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Abstract: The formulation of the entropic statistical theory and the related neo-Hookean model
has been a major advance in the modeling of rubber-like materials, but the failure to explain some
experimental observations such as the slope in Mooney plots resulted in hundreds of micromechanical
and phenomenological models. The origin of the difficulties, the reason for the apparent need for
the second invariant, and the reason for the relative success of models based on the Valanis–Landel
decomposition have been recently explained. From that insight, a new micro–macro chain stretch
connection using the stretch tensor (instead of the right Cauchy–Green deformation tensor) has been
proposed and supported both theoretically and from experimental data. A simple three-parameter
model using this connection has been suggested. The purpose of this work is to provide further
insight into the model, to provide an analytical expression for the Gaussian contribution, and to
provide a simple procedure to obtain the parameters from a tensile test using the Mooney space or
the Mooney–Rivlin constants. From different papers, a wide variety of experimental tests on different
materials and loading conditions have been selected to demonstrate that the simple model calibrated
only from a tensile test provides accurate predictions for a wide variety of elastomers under different
deformation levels and multiaxial patterns.

Keywords: rubber-like materials; hyperelasticity; polymers; elastomers; statistical theory; constitutive
modeling

1. Introduction

Because of its practical importance, understanding and modeling the nonlinear be-
havior of elastomers has been a major research in chemistry, materials, and continuum
mechanics for a century. A major step toward this goal has been the introduction of the en-
tropic statistical theory of polymers, which explained the nature of the nonlinear behavior
and the shape of the stress–strain curve [1–4].

However, for more than 75 years, the failure of the statistical theory to explain some
aspects of the observed behavior, such as the experimentally observed slope in the Mooney
plots [5–7], has been disappointing [8], and hundreds of physics-based and phenomeno-
logical models have been proposed to overcome the limitations; in particular, the second
invariant has been incorporated [6,7]. However, despite some improvements, problems
remained and have been manifested by conflicting claims and unsolved issues [9]. Some
of them have been: (1) the need for more than one test to characterize an isotropic in-
compressible material when only one modulus (one test) is needed to define the linear

Materials 2024, 17, 1098. https://doi.org/10.3390/ma17051098 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17051098
https://doi.org/10.3390/ma17051098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-1988-7441
https://orcid.org/0000-0002-5761-9010
https://orcid.org/0000-0001-8305-0713
https://orcid.org/0000-0003-1091-6875
https://orcid.org/0000-0002-0046-6084
https://doi.org/10.3390/ma17051098
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17051098?type=check_update&version=1


Materials 2024, 17, 1098 2 of 22

material [10]; (2) the need for the introduction of a second invariant or chain transverse (or
tube) constraints [11]; (3) the failure of the full network model, i.e., sphere integration of the
chain behavior to obtain the continuum one [12,13]; (4) the need for the modification of the
chain stretch(es) (longitudinal and transverse) by averaging in the sphere [11,14]; (5) and a
conceptual contradiction of affine deformations with the statistical theory [15,16]. The lack
of sufficient understanding and the difficulty in selecting the appropriate model resulted
in tens of papers comparing the predictive power of different models when parameters
are characterized by a multitude of approaches. Some well-known comparative studies
are [10,12,14,17–23].

Based on the consistency of the 3D extension of the statistical theory [9], and on some
insights obtained from machine learning [24], a new micro–macro connection for the chain
stretch has been proposed, where the stretch tensor replaces the Cauchy–Green deformation
tensor from the original affine theory [4]. This results in an orientationally non-affine chain
stretch, but which is consistent with neglecting the entropy changes from the network
reorientation, as usually assumed, where only chain entropies are considered. It has been
demonstrated that the new micro–macro relation solves and explains many standing issues
like the slope in the Mooney plots [9]. The resulting model is also characterized from a (any)
single stress–strain curve and results in accurate 3D predictions [9,24]. However, as also
therein mentioned, it is expected that the network entropy changes when chains approach
locking, so a more orientationally affine behavior is expected. A simple three-parameter
full network model has been proposed recently under these considerations [25].

The purpose of this paper is to provide further insights into the model. There are
four main contributions. (1) A closed form, simple, analytical expression for the model
for moderately large stretches (within the Gaussian zone) is given. This closed form is
important in developing many analytical studies and derivations. It is often considered an
asset for many models, as it is for the Neo-Hookean model. (2) A detailed comparison of
the present model with the Neo-Hookean model is performed, demonstrating the relevance
of the orientationally non-affine deformations assumption in reproducing the experimental
observations for general multiaxial loadings with parameters obtained from a single test.
(3) It is demonstrated how the parameters of the model may be easily obtained from the
Mooney space, or alternatively from the Mooney–Rivling constants, revealing also the
importance of the lowest range of large stretches. (4) The model is verified against a large
variety of experimental results for different elastomers. These data include true biaxial
tests with different stretch ratios, different treatments, and different stretch levels. In all the
predictions using the model, the three material parameters have been ontained only from a
tensile test.

