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NON-ISOMORPHISM OF A∗n,2 ≤ n≤∞, FOR A
NON-SEPARABLE ABELIAN VON NEUMANN ALGEBRA A

Rémi Boutonnet, Daniel Drimbe, Adrian Ioana, and Sorin Popa

Abstract. We prove that if A is a non-separable abelian tracial von Neuman algebra
then its free powers A∗n,2 ≤ n≤∞, are mutually non-isomorphic and with trivial
fundamental group, F(A∗n) = 1, whenever 2≤ n <∞. This settles the non-separable
version of the free group factor problem.

1 Introduction

The free group factor problem, asking whether the II1 factors LFn arising from the
free groups with n generators Fn, 2 ≤ n≤∞, are isomorphic or not, is perhaps the
most famous in operator algebras, being in a way emblematic for this area, broadly
known even outside of it.

It is generally believed that the free group factors are not isomorphic. Since LFn =
LZ∗· · ·∗LZ, this amounts to A∗n,2≤ n≤∞, being non-isomorphic, where A= LZ is
the unique (up to isomorphism) separable diffuse abelian von Neumann algebra. Due
to work in [Rad94, Dyk94], based on Voiculescu’s free probability methods, this is
also equivalent to the fundamental group of A∗n being trivial for some (equivalently,
all) 2≤ n <∞, F(A∗n) = 1.

We study here the non-separable version of the free group factor problem, asking
whether the II1 factors A∗n,2 ≤ n ≤ ∞, are non-isomorphic when A is an abelian
but non-separable von Neumann algebra (always assumed tracial, i.e., endowed with
a given normal faithful trace). Examples of such algebras A include the ultrapower
von Neumann algebra (LZ)ω and the group von Neumann algebra LH , where ω is
a free ultrafilter on N and H is an uncountable discrete abelian group, such as R or
Z
ω. We obtain the following affirmative answer to the problem:

Theorem 1.1. Let A be a diffuse non-separable abelian tracial von Neumann algebra.

Then the II1 factors A∗n,2 ≤ n ≤ ∞, are mutually non-isomorphic, and have

trivial fundamental group, F(A∗n) = 1, whenever 2≤ n <∞.

In other words, if the abelian components of a free product A∗n are being “mag-
nified” from separable to non-separable, then the corresponding II1 factors do indeed
remember the number of terms involved. One should note that if 2≤ n≤∞, then any
II1 factor A∗n, with A diffuse abelian, is an inductive limit of subfactors isomorphic
to LFn.
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To prove Theorem 1.1, we show that the II1 factors of the form M =A1 ∗ · · · ∗An,
with A1,A2, . . . ,An non-separable abelian, have a remarkably rigid structure. Specif-
ically, we prove that given any unital abelian von Neumann subalgebra B ⊂ pMp

that is purely non-separable (i.e., has no separable direct summand) and singular
(i.e., has trivial normalizer), there is a partition of p into projections pi ∈ B such
that Bpi is unitarily conjugate to a direct summand of Ai, for every 1 ≤ i≤ n (see
Corollary 3.7). This implies that the family {Aipi}i, consisting of the maximal purely
non-separable direct summands of Ai, 1≤ i≤ n, coincides with the sans-core of M ,
a term we use to denote the maximal family Ans

M = {Bj}j of pairwise disjoint, sin-
gular, purely non-separable abelian subalgebras Bj of M . The uniqueness (up to
unitary conjugacy, cutting and gluing) of this family ensures that the sans-rank of
M , defined by

rns(M) :=
∑

j

τ(1Bj ) ∈ [0,+∞],

is an isomorphism invariant for M . This shows in particular that if A is a diffuse non-
separable abelian von Neumann algebra and Ap is its maximal purely non-separable
direct summand, then rns(A∗n) = nτ(p), for every 2 ≤ n ≤ ∞, implying the non-
isomorphism in the first part of Theorem 1.1. Since the sans-rank is easily seen to
satisfy the amplification formula rns(M t) = rns(M)/t, for every t > 0, the last part
of the theorem follows as well.

We define the sans-core and sans-rank of a II1 factor in Sect. 2, where we also
discuss some basic properties, including the amplification formula for the sans-rank.
In Sect. 3 we prove that rns(∗i∈IMi) =

∑
i∈I rns(Mi), for any family Mi, i ∈ I , of

tracial von Neumann algebras (see Theorem 3.8) and use this formula to deduce
Theorem 1.1. The proof of Theorem 3.8 uses intertwining by bimodules techniques
and control of relative commutants in amalgamated free product II1 factors from
[IPP08]. Notably, we use results from [IPP08] to show that any von Neumann sub-
algebra P of a tracial free product M =M1 ∗M2 which has a non-separable relative
commutant, P ′ ∩M , must have a corner which embeds into M1 or M2 (see Theo-
rem 3.4). The last section of the paper, Sect. 4, records some further remarks and
open problems.

2 The singular abelian core of a II1 factor

The aim of this section is to define the singular abelian core a II1 factor and its non-
separable analogue. We start by recalling some terminology involving von Neumann
algebras. We will always work with tracial von Neumann algebras, i.e., von Neumann
algebras M endowed with a fixed faithful normal trace τ . We endow M with the
2-norm given by ‖x‖2 = τ(x∗x)1/2 and denote by U(M) its group of unitaries and by
(M)1 = {x ∈M | ‖x‖ ≤ 1} its (uniform) unit ball. We assume that all von Neumann
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subalgebras are unital. For a von Neumann subalgebra A ⊂M , we denote by EA :
M →M the conditional expectation onto A and by NM (A) = {u ∈ U(M) | uAu∗ =
A} the normalizer of A in M . We say that a von Neumann algebra M is purely

non-separable if pMp is non-separable, for every nonzero projection p ∈M .

2.1 Interwining by bimodules. We recall the intertwining by bimodules theory
from [Pop06b, Theorem 2.1 and Corollary 2.3].

Theorem 2.1 ([Pop06b]). Let (M,τ) be a tracial von Neumann algebra and A ⊂
pMp,B ⊂ qMq be von Neumann subalgebras. Then the following conditions are

equivalent.

(1) There exist nonzero projections p0 ∈A,q0 ∈B, a ∗-homomorphism θ : p0Ap0 →
q0Qq0 and a nonzero partial isometry v ∈ q0Mp0 such that θ(x)v = vx, for all

x ∈ p0Ap0.

