [241], which factor in the network’s confidence in its predictions,

and transformation-consistency [213], which ensures the network’s output remains

stable even when input transformations are applied.

Network-Ensembling Learning

A self-ensembling SSL method named Mean Teacher [237], which is an extension

of temporal ensembling [242], has been widely adopted in SSL for medical image

segmentation [167, 243, 244]. The semi-supervised framework of mean teacher for

medical image segmentation is briefly sketched in Figure 5.1. This method typically

consists of a student network and a teacher network, with the same architecture. The

student network learns from annotated data with feature perturbation. Meanwhile,

the teacher network, generally more robust, is continuously updated based on

the student network’s weights. It provides guidance to the student network via

pseudo-labels, emphasizing consistency in the learning process.

The architecture of the Teacher fT (θ) is similar to fS(θ), except the Teacher

does not learn from data directly [237]. It is updated from the exponential moving

average network weights (illustrated in Eq. 5.1) of fS(θ), and it is more likely than
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the Student to infer the correct value. The Teacher’s predictions are considered

as the pseudo labels to supervise the Student.

θ = αθt−1 + (1 − α)θt (5.1)

where θ is updated based on the Student parameter θt from the previous training

step t; weight factor α = 1 − 1
t+1 . The pseudo labels are generated by the

Teacher without noise as:

Y p = fT(Xu; θ) (5.2)

Thus the unlabeled training set Xu can be utilized to train the Student with

(Xu, Y p).

Figure 5.1: The Framework of Mean Teacher for Medical Image Segmentation, Which
Consisting of a Student Network and a Teacher Network. The parameters of Teacher
network is updated by Student network, and the prediction of Teacher network can
supervise Student network thus expanding unlabeled dataset.

Cross Pseudo Label Learning

Cross pseudo label learning is firstly proposed by [239], and has been widely adopted

in SSL for medical image segmentation [14, 168]. The aim of cross pseudo label

learning is encouraging the consistency of predictions by adding perturbations on
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networks. Cross pseudo label learning consists of two segmentation networks f(θ)

with the same architecture initialized with different weight parameters as network

perturbation. The output from the same input image X can be illustrated as

Y p1 = ft(X ; θ1) and Y p2 = ft(X ; θ2) where θ is the weight set of each network.

The inference from one network is considered as pseudo labels into the training of

the other network. The semi-supervised framework of cross pseudo label learning

for medical image segmentation is sketched in Figure 5.2.

Figure 5.2: The Framework of Cross Pseudo Supervision for Medical Image Segmentation,
Which Consisting of Two Networks with Same Architecture but Initialize Separately. Two
networks collaborate and beneficial each other with their inference as pseudo label.

FixMatch

FixMatch, an SSL method proposed by [235] boosts the data perturbation using of

unlabeled data by combining weak and strong data augmentations. The framework

of FixMatch for medical image segmentation is illustrated in Figure 5.3. In this

method, two versions of the same unlabeled input data are created. The first version

is a weakly augmented version Xw, and the second is a strongly augmented version

X s. The weakly augmented version is processed through the network fS(θ) to obtain

a set of soft predictions which are then converted to hard pseudo-labels:
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Y p = fS(Xw; θ) (5.3)

These pseudo-labels are then used to supervise the network’s predictions on

the strongly augmented version of the same input data:

Y s = fS(X s; θ) (5.4)

To ensure the robustness of the generated pseudo-labels, a confidence threshold

τ is introduced. Only the pseudo-labels with prediction confidence above τ are used

for training. In this way, FixMatch leverages the unlabeled data by incorporating

it into the training process with X s and Y p.

The key insight in FixMatch is to use the network’s predictions on the weakly

augmented data as ‘pseudo labels’ for the strongly augmented versions of the same

data. Since weakly augmented data maintains a closer resemblance to the original,

the network’s predictions here are assumed to be more reliable. By enforcing data

consistency, it is ensured that the network produces similar predictions for both

weakly and strongly augmented versions of the same input. FixMatch effectively

leverages unlabeled data for training. The network learns not only to recognize

features in slightly altered images but also to maintain its understanding even

when those images are substantially transformed. This FixMatch is sketched in

Figure 5.3. The framework captures the process where inferences from weakly

augmented data guide the network in learning from the more drastically altered,

strongly augmented data.

Interpolation Consistency Learning

Interpolation Consistency Training (ICT), as proposed by [234]. The central premise

of ICT is the incorporation of interpolation into data consistency regularization.

The ICT for medical image segmentation is sketched in Figure 5.4. In this method,

pairs of images are interpolated both in the input space and in the output space

to generate new training examples. In the input space, two images X1 and X2

are mixed to create an interpolated image Xmix:
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Figure 5.3: The Framework of FixMatch for Medical Image Segmentation, Which
Consisting of Strong and Weak Augmentation. The inference from weak augmentation is
more likely to be precise than inference from strong augmentation, and can be considered
as pseudo label to train network.

Xmix = λX1 + (1 − λ)X2 (5.5)

where λ is a mixing coefficient randomly sampled from a Beta distribution.

A similar operation is performed in the output space, where the network’s pre-

dictions on the two original images, Y 1 and Y 2, are mixed to generate the

interpolated label Y mix:

Y mix = λY 1 + (1 − λ)Y 2 (5.6)

The network is then trained to predict Y mix when given Xmix as input. By

encouraging the network’s predictions to be consistent across interpolated inputs

and outputs, ICT introduces an additional form of regularization. This technique

helps the network generalize from the labeled data to the unlabeled data, thus

effectively leveraging unlabeled data in SSL scenarios.
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Figure 5.4: The Framework of Interpolation Consistency Training Data with MixUp for
Medical Image Segmentation. The Inference of the Combination of Two Input Images is
Similar with the Combination of Inference of Two Input Image Separately.

5.2.2 Adversarial Learning

Alongside consistency training, another common SSL technique is adversarial train-

ing [245–247]. It normally involves developing an additional discriminator network

to extract statistical features which aim to distinguish the quality of inferences of

the network. The core principle of adversarial training is to develop a competitive

scenario between the segmentation network and an auxiliary discriminator network.

The semi-supervised adversarial training for medical image segmentation is

sketched in Figure 5.5. This framework comprises of a segmentation network fS(θ)

and a discriminator network fD(ϕ). The segmentation network fS(θ) is trained

to generate accurate segmentation of both labeled and unlabeled data, denoted

as Y p and Y u, respectively:

Y p = fS(Xp; θ) (5.7)

Y u = fS(Xu; θ) (5.8)

Simultaneously, the discriminator network fD(ϕ) is trained to differentiate between

the segmentation network’s predictions on labeled and unlabeled data:

Dp = fD(Y p; ϕ) (5.9)
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Du = fD(Y u; ϕ) (5.10)

During training, the segmentation network is optimized to enforce the discriminator

network by making its predictions on labeled and unlabeled data indistinguishable.

Conversely, the discriminator network is trained to become better at distinguishing

between the two types of predictions.

This adversarial dynamic compels the segmentation network to produce con-

sistent and high-quality predictions across both labeled and unlabeled datasets,

thus capitalizing on the abundance of unlabeled data to enhance its performance.

The essence of robustness in this context arises from the network’s ability to

maintain prediction accuracy despite variations in data quality and labeling. The

inherent challenge posed by the discriminator network ensures that the segmentation

network does not simply memorize or overfit to the labeled data but rather learns

to generalize its predictive capabilities effectively.

Figure 5.5: The Framework of Adversarial Learning for Medical Image Segmentation,
Consisting of a Segmentation Network and a Evaluation Network. Two networks are
trained separately (segmentation network is to provide high-quality inference, and
evaluation network is to classify the quality of inference is good enough) and against each
other as adversarial learning.
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5.2.3 Proposed Advanced Schemes
Dynamic Pseudo Label Scheme

The Dynamic Pseudo Label Scheme introduces a novel pseudo label ensembling

approach in the training process. It can be considered as an enhanced data

perturbation scheme, which is sketched in Figure 5.6. In this approach, for each

input, two pseudo labels are generated, and a composite of these labels, weighted

by a random factor α, is used for training the network. α, which ranges from

0 to 1, is assigned by a uniform distribution. It determines the weight each

pseudo label contributes to the composite label used for SSL. α serves as an

additional data perturbation mechanism because it is unlearnable and dynamic.

The formulation of the dynamic pseudo label blending based on two distinct pseudo

labels can be described as follows:

Y pseudo = αY pseudo1 + (1 − α)Y pseudo2 (5.11)

where Y pseudo represents the final composite pseudo label used for training, with

Y pseudo1 and Y pseudo2 as the initially generated pseudo labels. Incorporating this

variable weighting into the label generation process effectively introduces a controlled

form of data perturbation. This randomness compels the network to adapt to a

broader spectrum of scenarios, thereby enhancing its capacity for generalization.

The rationale behind this enhancement in generalization capability lies in the

diversity introduced by the varying combinations of pseudo labels. Each training

epoch presents the network with a slightly different version of the labels, preventing

it from becoming overly tuned to specific patterns or features of the data. This

dynamic and varied learning environment mimics the diversity of real-world data

more closely than static training methods, equipping the network with the ability

to handle unseen and varied data effectively in SSL scenarios. As a result, the

network not only learns from the limited labeled data but also effectively utilizes

the abundant unlabeled data, leading to improved performance in SSL tasks.
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Figure 5.6: The Example Dynamic Pseudo Label Scheme with Cross Pseudo Label
Learning for Medical Image Segmentation, Which Consisting of Two Networks. The
pseudo label is generated by both of inference.

Uncertainty-Aware Scheme

The Uncertainty-Aware Scheme is designed to reduce the impact of potentially

inaccurate pseudo labels during the training process. An illustrative example of

uncertainty-aware learning using the mean teacher network is sketched in Figure 5.11.

This scheme is predicated on the understanding that a network’s level of uncertainty

in its predictions can be a crucial indicator of those predictions’ reliability.

Within this framework, an uncertainty map is generated by analyzing the

network’s prediction probabilities. This is achieved by computing the entropy

of these probabilities, which is considered as a measure of unpredictability or

uncertainty following past studies [241]. The equation used to calculate the

uncertainty map is as follows:

U = −
∑

c

Pc log(Pc) (5.12)

Here, U represents the uncertainty map, while Pc denotes the predicted

probability for class c. The summation extends over all classes. Essentially, this
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equation calculates the entropy for each class prediction across the network’s output,

thus generating a map that highlights areas of high and low uncertainty.

The interpretation of this uncertainty map is crucial: probabilities near 1 or 0

indicate high certainty, suggesting that the network is confident in its prediction

being either the background or a region of interest. Conversely, probabilities around

0.5 signify a higher degree of uncertainty, implying that the network is less sure

about its prediction in these regions. The threshold hereby is utilized to filter the

network’s inferences, categorizing them as ‘certain’ or ‘uncertain’. For instance, if

the prediction probability for a specific pixel is above a high threshold (close to 1)

or below a low threshold (close to 0), it is considered ‘certain.’ Predictions that fall

between these thresholds, typically around 0.5, are tagged as ‘uncertain’. Setting

the uncertainty threshold too low or too high can lead to poor convergence or the

risk of confirmation bias. To effectively utilize the estimated uncertainty map, we

explore varies of threshold setting strategy in this study.