2. The Orientationally Non-Affine Chain Stretch

As above explained, the initial success of the statistical theory and the Neo-Hookean
model by Wall [4]—who first noted that it entailed a Hookean behavior in shear—in
explaining the shape of the stress–strain uniaxial relation was not followed by a satisfactory
extension to 3D. Many researchers, starting from Mooney [5] and followed by Rivlin and co-
workers [6,7,10,26–30], highlighted the failure of a theory based only on the first invariant
IC
1 of the Cauchy–Green deformation tensor, so they phenomenologically proposed the

incorporation of an additional term. The Neo-Hookean model results in a constant in the
Mooney y − (1/λu) plot

y(1/λu) ≡
Pu(λu)

2
(

λu −
1

λ2
u

) = C1 (1)

where λu is the uniaxial stretch and Pu is the nominal stress. However, y(1/λu) is not
constant in experiments but has a slope in the order of 1/10—depending on the polymer;
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polyurethane elastomers may have slopes of the order of C1 or even 10 times C1 [31].
Mooney’s solution has been to incorporate such slope by adding a C2 term

y(1/λu) ≡
Pu

2
(

λu −
1

λ2
u

) = C1 + C2

(
1

λu

)
(2)

using the Rivlin’s Cauchy–Green tensor invariants IC
1 , IC

2 , the strain energy is

Ψ(I1, I2) = C1

(
IC
1 − 3

)
+ C2

(
IC
2 − 3

)
(3)

However, Rivlin [6,7] also noted that the parameters C1, C2 could not be considered
as constants but were functions of the invariants themselves, i.e., C1(IC

1 , IC
2 ), C2(IC

1 , IC
2 ). IC

i
represents the invariants of the right Cauchy–Green deformation tensor C = FT F = U2, F
is the deformation gradient, and U is the right stretch tensor. Noteworthy, the Neo-Hookean
model is just the affine full integration in the sphere Ω of the chain function

ψNH
ch =

1
2
(3µNH)

[
(λC

ch)
2 − 1

]
⇒ ΨNH(C) =

∫
Ω

ψNH
ch (λC

ch)
dΩ
Ω

= 1
2 µNH(IC

1 − 3) (4)

where λC
ch =

√
r · C · r is the chain stretch obtained from the right Cauchy–Green defor-

mation tensor C and the chain direction in the reference configuration r, and µNH = 2C1
is the classical Neo-Hookean shear modulus. A corrected “Neo-Hookean” model using
λch = r · U · r ̸=

√
r · C · r, is

ψch =
1
2
(3µ)(λ2

ch − 1) ⇒ Ψ(U) =
∫

Ω
ψch(λch)

dΩ
Ω

(5)

where µ is a shear-like modulus—see below for the correspondence with the classical µNH.
This model provides much more accurate results and, importantly, the correct 3D tendencies,
including the observed slope in Mooney plots [9]. Model (5) is also physically consistent
with the neglected entropy terms regarding the reorientation of the chains. Building upon
this model, a new three-parameter model that incorporates two experimentally observed
effects has been proposed: (1) a constant term to account for internal energy effects at
low deformation levels [8,32] and (2) a chain-locking behavior which incorporates an
increasingly orientationally affine deformation (assuming that chains near locking deform
under more affine conditions). In the remaining part of the paper, important insights into
the model, the Mooney representation of the model, and its predictive power for different
elastomers are given.

3. Non-Affine Model with Three Parameters

Using Langevin distributions [8], where L−1(•) is the inverse Langevin function, the
derivative of the chain energy ψch with respect to the chain stretch λch can be written as:

dψch
dλch

=: Pch ≃ P0 + µηλlockL−1
(

λ̃ch

ηλlock

)
(6)

≈ P0 + 3µλch + nonlinear high order terms (7)

where λ̃ch is the effective chain stretch—see below—and ηλlock is the chain locking. The
variable η is the conversion factor from the observed continuum uniaxial referential locking
stretch λlock

u to the chain locking, computed as—see motivation in [25]

η =

√
I1(C)

I1(U)
(8)
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where I1(•) stands for the first invariant of (•); see Figure 1. At very large stretches, the
following values are obtained.

η ≈ 1 for uniaxial loading patterns
η ≈ 1 for pure shear loading (but smaller than for uniaxial with the same stretch)
η ≈ 1/

√
2 for equibiaxial patterns

These values are consistent with the approximate relations between locking stretches
for those types of experiments. An estimation of the reference locking stretch for the
chain is λlock = λlock

u /η
(

λlock
u

)
, where λlock

u is the macroscopic locking stretch obtained

during a tensile test, and η
(

λlock
u

)
is the value of the η function at that stretch λlock

u for
the uniaxial test. Equation (7) has two addends. The second addend corresponds to the
classical statistical (Langevin) theory [8,18,33] with the exception of the presence of the
loading mode factor η accounting for chain constraints. The first addend in the chain
tension Pch—term P0 in Equation (7)—corresponds to an internal energy contribution. This
contribution can be considered approximately constant, and it is relevant only for relatively
small stretches (e.g., about 50–100%), see [8,32] p. 32, but dominates the tension near the
infinitesimal range—below 10% of stretches. It is noteworthy that this constant term at
small strains has also been obtained in the data-driven determination of the chain function
from experiments; see Ref. [24]. Furthermore, P0 can take negative values and that still
Pch(λch = 1) > 0. Hence, even when this term is neglected at large deformations, it
cannot be neglected when determining the constants if the shear modulus is obtained in
that regime.

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

Uniaxial test
Pure shear test
Equibiaxial test

Figure 1. Evolution of the affinity parameter η =
√

I1(C)/I1(U) =
√

IC
1 /I1 with the (logarithm of

the) loading stretch for the uniaxial, pure shear and equibiaxial tests. Initially, all tests have η = 1/
√

3
(affine and non-affine distributions are coincident), but at large stretches, the loading patterns mark a
difference between affine and non-affine invariants. The equibiaxial loading case results in larger
transverse constraints than uniaxial or pure shear ones. These constraints are more relevant near
locking, and the parameter η accounts for such effects in general 3D cases.