(2) There is no net un ∈ U(A) satisfying ‖EB(x∗uny)‖2 → 0, for all x, y ∈ pM .

If (1) or (2) hold true, we write A≺M B and say that a corner of A embeds into B

inside M . If Ap′ ≺M B, for any nonzero projection p′ ∈A∩ pMp, we write A≺f
M B.

2.2 Singular MASAs. Let (M,τ) be a tracial von Neumann algebra. An abelian
von Neumann subalgebra A⊂M is called a MASA if it is maximal abelian and singu-

lar if it satisfies NM (A) = U(A) [Dix54]. Note that a singular abelian von Neumann
subalgebra A⊂M is automatically a MASA.

Two MASAs A ⊂ pMp,B ⊂ qMq are called disjoint if A ⊀M B. The following
result from [Pop06a, Theorem A.1] shows that disjointness for MASAs is the same
as having no unitarily conjugated corners. In particular, disjointness of MASAs is a
symmetric relation.

Theorem 2.2 ([Pop06a]). Let (M,τ) be a tracial von Neumann algebra and A ⊂
pMp,B ⊂ qMq be MASAs. Then A ≺M B if and only if B ≺M A and if and only

if there exist nonzero projections p0 ∈A,q0 ∈B such that u(Ap0)u∗ =Bq0, for some

u ∈ U(M).

2.3 The singular abelian core. We are now ready to give the following:

Definition 2.3. Let (M,τ) be a tracial von Neumann algebra. We denote by S(M)
the set of all families A = {Ai}i∈I , where pi ∈ M is a projection, Ai ⊂ piMpi is a
singular MASA, for every i ∈ I , and Ai,Ai′ are disjoint, for every i, i′ ∈ I with i �= i′.
We denote d(A) =

∑
i∈I τ(pi), the size of the family A. Given A = {Ai}i∈I ,B =

{Bj}j∈J ∈ S(M) we write A ≤ B if for every i ∈ I and nonzero projection p ∈ Ai,
there exists j ∈ J such that Aip ≺M Bj . We say that A and B are equivalent and
write A∼B if A≤B and B ≤A.

Lemma 2.4. Let (M,τ) be a tracial von Neumann algebra. Then S(M) admits a

maximal element with respect ≤. Moreover, any two maximal elements of S(M)
with respect to ≤ are equivalent.
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Proof. Let A = {Ai}i∈I ∈ S(M) be a maximal family with respect to inclusion. Then
A is maximal with respect to ≤. To see this, let B = {Bj}j∈J ∈ S(M). If B �A, then
there are j ∈ J and a nonzero projection q ∈Bj with Bjq ⊀M Ai, for every i ∈ I . As
Bjq ⊂ qMq is a singular MASA, we get that A∪ {Bjq} ∈ S(M), contradicting the
maximality of A with respect to inclusion. The moreover assertion follows. �

Definition 2.5. Let (M,τ) be a tracial von Neumann algebra. We denote by AM

the equivalence class consisting of all maximal elements of S(M) with respect to ≤,
and call it the singular abelian core of M . We define the rank r(M) of M as the size,
d(A), of any A∈AM . Note that r(M) is a well-defined isomorphism invariant of M
since the map A �→ d(A) is constant on equivalence classes.

Remark 2.6. Definition 2.3 presents the folded form of S(M), for a tracial von
Neumann algebra (M,τ). Let K be a large enough set, which contains the index set
I of any element A = {Ai}i∈I of S(M). For instance, take K to be the collection of all
singular MASAs A⊂ pMp, for all projections p ∈M . We identify every A= {Ai}i∈I
of S(M) with the singular abelian von Neumann subalgebra A = ⊕i∈IAi of pMp,
where M=M⊗B(�2K) and p=⊕i∈Ipi ∈M. This is the unfolded form of S(M). In
this unfolded form, given A,B ∈ S(M), we have that A≤B (respectively, A∼B) if
and only if A⊂ uBqu∗ (respectively, A = uBu∗), for a projection q ∈ B and unitary
u ∈M.

The unfolded form of the singular abelian core AM of M is then the unique (up to
unitary conjugacy) singular abelian von Neumann subalgebra A⊂ pMp generated
by finite projections such that for any singular abelian von Neumann subalgebra
B ⊂ qMq, for a finite projection q, we have that B ≺M A. The rank r(M) is then
equal to the semifinite trace, (τ ⊗ Tr)(p), of the unit p of AM . Notice that if the
semifinite trace (τ ⊗Tr)(p) of the support of A is infinite, then it can be viewed as
a cardinality ≤ |K|. We will in fact view r(M) this way, when infinite.

Remark 2.7. Let M be an arbitrary separable II1 factor. By a result in [Pop83c],
M admits a singular MASA. This result was strengthened in [Pop19, Theorem 1.1]
where it was shown that M contains an uncountable family of pairwise disjoint
singular MASAs. Consequently, r(M) > ℵ0. More recently, it was shown in [Pop21,
Theorem 1.1] that M contains a copy of the hyperfinite II1 factor R ⊂ M which
is coarse, i.e., such the R-bimodule L2(M) � L2(R) is a multiple of the coarse R-
bimodule L2(R)⊗L2(R). In combination with [Pop21, Proposition 2.6.3] and [Pop14,
Theorem 5.1.1], this implies that M has a continuous family of disjoint singular
MASAs. Since the set of distinct self-adjoint elements in a separable II1 factor has
continuous cardinality c = 2ℵ0 and each singular MASA is generated by a self-adjoint
element, it follows that r(M) = c, for every separable II1 factor M .

2.4 The singular abelian non-separable core. Remark 2.7 shows that the rank
r(M) is equal to the continuous cardinality c for any separable II1 factor M , and
thus cannot be used to distinguish such factors up to isomorphism. In contrast, we
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define in this section a non-separable analogue of r(M), which will later enable us
to prove the non-isomorphisms asserted by Theorem 1.1.

Definition 2.8. Let (M,τ) be a tracial von Neumann algebra. We say that a von
Neumann subalgebra A ⊂ pMp is a sans-subalgebra of M if it is singular abelian
in pMp and purely non-separable. We denote by Sns(M) ⊂ S(M) the set of A =
{Ai}i∈I ∈ S(M) such that Ai is a sans-subalgebra, for every i ∈ I . We call any A∈
Sns(M) a sans family in M .