During training, supervision is applied primarily to those parts of the pseudo

labels classified as ‘certain,’ based on the uncertainty map. By focusing on these

more reliable areas, the strategy effectively minimizes the influence of potentially

incorrect pseudo labels. This selective approach to supervision enhances the overall

robustness and accuracy of the SSL process by ensuring that the network is trained

more on data points where its predictions are deemed reliable.

Transformation-Consistency Scheme

Transformation-Consistency Schemes, such as rotation-based SSL, introduce a new

paradigm of enhanced data perturbation in SSL [213]. This approach leverages the

invariance of underlying structure to specific transformations in data, like rotations,

to provide additional supervision for unlabeled data.

The transformation-consistency framework for SSL methods, such as Mean

Teacher, is briefly described in Figure 5.7. Here, a specific transformation R (e.g.

36 degrees) is applied to the unlabeled input data Xu for the student network:

Xur = R(Xu) (5.13)
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The transformed data Xur is then processed through the student network fS(θ),

and the resulting prediction is transformed back:

Y ur = R−1(fS(Xur; θ)) (5.14)

In this case, R−1 is the inverse transformation (e.g. - 36 degrees) rotation.

The teacher network fT (θ) then generates a prediction for the original, un-

transformed data:

Y u = fT (Xu; θ) (5.15)

The consistency loss can then be computed between Y ur and Y u:

Lconsistency = L(Y ur, Y u) (5.16)

This scheme capitalizes on the idea that applying a transformation to the input data

and the corresponding inverse transformation to the network’s output should not

change the underlying segmentation. By enforcing consistency between the network’s

predictions on transformed and original data, the network can effectively learn from

unlabeled data, thereby improving the performance of semi-supervised learning.
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Figure 5.7: The Example Transformation Consistency Scheme with Mean Teacher for
Medical Image Segmentation. The inference from rotated input image is similar with the
rotated inference from input image.
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5.3 Methods

5.3.1 Semi-Supervised Learning Framework Setup

In the task of semi-supervised learning, Dtrain, Dunlabel, Dtest normally denote

labeled training dataset, unlabeled training dataset, and testing set. We denote

a batch of labeled data as (X, Ygt) ∈ Dtrain, (X, Ygt) ∈ Dtest, and a batch of only

raw data as (X) ∈ Dunlabel in unlabeled dataset, where X ∈ Rh×w representing a 2D

image with the size h × w. Yp is the dense map predicted by several segmentation

networks such as f1(θ) : X 7→ Y1, and f2(θ) : X 7→ Y2. Lsup : (Y, Ygt) 7→

R, Lsemi : (Y1, Y2) 7→ R represent supervised segmentation loss, and semi-supervised

consistency loss on labeled training set and unlabeled training set. In general, the

training updates the parameter θ of segmentation networks f1(θ), f2(θ) aiming to

minimize the combined loss L. The final evaluation is to measure the difference

of (Yp, Ygt) 7→ R on the test set.

Figure 5.8: The Framework of Multi-View Learning for Medical Image Segmentation,
Which Consisting of Multi Networks to Achieve Multi Cross Pseudo Label Supervision.
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5.3.2 Triple-View Learning

This is part of our past work on triple-view learning [170]. The architecture

of our Triple-View Learning (TVL) for medical image semantic segmentation

network is illustrated in Figure 5.8. TVL is motivated by the concept of Cross

Pseudo Supervision (CPS) [239], wherein multiple unique perspectives (three in our

study) are simultaneously developed in separate networks. This approach allows

each network to complement the others, enhancing the overall learning process.

Distinctively, each network processes separate subsets of the data, learning from

these segmented portions to build a comprehensive understanding.

While multi-view co-training methods have been proposed for classification

tasks [238], semantic segmentation is much challenging. Our method innovatively

generates pseudo-labels at various stages, leveraging the output from two networks

to train the other network. This process is distinct from uncertainty-aware schemes

[25, 167], focusing on propagating high-confidence pseudo-labels, thereby enhancing

the overall framework’s certainty. TVL utilizes pseudo-labels generated by networks

with high confidence (as indicated by a high dice-coefficient). The confidence

threshold for pseudo-label propagation is adjusted based on the training stage,

progressively increasing as the training advances. Consequently, the quantity

of training data is dynamically expanded. TVL lies a shared low-level feature

learning module, a pre-trained ResNet [56], which is integral to the high-level

feature learning classifiers denoted as fA, fB, and fC. Each classifier, based on

different architectures—FPN [22], LinkNet [205], and UNet [4]—focuses on varied

aspects of feature learning, including long-range dependencies, feature size variation,

and multi-scale feature processing. The shared ResNet module aids in extracting

universal low-level features, while the classifiers collaborate in feature extraction,

voting, and pseudo-label generation, mutually enriching the SSL process.

5.3.3 Examiner-Student-Teacher Learning

This is part of our past work on Examiner-Student-Teacher [248], and the archi-

tecture of our exigent examiner and mean teacher is sketched in Figure 5.10. we
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explore the consistency-training-based SSL with further adversarial training scheme

via extending the Student-Teacher style prototype with an Examiner paradigm,

creating an Examiner-Student-Teacher SSL framework. The proposed framework

consists of three 3D CNN-based networks that can make the most of a training

set which includes some annotated images as well as some unannotated raw data.

Adversarial training and consistency regularization are proposed via Examiner ↔

Student, and Teacher ↔ Student respectively during the training process.

Student Network In order to exploit the 3D nature of some MRI scan volumes,

a 3D UNet is used as the Student network fS(θ) [173]. Each network block of

this UNet is based on 3D convolutional operations, Batch Normalization and

DropOut shown in Figure 7.2. Like in [237], fS(θ) learns directly from data with

annotations (X l, Y gt), and supervised by the Teacher via pseudo labels (Xu, Y p).

The crucial difference is that, at the same time, fS(θ) is also validated against

the Examiner via adversarial training. The inference of student network fS(θ) is

given in Eq. 5.17, where Gaussian noise is applied to all input data (both labeled

and unlabeled) X = X l ∪ Xu during training.

Y p = fs(X + Noise; θs) (5.17)

Teacher Network The architecture of the Teacher fT (θ) is similar to fS(θ),

except the Teacher does not learn from data directly. It is updated from the

exponential moving average network weights (illustrated in Eq. 5.18) of fS(θ), and

it is more likely than the Student to predict the correct inference. The Teacher’s

predictions are considered as the pseudo labels to supervise the Student [237].

θ = αθt−1 + (1 − α)θt (5.18)

where θ is updated based on the Student parameter θt from the previous training

step t; weight factor α = 1 − 1
t+1 . The pseudo labels are generated by the

Teacher without noise as:

Y p = fT(Xu; θ) (5.19)
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Figure 5.9: The Illustration of Adversarial Training Between Examiner and Student.
In two training stages, Examiner is trained to classify the inference from Student as
to whether from labeled or unlabeled data. Student is trained to provide high-quality
inference from unlabeled data that make examiner to classify as labeled data.

Thus the unlabeled training set Xu can be utilized to train the Student with

(Xu, Y p).

Examiner Network In order to capitalize on adversarial learning [249], a

3D CNN-based discriminator is adopted to assess the quality of the Student’s

inference. This matches the metaphor for an Examiner which checks the quality

of the learning. The Examiner consists of four 3D CNN layers, a down-sampling

operation, and multi-linear layers shown in Figure 5.10. Its architecture is following

the classical VGGNet [148]. The Examiner and Student are trained against each

other repeatedly for the duration of the training. The Examiner classifies the quality

of the inference from student network (seen in Figure 5.9).

Y e = fE(Y p; θe) (5.20)

Here, a segmentation mask predicted by the Student, Y p, originating from a

ground-truth label Y gt, is marked as a pass, whereas an inference from a pseudo

label is marked as a fail (Ye ∈ [pass, fail]). As the adversarial training progresses,

the dynamics between the Student and Examiner evolve significantly. The Student,

constantly challenged by the Examiner’s evaluations, is encouraged to refine its
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inferences, striving to make them indistinguishable from high-quality, ground-

truth derived predictions. In response, the Examiner, adapting to the Student’s

improving performance, heightens its evaluative criteria, becoming more discerning

in distinguishing between inferences derived from labeled and unlabeled data. This

iterative process of mutual adaptation drives the Student to generate increasingly

sophisticated and reliable inferences. The Examiner, in turn, evolves to provide

a more stringent and nuanced assessment, ensuring that only the most accurate

predictions are classified as pass. This escalating cycle of improvement and challenge

underpins the essence of adversarial training, fostering a robust learning environment

that progressively enhances the quality of SSL segmentation.

Figure 5.10: The Proposed Examiner-Student-Teacher Framework for Medical Image
Segmentation.

5.3.4 Uncertainty-Aware Mean Teacher ViT

This is part of our past work on UAMTViT [167], and the architecture of our

UAMTViT is sketched in Figure 5.11. To further enhance the teacher’s supervision,

an awareness of the uncertainty can be utilized in the training student network

stage [241]. These schemes revolve around the concept of uncertainty estimation,
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which can be considered as a measure of the network’s confidence in its predictions.

In this scheme, alongside the typical training process, an uncertainty measure is

computed for each prediction made by the network. This uncertainty measure

can be derived from various sources, such as the network’s output probabilities

or the disagreement between ensemble Networks.

In the context of Mean Teacher [237], the network’s uncertainty can be computed

based on the disagreement between the Student and the Teacher Networks:

U = |fS(Xu; θ) − fT (Xu; θ)| (5.21)

where U represents the uncertainty measure, and |.| denotes the absolute

difference operation.

The uncertainty measure is then used to modulate the learning process. For

instance, predictions with high uncertainty can be given less weight during the loss

calculation, or they can be excluded from the training process altogether.

Loss = U · L(Y u, Y p) (5.22)

where L represents the loss function, and Loss is the final, uncertainty-weighted

loss.

By incorporating uncertainty measures into the learning process, the student

network is forced to only learn the pseudo label where the teacher is confident

about, while treating uncertain predictions with caution. This can lead to more

robust learning, as the network becomes less prone to overfitting on uncertain or

noisy predictions. As such, uncertainty-aware schemes can greatly enhance the

performance of SSL methods, making them more reliable and robust in practice.

5.3.5 Computational-Efficient Cross Supervision ViT

This is part of our past work on CESSViT [167], and the architecture of our CESSViT

is sketched in Figure 5.12. The key parameters are carefully optimized: the patch size

is set to 16×16, the multi-head count in the self-attention sub-layer is fixed at 6, and

the encoder featured 12 identical layers. Additionally, the decoder is designed with
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Figure 5.11: The Example Uncertainty-Aware Scheme with Mean Teacher for Medical
Image Segmentation.

2 identical layers, each producing an output dimension of 384 from the self-attention

layer. This architecture is formulated to balance performance with computational

efficiency, making it well-suited for semi-supervised training in segmentation tasks.