Several works have used the affine and non-affine behavior of polymer chains to
characterize the transition between the microscopic constitutive model and the continuous
solid [11,25,34,35], but in most of them, the consideration of non-affinity does not refer
to the non-affinity in the orientation of the chains, but rather refers to the amount of the
effective stretch in a given chain direction with respect to the continuum one. For example,
the continuum deformation tensor to compute the chain stretch is typically the Cauchy–
Green (quadratic) deformation tensor. The non-affine stretch λch is computed herein from
the continuum stretch tensor U and the chain direction r (which is treated as a spatial
direction, not a specific chain direction) as
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λch = r ⊗ r : U =
3

∑
i=1

λir2
i =

[
r2
]T

[λ]

=
[

cos2 ϕ sin2 θ sin2 ϕ sin2 θ cos2 θ
] λ1

λ2
λ3


= λ3 cos2 θ + λ1 cos2 ϕ sin2 θ + λ2 sin2 ϕ sin2 θ (9)

in this expression, λi are the principal continuum stretches and ϕ, θ are, respectively, the
azimuthal and polar spherical angles of the chain with respect to the principal directions.
The microstretch λch is the one consistent with biaxial experimental data at moderately
large stretches; see [24]. However, near locking, it is to be expected that chains reorient
statistically toward the stretched directions because locking behavior seems experimentally
more consistent with the affine assumption. Unfortunately, there is still no experimentally
verified theory which incorporates the network reorientation in the entropy, so the increas-
ing relevance of that term with very large deformations results in the effective average
reorientation of chains. Then, this effect is incorporated phenomenologically by considering
an average effective reoriented chain with stretch—p = 1 corresponds to the orientationally
non-affine case, verified experimentally up to moderate stretches, and p = 2 corresponds
to the limit affine case expected at chain locking.

λ̃ch =
p√r ⊗ r : U p =

3

∑
i=1

p
√

λ
p
i r2

i with p(λch) =
2 + exp

(
−2λch + λlock

)
1 + exp

(
−2λch + λlock

) ∈ [1, 2) (10)

The parameters P0, µ and λlock are the material fitting parameters with a clear physical
interpretation. For deformations sufficiently small, the locking effect can be neglected
(typically 30% of the locking stretch), which is known as the Gaussian distribution case,
e.g., [35,36].

The model considers a full network of chains isotropically oriented, so a chain oriented
in a given direction represents all chains oriented in that direction. Then, the derivative
of the continuum stored energy Ψ(U) =

∫
Ω ψch(λch)dΩ/Ω is computed from the chain

rule as

∂Ψ(λ1, λ2, λ3)

∂λi
=
∫

Ω

dψch
dλch

dλch
dλi

dΩ
Ω

=
∫ 2π

0

∫ π

0

dψch
dλch

dλch
dλi

sin θdθdϕ

4π

=
∫ 2π

0

∫ π

0

[
P0 + µηλlockL−1

(
λ̃ch

ηλlock

)]
∂λ̃ch
∂λi

sin θdθdϕ

4π

=
np

∑
k=1

[
P0 + µηλlockL−1

(
ρ(k)

)]∂λ̃ch
∂λi

wk (11)

where the last line is the numerical integration of np points of quadrature, with wk being
the weights of integration (such that ∑ wk = 1). In our case, we use the quadrature points
proposed by Bazant and Oh [37] with nq = 42, which is the same one used by Miehe et al.
in their non-affine model [11]. The non-affine stretch is

λ̃ch(k) :=
3

∑
j=1

p
√

λ
p
j r2

j(k), and ρ(k) =
∑3

j=1
p
√

λ
p
j r2

j(k)

ηλlock (12)
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where  r2
1(k)

r2
2(k)

r2
3(k)

 =

 cos2 ϕ(k) sin2 θ(k)
sin2 ϕ(k) sin2 θ(k)

cos2 θ(k)

 =: r2
(k) (13)

A main problem of Langevin statistical models is the evaluation of the inverse of the
Langevin function. There is no analytical expression for that inverse function. Furthermore,
it is difficult to accurately evaluate the inverse Langevin function because of the asymptotic
behavior near locking. Thus, some studies are dedicated to this issue [38–44]. However,
in the present case, it is relevant to separate the Gaussian linear zone from the nonlinear
locking one. The Petrosyan [45] approximation to the inverse Langevin function (with a
maximum error of 0.18%) conveniently splits the linear (Gaussian) and nonlinear parts

L−1(ρ) = 3ρ︸︷︷︸
linear

+
ρ2

5
sin
(

7ρ

2

)
+

ρ3

1 − ρ︸ ︷︷ ︸
nonlinear

(14)

the nonlinear contribution is

N (ρ) := L−1(ρ)− 3ρ =
ρ2

5
sin
(

7ρ

2

)
+

ρ3

1 − ρ
(15)

then, the approximation symbol is used because of the consideration of λch in the linear
part and λ̃ch in the nonlinear one and ∂λch/∂λi = r2

i(k)

∂Ψ(λ1, λ2, λ3)

∂λi
≃ ∂ΨL

∂λi
+

∂ΨNL

∂λi
=

1
3

P0 +
µ

5
[2λi + (λ1 + λ2 + λ3)]

+
np

∑
k=1

µηλlockwkN
(

ρ(k)

)∂λ̃ch(k)

∂λi
(16)

where the second line is the non-Gaussian contribution [46,47], and with

ρ(k) =
λ̃ch(k)

ηλlock =
∑3

i=1
p
√

λ
p
j r2

j(k)

ηλlock (17)

the derivative ∂λ̃ch/∂λi is

∂λ̃ch(k)

∂λi
=

(
λi

λ̃ch

)p−1
r2

i(k) +
1
p

dp
dλch

r2
i(k)

∑3
m=1 λ

p
mr2

m(k) ln λm

λ̃
p−1
ch(k)

− λ̃ch(k) ln λ̃ch(k)

 (18)

