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Abstract: Data sets of welllabelled and diverse acoustic imagery of the seabed are scarce.
However, a recent breakthrough in synthetic aperture sonar (SAS) image simulation has facili
tated the rapid generation of realistic echo data. The synthetic data include important aspects
of the acoustic wave physics, such as aspectdependence, layover, diffraction, speckle, focusing
errors, and artefacts. Moreover, it provides highfidelity label information. This combination
of speed, realism, and detail has enabled the use of synthetic data to improve the volume and
diversity of training data for deep learning algorithms in automatic target recognition (ATR).
We present an overview of the rapid simulation model, alongside an existing SAS siulation
model, and demonstrate its application to ATR training for the detection and classification of
underwater munitions and unexploded ordnance.
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1. INTRODUCTION

Unexploded ordnance (UXO) remediation is an important application of underwater acous
tics, due in part to the vast quantities of munitions that were disposed of at sea following the
SecondWorldWar [1]. Surveillance and cataloguing of these UXO “dumpsites” is possible due
to platforms carrying high resolution synthetic aperture sonar (SAS) sensors. However, detec
tion and classification of targets in the dumpsites is a task suited to automated approaches due
to the quantity of data [2]. These automated target recognition (ATR) models generally employ
supervised machine learning, using labelled images to train model parameters. However, this
requires a large library of example data, which is difficult or time consuming to obtain, and can
suffer from inaccurate human labelling.

A potential solution is augmentation of datasets through simulation. Simulation enables the
creation of highly diverse datasets in a less time consuming manner than collection of real data
would allow. In addition, high resolution target labels can be created, ensuring accuracy for
supervised learning. Previously, creation of synthetic images has been achieved by rendering
images of 3D models, followed by adding noise to approximate speckle [3]. This allows SAS
images to be “faked” quickly, with a tradeoff between speed and realism. However, a recent
breakthrough in SAS simulation has enabled the rapid generation of realistic, coherent echo
data [4]. This eases the aforementioned tradeoff and allows for the generation of large, realistic
datasets for machine learning applications.

The process outlined in this paper is a first step towards improvement of ATRmodels through
the use of simulated data. We do this by comparison between models trained on data from
a “basic” image simulator and the “advanced” raw data simulator. We summarise the data
generation and machine learning methods with a comparison between the simulators, before
employing themodels in three combinations of training and testing. Detection and classification
results for each combination are shown, concludingwith a discussion of the impact of simulation
realism on the ATR models.

2. SIMULATION METHODS

Training of the machine learning models for ATR requires a vast amount of data. A process
ing chain was developed to generate and simulate a large number of data products for a diverse
set of scenes containing common target UXOs [5]. The data products are generated using a
combination of software. For scene generation, we use the opensource modelling software
Blender [6]. Simulation of raw data, images, and labelled segmentation maps is then performed
in MATLAB.

2.1. SCENE GENERATION

Scene generation comprises two steps: target selection and target placement. These are
common to both simulators and are performed in Blender. Targets are uniformly selected from
a list of five example UXOs commonly found at the Skaggerak dumpsite [5], illustrated in
figure 1a. The seafloor is represented by a flat 10m by 10m plane. Targets are dropped onto the
seafloor and then perturbed a small amount to diversify target orientation and burial state. Each
target is assigned an an index, which is later used to create segmentation maps. An example
scene is given in figure 1b.
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(a) (b)

Figure 1: (a) UXOs used as targets in the simulated scenes, selected from example UXOs found
at the Skaggerak dumpsite, used in (b) an example scene with 8 targets. [this example
should carry through to the demo results later]

2.2. IMAGE SIMULATION (BASIC SIMULATOR)

The sonar transducers are mimicked using an orthographic light source, angled to highlight
geometry in a comparable way to a SAS. The scene is rendered from an orthographic camera
placed above the scene. Approximation of SAS speckle is achieved via multiplicative noise
calculated from floor speckle statistics of real SAS data. A complete description of this process
can be found in [5]. Finally, a high resolution segmentation map is created using a second render
from the orthographic camera, where each object is encoded with a colour defined by its index.