Figure 5.12: The Example Computational-Efficient Vision Transformer for Semi-
Supervised Medical Image Segmentation.
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5.4 Experiments and Results

5.4.1 Implementation Details

All the proposed SSL methods, along with baseline methods, are trained with

the same hyper-parameters setting. This includes a training duration of 30,000

iterations, a batch size of 24, and the use of the SGD optimizer (learning rate: 0.01,

momentum: 0.9, weight decay: 0.0001). Network performance is evaluated on the

validation set every 200 iterations, saving the network weights only if there is an

improvement in performance compared to the previous best. The segmentation

backbone networks are either CNN-based Encoder-Decoder network UNet [4],

ViT-based Encoder-Decoder network SwinUNet [182], or computational efficient

SegFormer [7]. We evaluate Deep Adversarial Network (DAN) [249], ADVENT [250],

ICT [234], Mean Teacher (MT), Uncertainty-Aware Mean Teacher (UAMT) [241],

CPS [239], FixMatch [235], Triple-View Learning (TVL) [170], Uncertainty-Aware

ViT via Mean Teacher (UAMViT) [167], Computational-Efficient Segmentation

ViT (CESSViT) [168], and Exigent Examiner and Mean Teacher (EEMT) [248]

on two public available benchmark dataset including MRI Cardiac [8], and MRI

Brain Tumour dataset [9]. Ultrasound nerve [221], histology nuclei [169], and CT

spine datasets [219] are further selected to validate three CNN-based FPN [22],

LinkNet [205], UNet [4] and their combination for SSL in TVL [170]. We split

the dataset 80% as training set, and 20% as testing set.

5.4.2 Qualitative Results

Figure 5.13, Figure 5.14, and Figure 5.15, illustrates eight examples on MRI Cardiac

segmentation test set with various SSL strategies and 2D CNN-based segmentation

network when 10%, 30%, and 50% of training set as labeled training set. Figure 5.16,

Figure 5.17, and Figure 5.18, illustrates eight examples on MRI Cardiac segmentation

test set with various SSL strategies and 2D ViT-based segmentation network when

10%, 30%, and 50% of training set as labeled training set. Figure 5.19 illustrates

eight examples on MRI Cardiac segmentation test set with 2D CNN-based and
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2D ViT-based segmentation network when all the training set as labeled training

set, i.e. fully supervised learning.

Figure 5.20, Figure 5.21, and Figure 5.22, illustrates eight examples on MRI

brain tumour segmentation test set with various SSL strategies and 3D CNN-based

segmentation network when 10%, 30%, and 50% of training set as labeled training

set. Figure 5.23 illustrates eight examples on MRI brain tumour segmentation

test set with 3D CNN-based segmentation network when all the training set as

labeled training set, i.e. fully supervised learning.

Figure 5.13: The Example MRI Cardiac Segmentation Inference with 2D CNN network
and All SSL Strategies when 10% of Training Set as Labeled Data.
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Figure 5.14: The Example MRI Cardiac Segmentation Inference with 2D CNN network
and All SSL Strategies when 30% of Training Set as Labeled Data.

5.4.3 Quantitative Results

Table 5.1 and Table 5.2 reports the direct comparison of all SSL methods including

similarity measures and difference measures when the ratio of assumed labelled/total

data is 10%. Table 5.3, and Table 5.4 further reports all the SSL methods

performance under different assumptions of ratio of labeled/total data. Our proposed

methods are highlighted with Bold. The best performance are with Bold, and the

second best performance with the proposed methods are with Underline.
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Table 5.1: The Performance of All SSL Methods and FSL Methods on MRI Cardiac
Test Set.

Strategy Net Dice Acc Pre Sen Spe HD ASD
DAN [249] 2D CNN 0.8522 0.9904 0.8887 0.8186 0.9964 10.3342 2.2456

ADVENT [250] 2D CNN 0.8785 0.9949 0.8919 0.8666 0.9664 7.8870 2.4178
ICT [234] 2D CNN 0.8907 0.9956 0.9041 0.8791 0.9710 7.8132 2.2884
DCN [251] 2D CNN 0.8786 0.9949 0.8890 0.8694 0.9674 10.8204 3.3456
MT [237] 2D CNN 0.8597 0.9940 0.8579 0.8617 0.9683 18.4509 5.1873

UAMT [241] 2D CNN 0.8752 0.9948 0.8888 0.8646 0.9656 11.3137 2.9892
CPS [239] 2D CNN 0.8911 0.9956 0.8935 0.8900 0.9752 8.6877 2.5044

ADVENT [250] 2D ViT 0.8654 0.9949 0.8689 0.8625 0.9743 20.4530 1.9021
ICT [234] 2D ViT 0.8626 0.9947 0.8577 0.8684 0.9766 24.4194 2.5312
DCN [251] 2D ViT 0.8705 0.9950 0.8691 0.8733 0.9766 21.7381 2.0275
DAN [249] 2D ViT 0.8232 0.9932 0.8243 0.8222 0.9686 23.5825 2.8410
MT [237] 2D ViT 0.8597 0.9947 0.8683 0.8516 0.9717 22.8486 2.2084

TVL [170] 2D CNN 0.8965 0.9957 0.8978 0.8967 0.9764 8.9242 2.3171
UAMT [241] 2D ViT [167] 0.8639 0.9949 0.8635 0.8656 0.9765 23.6093 1.8273

CPS [239] 2D ViT [168] 0.8907 0.9955 0.8793 0.9035 0.9826 19.5130 1.7960
EEMT [248] 2D CNN 0.8944 0.9869 0.8924 0.8964 0.9929 6.7235 2.3468

FSL 2D CNN 0.9362 0.9974 0.9285 0.9445 0.9902 2.8905 0.6798
FSL 2D ViT 0.9213 0.9969 0.9311 0.9124 0.9810 4.9625 0.4542

Table 5.2: The Performance of All SSL Methods and FSL Methods on MRI Brain Test
Set.

Strategy Net Dice Acc Pre Sen Spe HD ASD
DAN [249] 3D CNN 0.8522 0.9904 0.8887 0.8186 0.9964 10.3342 2.2456

ADVENT [250] 3D CNN 0.7784 0.9868 0.8933 0.6897 0.9971 19.2713 3.9854
ICT [234] 3D CNN 0.8444 0.9901 0.8926 0.8012 0.9966 12.0808 2.3638
MT [237] 3D CNN 0.8554 0.9907 0.8945 0.8197 0.9966 14.1178 2.3128

UAMT [241] 3D CNN 0.8427 0.9899 0.8840 0.8051 0.9963 12.0487 2.3872
CPS [239] 3D CNN 0.8581 0.9908 0.8882 0.8299 0.9964 12.9194 2.0330
TVL [170] 3D CNN 0.8286 0.9894 0.9057 0.7635 0.9972 20.0065 3.3834

EEMT [248] 3D CNN 0.8606 0.9910 0.9003 0.8242 0.9968 11.8949 2.3691
FSL 3D CNN 0.8804 0.9921 0.9027 0.8591 0.9968 9.0964 1.8919

Table 5.3: The Direct Comparison Between Each SSL Method on MRI Cardiac Test Set
Under Various Data Situations.

Strategy Net 10% 30% 50%
Dice HD ASD Dice HD ASD Dice HD ASD

DAN [249] 2D CNN 0.8522 10.3342 2.2456 0.9032 8.8791 2.3715 0.9221 3.2110 0.9172
ADVENT [250] 2D CNN 0.8785 7.8870 2.4178 0.9162 5.0521 1.6228 0.9215 10.3330 2.4280

ICT [234] 2D CNN 0.8907 7.8132 2.2884 0.9151 7.7996 2.0972 0.9222 9.3451 2.2805
DCN [251] 2D CNN 0.8786 10.8204 3.3456 0.9159 4.6247 1.6323 0.9276 2.6540 0.6889
MT [237] 2D CNN 0.8597 18.4509 5.1873 0.9115 10.7320 2.9546 0.9256 4.6768 1.3181

UAMT [241] 2D CNN 0.8752 11.3137 2.9892 0.9172 5.2173 1.4913 0.9219 4.3713 1.2422
CPS [239] 2D CNN 0.8911 8.6877 2.5044 0.9178 6.1870 1.6476 0.9256 5.0754 1.4251

ADVENT [250] 2D ViT 0.8654 20.4530 1.9021 0.9044 14.5383 1.6169 0.9162 16.9461 1.0097
ICT [234] 2D ViT 0.8626 24.4194 2.5312 0.9061 19.5836 1.6599 0.9169 12.8991 0.9572
DCN [251] 2D ViT 0.8705 21.7381 2.0275 0.9075 21.3305 1.7129 0.9135 15.4894 1.1424
DAN [249] 2D ViT 0.8232 23.5825 2.8410 0.8933 22.2748 1.7836 0.9021 17.3750 1.3412
MT [237] 2D ViT 0.8597 22.8486 2.2084 0.9004 23.3482 2.0657 0.9154 15.0237 1.0204

TVL [170] 2D CNN 0.8965 8.9242 2.3171 0.9175 5.0569 1.5493 0.9261 4.6308 1.4368
UAMT [241] 2D ViT [167] 0.8639 23.6093 1.8273 0.9043 15.5615 1.3896 0.9155 15.8339 1.0489

CPS [239] 2D ViT [168] 0.8907 19.5130 1.7960 0.9095 15.8668 1.4273 0.9186 12.8070 0.8510
EEMT [248] 2D CNN 0.8944 6.7235 2.3468 0.9258 4.3497 2.3993 0.9357 2.3478 1.2437
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Figure 5.15: The Example MRI Cardiac Segmentation Inference with 2D CNN network
and All SSL Strategies when 50% of Training Set as Labeled Data.

Table 5.4: The Direct Comparison Between Each SSL Method on MRI Brain Test Set
Under Various Data Situations.

Strategy Net 10% 30% 50%
Dice HD ASD Dice HD ASD Dice HD ASD

DAN [249] 3D CNN 0.8522 10.3342 2.2456 0.8711 9.6285 2.0558 0.8765 7.8296 2.0352
ADVENT [250] 3D CNN 0.7784 19.2713 3.9854 0.8156 13.7736 2.9624 0.7688 29.3865 3.5888

ICT [234] 3D CNN 0.8444 12.0808 2.3638 0.8757 7.2862 2.0705 0.8861 6.7221 1.8699
MT [237] 3D CNN 0.8554 14.1178 2.3128 0.8811 9.2195 1.9452 0.8889 7.5318 1.8078

UAMT [241] 3D CNN 0.8427 12.0487 2.3872 0.8743 7.5782 1.8391 0.8844 7.7278 1.8040
CPS [239] 3D CNN 0.8581 12.9194 2.0330 0.8832 8.2775 1.7738 0.8842 8.3446 1.8787
TVL [170] 3D CNN 0.8286 20.0065 3.3834 0.8741 10.9023 1.9004 0.8858 6.7873 1.7230

EEMT [248] 3D CNN 0.8606 11.8949 2.3691 0.8886 6.4793 1.8074 0.9046 6.4368 1.7467
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Figure 5.16: The Example MRI Cardiac Segmentation Inference with 2D ViT network
when 10% of Training Set as Labeled Data.

5.4.4 Ablation Study

To assess the effects of each of the proposed contributions and their different

combinations, extensive ablation study have been conducted and reported.