It is important to remark here that in contrast to the formulation in [25], the Gaussian
case is integrated exactly, and only the non-Gaussian contribution needs to be integrated
numerically. This is relevant because Mooney plots are only relevant in the Gaussian
zone. If p̄ denotes the pressure-like Lagrange multiplier of the incompressible case, I is the
identity tensor, and A denotes the Green–Lagrange strain tensor, while the incompressible
case gives the following second Piola–Kirchhoff and Piola stress tensors, respectively, S
and P:

S = p̄C−1 +
dΨ
dA

and P = FS = p̄F−T + F
dΨ(A)

dA
(19)

with
dΨ(A)

dA
=

3

∑
i=1

1
λi

dΨ(λi)

dλi
N i ⊗ N i =

[
1
3

P0 +
1
5

µ(U : I)
]

U−1 +
2
5

µI (20)
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where N i represents the eigenvectors of U. i.e., the Piola stress is

P = FS = p̄F−T +

[
1
3

P0 +
1
5

µ(U : I)
]

R +
2
5

µF

= R
{

p̄U−1 +

[
1
3

P0 +
1
5

µ(U : I)
]

I +
2
5

µU
}

(21)

where R = FU−1 is the rotation from the right polar decomposition of F.
In the typical quasi-incompressible case, the stored energy can be written as W(J, λd

1, λd
2,

λd
3) = U (J) + Ψ(λd

1, λd
2, λd

3) with J = λ1λ2λ3 being the determinant of the deformation
gradient tensor F and λd

i = J−1/3λi being the isochoric stretches. Taking into account that

∂λd
j

∂λi
= J−1/3

(
δij −

1
3

λd
j

λd
i

)
and

∂J
∂λi

=
J

λi
(22)

it is obtained

∂W(J, λd
1, λd

2, λd
3)

∂λi
=

∂U (J)
∂λi

+
∂Ψ(λd

1, λd
2, λd

3)

∂λi

= U ′(J)
∂J
∂λi

+
3

∑
j=1

∂Ψ(λd
1, λd

2, λd
3)

∂λd
j

∂λd
j

∂λi

=
J

λi
U ′ + J−1/3

3

∑
j=1

∂Ψ
∂λd

j

(
δij −

1
3

λd
j

λd
i

)
(23)

where ∂Ψ/∂λd
j is given in Equation (11) by replacing λi by λd

i , and U (J) depends on the
choice for the penalty function. For the Gaussian case

∂W
∂λi

=
J

λi
U ′(J) +

3

∑
j=1

J−1/3
{

1
3

P0 +
µ

5

[
2λd

j + tr(J−1/3U)
]}(

δij −
1
3

λd
j

λd
i

)
(24)

and

S =
3

∑
i=1

1
λi

∂W
∂λi

N i ⊗ N i and P = FS =
3

∑
i=1

∂W
∂λi

ni ⊗ N i (25)

where ni = RN i are the eigenvectors of the left Cauchy–Green deformation tensor.
A relevant case is that of homogeneous deformation. For any given state, we can

assume there are deformations in the principal axis. In most tests, one of the directions—
label it as the third one—remains unloaded, so the stress state is biaxial, and the stretch
in that axis is given by the incompressibility condition; namely λ3 = 1/(λ1λ2) . It is in
the interest of simplifying analytical derivations in homogeneous tests to consider the
incompressible case. In this case,

P3 = 0 ⇒ 1
λ3

p +
∂Ψ
∂λ3

= 0 ⇒ p = −λ3
∂Ψ(λ1, λ2, λ3)

∂λ3
(26)

and
Pi =

∂Ψ
∂λi

− λ3

λi

∂Ψ
∂λ3

(27)

For the Gaussian range of deformations, the explicit expression

Pα ≡ PG
α =

1 − λ3/λα

15
[5P0 + 3µ(λ1 + λ2 + λ3) + 6µ(λα + λ3)] with α = 1, 2 (28)
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is obtained, whereas the non-Gaussian case gives the additional term

Pα = PG
α +

np

∑
k=1

[
µηλlockN

(
ρ(k)

)
wk

](
r2

α(k) −
λ3

λi
r2

3(k)

)
(29)

Predictions for the typical experiments are obtained using these formulae, employing

• Uniaxial test: λ1 = λu (uniaxial stretch), and λ2 = λ3 = 1/
√

λ1;
• Equibiaxial test: λ1 = λ2 = λeq (equibiaxial stretch), and λ3 = 1/λ2

eq;
• Pure shear: λ1 = λps (strip test stretch), and λ2 = 1, λ3 = 1/λps.

However, Equation (28) is valid for any test in which one axis—labeled as the third
one—is unloaded. In incompressible cases, since the pressure comes from equilibrium, one
axis may be taken as the zero reference.

In the case of uniaxial tests, it is typical to plot the experimental data, and hence the
model fit, in the P − λ axes. The effective uniaxial modulus can be obtained by setting
λu = 1 + ε, where ε is the infinitesimal strain. In this case, the relevant Gaussian case gives

P1 =
1 − 1

(1+ε)
√

1+ε

15

[
5P0 + 3µ

(
1 + ε + 2

1√
1 + ε

)
+ 6µ

(
1 + ε +

1√
1 + ε

)]
= ε

(
21
10

µ +
1
2

P0

)
− ε2

(
93
40

µ +
5
8

P0

)
+ ε3

(
251
80

µ +
35
48

P0

)
+ ... (30)

to compare, the classical Neo-Hookean model gives

P1 = µNHλu −
1/

√
λu

λu
µNH 1√

λu
= µNH

(
λu −

1
λ2

u

)
(31)

= 3µNHε − 3µNHε2 + 4µNHε3 + ... (32)