Since Lemma 2.4 trivially holds true if we replace S(M) by Sns(M), we can further
define:

Definition 2.9. Let (M,τ) be a tracial von Neumann algebra. We denote by Ans
M

the equivalence class consisting of all maximal elements of Sns(M) with respect to
≤, and call it the singular abelian non-separable core (abbreviated, the sans-core)
of M . We define the sans-rank rns(M) of M as the size, d(A), of any A∈Ans

M .

Remark 2.10. Like in Remark 2.6, consider M = M⊗B(�2K), for a large enough
set K. In the unfolded form of Sns(M), the sans-core Ans

M of M is the unique (up to
unitary conjugacy) sans-subalgebra A ⊂ pMp generated by finite projections such
that for any sans-subalgebra B ⊂ qMq, for a finite projection q, we have that B ≺M
A. The sans-rank rns(M) is then the semifinite trace, (τ ⊗ Tr)(p), of the unit p of
Ans

M . Like in Remark 2.6, when the semifinite trace of the support of the sans-core
in this unfolded form is infinite, then we will view rns(M) as a cardinality ≤ |K|.

Remark 2.11. If M is a separable II1 factor, then we clearly have rns(M) = 0. If
A⊂M is a singular MASA and ω is a free ultrafilter on N, then Aω ⊂Mω is a purely
non-separable singular MASA, see [Pop83c, 5.3]. Moreover, disjoint MASAs in M

give rise to disjoint ultrapower MASAs in Mω. By using these facts and results from
[Pop14, Pop21] as in Remark 2.7 we get that rns(Mω) ≥ c, for every separable II1
factor M . But getting rns(Mω) ≤ c is problematic, as besides the family of disjoint
ultraproduct singular MASAs in Mω, which has cardinality c, one may have singular
MASAs that are not of this form.

The expression of rns(M) as the semifinite trace of the support of the sans-core in
unfolded form, as in Remark 2.10, implies the following scaling formula for rns(M).
We include below an alternative short proof using the folded form of Sns(M).

Proposition 2.12. Let M be any II1 factor and t ∈R
∗
+. Then we have

rns(M t) = rns(M)/t.

In particular, if 0 < rns(M) <∞, then M has trivial fundamental group, F(M) =
{1}.

Proof. It is enough to argue that rns(qMq) = rns(M)/τ(q), for every nonzero projec-
tion q ∈M . This follows immediately by using the fact that any A = {Ai}i∈I ∈ S(M)
is equivalent to some B = {Bj}j∈J ∈ S(M), such that Bj ⊂ qjMqj , for some qj ≤ q,
for every j ∈ J . �
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3 Main results

3.1 Main technical result. This subsection is devoted to proving our main tech-
nical result. Throughout the subsection we use the following notation. Let (M1, τ1)
and (M2, τ2) tracial von Neumann algebras and denote by M = M1 ∗M2 their free
product with its canonical trace τ .

Theorem 3.1. Let P ⊂ pMp be a von Neumann subalgebra such that P ′ ∩ pMp is

non-separable. Then P ≺M M1 or P ≺M M2.

The proof of Theorem 3.1 is based on the main technical result of [IPP08]. By
[PV10, Sect. 5.1], given ρ ∈ (0,1), we have a unital tracial completely positive map
mρ : M → M such that mρ(x1x2 · · ·xn) = ρnx1x2 · · ·xn, for every n ∈ N and xi ∈
Mij �C1, where ij ∈ {1,2}, for every 1 ≤ j ≤ n, and ij �= ij+1, for every 1≤ j ≤ n−1.
Note that lim

ρ→1
‖mρ(x) − x‖2 = 0 and the map (0,1) � ρ �→ ‖mρ(x)‖2 is increasing,

for every x ∈ M . The implication (1) ⇒ (2) follows from [IPP08, Theorem 4.3],
formulated here as in [PV10, Theorem 5.4], see also [Hou09, Sect. 5].

Theorem 3.2 ([IPP08]). Let P ⊂ pMp be a von Neumann subalgebra. Then the fol-

lowing two conditions are equivalent:

(1) There exists ρ ∈ (0,1) such that infu∈U(P ) ‖mρ(u)‖2 > 0.
(2) P ≺M M1 or P ≺M M2.

Proof. Assume that (1) holds. Since τ(x∗mρ2(x)) = ‖mρ(x)‖2
2, for every x ∈M , we

get that infu∈U(P ) τ(u∗mρ2(u))> 0 and [PV10, Theorem 5.4] implies (2).
To see that (2) ⇒ (1), assume that P ≺M Mi, for some i ∈ {1,2}. By Theorem 2.1

we find a nonzero partial isometry v ∈ M such that v∗v = p0p
′, for some projec-

tions p0 ∈ P,p′ ∈ P ′∩pMp, and (p0Pp0)1p′ ⊂ v∗(Mi)1v. Since ‖mρ(x)−x‖2 ≤ |ρ−1|,
for every x ∈ (Mi)1, we get that limρ→1(supx∈(p0Pp0)1p′ ‖mρ(x) − x‖2) = 0. Let p1
be the central support of p0 in P and denote p′′ = p1p

′ ∈ P ′ ∩ pMp. It follows
that limρ→1(supx∈(Pp′′)1 ‖mρ(x) − x‖2) = 0. From this it is easy to deduce that
lim infρ→1(infu∈U(P ) ‖mρ(u)‖2)≥ ‖p′′‖2 > 0, which clearly implies (1). �

Corollary 3.3. Let P ⊂ pMp be a von Neumann subalgebra such that P ⊀M M1
and P ⊀M M2. Then there exists a separable von Neumann subalgebra Q⊂ P such

that Q⊀M M1 and Q⊀M M2.