Ablation Study on UAMTViT

In our ablation study of UAMTViT, showcased in Table 5.5, the implementation of

the Mean Teacher, denoted by!, is compulsory for SSL study purpose. We observe

that omitting the uncertainty aware scheme leads to a decline in performance.

The study involved testing with diverse network architectures, including UNet [4],

E-Net [252], and our specifically designed segmentation ViT. Additional experiments

conducted under fully supervised learning conditions are indicated by%in Table 5.5.
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Figure 5.17: The Example MRI Cardiac Segmentation Inference with 2D ViT network
when 30% of Training Set as Labeled Data.

These experiments reveal that our ViT, equipped with an uncertainty estimation

scheme, demonstrates particularly promising performance, notably in terms of IoU

and sensitivity, in both semi-supervised and fully-supervised settings.

Tables 5.6 and 5.7 present the outcomes of different settings for the threshold

τ and the weight λ of the consistency loss Lc during each training iteration. Our

exploration encompasses fixed values as well as dynamic approaches like exponential

ramp-up, linear ramp-up, and cosine ramp-down, along with their variants. The

specific formulas for these dynamic approaches are detailed in Equations 5.23,

5.24, and 5.25.

For each experiment, we apply varied approaches to update τ and λ, keeping one

parameter fixed to an exponential ramp-up as a control. Our results indicate that
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Figure 5.18: The Example MRI Cardiac Segmentation Inference with 2D ViT network
when 50% of Training Set as Labeled Data.

Figure 5.19: The Example MRI Cardiac Segmentation Inference with Fully Supervised
2D CNN- and 2D ViT-based Segmentation Network.
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Figure 5.20: The Example MRI Brain Tumour Segmentation Inference with 3D CNN
Network when 10% of Training Set as Labeled Data.

the different methodologies for updating τ and λ each iteration do not markedly

enhance the performance of our proposed method. Consequently, for all further

experiments involving τ and λ, we maintained an exponential ramp-up setting.

τorλ = e−5×(1−titeration/tmaxiteration)2 (5.23)

τorλ = titeration/tmaxiteration) (5.24)

τorλ = 0.5 × (cosine(π × titeration/tmaxiteration) + 1) (5.25)

Figure 5.24 indicates a selection of input MRI raw images with their correspond-

ing uncertainty maps and generated masks at various stages of the training process
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Figure 5.21: The Example MRI Brain Tumour Segmentation Inference with 3D CNN
Network when 30% of Training Set as Labeled Data.

by segmentation networks. In these uncertainty maps, areas of high uncertainty

in the teacher ViT’s (ft) predictions are highlighted in yellow, while regions of

high certainty are marked in blue.

As training progresses, the uncertainty map shows a transition from yellow

to green. This shift signifies a gradual increase in prediction certainty. The

application of a certainty threshold to the uncertainty map results in the generation

of masks, where white areas indicate sufficient certainty in the teacher ViT’s

(ft) predictions to guide the student ViT (fs) in calculating the consistency loss

Ls. Conversely, black areas denote pixels too uncertain to be considered in the

consistency semi-supervision loss calculation.
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Figure 5.22: The Example MRI Brain Tumour Segmentation Inference with 3D CNN
Network when 50% of Training Set as Labeled Data.

Figure 5.23: The Example MRI Cardiac Segmentation Inference with Fully Supervised
3D CNN-based Segmentation Network.
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Figure 5.24: Sample Uncertainty Maps, Masks, and Raw Images during the Training
Process. In uncertainty map, the yellow denotes the uncertainty area, and blue denotes
certainty area. In mask, white denotes as the eligible area of pseudo label to supervise,
and black denotes the uncertain area of pseudo label to be filtered. During training
process from early stage to end stage, we can find the certain area is growing larger and
eligible area of pseudo label to supervise is growing as well, and the only uncertain area
is the boundary of region of interest.
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Table 5.5: The Ablation Study on Proposed Contributions of SSL Architecture with
Different Segmentation Networks.

Mean Teacher Uncertainty Aware Net IoU Sen Spe
! UNet [4] 0.7494 0.7903 0.9977
! ! UNet [4] 0.7164 0.8037 0.9949
! ENet [252] 0.7549 0.8314 0.9958
! ! ENet [252] 0.7460 0.8529 0.9941
! UAMTViT [167] 0.7840 0.8405 0.9970
! ! UAMTViT [167] 0.7891 0.8398 0.9973
% % UNet [4] 0.7924 0.8409 0.9975
% % ENet [252] 0.7549 0.8696 0.9937
% % UAMTViT [167] 0.8173 0.9137 0.9951

Table 5.6: The Exploration of the Proposed Setting of Threshold to Filtering Uncertainty
Region.

Threshold IoU Acc Pre Sen Spe
Threshold 0.2 0.7465 0.9889 0.8895 0.8229 0.9958
Threshold 0.5 0.7480 0.9891 0.9048 0.8119 0.9965
Threshold 0.8 0.7042 0.9862 0.8299 0.8231 0.9930
Exponential Ramp Up 0.7543 0.9892 0.8895 0.8324 0.9957
Linear Ramp Up 0.7179 0.9866 0.8189 0.8534 0.9922
Cosine Ramp Down 0.7046 0.9861 0.8230 0.8305 0.9926
0.6 * Exponential Ramp Up 0.7321 0.9879 0.8588 0.8324 0.9943
0.6 * Linear Ramp Up 0.7354 0.9883 0.8852 0.8130 0.9956
0.6 * Cosine Ramp Down 0.8552 0.9889 0.8931 0.8205 0.9959
0.8 * Exponential Ramp Up 0.7240 0.9874 0.8528 0.8275 0.9941
0.8 * Linear Ramp Up 0.7326 0.9882 0.8836 0.8109 0.9956
0.8 * Cosine Ramp Down 0.7674 0.9899 0.9017 0.8374 0.9962
1.2 * Exponential Ramp Up 0.7326 0.9882 0.8834 0.8109 0.9956
1.2 * Linear Ramp Up 0.7304 0.9876 0.8458 0.8426 0.9936
1.2 * Cosine Ramp Down 0.7493 0.9889 0.8807 0.8340 0.9953
1.4 * Exponential Ramp Up 0.8359 0.9874 0.8724 0.8024 0.9951
1.4 * Linear Ramp Up 0.8167 0.9856 0.8305 0.8034 0.9932
1.4 * Cosine Ramp Down 0.7427 0.9884 0.8638 0.8412 0.9945

Notably, both the background and ROI can simultaneously exhibit high certainty,

indicated by white in the masks. Typical examples of these masks show uncertainty

primarily at the ROI boundaries. Ideally, with appropriate threshold settings, the

network can achieve high certainty across the entire image. Towards the end of

the training process, as the uncertainty map becomes predominantly blue, the
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Table 5.7: The Ablation Study of the Setting of Weight Factor on Consistency Loss.

Weight IoU Acc Pre Sen Spe
Threshold 0.2 0.5243 0.9723 0.6238 0.7667 0.9808
Threshold 0.5 0.3956 0.9567 0.4719 0.7101 0.9670
Threshold 0.8 0.4052 0.9703 0.6667 0.5082 0.9894
Exponential Ramp Up 0.7105 0.9870 0.8613 0.8023 0.9946
Linear Ramp Up 0.7149 0.9868 0.8357 0.8319 0.9932
Cosine Ramp Down 0.7547 0.9894 0.9044 0.8201 0.9964
0.6 * Exponential Ramp Up 0.7723 0.9900 0.8978 0.8467 0.9960
0.6 * Linear Ramp Up 0.7586 0.9896 0.9069 0.8227 0.9965
0.6 * Cosine Ramp Down 0.7742 0.9900 0.8908 0.8554 0.9956
0.8 * Exponential Ramp Up 0.7110 0.9864 0.8216 0.8408 0.9924
0.8 * Linear Ramp Up 0.7248 0.9875 0.8559 0.8256 0.9942
0.8 * Cosine Ramp Down 0.7178 0.9869 0.8376 0.8338 0.9933
1.2 * Exponential Ramp Up 0.7432 0.9887 0.8854 0.8223 0.9956
1.2 * Linear Ramp Up 0.5596 0.9742 0.6363 0.8227 0.9805
1.2 * Cosine Ramp Down 0.7509 0.9891 0.8955 0.8230 0.9960
1.4 * Exponential Ramp Up 0.6968 0.9864 0.8621 0.7482 0.9948
1.4 * Linear Ramp Up 0.6557 0.9832 0.7807 0.8037 0.9906
1.4 * Cosine Ramp Down 0.7550 0.9893 0.8979 0.8259 0.9961

corresponding mask becomes predominantly white, indicating overall certainty

in the network’s predictions.

Ablation Study on EST

To analyze the individual effects of each proposed contribution, as well as their

combined effects, we conducted extensive ablation experiments, which are detailed

in Table 5.8. All supervision schemes are with marks ✓on the mandatory Student

network, because it is the only feature learning network from a limited annotation set

directly. ✓with Teacher or Examiner indicates the only Teacher-Student consistency

training or Examiner-Student adversarial training SSL scheme, which are both

able to help the Student network learn from unannotated medical data. Further

experiments of only fully supervised learning of the student network with 10%

annotated data and 100% annotated data are also conducted as the lower-bound

and upper-bound performance, respectively. Table 7.3 presents the promising

improvement for Student with the help of Teacher and Examiner network.
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Table 5.8: The Ablation Study of Examiner-Student-Teacher on Brain Tumor MRI
Testing Set.

Supervision Performance
Student Teacher Examiner Dice Acc Pre Sen Spe HD ASD

✓ (10% Full) 0.8405 0.9898 0.8889 0.7970 0.9965 12.2822 2.2771
✓ ✓ 0.8546 0.9906 0.8995 0.8139 0.9968 12.4331 2.1487
✓ ✓ 0.8555 0.9906 0.8917 0.8222 0.9965 12.3674 2.5333
✓ ✓ ✓ 0.8605 0.9911 0.9135 0.8134 0.9973 8.7455 2.1574

(100% Full) 0.8804 0.9921 0.9027 0.8591 0.9968 9.0964 1.8919

Extension Study on TVL

Table 5.9 reports the quantitative results on four dataset when using 2%–20% of

data are assumed as labeled data. Considering TVL consists of three classifiers,

one of the best classifiers on validation set is utilized for testing against on other

baseline methods which with only a single classifier. Notably, the networks on CT

spine dataset demonstrate significantly higher IoU and Sen scores, attributable to

the consistent feature distribution of spinal structures within CT images, which

typically with similarly sized entities centrally located, thereby leading to high

scores for all networks.

Table 5.9: The Direct Comparison of TVL Against Existing Segmentation Networks
under Various Data Situation.