The comparison of both models for infinitesimal strains ε2 → 0 give the relation
between the moduli of both models

dP1

dλu

∣∣∣∣
λu=1

= 3µNH =
21
10

µ +
1
2

P0 (33)

this relation guarantees the same initial slope in the predictions by both models in a tensile
test. Additionally, for a given stretch λu, the slope for the tensile test is

dP1

dλu
=

1
10λ3

u
(16µ + 6λ3

uµ − λ3/2
u µ + 5

√
λuP0) (34)

so for very large strains—recall that we are considering the Gaussian case

lim
λu→∞

dP1

dλu
=

3
5

µ (35)

which is to be compared to the Neo-Hookean value µNH—cf. Equation (31) for λu → ∞

µNH =
3
5

µ (36)

Remarkably, P0 affects the initial slope—Equation (33)—but not the behavior at large
stretches—Equation (35). Note that for P0 = 0, Equation (33) gives µNH = 7/10 µ and
Equation (36) gives µNH = 6/10 µ (again the µ/10 correction). In summary, from the initial
slope and the intermediate slope (large moderate stretches, so the locking effect is not
important), the two parameters of the model, namely µ and P0, can be determined, the
former from Equation (35) and the latter with the computed µ and Equation (33).
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4. Mooney Space Representation

Mooney’s plot is just another way of plotting the same tensile test experimental
databut weighting visually the initial part of the experiment by using the representation in
Equation (1). The Neo-Hookean model contradicts experimental evidence, where a slope in
the order of 1/10 is observed [8,28]. This problem motivated Mooney’s phenomenological
proposal of using a C2 constant over x = 1/λu (or equivalently the IC

2 invariant) which
corrected the statistical theory to accommodate the experimental slope in that plot. The
relevance of the IC

2 invariant has been explained in many papers [8,48–50]. The slope in
Mooney plots has also been the center of attention in fitting constitutive models [29,51–53].
In the herein proposed model, the Mooney slope is obtained naturally from the statistical
theory. The model’s slope at x = 1/λu = 1 can be computed by considering the power
series in δ (δ < 0 for a tensile test), where x = 1 + δ, so λu = 1/(1 + δ). To this end, the
Mooney plot function is

y =
1

30
(

1
x

)3/2
+ 30

[
12µ + 9µ

(
1
x

)3/2
+ 5P0

√
1
x

]
(37)

whose expansion series in δ = x − 1 is

y =

(
7

20
µ +

1
12

P0

)
+ δ

(
3
80

µ +
1
48

P0

)
− δ2

(
3

160
µ +

1
32

P0

)
+ δ3

(
7

1280
µ +

17
768

P0

)
+ ... (38)

For δ = 0, the previous expression of µNH/2 with µNH given in Equation (36) is
recovered. Then, the pursued slope is

dy
dx

=

9
x

µ − 5P0 +
10

x
√

x
P0

60x
√

x

(
1
x

√
1
x
+ 1

)2 (39)

whose expansion is

dy
dx

=

(
3
80

µ +
1
48

P0

)
−
(

3
80

µ +
1

16
P0

)
δ +

(
21

1280
µ +

17
256

P0

)
δ2 + ... (40)

now, at x = 1 (δ = 0), the slope is

dy
dx

∣∣∣∣
x=λu=1

=
3

80
µ +

1
48

P0 (41)

then, Mooney plots may be used to identify the parameters of the model in a more simple
way from the y−value at x = 1—call it C1, the Neo-Hookean constant, and the slope—call
it C2, the Mooney constant. The solution is

µ = 5C1 − 20C2 and P0 = 84C2 − 9C1 (42)

If P0 = 0, as in the Neo-Hookean model, a nonvanishing initial slope C2 = 9/84C1 is
still obtained, which is of the order of C1/10. The slope changes in general with deformation,
but an almost constant slope is obtained for P0 = −48/80µ, and there is a vanishing initial
one for P0 ≈ −2µ. Of course, using Equations (37) and (39), the combination of function
and slope values at any stretch, or two values at different stretches in the Gaussian zone,
may be used to determine µ and P0 by solving the linear system of equations.
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5. Prediction of Different Sets of Experiments in Elastomers

In this section, predictions for different materials under a variety of loading conditions
are given. Experimental data for several tests have been obtained from several sources
in the literature. Material parameters have been obtained using the previous approach,
extracting P0 and µ from the estimated y-intercept at λ = 1 and the overall slope in Mooney
plots, and from the estimated locking stretch in P − λ, plots have been digitalized for
this work. In several tests, we had to digitalize the stress–strain data from P − λ plots.
Unfortunately, the errors in Mooney plots are magnified, which add to the more significative
experimental errors at low stretches. Hence, sometimes, parameters have been refined from
the adjustment to the resulting P − λ plot.

5.1. Prediction of the Treloar Tests [54]

Figure 2 shows the predictions for the Treloar tests [54] using different slightly different
parameters. Figure 2a,b show the conventional P − λ representation, whereas Figure 2c,d
show the Mooney plot representation. It is seen that the model naturally represents the
Mooney slope. It is worth noting that the P − λ data and the Mooney data have been
obtained from different sources, namely the former from [54] and the latter from [48]. It has
been observed in this case that capturing accurately the Mooney slope resulted in worse
predictions in the P − λ representation, so the given parameters are a trade-off manual
adjustment between both representations.
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Figure 2. Predictions for the Treloar’s experimental data extracted from refs. [48,54]. (a) Treloar’s
experiments in P − λ representation using the model proposed with the parameters P0 = 1.04 MPa,
µ = 0.318 MPa and λlock

u = 8.83. (b) Predictions in P − λ representation using the parameters
P0 = 1.1 MPa, µ = 0.3 MPa and λlock

u = 8.78. (c) Mooney space prediction with P0 = 1.04 MPa,
µ = 0.318 MPa and λlock

u = 8.83. (d) Mooney space prediction with P0 = 1.1 MPa, µ = 0.3 MPa and
λlock

u = 8.78.
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5.2. Grumbell et al. Experiments on Different Natural Rubber Vulcanizates [28]

The Grumbell et al. experiments of Ref. [28] are predicted in this section.
In Ref. [28], the authors describe the samples and the conditions under which they

performed the experiments. Furthermore, they also emphasize the importance of charac-
terizing the behavior of rubber using both C1 and C2 constants (y-intercept and slope in
Mooney plots) of the Mooney–Rivlin model.