Proof. Since P ⊀M M1 and P ⊀M M2, by Theorem 3.2 we find a sequence un ∈ U(P )
such that ‖m1−1/n(un)‖2 ≤ 1/n. Let Q⊂ P be the separable von Neumann subalge-
bra generated by {un}n≥1. Let ρ ∈ (0,1). Then for every n≥ 1 such that ρ≤ 1− 1/n
we have that ‖mρ(un)‖2 ≤ ‖m1−1/n(un)‖2 ≤ 1/n. This implies infu∈U(Q) ‖mρ(u)‖2 = 0.
Since this holds for every ρ ∈ (0,1), Theorem 3.2 implies that Q ⊀M M1 and
Q⊀M M2. �

Lemma 3.4. Let Q⊂M be a separable von Neumann subalgebra. Then we can find

separable von Neumann subalgebras N1 ⊂M1 and N2 ⊂M2 such that Q⊂N1 ∗N2.
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Proof. For i ∈ {1,2} let Bi be an orthonormal basis of L2(Mi)�C1 such that Bi ⊂
Mi �C1. Let B0 be the set of ξ1ξ2 · · · ξn, where n ∈ N, ξi ∈ Bij , for some ij ∈ {1,2},
for every 1 ≤ j ≤ n, and ij �= ij+1, for every 1 ≤ j ≤ n− 1. Then B = B0 ∪ {1} is an
orthonormal basis of L2(M).

Let {xk}k≥1 be a sequence which generates Q. Then C = ∪k≥1{ξ ∈ B | 〈xk, ξ〉 �= 0}
is countable. For i ∈ {1,2}, let Ci be the countable set of all ξ ∈ Bi which appear
in the decomposition of some element of C. The von Neumann subalgebra Ni of Mi

generated by Ci is separable, for every i ∈ {1,2}. Since by construction we have that
Q⊂N1 ∗N2, this finishes the proof. �

Proof of Theorem 3.1. Assume by contradiction that P ⊀M M1 and P ⊀M M2. By
applying Corollary 3.3, we can find a separable von Neumann subalgebra Q ⊂ P

such that Q ⊀M M1 and Q ⊀M M2. By Lemma 3.4, we can further find separable
von Neumann subalgebras N1 ⊂ M1 and N2 ⊂ M2, such that Q ⊂ N := N1 ∗ N2.
Denote R =M1 ∗N2.

Since Q⊀M M1, Q⊂ R ⊂M and N1 ⊂M1, we get that Q⊀R N1. Since Q⊂N

and R =M1 ∗N1 N , [IPP08, Theorem 1.1] implies that Q′ ∩R =Q′ ∩N . Next, since
Q ⊀M M2 and N2 ⊂M2, we get that Q ⊀M N2. Since Q ⊂ R and M = R ∗N2 M2,
applying [IPP08, Theorem 1.1] again gives that Q′ ∩M =Q′ ∩R. Altogether, we get
that Q′ ∩M = Q′ ∩N . Since N and thus Q′ ∩N is separable, using that P ′ ∩M ⊂
Q′ ∩M , we conclude that P ′ ∩M is separable. �

3.2 Non-separable MASAs in free product algebras. In this subsection, we de-
rive some consequences of Theorem 3.1 to the structure of non-separable MASAs in
free product algebras.

Corollary 3.5. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras, and

denote by M = M1 ∗M2 their free product. Let A⊂ pMp be a purely non-separable

MASA. Then there exist projections (pk)k∈K ⊂ A and unitaries (uk)k∈K ⊂M such

that
∑

k∈K pk = p and for every k ∈K, ukApku
∗
k ⊂Mi, for some i ∈ {1,2}.

Proof. By a maximality argument, it suffices to prove that if q ∈ A is a nonzero
projection, then there are a nonzero projection r ∈Aq, a unitary u ∈M and i ∈ {1,2}
such that uAru∗ ⊂Mi.

To this end, let q ∈ A be a nonzero projection. Since (Aq)′ ∩ qMq = Aq is non-
separable, Theorem 3.1 implies that there is i ∈ {1,2} such that Aq ≺M Mi. By
Theorem 2.1, we can find nonzero projections e ∈ Aq, f ∈ Mi, a nonzero partial
isometry v ∈ fMe and a ∗-homomorphism θ : Ae → fMif such that θ(x)v = vx,
for every x ∈Ae. Then r := v∗v ∈ (Ae)′ ∩ eMe = Ae and vv∗ ∈ θ(Ae)′ ∩ fMf . Since
θ(Ae) ⊂ fMif is diffuse, by applying [IPP08, Theorem 1.1] (see also [Pop83b, Re-
marks 6.3.2)]) we get that vv∗ ∈ fMif . Finally, let u ∈ M be any unitary such
that ur = v. Then uAru∗ = vArv∗ = vAev∗ = θ(Ae)vv∗ ⊂ Mi, which finishes the
proof. �

We continue by generalizing Corollary 3.5 to arbitrary tracial free products.
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Corollary 3.6. Let (Mi, τi), i ∈ I , be a collection of tracial von Neumann algebras,

and denote by M = ∗i∈IMi their free product. Let A⊂ pMp be a purely non-separable

MASA. Then there exist projections (pk)k∈K ⊂ A and unitaries (uk)k∈K ⊂M such

that
∑

k∈K pk = p and for every k ∈K, ukApku
∗
k ⊂Mi, for some i ∈ I .

Proof. Let A0 ⊂A be a separable diffuse von Neumann subalgebra. Reasoning simi-
larly to the proof of Lemma 3.4 yields a countable set J ⊂ I such that A0 ⊂ ∗j∈JMj .
Since A0 is diffuse, [IPP08, Theorem 1.1] gives that A⊂A′

0 ∩ pMp⊂ ∗j∈JMj . Thus,
in order to prove the conclusion, after replacing I with J , we may take I countable.
Enumerate I = {im}m≥1.

Let {pk}k∈K ⊂ A be a maximal family, with respect to inclusion, of pairwise
orthogonal projections such that for every k ∈K, there are a unitary uk ∈M and
i ∈ I such that ukApku

∗
k ⊂Mi. In order to prove the conclusion it suffices to argue

that
∑

k∈K pk = p. Put r := p− (
∑

k∈K pk).
Assume by contradiction that r �= 0. We claim that

Ar ⊀M ∗m≤nMim , for every n≥ 1. (3.1)

Otherwise, if (3.1) fails for some n≥ 1, then the proof of Corollary 3.5 gives a nonzero
projection s ∈Ar and a unitary u ∈M such that uAsu∗ ⊂ ∗m≤nMim . Applying Corol-
lary 3.5 repeatedly gives a nonzero projection t ∈As and a unitary v ∈ ∗m≤nMim such
that vuAtu∗v∗ ⊂Mim , for some 1 ≤m≤ n. This contradicts the maximality of the
family {pk}k∈K , and proves (3.1).