Experimental Results when 2% Data is Assumed as Labeled Data
Ultrasound Nerve CT Spine MRI Cardiac Histology Nuclei

IoU Sen IoU Sen IoU Sen IoU Sen
UNet[4] 0.1628 0.2020 0.7875 0.8078 0.3888 0.8351 0.6574 0.7814

LinkNet[205] 0.0919 0.1280 0.8232 0.8164 0.1498 0.9329 0.6905 0.8219
FPN[22] 0.1227 0.1320 0.8099 0.8029 0.4802 0.5143 0.6942 0.8284

TVL 0.2800 0.3678 0.8451 0.8433 0.9923 0.8411 0.6946 0.8293
Experimental Results when 5% Data is Assumed as Labeled Data

UNet[4] 0.2762 0.3234 0.8301 0.8385 0.6805 0.8053 0.7075 0.5953
LinkNet[205] 0.2505 0.2885 0.8264 0.8373 0.6762 0.7988 0.7552 0.8645

FPN[22] 0.2703 0.3093 0.8010 0.8360 0.7721 0.8351 0.7031 0.8333
TVL 0.3765 0.5090 0.8354 0.8633 0.8094 0.8880 0.7691 0.8757

Experimental Results when 10% Data is Assumed as Labeled Data
UNet[4] 0.3554 0.4090 0.8398 0.8287 0.8492 0.9253 0.8012 0.8880

LinkNet[205] 0.3464 0.3991 0.8505 0.9160 0.7832 0.8641 0.7957 0.8862
FPN[22] 0.2416 0.4866 0.8556 0.7937 0.8078 0.8591 0.8034 0.8973

TVL 0.4260 0.5789 0.8728 0.9365 0.8545 0.9159 0.8114 0.8981
Experimental Results when 20% Data is Assumed as Labeled Data

UNet[4] 0.4352 0.5254 0.9160 0.8374 0.8984 0.9448 0.8104 0.9019
LinkNet[205] 0.4333 0.5237 0.9365 0.9248 0.8712 0.9258 0.8027 0.8971

FPN[22] 0.3956 0.5953 0.9411 0.8573 0.8857 0.9307 0.8176 0.9094
TVL 0.4981 0.6528 0.9628 0.9272 0.9020 0.9459 0.8530 0.9244
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Table 5.10: The Ablation Study on Contributions of Architecture and Modules.

Label
Process

Dual Loss
Design

Classifier
A

Classifier
B

Classifier
C IoU

✓× 2 ✓ 0.8724
✓× 2 ✓ 0.8739

✓ ✓× 2 0.8641
✓ ✓× 3 0.8666

✓ ✓× 3 0.8579
✓× 3 0.8598

✓ ✓× 3 0.8605
✓× 3 0.8619

✓ ✓× 3 0.8739
✓ ✓ ✓ ✓ 0.8787

✓ ✓ ✓ ✓ 0.8841
✓ ✓ ✓ ✓ ✓ 0.9020

Ablation Study on TVL

To determine the individual contributions of the components in proposed TVL

framework, ablation study is conducted and reported in Table 5.10. These ex-

periments are designed to evaluate the significance of having distinct networks

(Networks A, B, and C) in our setup. Instead of using three different networks, we

experimented with configurations employing multiple instances of the same network

(e.g., A×2, A×3, etc.). As shown in Table 5.10, our findings reveal that the IoU

is adversely affected in these scenarios. The best performance is observed when

Networks A, B, and C are each uniquely represented in the framework, underscoring

their individual importance to the overall efficacy of TVL.
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5.5 Contribution and Discussion

In this chapter, we have explored the utility and efficacy of SSL strategies within the

context of medical image segmentation. The key principle of the SSL framework is

to utilize perturbation-based consistency as a regularization to leverage unlabelled

data. Specifically, we propose various strategies for data and network perturbation,

utilizing both CNN- and ViT-based segmentation network. We reproduce numerous

classical semi-supervised framework including MT, CPS, FixMatch, adversarial

training, ICT, and various advanced approaches to improve performance such as

dynamic ensembling pseudo labels, uncertainty estimation, multi-view learning. The

evaluation results demonstrate the strengths and weaknesses of each architecture

when incorporated within a SSL paradigm. We also conducted extensive experiments

to validate these methods on public datasets, and all methods are with the same

hyper-parameter settings and ratio of labeled of total training set to ensure the

fairness of our comparisons.

The proposed SSL strategies demonstrate nearly similar performance with

that of fully supervised learning baseline methods, yet reduce annotation costs.

The situation of limited labeled data, supplemented by large amount of raw

data is common in clinical settings, and is particularly essential in reducing

clinicians’ workload. Moreover, the principles of SSL is foundational essential

for exploring weakly-supervised learning domains, where scenarios such as sparse

labeling present similar to the SSL of combining both labeled and unlabeled

information in medical data.
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6.1 Motivation

The exceptional performance of both ViT- and CNN-based networks significantly

relies on access to sufficient amounts of high-quality annotated data. However,

there is a barrier to implementing advanced deep learning networks within clinical

settings when data is not 100% accurate and precise. Although SSL [167, 170,

253] (introduced in Chapter 5) and WSL [29, 213, 254] (introduced in Chapter 7)

have been utilized to address the costly labeling process in the context of ViT and

119
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Figure 6.1: The Example MRI Bone Images with Corresponding Ground Truth
Segmentation. We generate noisy labels by erosion and dilation, and the level of noise
can be higher or lower.

CNN, their application to medical image segmentation remains under explored,

particularly regarding noisy labels.

The ‘noisy labels’ pertains to inconsistencies or inaccuracies in annotation

as ground truth for machine leanring purpose, presenting significant challenges

in network training and generalization [11, 17]. In the realm of medical image

segmentation, the occurrence of noisy labels is often inevitable, primarily due to

factors including: inter-observer variability, the inexperience of junior clinicians, or

the inherent complexity of anatomical structures [255–258]. As shown in Figure 6.1,

where the annotation process may deviate from the ideal standard, leading to

labeled features that display erosion or dilation of contours, along with various

elastic deformations. We categorize these deviations as noisy labels, recognizing

their potential to impact network performance.

The integration of denoising techniques into segmentation networks enables the

development of noise-robust networks. These networks are adept at segmenting

medical images even when faced with imprecise annotations. This capability

improves segmentation performance which is essential in enhancing the clinical

applicability of these deep learning-based networks. Therefore, this contributes

to advancements of bringing deep learning techniques of medical image analysis

to practical clinical diagnosis.
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6.2 Noise-Robust Learning Framework Setup

In the task of noise-robust learning, Dtrain and Dtest typically represent the training

set (assumed to be labeled with noise) and the testing set (assumed to be noise-free),

respectively. We denote a batch of labeled data as (X , Y gt + noise) ∈ L and

(X , Y gt) ∈ Dtest, where X ∈ Rh×w represents a 2D image with dimensions h × w,

and Y gt ∈ [0, 1]h×w×c denotes the annotation for each pixel (with 0 representing

the background and 1 indicating the ROI).

We manually introduce noise, denoted as noise, to a pre-defined proportion

β ∈ (0%, 100%) of Y gt in the training set to simulate a realistic clinical data

scenario during the training process. Y p is the dense map predicted by the

segmentation network, f(θ) : X 7→ Y p. Ls : (Y p, Y gt + noise) 7→ R represents

the supervised segmentation loss.

The general training goal is to update the parameter θ of the segmentation

network f(θ) to minimize the loss L on the training set Dtrain while mitigating the

detrimental influence of noisy labels. The final evaluation calculates the difference

of (Y p, Y gt) 7→ R on the testing set.

6.3 Noisy Label Generation

To assess proposed strategy resilience against noisy labels, we employ artificial noise

into the dataset that is initially considered to be accurately annotated. This process

allows to simulate real-world scenarios of annotation imperfections and validation.

The noisy label simulation process comprises the following steps:

(i) From a dataset with perfect annotations, we randomly select a subset for

alteration. The ratio of noisy labels to the entire dataset is denoted as β ∈ [0, 1].

(ii) We employ erosion, dilation, and elastic transformation to generate noisy

labels for the randomly selected ground truth. Erosion effectively simulates under-

segmentation where critical features may be missed due to conservative annotation,

common when clinicians are unsure about the boundary limits of ROI. Conversely,

dilation represents over-segmentation, reflecting scenarios where clinicians might
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annotate beyond the actual boundaries of an ROI, a frequent occurrence due to

the overlapping nature of medical images. These simulation approaches, alongside

elastic transformations that introduce realistic deformations reflecting human error

in manual labeling are introduced for evaluating segmentation networks under

clinical data situations.

Erosion and dilation are applied as follows:

(A ⊖ B)(x, y) = min
(i,j)∈B

A(x − i, y − j) (6.1)

(A ⊕ B)(x, y) = max
(i,j)∈B

A(x + i, y + j) (6.2)

where A is the binary annotation mask, B the structuring element, and (x, y)

the pixel coordinates.

Elastic transformation is a non-linear deformation technique simulating lo-

cal shape warping. For an image I(x, y) and displacement fields ∆x(x, y) and

∆y(x, y), generated by the Gaussian smoothing of random fields, the transfor-

mation is defined as:

Itransformed(x, y) = I(x + γ∆x(x, y), y + γ∆y(x, y)) (6.3)

where γ represents the deformation scale factor.

(iii) The manipulated annotations replace their original annotations in the

dataset, generating a new dataset containing a mixture of perfect and noisy labels.

By creating noisy labels in this manner (examples shown in Figure 6.1), we design

a challenging dataset for experimental purposes, facilitating the assessment of

our proposed method’s noise-robustness and the comparison of its performance

with existing advanced techniques.

6.4 Study of Noise-Robust Segmentation

This is the part of our past work from RARUNet [17] and NRUNet [31]. To mimic

the challenges of noisy (or imprecise) labels emerging in practical settings, we

introduce an Adaptive Denoising Learning (ADL) strategy during the training
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process. To mirror this scenario, a certain proportion β of masks in the training

data has been replaced with synthetically generated noisy labels featuring erosion,

dilation, or elastic transformation. In our study, we explored three situations with

β ∈ [75%, 50%, 25%], and randomly select and replace the original label to noisy

label. The noisy level α thus can be calculated by the difference between the

original label and generated noisy label via Dice-Coefficient.

Different with developing a noise-robust network from noise distribution, such

as noise-robust loss design [256, 259, 260], we propose to actively detect and

remove noisy label. Motivated by O2UNet [30], the proposed noise-robust learning

strategy (seen in Figure 6.2) involves a meticulous analysis of prediction-label

discrepancies at every epoch of the training process. We compute and record the

loss for each prediction compared to its corresponding label, with a key premise:

labels that consistently yield higher losses are more likely to be noisy or incorrect.

This premise is rooted in the understanding of the learning dynamics of neural

networks. During the initial phase of training (underfitting), a network is still

learning to capture the fundamental patterns in the data, and high losses are more

prevalent. As training progresses, the network starts fitting more closely to the

training data, entering an overfitting phase where it might start capturing noise

as patterns. Hence, consistently high losses even in later stages of training can

indicate problematic labels. The number N(t) of labels identified and removed in

each epoch is determined by the current training epoch t, the noisy level α, the

proportion β of noise-infused items in the training dataset, the total number of

training epochs x, and the total number of masks y.

Our strategy, therefore, is to identify and eliminate these high-loss labels

throughout the training. At the start of the training, where underfitting is

more prevalent, a larger number of noisy labels are identified and removed. As

the network’s fit improves, the focus shifts to fine-tuning by removing fewer

labels, reflecting the reduced incidence of high-loss labels as the network starts

overfitting [17].