Regarding the prediction of the experiments in [28] using the proposed model, the
rubber therein labeled A has been used as the reference rubber to select the initial parame-
ters: in particular to estimate P0 and λlock

u , which are kept fixed for the other compounds.
Only µ is adjusted to comply with the C1 parameter (shear modulus or y-intercept) in the
Mooney space. Since these experiments are not close to the locking zone, the predictions
are quite insensitive to variations of λlock

u . Figure 3 shows the obtained results for rubber A,
whereas Figure 4 shows the results for all the compounds.
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Figure 3. Experimental data extracted from Ref. [28]. (a) Uniaxial tests using the parameters
P0 = 1.925 MPa, µ = 0.115 MPa and λlock

u = 7.5. (b) Mooney plots with the same parameters.

Table 1 summarizes the obtained parameters for the predictions of the experiments in
Figure 4 for the varied tested range of natural rubber vulcanizates.
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Figure 4. Predictions for different rubbers with experimental data given in Ref. [28] when P0 is
kept constant. (a) P − λ representation of a range of natural rubber vulcanizates. (b) Mooney
representation for the same rubbers. Fitted model parameters are given in Table 1.
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Table 1. Parameters the proposed model used in Figure 4 for each rubber from [28] .

Rubber A B C D E F G

P0 MPa 1.925 1.925 1.925 1.925 1.925 1.925 1.925

µ MPa 0.115 0.069 0.185 0.263 0.275 0.485 0.6125

λlock
u 7.5 7.5 7.5 7.5 7.5 7.5 7.5

To analyze the influence of the parameter P0 versus that of µ, Figure 5 shows the pre-
dictions when parameter µ is kept constant and P0 is varied to adjust the experimental data.
In practice, this implies a modification of the initial slope m0 in the P − λ representation
because P0 = 2 (m0 − 0.21µ) while the Gaussian slope m1 in the P − λ representation
for large stretches is maintained as m1 = 3

5 µ for all rubbers. Table 2 summarizes the
parameters for the predictions in Figure 5.
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Figure 5. Predictions for different rubbers with experimental data given in Ref. [28] when µ is
kept constant. (a) P − λ representation of a range of natural rubber vulcanizates. (b) Mooney
representation for the same rubbers. The fitted model parameters are given in Table 2.

Table 2. Parameters of the proposed model used in Figure 5 for each rubber from Ref. [28].

Rubber A B C D E F G

P0 MPa 1.925 1.71 2.28 2.65 2.735 3.735 4.315

µ MPa 0.115 0.115 0.115 0.115 0.115 0.115 0.115

λlock
u 7.5 7.5 7.5 7.5 7.5 7.5 7.5

5.3. Mullins Experiments on Rubbers with Different Composition and Processing Conditions [27]

The proposed model is used to predict the behavior of dry rubbers that have been
subjected to various experiments [27], as for example, rubbers that have been built with
different peroxide concentrations, rubbers that have been processed with distinct periods
of vulcanization, or rubbers whose initial molecular weights have been modified. The
composition, processing and conditions during these experiments are detailed in Ref. [27].
The stretch range in these experiments is large enough to be significatively affected by the
locking stretch, i.e., the typical upturn is clearly observed in the stress–strain curves, so in
this case, the parameter λlock

u is relevant in capturing that upturn.
The proposed model has been used to characterize the behavior on dry samples of

Ref. [27] with different concentrations of peroxide and, hence, different resulting degrees of
cross-linking. Figure 6 shows the predictions of the model of the experimental points of
both representations of the uniaxial test, the classical P − λ representation (Figure 6a) and
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the Mooney space representation (Figure 6b). The parameters obtained mainly from the
Mooney plot are given in Table 3.
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Figure 6. Predictions for different rubbers with experimental data given in Ref. [27]. (a) P − λ

representation of different rubbers with different concentration of peroxide; parts of peroxide per
100 parts rubber of A (1), B (2), C (3), D (4), E (5). (b) Mooney plots for the same rubbers. The fitted
parameters are given in Table 3.

Table 3. Fitted parameters of the model for the predictions given in Figure 6 for each rubber tested in
Ref. [27]. The symbols (□, △, •, ⃝, ×) are the labels given for the experimental points in Ref. [27].

Rubber A (□) B (△) C (•) D (⃝) E (×)

P0 MPa 0.8 1.25 2.00 2.25 2.5

µ MPa 0.12 0.2 0.27 0.28 0.325

λlock
u 9.7 8.25 5.6 5.25 4.3

The model has also been used to characterize the behavior of dry samples undergoing
several periods of vulcanization. In this case, the tendency of the parameters is similar to
what has been observed for samples with different concentrations of peroxide: for example,
the parameter P0 tends to grow while the parameter λlock

u tends to decrease. Nevertheless,
the parameter µ grows for some rubbers while it decreases for others. Figure 7 shows how
the proposed model adjusts to the experimental points both for the P − λ (Figure 7a) and
Mooney (Figure 7b) representations. The parameters are given in Table 4.
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Figure 7. Predictions for the experimental data of rubber with different vulcanization times as given
in Ref. [27]: A (t = 10 min), B (t = 40 min), C (t = 60 min), D (t = 80 min), E (t = 160 min). (a) Classical
P − λ representation. (b) Mooney representation for the same rubbers. The fitted model parameters
are given in Table 4.
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Table 4. Parameters of the proposed model for the predictions given in Figure 7. The symbols
correspond to the symbols used in experimental points of Ref. [27].