If e ∈ (Ar)′∩rMr =Ar is a nonzero projection, then (Ae)′∩eMe =Ae is nonsep-
arable. Since Ae⊀M ∗m≤nMim by (3.1), Theorem 3.4 implies that Ae≺M ∗m>nMim

and thus

Ar ≺f
M ∗m>nMim , for every n≥ 1. (3.2)

To get a contradiction, we follow the proof of [HU16, Proposition 4.2]. Let M̃ =
M ∗M , identify M with M ∗ 1 ⊂ M̃ , and denote by θ the free flip automorphism of
M̃ . Endow H = L2(M̃) with the M -bimodule structure given by x · ξ · y = θ(x)ξy, for
every x, y ∈M and ξ ∈ H. Using (3.2), the proof of [HU16, Proposition 4.2] yields
a sequence of vectors ηn ∈ r · H · r such that ‖ηn‖2 → ‖r‖2, ‖x · ηn‖2 ≤ ‖x‖2 and
‖a · ηn − ηn · a‖2 → 0, for every x ∈ rMr and a ∈Ar.

Next, we note that the Ar-bimodule r · H · r is isomorphic to a multiple of the
coarse Ar-bimodule, ⊕S(L2(Ar) ⊗ L2(Ar)), for some (possibly uncountable) set S.
If ζ ∈ ⊕S(L2(Ar) ⊗ L2(Ar)), then we can find a countable subset T ⊂ S such that
ζ ⊕T (L2(Ar)⊗L2(Ar)). By combining these two facts with the previous paragraph,
we obtain a sequence of vectors ζn ∈ ⊕N(L2(Ar) ⊗ L2(Ar)) such that ‖ζn‖2 →‖r‖2,
‖a · ζn‖2 ≤ ‖a‖2 and ‖a · ζn− ζn · a‖2 → 0, for every a ∈Ar. By reasoning similarly to
the proof of Lemma 3.4, we find a separable von Neumann subalgebra A0 ⊂Ar such
that ζn ∈⊕N(L2(A0)⊗ L2(A0)).
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As A0 is separable and Ar is purely non-separable, we derive that Ar ⊀Ar A0.
Theorem 2.1 gives a unitary u ∈Ar with ‖EA0(u)‖2 ≤ ‖r‖2/2. Put a = u−EA0(u) ∈
A. Since a · ζn ∈⊕N((L2(Ar)�L2(A0))⊗L2(A0)) and ζn ·a ∈⊕N(L2(A0)⊗ (L2(Ar)�
L2(A0)), we have that 〈a · ζn, ζn · a〉= 0, for every n. Using that ‖a · ζn− ζn · a‖2 → 0,
we get that ‖a · ζn‖2 → 0. On the other hand, ‖a · ζn‖2 ≥ ‖u · ζn‖2 −‖EA0(u) · ζn‖2 ≥
‖ζn‖2 − ‖EA0(u)‖2 ≥ ‖ζn‖2 − ‖r‖2/2. Since ‖ζn‖2 → ‖r‖2 > 0, we altogether get a
contradiction, which finishes the proof. �

We end this subsection by noticing that in the case A⊂ pMp is a singular MASA
and Mi is abelian, for every i ∈ I , the conclusion of Corollay 3.6 can be strengthened
as follows:

Corollary 3.7. In the context of Corollary 3.6, assume additionally that A⊂ pMp

is singular and Mi is abelian, for every i ∈ I . Then there exist projections (qi)i∈I ⊂A

and unitaries (vi)i∈I ⊂M such that
∑

i∈I qi = p, ei = viqiv
∗
i ∈Mi and viAqiv

∗
i =Miei,

for every i ∈ I .

Proof. By applying Corollary 3.6 we find projections (pk)k∈K ⊂ A and unitaries
(uk)k∈K ⊂M such that

∑
k∈K pk = p and for every k ∈K, ukApku

∗
k ⊂Mik , for some

ik ∈ I . Let k ∈K and put rk := ukpku
∗
k ∈Mik . Since ukApku

∗
k ⊂ rkMrk is a MASA

and Mik is abelian we deduce that ukApku
∗
k =Mikrk, for every k ∈K. Let k, k′ ∈K

such that k �= k′ and ik = ik′ . Since A ⊂ pMp is singular and pkpk′ = 0, there are
no nonzero projections s ∈Apk, s

′ ∈Apk′ such that As and As′ are unitarily conju-
gated in M . This implies that rkrk′ = 0. Using this fact, it follows that if we denote
qi =

∑
k∈K,ik=i pk, then viAqiv

∗
i ⊂Mi, for every i ∈ I . For i ∈ I , let ei = viqiv

∗
i ∈Mi.

Then viAqiv
∗
i ⊂Miei and since viAqiv

∗
i ⊂Miei is a MASA, while Miei is abelian, it

follows that viAqiv
∗
i =Miei, as claimed. �

3.3 The non-separable rank of free product von Neumann algebras. In this
section, we show that the sans core of a free product of tracial von Neumann algebras
M = ∗i∈IMi is the union of the sans cores of Mi, i ∈ I . This allows us to deduce that
the sans rank of M is the sum of the sans ranks of Mi, i ∈ I .

Theorem 3.8. Let (Mi, τi), i ∈ I , be a colection of tracial von Neumann algebras, and

denote by M = ∗i∈IMi their free product. Then rns(M) =
∑

i∈I rns(Mi). Moreover, if

Ai ∈Ans
Mi

, for every i ∈ I , then ∪i∈IAi ∈Ans
M .

The moreover assertion uses implicitly the fact, explained in the proof, that every
sans family in Mi is naturally a sans family in M , for every i ∈ I .

Proof. We have two inequalities to prove.
Inequality 1. rns(M)≥ ∑

i∈I rns(Mi).
This inequality relies on several facts on free products, all of which follow from

[IPP08, Theorem 1.1]. Let i, j ∈ I with i �= j.