The process we proposed in [31] is quantified as follows:
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Figure 6.2: The Training Process of Adaptive Denoising Learning Strategy. Predictions
are generated through segmentation network with a conventional training manner. Labels
with higher losses against of network prediction are more likely to be considered as noisy
labels. ADL iteratively removes a specific number of labels deemed as noisy labels in
each training epoch. Precise (in blue) and imprecise (in green) labels get classified and, if
imprecise, discarded.

N(t) = βy

x2 (x − t) (6.4)

Here, N(t) denotes the number of labels identified and removed in epoch t, with

β representing the proportion of noise-infused items in the training set, x the total

number of training epochs, and y the total number of masks. This equation reflects a

deliberate reduction in the number of labels removed as training progresses, aligning

with the network’s transition from underfitting towards overfitting. Additionally,

once we consider the ratio of noisy level as α which is calculated by Dice-Coefficient,

the process we proposed in [17] is quantified as follows:

N(t) =


0.5(1 − α)βy, 0 < t < 0.1(1 − α)βx
y
x
t, 0.1(1 − α)βx ≤ t ≤ 0.5(1 − α)βx

0.1(1 − α)βy, 0.5(1 − α)βx < t ≤ x
(6.5)

where the hyper-parameters 0.1 and 0.5 of Equation 6.5 are obtained through

systematic search. By integrating ADL into the training regime, we aim to bolster

the segmentation network’s robustness against noisy labels. This strategy is not

only about discarding potentially misleading information but also about refining

the network’s focus on reliable data. The anticipated outcome is a network that
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not only performs with higher accuracy but also exhibits enhanced reliability and

applicability in clinical settings, where the quality of data can be highly variable.
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6.5 Experiments and Results

6.5.1 Implementation Details

The dataset employed in this chapter is the CT spine dataset [219]. Accurate ground

truth masks are available for each image, and a subset of these masks is modified

to introduce noise, simulating real-world annotation challenges. The segmentation

network utilized includes RARUNet [17] and NRUNet [31], with input feature maps

sized at 256 × 256 × 1. In each encoder and decoder layer of these U-shape networks,

segmentation networks featured 64, 128, 256, and 512 CNN, respectively, and

incorporated two successive CNN layers. With regards to the ViT-related design

elements, we assigned an image patch-embedding dimension of 768, an MLP count

of 1024, and 12 heads for the MSA. The NR-UNet’s bottleneck is composed of 6

ViT layers, with the final layer being a 1 × 1 CNN layer, suited for 2D image binary

semantic segmentation. The training, spanning 50 epochs, varied between 500 and

800 minutes, including data transfer, with a batch size of 4 and Adam optimizer at

a learning rate of 10−5. The segmentation loss is based on the Dice coefficient.

6.5.2 Qualitative Results

The experiments focus on assessing the robustness of the proposed algorithms

to annotation noise, i.e. the impact of the proposed ADL strategy. Table 6.1

particularly evaluates the effect of the ADL strategy. The term ‘Proportion’

indicates the percentage β of noisy labels introduced into the training set, with

other proportions also tested but omitted here to prevent overloading the table. The

Network as ‘net’ clarifies that different networks are trained independently. The

inclusion of a module implementing the ADL strategy (denoted by !) consistently

improve performance.

Figure 6.3 illustrates example predictions by NRUNet under various data

conditions (i.e., different ratios β of noisy labels). By comparing the results of

different algorithms and adjusting the proportion of noisy labels injected into the

training dataset, we glean valuable insights into the robustness and adaptability of
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Figure 6.3: The Example Input CT Spine Images, and Prediction of NRUNet Against
Ground Truth Under Various Data Situations.

our method in tackling the challenges that noisy annotations present to medical

image segmentation tasks.

6.5.3 Quantitative Results

While the performance of various networks in conventional supervised learning is

similar (as shown in Table 4.1), the ADL strategy’s effectiveness becomes apparent

in Table 6.1 and 6.2. This strategy significantly mitigates the impact of noisy

labels, achieving segmentation performance that can be considered practically

acceptable in many clinical applications.
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Table 6.1: The Ablation Study of Adaptive Denoising Learning under Different
Proportion of Noisy Labels on Training Set with Various Segmentation Networks.

Proportion (β) Net ADL Dice IoU

75% UNet ✗ 0.8004 0.6672
✓ 0.8337 0.7148

75% Residual UNet ✗ 0.7962 0.6614
✓ 0.8210 0.6964

75% NR-UNet ✗ 0.8196 0.6943
✓ 0.8466 0.7340

50% UNet ✗ 0.8188 0.6932
✓ 0.8564 0.7489

50% Residual UNet ✗ 0.8179 0.6919
✓ 0.8453 0.7321

50% NR-UNet ✗ 0.8362 0.7185
✓ 0.8832 0.7908

25% Dense UNet ✗ 0.9096 0.8342
✓ 0.9284 0.8664

25% UNet ✗ 0.9084 0.8322
✓ 0.9303 0.8697

25% Residual UNet ✗ 0.9002 0.8185
✓ 0.9213 0.8541

25% NR-UNet ✗ 0.9101 0.8350
✓ 0.9532 0.9106
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Table 6.2: The Ablation Study of Adaptive Denoising Learning under Different
Proportion of Noisy Labels and Different Noisy Level when Generating Noisy Labels on
Training Set with Various Segmentation Networks.

Proportion (β) Level (α) Net ADL IoU Recall
75% 0.68 U-Net ✗ 0.6445 0.7303
75% 0.68 U-Net ✓ 0.6742 0.8072
75% 0.68 Residual UNet ✗ 0.7732 0.9097
75% 0.68 Residual UNet ✓ 0.8138 0.9462
75% 0.68 Attention UNet ✗ 0.7809 0.8823
75% 0.68 Attention UNet ✓ 0.8087 0.9142
50% 0.77 UNet ✗ 0.7523 0.8420
50% 0.77 UNet ✓ 0.8522 0.9295
50% 0.77 Attention UNet ✗ 0.8464 0.9201
50% 0.77 Attention UNet ✓ 0.8561 0.9283
25% 0.85 Residual UNet ✗ 0.8615 0.9051
25% 0.85 Residual UNet ✓ 0.8868 0.9433
25% 0.85 Dense UNet ✗ 0.8443 0.9378
25% 0.85 Dense UNet ✓ 0.8864 0.9424
25% 0.55 U-Net ✗ 0.8024 0.8698
25% 0.55 U-Net ✓ 0.8304 0.9176
25% 0.55 Residual UNet ✗ 0.8230 0.8956
25% 0.55 Residual UNet ✓ 0.8495 0.9126
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6.6 Contribution and Discussion

This chapter’s primary contribution is the development of the ADL strategy to

tackle the prevalent problem of noisy labels in medical image segmentation. We

demonstrate the effectiveness of ADL into a hybrid CNN-ViT encoder-decoder

U-shape segmentation network, and a modified CNN-based U-shape segmentation

network, demonstrating that the ADL strategy effectively improve the segmentation

network’s robustness against noise in annotation compared against with traditional

training strategy.

By generating noisy labels through image pre-processing including erosion,

dilation, and elastic transformation, we are able to evaluate our proposed method

in a controlled, reproducible scenario, and accurately assess its noise robustness.

The denoising strategy is valuable in handling the real-world challenges of imperfect

annotations that are prevalent in the medical imaging field, especially in the

clinical context.

Different with developing a noise-robust network under noise distribution such as

a network with an additional noise-robust loss or network blocks [256, 259, 260], we

propose ADL strategy to actively detect and remove noisy label to reduce the impact

of unreliable data during training. Compare with some similar strategies such as

sample selection works [261–263], ADL is much simple to be deployed and efficient

with any types of segmentation network. More specifically, ADL is a novel strategy

that based on a fresh perspective on understanding how training dynamics change

when encountering noisy labels, transitioning from an underfitting to overfitting

state. Our proposed strategy adapts to this change by initially detecting a large

number of noisy labels and gradually reducing the number as training progresses.

The current framework, however, requires manual setting of the proportion of

noisy label in the dataset β and optional noisy level of noisy label α. In a real-world

setting, these values are not easily quantifiable or known a priors. In addition, once

the noisy label been removed with ADL, the feature information of corresponding

images is still valuable for network training with SSL strategy [264–267]. Multi-rater

learning is also a potential strategy to deal with unreliable data [268–270].
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In conclusion, this chapter presents a novel strategy to improve the robustness

of medical image segmentation networks against noisy labels, bringing deep learning

closer to practical healthcare applications.
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7.1 Motivation

Whilst recent network architecture engineering of CNN and ViT have demonstrated

exceptional performance in medical image segmentation [4, 39, 186], many of

these studies are validated on large benchmark datasets with detailed pixel-level

annotations [79, 186, 271]. To address the often prohibitive cost of such detailed

133
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Figure 7.1: The Illustration of a Multi-Class Scribble-Supervised Segmentation. (a)
Input sagittal left-facing MRI, (b) dense ground-truth annotations, (c) sparse annotations
via scribble, (d) segmentation inference by dense-label-supervised UNet, (e) segmentation
inference by scribble-label-supervised UNet, (f) segmentation inference by proposed
scribble-label-supervised CHNets.

annotations in image semantic segmentation, SSL (discussed in Chapter 5) has been

explored as a method to train with limited densely labeled data supplemented by a

larger volume of raw data. Additionally, Weakly-Supervised Learning (WSL) such

as scribble-based labeling, presents an alternative way for medical data annotation

by clinicians. This chapter introduces employing scribble annotations to train CNN-

and ViT-based segmentation networks in a simultaneous and collaborative manner.

WSL for segmentation typically leverages sparse annotations like bounding

boxes, points, text, and scribbles to train networks [272–274]. Scribble annotation,

as illustrated in Figure 7.1, stands out as a practical and convenient form of clinician

labeling. However, the limited supervision signal from such sparse annotations poses

significant challenges for image semantic segmentation in medical imaging, especialy

for accurately classifying pixels at the boundaries of ROI. Current SSL and WSL

methods often employ partial-supervision losses for network initialization, utilizing

prior assumptions to expand data. This strategy allows network inferences to extend

scribbles into dense pseudo labels. Notably, ScribbleSup proposes a graph-based

method to spread feature information from scribbles to unlabeled pixels with a

unique training loss [273]. Conditional Random Fields have been utilized for segmen-

tation refinement [33], while Scribble2Label introduces an efficient pseudo-labeling

mechanism, enhancing label reliability during training [275]. Other approaches, like

CycleMix [274], integrate mixing augmentations with consistency regularization

for scribble-supervised segmentation, and adversarial training networks have been

developed to promote high-quality pseudo-labels [276].
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The key study in recent SSL and WSL research is the pseudo label consistency

under various data- and network-perturbation, as consistency-aware training. Triple-

view learning, for instance, uses three different networks to iteratively generate

pseudo labels, enhancing multi-view learning [170]. Additionally, techniques like

cross teaching [14] and mix pseudo supervision [240] have been explored for

their effectiveness in scribble-supervised segmentation, with network and data

perturbation technique for pseudo label generation achieving SOTA performance

in MRI cardiac segmentation.