Rubber A (□) B (△) C (•) D (⃝) E (×)

P0 MPa 0.7 1.3 1.5 1.6 2.2

µ MPa 0.14 0.3 0.4 0.38 0.35

λlock
u 10.25 8.25 6.575 5.95 5.05

Finally, the proposed model has been used for predicting the behavior of dry rub-
bers with different initial molecular weights; in general, the mechanical properties of the
polymer increase slightly with the increase of the molecular weight. Figure 8 shows how
the proposed model predicts the experimental points both in the P − λ representation
(Figure 8a) and the the Mooney representation (Figure 8b). Parameters are summarized in
Table 5.
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Figure 8. Predictions for the experimental data of rubber with different molecular weights given in
Ref. [26]. (a) Uniaxial tests for rubbers with different initial molecular weight; values of M̄−1

n × 10−6

of A (3.10), B (3.95), C (5.12), D (7.05). (b) Mooney representation for the same rubbers. The fitted
parameters are given in Table 5.

Table 5. Parameters of the proposed model for the predictions given in Figure 8. The symbols are the
representation of the experimental points of the paper [26].

Rubber A (•) B (△) C (⃝) D (×)

P0 MPa 1.25 1.45 1.5 1.5

µ MPa 0.375 0.39 0.4 0.415

λlock
u 7.0 6.4 6.1 6.65

5.4. Morris’ Experiments on Rubbers with Different Concentration of Perioxide [26]

This subsection shows the predictions of the model for a variety of rubbery materi-
als with different concentrations of peroxide tested by Morris and reported in Ref. [26].
In Ref. [26], the author described the conditions under which the experiments have
been performed.

Figures 9 and 10 show the experimental results and their predictions for rubber at
T = 25◦. The difference between the experimental results in both figures is the amount
the dicumyl peroxide that contain the samples. Figure 9 samples have 1 part of dicumyl
peroxide per 100 parts of rubber, whereas Figure 10 samples have 2 parts of dicumul
peroxide per 100 parts rubber. The fitted model parameters for all experiments are given in
Table 6. Figures 9b and 10b plot the original Mooney space in which experimental data are
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given in Ref. [26]. On the contrary, Figures 9a and 10a are the P − λ representations which
have been obtained from the Mooney space plots.
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Figure 9. Model predictions for experiments on rubbers with different concentration of perioxide;
experimental data from [26]; 2 parts dicumyl peroxide per 100 parts rubber (A, B, C). (a) P − λ

representation. (b) Mooney representation for the same rubbers. The fitted parameters are given in
Table 6.

In Ref. [26], Morris indicated, on one side, that the initial molecular weight has little
effect on the minimum of the Mooney curves, while on the other side, the author indicated
that the increase in the degree of the vulcanization causes changes in the minimum of the
same curves. Mullins [27] obtained similar conclusions in his experiments.

On the other hand, if observing the fitted model parameters for both the upper curves
(A, B, C) (Figure 9) and the lower curves (D, E) (Figure 10), they are inside of the same
range (Table 6).
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Figure 10. Experimental points extracted from ref. [26]. (a) Uniaxial tests for rubbers with different
concentration of peroxide in each rubber; 1 part dicumyl peroxide per 100 parts rubber (D, E).
(b) Mooney plots for the same rubbers. The parameters employed are given in Table 6.

Table 6. Parameters of the proposed model used in Figures 9 and 10 for each rubber from [26]. The
symbols are the respective representation of the experimental points in Ref. [26].

Rubber A (△) B (⃝) C (□) D (△) E (⃝)

P0 MPa 4.1 4.5 4.55 0.75 1.1

µ MPa 0.35 0.35 0.4425 0.28 0.365

λlock
u 5.15 5.0 5.175 8.75 8.75
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5.5. Predictions of the Kawabata et al. Experiments [55]

In this subsection, the model is used to predict the general biaxial experiments
from Kawabata et al. [55]. These biaxial tests are the most general experiments in an
incompressible isotropic material, because due to incompressibility, only two stretches are
independent—say λ1 and λ2—and only two stress values are given by the constitutive
relation—say P1(λ1, λ2) and P2(λ1, λ2); the third stretch is given by the incompressibility
constraint as λ3 = 1/(λ1λ2) and the pressure is given by external equilibrium, resulting in
P3 = 0 for plane tests. Hence, capturing both longitudinal and transverse stresses for all
λ1 − λ2 stretch combinations means that the general 3D behavior of the material has been
captured. Whereas, to some extent, this has been achieved by other models, the callibration
of the parameters for those models has been performed with several tests, so in essence,
they just result in sophisticated interpolation schemes. In the present proposal, only a
tensile test is used—Mooney and P − λ representations—to obtain the three parameters of
the model (as one should expect in an isotropic, incompressible material) and, thereafter,
predict all the test curves, both longitudinal and transverse.

The biaxial Kawabata et al. experiments contain the tensile test as a particular case.
Then, biaxial tests are used herein to extract the experimental points of the uniaxial tests [9],
although we note that since the Kawabata et al. material is the same as the Treloar material,
the same experimental data and the material parameters of Section 5.1 could have been
used. Figure 11a,b contain the experimental points of the Kawabata et al. tensile test in
classical P − λ form and in Mooney form. The best fitted parameters for this case are
P0 = 1.35 MPa, µ = 0.225 MPa and λlock

u = 8.0. Note that the initial points in Mooney form,
whereas abundant, seem to have some relevant errors, as usual at the initial loading stages,
so these points have been neglected in the fitting. The above material parameters have
been kept for the rest of the predictions given in Figure 11c–f.