(1) If A⊂ pMip is a MASA, then A⊂ pMp is a MASA.
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(2) If A⊂ pMip is a singular diffuse von Neumann subalgebra, then A⊂ pMp is
singular.

(3) If A ⊂ pMip, B ⊂ qMiq are von Neumann subalgebras with A ≺M B, then
A≺Mi B.

(4) If A⊂ pMip and B ⊂ qMjq are diffuse von Neumann subalgebras, then A⊀M

B.

For i ∈ I , let Ai ∈ Ans
Mi

be a maximal sans family in Mi. We view every (not
necessarily unital) subalgebra of Mi as a subalgebra of M . Then facts (1)-(3) imply
that Ai is a sans family in M . Moreover, fact (4) implies that A := ∪i∈IAi is a sans
family in M . Thus,

rns(M)≥ d(A) =
∑

i∈I
d(Ai) =

∑

i∈I
rns(Mi).

Inequality 2. rns(M)≤ ∑
i∈I rns(Mi).

Let A = {Al}l∈L ∈ Ans
M be a maximal sans family in M . Let l ∈ L. Applying

Corollary 3.6 to Al gives projections (pk,l)k∈Kl
and unitaries (uk,l)k∈Kl

such that for
every k ∈Kl we have uk,lAlpk,lu

∗
k,l ⊂Mi, for some i ∈ I . For i ∈ I , let Ai ∈ Sns(Mi) be

the collection of sans-subalgebras of Mi of the form uk,lAlpk,lu
∗
k,l, for all l ∈ L,k ∈Kl

such that uk,lAlpk,lu
∗
k,l ⊂ Mi. Then A is equivalent to ∪i∈IAi, which allows us to

conclude that

rns(M) = d(A) =
∑

i∈I
d(Ai)≤

∑

i∈I
rns(Mi).

This finishes the proof of the main assertion. The moreover assertion now follows by
combining the proofs of inequalities 1 and 2. �

3.4 Proof of Theorem 1.1. In preparation for the proof of Theorem 1.1, we first
record the following direct consequence of Theorem 3.8:

Corollary 3.9. Let (Ai, τi), i ∈ I , be a collection of diffuse tracial abelian von

Neumann algebras, and denote by M = ∗i∈IAi their free product. For i ∈ I , let pi ∈Ai

be the maximal (possibly zero) projection such that Aipi is purely non-separable. Then

rns(M) =
∑

i∈I τi(pi). Moreover, if |I| ≥ 2 and
∑

i∈I τi(pi) ∈ (0,+∞), then M is a II1
factor with F(M) = {1}. Also, the sans-core of M is given by Ans

M = {Aipi}i∈I .

Proof. Let i ∈ I . Since {Aipi} ∈ Sns(Ai) is a maximal element, we get that rns(Ai) =
τi(pi). The assertions now follow by using Theorem 3.8, Proposition 2.12, and the
fact that any free product of diffuse tracial von Neumann algebras is a II1 factor. �

Proof of Theorem 1.1. Let (A,τ) be a diffuse non-separable tracial abelian von Neu-
mann algebra. Let p ∈ A be the maximal, necessarily non-zero, projection such
that Ap is purely non-separable. By Corollary 3.9, rns(A∗n) = nτ(p), for every
2 ≤ n≤∞. Since p �= 0, we get that A∗n, 2 ≤ n≤∞, are mutually non-isomorphic,
and F(A∗n) = {1}, for 2≤ n <∞. �
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4 Further remarks and open problems

4.1 Freely complemented maximal amenable MASAs in A∗n. The question
of whether the II1 factors A∗n, 2 ≤ n ≤∞, are non-isomorphic for a non-separable
diffuse tracial abelian von Neumann algebra A was asked in [BP]. This was motivated
by the consideration of certain “radial-like” von Neumann subalgebras of M = A∗n,
for 2 ≤ n≤∞. Specifically, for every 1 ≤ k ≤ n, let sk be a semicircular self-adjoint
element belonging to Ak, the kth copy of A in M . For an �2-summable family of real
numbers t = (tk) with at least two non-zero entries, denote by A(t) the abelian von
Neumann subalgebra of M generated by

∑
k tksk. It was shown in [BP] that A(t)⊂M

is maximal amenable and A(t),A(t′) are disjoint if t and t′ are not proportional. A
key point in proving this result was to show that A(t) ⊀M Ak, for every k. Since
the MASAs A(t) are separable, despite A being non-separable, this suggested that
the only way to obtain a purely non-separable MASA in M is to “re-pack” pieces
of Ak, 1 ≤ k ≤ n. This further suggested the possibility of recovering n from the
isomorphism class of M .

The construction of the family of radial-like maximal amenable MASAs A(t)⊂M

in [BP] was triggered by an effort to obtain examples of non freely complemented
maximal amenable MASAs in the free group factors LFn. However, this remained
open (see though [BP, Remark 1.4] for further comments concerning the inclusions
A(t)⊂A∗n). Thus, there are no known examples of non freely complemented maximal
amenable von Neumann subalgebras of LFn. It may be that in fact any maximal
amenable B ⊂ LFn is freely complemented (a property/question which we abbreviate
as FC ), see [Pop21, Question 5.5] and the introduction of [BP].

A test case for the FC question is proposed in the last paragraph of [Pop21]. There
it is pointed out that if {Bi}i are diffuse amenable von Neumann subalgebras of LFn

with Bi freely complemented and Bi ⊀LFn Bj , for every i �= j, then B =⊕iuipiBipiu
∗
i

is maximal amenable in M by [Pop83a], for any projections pi ∈ Bi and unitaries
ui ∈ M satisfying

∑
i uipiu

∗
i = 1. Thus, if FC is to hold then B should be freely

complemented as well.
The FC question is equally interesting for the factors M = A∗n with A purely

non-separable abelian. If Ak denotes the kth copy of A in M , for every 1 ≤ k ≤ n,
then by Theorem 3.8, any purely non-separable singular abelian B ⊂ M is of the
form B =

∑
k ukAkpku

∗
k for some projections pk ∈ Ak and unitaries uk ∈ M with∑

k ukpku
∗
k = 1. Thus, B is maximal amenable by [Pop83a]. Hence, if FC is to hold,

then Theorem 3.8 suggests that the free complement of B could be obtained by a
“free reassembling” of unitary conjugates of pieces of {Ak(1− pk)}nk=1.