7.2 Weakly-Supervised Learning Framework Setup

In the WSL task, Dtrain, Dtest normally denote labeled training dataset with

low quality, and fully labeled testing set. A batch of labeled low quality data

is denoted as (X, Yweak) ∈ Dtrain, (X, Ygt) ∈ Dtest, where X ∈ Rh×w representing

a 2D image with the size h × w, Yweak ∈ [0, 1, None]h×w×c, Ygt ∈ [0, 1]h×w×c

representing the annotation on each pixel whether 0 is background and 1 is ROI.

(None indicates no annotation information on some of corresponding pixels.) Yp is

the prediction densely by several segmentation networks such as f(θ1) : X 7→ Y1,

and f(θ2) : X 7→ Y2. Lweak : (Y, Yweak) 7→ R, Lsemi : (Y1, Y2) 7→ R represent WSL

segmentation loss, and consistency loss on the training set. In general, the training

process is to update the network parameter θ of some segmentation networks

f(θ1), f(θ2) aiming to minimize the sum of losses L. The final evaluation is to

calculate the difference of (Yp, Ygt) 7→ R on testing set.
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7.3 Study of Weakly-Supervised Segmentation

7.3.1 Scribble Supervision Loss

To tackle the challenges posed by scribble availability in WSL, the CrossEntropy

CE function is applied exclusively on annotated pixels, while ignoring the unla-

beled pixels as partial supervised segmentation loss (seen in Equation 7.1). By

adopting this Partial Cross-Entropy pCE , the network training is enforced only

on scribble signal [273].

LpCE(ypred, yscrib) = −
∑

i∈ωL

∑
k

yscrib[i, k]log(ypred[i, k]) (7.1)

Here, i represents the i-th pixel, and ωL denotes the set of pixels labeled with

scribble. k refers to the k-th class, with [i, k] indicating the probability that the

i-th pixel belongs to the k-th class.

7.3.2 Collaborative Hybrid Networks

This is part of our past work in [277], where we introduce Collaborative Hybrid

Networks (CHNets). CHNets comprises a CNN-based UNet [4], and a Swin

Transformer-based UNet-style network [193]. Our methodology enables simul-

taneous and collaborative learning between these networks, employing an iterative

labeling ensemble scheme for dense pseudo-label generation and retraining through

external-consistency supervision. Additionally, each network benefits from self-

ensemble techniques under internal-consistency supervision, further enhancing their

performance. This dual consistency supervision allows CHNets to fully leverage both

segmentation networks, yielding detailed pixel-level inferences. We evaluate CHNets

on a pre-processed scribble-supervised set based on MRI cardiac dataset [8], and our

experimental results demonstrate that the proposed WSL strategy surpasses other

existing WSL methods [4, 29, 193, 213, 273, 278–280] in various evaluation metrics.
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Figure 7.2: The Framework of Scribble-Supervised Collaborative Hybrid Networks for
Medical Image Segmentation.

Training Objective

The training of CHNets, as illustrated in Figure 7.2, is conducted end-to-end,

focusing on optimizing a group of networks through the sum of different categories

of segmentation loss functions, which is formulated in Equation 7.2.

L = Lcnn
pCE + Lvit

pCE︸ ︷︷ ︸
Scribble−Supervision

+ λ1 Lcnn
inter + λ2 Lvit

inter︸ ︷︷ ︸
Internal−Consistency

+ λ3 Lcnn
exter + λ4 Lvit

exter︸ ︷︷ ︸
External−Consistency

(7.2)

where loss includes scribble-supervision loss (LpCE), internal-consistency loss

(Linter), and external-consistency loss (Lexter). These losses are adapted for two

pairs of segmentation networks, specifically as Lcnn for CNN-based networks and

Lvit for ViT-based networks.

Hybrid Networks

Motivated by the success of the UNet, ViT, and network perturbation, we propose

group of hybrid networks as multi-view for a single feature segmentation task. This

design aligns from the strategy in training multi-networks under limited signal

supervision such as multi-view learning feeding with different augmented data [170],

Co-Teaching handling with uncertainty labels [264], and cross supervision with

varied parameter initialization [239], all of which enforce consistency in inference
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while diverse perturbations on networks. Our hybrid network not only introduces

perturbations at the parameter level but also distinctively at the architectural level.

Considering CNN and ViT are two different architecture, we utilize the CNN-based

U-shape segmentation network, i.e. UNet and adopt two Swin-ViT layers as network

blocks into the U-shape segmentation network, i.e. SwinUNet for a fair comparison.

Internal Self-Ensembling Consistency Supervision

To boost the feature learning performance of each network, we employ the in-

ternal self-ensembling consistency supervision following Mean Teacher [237] from

limited-signal SSL task to the similar WSL scribble-supervision task. The internal

consistency supervision involves an additional network, named teacher, with the

same architecture but updated by the other network, named student, (Equation 7.3).

The student network directly learns from scribbles.

θt
i = αθt

i + (1 − α)θs
i (7.3)

where θs, θ
t indicates as the parameters of the student network and teacher network,

and the network can be either CNN-based θcnn or ViT-based network θvit. The α ∈

[0, 1] balances the weight of updating parameters. To achieve internal-consistency

aware, the Gaussian perturbation is applied during training, and the inference by

the Student is enforced to be similar to the Teacher from the same input with noise

using internal-consistency loss Linter illustrated in Equation 7.4:

Linter(ys, yt) = CE(ys, yt) + Dice(ys, yt) (7.4)

where CE , Dice indicates as Cross-Entropy and Dice-Coefficient-based segmentation

loss on the dense pseudo label provided by the Teacher.

External Dynamic Cross-Consistency Supervision

To ensure both networks with different architecture collaborate and beneficial each

other, external dynamic cross-consistency supervision is proposed. Inspired by

MixUp [120], we ensemble the inference of two networks as a dense pseudo label
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Figure 7.3: Example Raw Images with Corresponding Inference. (a) Input MRI image,
and Inference by (b) pCE, (c) USTM, (d) Scribble2Label, (e) Mumford-Shah loss, (f)
GatedCRFLoss and (g) CHNets.

to iteratively supervise each network [240]. The pseudo label, which provides a

complete dense supervisory signal, is formulated as:

ypseudo = argmax[βycnn + (1 − β)yvit] (7.5)

where ycnn, yvit refer to the inference by CNN and ViT, respectively. ypseudo is

jointly generated dense pseudo label. β∈[0, 1] is randomly generated by a uniform

distribution, and considered as a kind of ‘dynamic’ enhanced data perturbation.

This process is iterative during training process, thus ypseudo is utilized for network

training per iteration as external-consistency loss Lexter (seen in Equation 7.6):

Lexter(ypseudo, ypred) = CE(ypseudo, ypred) + Dice(ypseudo, ypred) (7.6)

where CE indicates Cross-Entropy-based segmentation loss and Dice indicates

Dice-Coefficient-based segmentation loss. Both of losses are all based on the

differences between inference and dense pseudo label which is generated by the

dynamic pseudo label ensembling.
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7.4 Experiments and Results

7.4.1 Implementation Details

The original UNet [4] and SwinUNet [182] are utilized as the CNN- and ViT-based

segmentation backbone respectively for all WSL methods. The MRI Cardiac dataset

is selected for validation. The hyper-parameter setting consists of 60,000 training

iterations with a batch size of 12. SGD is used as the optimizer, configured with a

learning rate of 0.1, momentum of 0.9, and weight decay set to 0.0001. The memory

requirement for these experiments is approximately 7 GB, with average runtimes

around 4.5 hours. The scribble annotation is generated based on original full dense

masks with a simulation algorithm in the data pre-processing stage [276].

7.4.2 Qualitative Results

CHNets is directly compared against with several existing WSL baseline methods

including Partial Cross-Entropy (pCE) [273], Uncertainty-aware Self-ensembling and

Transformation-consistent Mean Teacher (USTM) [213], Scribble2Label (S2L) [29],

Mumford-Shah loss (Mumford) [278], and Gated Conditional Random Fields Loss

(CRF) [280]. All baseline WSL methods and CHNets are trained with the same hyper-

parameter setting, the same loss functions i.e. partial cross-entropy (introduced in

Equation 7.1), and the same scribble-based annotation set. For a comprehensive

evaluation, each of SSL baseline method is extended to be developed with either

CNN- or ViT-based segmentation backbone network. The baseline WSL methods

are not suitable with dual-network setting, but an ablation study further explore

pure CNN or ViT setting for CHNets. The qualitative results are sketched in

Figure 7.3 where the inference of each method is evaluated against original dense

label at pixel level where yellow, black, red, and green indicating as true positive,

true negative, false positive, false negative, and subfigure (a-g) represents input

MRI image, and inference by pCE, USTM, Scribble2Label, Mumford-Shah loss,

GatedCRFLoss and CHNets.
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Table 7.1: The Direct Comparison of the Proposed CHNets Against All Weakly-
Supervised Baseline Methods on the Test Set.

Strategy Net Dice IoU Acc Pre Sen Spe HD ASD
pCE [273] ViT 0.8459 0.7355 0.9954 0.8324 0.8709 0.9975 28.6010 7.3933

USTM [213] ViT 0.8745 0.7802 0.9959 0.8648 0.8920 0.9977 13.4157 3.6616
S2L [29] ViT 0.8641 0.7630 0.9960 0.8704 0.8655 0.9982 6.4881 1.7645

Mumford [278] ViT 0.8632 0.7614 0.9960 0.8718 0.8620 0.9982 7.6870 2.2027
CRF [280] ViT 0.8493 0.7405 0.9955 0.8475 0.8678 0.9978 8.3234 2.3858

Scribblesup [273] CNN 0.6455 0.4918 0.9831 0.5318 0.8945 0.9848 163.5975 69.0296
USTM [213] CNN 0.8588 0.6147 0.9904 0.6501 0.9203 0.9916 143.5347 44.8333

S2L [29] CNN 0.8645 0.7644 0.9955 0.8449 0.8904 0.9973 28.4650 7.6293
Mumford [278] CNN 0.8681 0.7709 0.9957 0.8518 0.8915 0.9975 23.6676 6.6040

CRF [280] CNN 0.8709 0.7755 0.9957 0.8519 0.9030 0.9974 7.8396 1.8412
CHNets Hybrid 0.8906 0.8058 0.9964 0.8698 0.9158 0.9978 5.4180 1.6484

7.4.3 Quantitative Results

The comprehensive quantitative results presenting the direct comparison of CHNets

against all WSL baseline methods are reported in Table 7.1 with mean value

for each metrics, and we further report the detailed performance of each ROI in

Table 7.2. Our proposed methods are highlighted with Bold. The best performance

are with Bold, and the second best performance with the proposed methods

are with Underline.

Table 7.2: The Direct Comparison of the Proposed CHNets Against All Weakly-
Supervised Baseline Methods on the Test Set of Each Segmented Feature.