The predictions given in Figure 11c–f indicate that the proposed model reproduces
with good accuracy the behavior of the material under general deformation patterns for a
wide range and combinations of values of λ1 and λ2.
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Figure 11. Cont.
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Figure 11. Prediction of the Kawabata et al. [55] biaxial experiments. (a) Extracted P − λ curve
and predictions using the fitted parameters P0 = 1.35 MPa, µ = 0.225 MPa and λlock

u = 8.0—for
this stretches level, λlock

u does not affect the results in a relevant manner. (b) Mooney space and
prediction using the same parameters. (c) Longitudinal nominal stresses P1(λ1, λ2) and (d) transverse
nominal stresses P2(λ1, λ2) as a function of the longitudinal stretch λ1 for a range of fixed small
transverse stretches λ2 (1.04 to 1.24). (e) Longitudinal nominal stresses P1(λ1, λ2) and (f) transverse
nominal stresses P2(λ1, λ2) as a function of the longitudinal stretch λ1 for a range of fixed large
transverse stretches λ2 (1.3 to 3.1). All predictions are obtained with the same material parameters of
P0 = 1.35 MPa, µ = 0.225 MPa and λlock

u = 8.0.

5.6. Predictions of the Kawamura et al. Experiments in Two Silicones [56]

Kawamura [56] also performed general biaxial tests on two types of silicones, one melt
silocone and one silicone in 70% weight solution. Since these are also general tests on the
material, the particular case of a uniaxial test may be extracted and placed in Mooney form.
The Mooney and the P − λ forms of the extracted tensile test, along their predictions, are
given in Figure 12a,b, for the 70% solution material and in Figure 13a,b for the melt material.
In the Mooney representation, the first points for small stretches have been discarded again
because of the lack of experimental accuracy at those stretch levels. The fitted material
parameters are given in the caption of the figures. It is observed in the figures that the model
accurately predicts the behavior under all loading conditions using the same parameters
fitted by the tensile test.
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Figure 12. Predictions for the Kawamura et al. [56] biaxial experiments on 70% weight solution.
(a) Extracted uniaxial test in P − λ form and prediction using the fitted parameters P0 = 0.235 MPa,
µ = 0.0395 MPa and λlock

u = 8.8 —note that for this level of stretches, the value of λlock
u is not relevant

as long as it sufficiently large. (b) Mooney space representation of the tensile test and predictions.
(c) Longitudinal nominal stresses P1(λ1, λ2) and (d) transverse nominal stresses P2(λ1, λ2) as a
function of the longitudinal stretch λ1 for a range of fixed values of the transverse stretch λ2. All
predictions have been obtained with the same set of material parameters, i.e., P0 = 0.235 MPa and
µ = 0.0395 MPa.
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Figure 13. Predictions for the Kawamura et al. [56] biaxial experiments on melt solution. (a) Extracted
uniaxial test in P − λ form and prediction using the fitted parameters P0 = 0.63 MPa, µ = 0.058 MPa
and λlock

u = 7—note that for this level of stretches, the value of λlock
u is not relevant as long as it

sufficiently large. (b) Mooney space representation of the tensile test and predictions. (c) Longitu-
dinal nominal stresses P1(λ1, λ2) and (d) transverse nominal stresses P2(λ1, λ2) as a function of the
longitudinal stretch λ1 for a range of fixed values of the transverse stretch λ2. All predictions have
been obtained with the same set of material parameters, i.e., P0 = 0.63 MPa and µ = 0.058 MPa.

6. Conclusions

This work presents important insights into a recently proposed full network micro-
mechanical model which employs a new micro–macro chain stretch connection. The
following conclusions have been obtained:

• It is well known that the Neo-Hookean model from the classical statistical theory fails
to properly represent the slope in the Mooney plots. This has been the origin of the use
of the second invariant in the stored energy dependencies and the origin of the need
for several additional tests to characterize such new dependence. Remarkably, Mooney
plots are just a different way of plotting the tensile test data that emphasizes the small
stretches range, which is important in the characterization of hyperelastic materials.

• The Neo-Hookean model is the simplest model using the chain stretch obtained from
the Cauchy–Green deformation tensor, which is consistent with the affine orientation
assumption of the chains used in most models. Using the same simplest Neo-Hookean
chain behavior, but employing instead a chain stretch from the stretch tensor, the
slope in the Mooney plots is reproduced from the same experimental data and full
integration structure as in the Neo-Hookean model.

• It is well known that at small stretches, the internal energy in elastomers is relevant
compared to the entropic contribution. Then, internal energy terms are also important
in correctly capturing the Mooney plot slopes. The proposed model includes a term to
account for that effect.

• As in the Neo-Hookean model, the proposed model may be analytically integrated in
the Gaussian domain; the expression is given herein for the first time. Furthermore, it
is demonstrated that the constants may be obtained directly from the Mooney plot
(y-intercept and slope) or from the Mooney–Rivlin constants C1 and C2.

• With the previous material parameters, obtained only from tensile test data, the model
is capable of reproducing with good accuracy biaxial tests under different principal
stretch ratios in the Gaussian zone. These tests represent any general loading case
for isotropic incompressible hyperelastic materials. To the authors’ knowledge, the
proposed model is the first analytical model capable of reproducing these general
tests, including both transverse and longitudinal axes, using only two parameters
obtained from a tensile test. The observed errors are smaller than those reported in
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model comparisons even when parameters in those works are obtained, fitting all
tests simultaneously; cf. [14,22,57].

• The model accounts also for the non-Gaussian stretch domains, where locking effects
are relevant. These effects produce a reorientation of the chains toward a more affine
configuration. This reorientation is considered through a non-affine chain stretch. With
this modification, the model captures also the different locking behaviors observed
experimentally for different tests.
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