4.2 On the calculation of symmetries of A∗n. Let M =A∗n with A purely non-
separable abelian. Theorem 3.8 shows that if θ ∈Aut(M) then θ(Ans

M ) =Ans
M , modulo

the equivalence in Sns(M) defined in Sect. 2.4. This suggests that one could perhaps
explicitly calculate Out(M), for instance by identifying it with the Tr-preserving
automorphisms α of the sans-core Ans

M , viewed in its unfolded form. In order to
obtain from an arbitrary such α an automorphism θα of M it would be sufficient to
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solve the FC question in its “free repacking” form explained in Remark 4.1 above. To
prove that such a map α �→ θα is surjective one would need to show that if θ ∈Aut(M)
implements the identity on the sans-core Ans

M , then θ is inner on M .
This heuristic is supported by the case of automorphisms θ of the free group F2:

if θ(a) = a and θ(b) = gbg−1, for some g ∈ F2, where a, b denote the free generators
of F2, then g must be of the form g = ak, and so θ = Ad(g) is inner.

However, this phenomenon fails for the free groups Fn on n≥ 3 generators. Specif-
ically, any e �= g ∈ Fn−1 = 〈a1, . . . , an−1〉 gives rise to an outer automorphism θg on
Fn defined by θg(ai) = ai, if 1≤ i≤ n− 1, and θg(an) = gang

−1, where a1, . . . , an are
the free generators of Fn. Similarly, if M =A1 ∗ · · · ∗An, with Ai abelian diffuse, and
n≥ 3, then any non-scalar unitary u ∈A1 ∗ · · · ∗An−1 ∗ 1 gives rise to an outer auto-
morphism θu of M defined by θu(x) = x, if x ∈A1 ∗ · · · ∗An−1 ∗ 1, and θu(x) = uxu∗,
if x ∈ 1 ∗An.

A related problem is to investigate the structure of irreducible subfactors of finite
Jones index N ⊂M =A∗n, for A purely non-separable abelian, with an identification
of the sans-core, the sans-rank of N and of the set of possible indices [M :N ], in the
spirit of [Pop06a, Sect. 7].

4.3 Amplifications of A∗n. While Theorem 1.1 shows that F(A∗n) = 1 if A

is non-separable abelian and n ≥ 2 is finite, it is still of interest to identify the
amplifications (A∗n)t, for t > 0. For arbitrary t this remains open, but for t = 1/k,
k ∈N, we have the following result. We are very grateful to Dima Shlyakhtenko for
pointing out to us that the 1/2-amplification of A∗n can be explicitly calculated for
arbitrary diffuse A by using existing models in free probability, a fact that stimulated
us to investigate the general 1/k case.

Proposition 4.1. Let (Ai, τi), i ∈ I , be a countable collection of diffuse tracial

abelian von Neumann algebras. Put M = ∗i∈IAi and assume that |I| ≥ 2. Let k ≥ 2
and for every i ∈ I , let pi,1, . . . , pi,k ∈ Ai be projections such that τ(pi,j) = 1/k, for
every 1≤ j ≤ k, and

∑k
j=1 pi,j = 1.

Then M is a II1 factor and M1/k ∼= (∗i∈I,1≤j≤kAipi,j) ∗D, where

(1) D = LF1+|I|k(k−1)−k2 , if I is finite, and

(2) D =C1, if I is infinite.

Recall that the interpolated free group factors, LFr, 1 < r ≤ ∞, introduced in
[Rad94, Dyk94], satisfy the formulas

LFr ∗LFr′
∼= LFr+r′ ; and

(LFr)t ∼= LF1+ (r−1)
t2

, for every 1 ≤ r, r′ ≤∞ and t > 0.
(4.1)

Proof. We will use the following consequence of [Dyk93, Theorem 1.2]:

Fact 4.2 ([Dyk93]). Let P,Q be two tracial von Neumann algebras, and e ∈ P be

a central projection (hence, P = Pe⊕ P (1 − e)). Denote R = P ∗Q and S = (Ce⊕
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P (1 − e)) ∗ Q ⊂ R. Then Pe and eSe are free and together generate eRe, hence

eRe∼= Pe ∗ eSe.

Specifically, we will use the following consequence of Fact 4.2:

Claim 4.3. Let P,Q be tracial von Neumann algebras and k ≥ 2. Assume that P

and Q admit projections e1, . . . , ek ∈ P and f1, . . . , fk ∈ Q such that ei is central

in P , τ(ei) = τ(fi) = 1/k, for every 1 ≤ i ≤ k,
∑k

j=1 ej = 1 and
∑k

j=1 fj = 1. Then
e1(P ∗Q)e1 ∼= Pe1 ∗ · · · ∗ Pek ∗ e1((Ce1 ⊕ · · · ⊕Cek) ∗Q)e1.

Proof of Claim 4.3. Note that e1 is equivalent to ej in (Ce1 ⊕ · · · ⊕ Cek) ∗ (Cf1 ⊕
· · · ⊕ Cfk) and so in (Ce1 ⊕ · · · ⊕ Cek) ∗ Q, for every 2 ≤ j ≤ k. This follows from
[Dyk94, Remark 3.3] if k = 2 and because (Ce1 ⊕ · · · ⊕ Cek) ∗ (Cf1 ⊕ · · · ⊕ Cfk) ∼=
L(Z/kZ ∗Z/kZ) is a II1 factor if k ≥ 3.