Strategy Net RV Myo LV
Dice HD ASD Dice HD ASD Dice HD ASD

pCE [273] ViT 0.8587 9.3925 3.7748 0.7859 45.0363 10.0612 0.8929 31.3743 8.3438
USTM [213] ViT 0.8639 9.4354 2.9105 0.8230 14.83338 4.3353 0.9366 15.9782 3.7390

S2L [29] ViT 0.8727 6.7018 1.6205 0.8105 5.7516 1.5848 0.9091 7.0109 2.0971
Mumford [278] ViT 0.8678 6.9280 1.6073 0.8137 7.1041 2.1839 0.9081 9.0291 2.8168

CRF [280] ViT 0.8622 6.9086 1.7250 0.7904 8.0107 2.2518 0.8952 10.0510 3.1806
Scribblesup [273] CNN 0.5806 182.2923 87.5389 0.5260 160.3049 68.6412 0.8300 163.5975 69.0296

USTM [213] CNN 0.7304 138.4518 41.0612 0.7102 125.1634 31.8241 0.8360 166.9888 61.6147
S2L [29] CNN 0.8502 11.2341 3.3072 0.8156 29.3005 8.0682 0.9276 44.8603 11.5125

Mumford [278] CNN 0.8354 29.2791 8.0856 0.8260 24.3843 7.6606 0.9427 17.3394 4.0656
CRF [280] CNN 0.8519 13.5882 3.1754 0.8164 3.8603 1.2166 0.9444 6.0701 1.1317
CHNets Hybrid 0.8752 8.9538 2.3428 0.8445 3.6503 1.5336 0.9519 3.6499 1.0687

7.4.4 Ablation Study

In the ablation study, we investigate the impact of various contributions and

configurations of the CHNets. We explore different combinations of both internal
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Figure 7.4: The Ablation Study of the Different Combinations of Pseudo Label
Ensembling.

and external- consistency aware supervision with CNN or ViT backbone, which

are sketched in Figure 7.4 and the results are reported in Table 7.3. The internal-

consistency training are always with 2 × !to align the architecture requirement

by the network self-ensembling. !filled in all internal-consistency and external-

consistency simultaneously with CNN and ViT, refers to as CHNets, which achieves

the best performance demonstrating the effectiveness of our proposed techniques.

For a comprehensive analysis, we also include pixel-level fully supervised learning

with original ground truth results with both CNN and ViT which can be considered

as the upper-bound performance compare with weakly supervised learning. We

also compare these results against pixel-level fully supervised learning (seen in

the bottom of Table 7.3), indicating the maximum achievable performance, and

find that CHNets closely match the high standard with only sparse annotations,

indicating their practical applicability.
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Table 7.3: The Ablation Study of Internal & External Consistency-Aware Supervision
on Test Set and Pixel-Level Fully Supervision.

Proposed Consistency-Aware Supervision Results
Strategy Internal Consistency External Consistency Dice IoU HD ASDCNN ViT CNN ViT

a !× 2 0.7083 0.5544 150.5851 50.3175
b !× 2 0.7612 0.6253 148.5577 43.7664
c !× 2 0.8837 0.7945 6.1310 4.9041
d !× 2 0.7392 0.6087 62.4700 24.7017
e !× 2 ! 0.8846 0.7964 8.2995 2.8425
f !× 2 ! 0.8880 0.8012 12.2475 3.2928
g !× 2 ! 0.8815 0.7902 12.7286 3.7176
h !× 2 ! 0.8633 0.7632 7.3206 2.4864
i !× 2 !× 2 ! ! 0.8906 0.8058 5.4180 1.6484

Pixel-level Fully Supervision CNN 0.9167 0.9120 3.7452 0.8615
Pixel-level Fully Supervision ViT 0.9049 0.8290 3.6233 0.8749
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7.5 Conclusion and Discussion

In this chapter, the WSL collaborative hybrid networks which simultaneously

train both CNN and ViT architectures is following from our insights from the

semi-supervised learning chapter (Chapter 5), where the significance of network

perturbation is highlighted. By engaging both CNN and ViT architectures, we

aim to harness their distinct perspectives and strengths collaboratively, especially

under limited-signal supervision situation. The simultaneous training of these

two architectures is not just a strategy to achieve a improved feature learning of

the imaging data but also a method to encourage a diverse range of ‘views’ or

interpretations by the networks. This diversity is similar to having two experts with

different areas of expertise collaborating on the same unknown problem, thereby

enriching the analysis and leading to more robust and versatile networks. Such

collaboration is particularly important in WSL medical image segmentation study.

WSL study is essential to bring deep learning into real clinical data situation.

For example, in the MRI cardiac dataset, when clinicians are primarily concerned

with assessing the robustness of the Myocardium, as indicated by the circularity of

the Left Ventricle (LV). In such scenarios, the proposed WSL strategy underscores

that a detailed segmentation of the LV may not be as crucial as accurately gauging

its xy aspect ratio. This crucial measurement can be effectively obtained through

networks trained with scribble annotations, demonstrating that precision in medical

imaging can be achieved without exhaustive annotation efforts.

In the future, scribble-based WSL is potentially extended to broaden the

scope of other forms of limited-signal supervision, such as bounding box or point-

based annotations.

In conclusion, a novel WSL study is explored, consisting of integrating internal

and external-consistency training schemes. These schemes not only enhance the

performance of each individual network but also allow each network benefits from

the other. It can be considered as an extended study of SSL framework design

with a novel limited data annotated situation. Our quantitative experiments

conducted on a public benchmark MRI dataset have yielded promising results,
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showcasing the potential of our proposed scribble-supervised method in comparison

to other similar techniques.
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8.1 Contribution Summary

Throughout this thesis, we have thoroughly proposed and assessed a range of deep

learning strategies for medical image segmentation, including supervised, semi-

supervised, noise-robust, and weakly-supervised learning. This thesis motivated by

many past works focusing on achieving SOTA performance on a specific dataset

under a particular setting, without considering the unreliability situations that

may arise with medical data in the real world. The extensive investigations of

training strategies demonstrating the significant potential of developing advanced

deep learning methods for practical clinical data situation. The contribution can

be summarized to four fold:

147
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1. Supervised Learning for Medical Image Segmentation: The study of

supervised learning is to train a segmentation network with comprehensive

data annotation with full dense masks. Firstly, we have a literature review of

the past studies via ‘Network Architecture Engineering’, that we summarize

the segmentation network development via backbone network, network block,

and training strategy. Secondly, we introduce a ‘Medical Image Segmentation

Triathlon’ aiming to have a comprehensive evaluation of segmentation network

with CT, MRI, Ultrasound, Histology segmentation datasets with data pre-

processing process to simulate different scenarios, evaluation metrics, and the

computational platform. Finally, we have explored and proposed a variety

of advanced network blocks with UNet resulting in RARUNet [17], QAPNet

[194], and Hybrid UNet based on CNN & ViT [31].

2. Semi-Supervised Learning for Medical Image Segmentation: The

study of SSL is to train a segmentation network with partial data annotation

with full dense masks. The consistency regularization with several classical

SSL frameworks are summarized and introduced. We further explored several

advanced schemes such as uncertainty estimation, adversarial learning with

SSL resulting in Triple-View Learning [170], Examiner-Student-Teacher [248],

Uncertainty-Aware Vision Transformer [167], and Computationally-Efficient

Cross-Supervised Vision Transformer [168].

3. Noise-Robust Learning for Medical Image Segmentation: The study

of noise-robust learning is to train a segmentation network with comprehensive

data annotation with noisy dense masks. The simulation algorithm of

generating noisy label is developed. We propose Adaptive Denoising Learning

strategy to effectively detect and remove noisy label during training process

to reduce the impact of noisy label. The proposed strategy is validated with

various segmentation backbone networks under different proportion and noise

level data situation, resulting in noisy-robust networks [17, 31].
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4. Weakly-Supervised Learning for Medical Image Segmentation: The

study of WSL is to train a segmentation network with comprehensive data

annotation with sketchy contours. The simulation algorithm of generating

sparse label, i.e. scribble is introduced. Following the concept of SSL to

train network with limited annotations, i.e. consistency regularization, we

introduce a hybrid CNN- and ViT-based networks with internal and external

consistency training, resulting in CHNets [277].

8.2 Discussion

8.2.1 How Good is Good Enough?

As the current studies mainly explores towards more complex network architecture

with various combinations on different dataset, it is essential to assess the ‘good

enough’ performance. The ‘good performance’ cannot be solely defined by how

well a network overfitting on a single dataset under ideal conditions. Instead, this

thesis argues to broaden current community perspective to consider how robust

the proposed novel networks to unreliable annotations, how adaptable they are to

various data situations, and how well they can learn with limited annotations. In

essence, the ‘good enough’ needs to be focused from a narrow ‘overfitting’ game in

idealistic academic view to a more practical, realistic clinical data situation.

8.2.2 Dealing with Unreliable Annotations

The problem of unreliable annotations is a significant challenge in deep learning-

based medical image segmentation. To tackle the issue of networking training

with unreliable data, we explore various semi-supervised, noise-robust, and weakly-

supervised learning techniques throughout this thesis. These strategies can improve

the robustness of deep learning networks to annotation and provide a foundation

for future research in this area.
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8.3 Future Work

In the future, there are several potential directions that still need to be explored.

1. Further study in Semi-Supervised Learning: Although our semi-supervised

works have achieved competitive performance with a small amount of labeled

data supplemented by a larger volume of unlabeled data, compared with fully

supervised learning but with low annotation cost. In our study, we randomly

select a proportion of data as labeled data (e.g. 10%) and the rest of data (e.g.

90%) is unlabeled data. An essential and expandable approach, however, is to

study what is most effective way to specifically select a subset data (e.g. 10%)

from entire dataset to enquiry clinicians’ labeling that maximizes network

training performance, rather than randomly selection. Active learning is a

potential approach need to be studied further with SSL [281–284].

2. Further study in Noise-Robust Learning: Our current research in noise-

robust learning is under the knowledge of the proportion of noisy labels in

the dataset. A potential approach is to explore SSL with ADL Strategy once

the noisy label been removed while training process. The future challenge

can be considered to develop segmentation networks training strategy when

the proportion of noisy label is unknown. This would align more closely with

real-world ‘good enough’ scenarios where the quality of data annotations is

often uncertain.

3. Further study in Weakly-Supervised Learning: Our exploration in

scribble-supervised learning is one of the most practical and efficient labeling

way for clinicians. Some of other forms of limited-supervision signals such

as bounding boxes, check marks, and points, are also worth to study in

the weakly-supervised learning. Moreover, there is potential for uniforming

weakly-supervised and semi-supervised learning strategies together, given both

of WSL and SSL focus on learning from limited signals.
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4. Domain Adaptation: The challenge of applying network trained on one

modality, such as CT scans, to another, like MRI, can also be a barrier

in practical clinical scenario. Future work could focus on exploring our

SSL strategies for domain adaptation to address shifts in data distributions,

through we assume the labeled and unlabeled data are from two separate

modalities.

5. Leveraging Large Language Models: The recent success of large language

models present an opportunity for medical imaging analysis. The integration

of language and vision networks is an unexplored study area to train network,

potentially leading to breakthrough in network performance improvement with

more modality data (e.g. medical prescriptions with corresponding medical

images).

Overall, the aim of this thesis is to bring more reliable, robust, and practical

deep learning networks of medical image segmentation to real clinical practice.
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