Denote e′j = 1− ∑j
l=1 el and Pj = Ce1 ⊕ · · · ⊕Cej ⊕ Pe′j , for every 1 ≤ j ≤ k. We

claim that

e1(P ∗Q)e1 ∼= Pe1 ∗ · · · ∗ Pej ∗ e1(Pj ∗Q)e1, for every 1≤ j ≤ k. (4.2)

When j = 1, e′1 = 1− e1 and thus equation (4.2) follows from Fact 4.2. Assume that
(4.2) holds for some 1 ≤ j ≤ k − 1. Since ej+1 ∈ Pj is a central projection, Pjej+1 =
Pej+1 and Cej+1⊕Pj(1−ej+1) = Pj+1, Fact 4.2 gives that ej+1(Pj ∗Q)ej+1 ∼= Pej+1 ∗
ej+1(Pj+1∗Q)ej+1. The observation made in the beginning of the proof implies that e1
is equivalent to ej+1 in Pj ∗Q and Pj+1 ∗Q. Thus, e1(Pj ∗Q)e1 ∼= ej+1(Pj ∗Q)ej+1 and
e1(Pj+1∗Q)e1 ∼= ej+1(Pj+1∗Q)ej+1. Altogether, e1(Pj ∗Q)e1 ∼= Pej+1∗e1(Pj+1∗Q)e1.
This implies that (4.2) holds for j+1 and, by induction, proves (4.2). For j = k, (4.2)
gives the claim. �

To prove the proposition, assume first that I is finite. Take I = {1, . . . , n}, for some
n≥ 2. For 1≤ i≤ n, put Bi =Cpi,1⊕· · ·⊕Cpi,k and Ci =B1 ∗ · · · ∗Bi ∗Ai+1 ∗ · · · ∗An.
We claim that

pi,1Mpi,1 ∼= (∗1≤l≤i,1≤j≤kAlpl,j) ∗ pi,1Cipi,1, for every 1≤ i≤ n. (4.3)

The case i = 1 follows from Claim 4.3. Assume that (4.3) holds for some 1 ≤ i≤ n−1.
Since the projections pi,1 and pi+1,1 are equivalent in Ci by the observation made
in the beginning of the proof of Claim 4.3, we get that pi,1Mpi,1 ∼= pi+1,1Mpi+1,1
and pi,1Cipi,1 ∼= pi+1,1Cipi+1,1. By applying Claim 4.2 to Ci = Ai+1 ∗ (B1 ∗ · · · ∗Bi ∗
Ai+2 ∗ · · · ∗ Ak) and the projections (pi+1,j)kj=1 ⊂ Ai+1, we get that pi+1,1Cipi+1,1 ∼=
(∗1≤j≤kAi+1pi+1,j)∗pi+1,1Ci+1pi+1,1. The last three isomorphisms together imply that
(4.3) holds for i+ 1. By induction, this proves (4.3).

Next, (4.3) for i = n gives that M1/k ∼= (∗1≤i≤n,1≤j≤kAipi,j) ∗ pn,1Cnpn,1. We will
prove that

pn,1Cnpn,1 ∼= LFnk(k−1)−k2+1 (4.4)

and thus finish the proof of case (1) by analyzing three separate cases.
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If n = k = 2, then C2 ∼= LZ ⊗M2(C) and [Dyk94, Proposition 3.2] impies that
p2,1C2p2,1 ∼= LZ. If n > 2 or k > 2, then Cn

∼= L(∗ni=1Z/kZ) is a II1 factor. Since
τ(pn,1) = 1/k, we get that pn,1Cnpn,1 ∼= L(∗ni=1Z/kZ)1/k. Assume first that k = 2
and n > 2. Recall that L(∗2

j=1Z/2Z) ∼= LZ⊗M2(C) and (A⊗M2(C)) ∗ L(Z/2Z) ∼=
(A ∗ LF2) ⊗ M2(C), for every tracial von Neumann algebra A, by [Dyk94, The-
orem 3.5 (ii)]. Combining these facts with (4.1) and using induction gives that
L(∗ni=1Z/2Z) ∼= LFn/2, thus L(∗ni=1Z/2Z)1/2 ∼= LF2n−3. Finally, assume that k > 2.
Then [Dyk93, Corollary 5.3] gives that L(Z/kZ ∗Z/kZ) ∼= LF2(1−1/k), while [Dyk93,
Proposition 2.4] gives that LFr ∗L(Z/kZ)∼= LFr+1−1/k, for every r > 1. By combining
these facts, we get that L(∗ni=1Z/kZ)∼= LFn(1−1/k). Hence, using (4.1) we derive that
L(∗ni=1Z/kZ)1/k ∼= LF1+k2[n(1−1/k)−1] = LF1+nk(k−1)−k2 . This altogether proves (4.4).

To treat case (2), assume that I is infinite. Take I = N. For i ≥ 0, let Mi =
A2i+1 ∗ A2i+2. By applying case (1), we get that Mi is a II1 factor and M

1/k
i

∼=
(∗i≤l≤i+1,1≤j≤kAlpl,j) ∗ LF(k−1)2 , for every i ≥ 0. Since M = ∗i≥0Mi, [DR00, Theo-
rem 1.5] implies that M1/k ∼= ∗k≥0M

1/k
i . Thus, M1/k ∼= (∗1≤i,1≤j≤kAipi,j)∗LF∞. Since

∗1≤i,1≤j≤kAipi,j is a free product of infinitely many II1 factors, it freely absorbs LF∞
by [DR00, Theorem 1.5]. This finishes the proof of case (2). �

We say that an abelian tracial von Neumann algebra (A,τ) is homogeneous if for
every k ∈ N, there exists a partition of unity into k projections p1, . . . , pk ∈ A such
that for every 1 ≤ i≤ k we have that τ(pi) = 1/k and (Api, k τ|Api) is isomorphic to
(A,τ). A homogeneous abelian von Neumann algebra is necessarily diffuse. Also, note
that LZ and (LZ)ω are homogenenous, and that the direct sum of two homogeneous
abelian von Neumann algebras is homogeneous.

Corollary 4.4. Let A be a homogeneous abelian tracial von Neumann algebra.

Then we have:

(1) If 2≤ n <∞ and k ≥ 1, then (A∗n)1/k �A∗nk ∗LF1+nk(k−1)−k2 .

(2) Q⊂F(A∗∞).

Proof. Part (1) follows from Proposition 4.1. Proposition 4.1 also implies that 1/k ∈
F(A∗∞), for every k ∈N, and thus part (2) also follows. �

When A is separable (and thus A ∼= LZ), Corollary 4.4 recovers two results of
Voiculescu [Voi90]: the amplification formula LF

1/k
n

∼= LFnk2−k+1 and the fact that
Q ⊂ F(LF∞). Corollary 4.4 extends these results to non-separable homogenenous
abelian von Neumann algebras A. Recall that Radulescu [Rad92] showed that in
fact F(LF∞) = R

∗
+. By analogy with this result, we expect that F(A∗∞) = R

∗
+, for

any homogenenous abelian von Neumann algebras A.
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