2.3. RAW DATA SIMULATION (ADVANCED SIMULATOR)

Simulation of raw data utilises the rapid wavefield simulation method documented in [4].
This requires that an orthographic camera render the scene from all angles inside the transducer
beamwidth. These renders are used, via projection mapping, to determine the amplitude of the
wavefield as a function of aspect angle and frequency. This incorporates geometric effects such
as layover and aspect dependence. The coherent component of the wavefield is modelled by
incorporating a stochastic phase function in the Fourier domain. The coherent wave spectrum
is propagated to the synthetic aperture using Fourier extrapolation, and data is generated by
interpolating the resulting spectrum. Finally, the data is backprojected to form images with
dimensions matching those generated with the image simulator.

3. MACHINE LEARNING METHODS

The popular YOLO (you only look once) v5s model [7] was selected model and trained on
datasets from both simulators, resulting in two sets of trained parameters. The YOLO family
of models perform object detection and classification in a single forward pass. These models
consist of key components: a backbone, a neck, and a regressor/classifier head. The backbone
performs feature extraction by progressively compressing the image through a series of convo
lutional operations. Intermediate activations from the backbone are passed to the neck which
aggregates features at multiple scales and resolutions. Anchors, which are predefined bound
ing boxes of different sizes and aspect ratios derived from the dataset, are used to generate
region proposals at various locations in the image. The aggregated features corresponding to
these region proposals are then passed through a regressor/classifier head. For each anchor, the
objectness, class label, and bounding box shape and size are refined.

The YOLO v5s model used in this study [7], incorporates the darknet58 [8] residual convo
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lutional network as its backbone, and the path aggregated network [9] as its neck. The location
of the targets was defined by bounding boxes generated from segmentation maps. Synthetic
data consisting of 4,000 images were generated from each simulator, with 250 allocated for
validation, 1,250 for testing, and 2,500 for training. Both models were trained for 15 epochs
with a batch size of 16, facilitating the convergence of the network.

4. RESULTS

4.1. SYNTHETIC DATA COMPARISON

(a) (b)

Figure 2: Output image for the example scene in figure 1b from (a) the basic image simulator
and (b) the advanced simulator.

Figure 2 shows the output images from each simulator. The image from the advanced simu
lator (figure 2b) displays geometric effects not present in the basic simulator output (figure 2a)
such as layover and aspectdependent highlights, particularly visible on the large bomb in the
upper right of the image. In addition, the target shadows have penumbral regions that are more
accurate to real SAS data. Figure 3 is a gallery of random example images (from the advanced
simulator).

4.2. MACHINE LEARNING PERFORMANCE COMPARISON

The performance of each model after training was evaluated using three different combina
tions of training and testing. These were 1) Training on basic data, testing on basic data, 2)
Training on advanced data, testing on advanced data, and 3) Training on basic data, testing on
advanced data. The implied fourth combination, training on advanced data and testing on basic
data, was omitted as it represents an unlikely situation where the training data is more realis
tic than the data the classifier is employed on. The scenes in the training set are structurally
identical across simulators, containing the same targets.

Figure 4 shows data products generated for the example scene from figure 1b. Figure 4a
shows a segmentation map, with bounding boxes overlaid for each target. The colours and
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Figure 3: Selection of example scenes from the advanced simulator.

Object name Class colour Object index
KC500 Bomb Green 8
KC250 Yellow 12
KC50 Cyan 3, 11
150mm Shell Magenta 6, 7, 10
105mm Shell White 1, 2, 4, 5, 9

Table 1: Segmentation map key for figure 2.
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(a) (b)

(c) (d)

Figure 4: Machine learning models tested on the example scene in figure 1b, with (a) ground
truth segmentation map alongside classification results for (b) training on basic, test
ing on basic, (c) training on advanced, testing on advanced, and (d) training on basic,
testing on advanced. Bounding box line thickness represents model confidence.
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(a) (b) (c)

Figure 5: Precisionrecall curves per class for (a) training on basic, testing on basic, (b) train
ing on advanced, testing on advanced, and (c) training on basic, testing on advanced.

object indices associated with each class are indicated in table 1. Figures 4b, 4c and 4d show
qualitative results of eachmodel. These use a confidence threshold of 0.2 and a thicker bounding
box indicates a higher confidence. Differences can be clearly seen between each result, with
the second case (train advanced, test advanced) performing significantly better than the others
in terms of distinguishing between the larger targets. The first and third cases (both trained
on basic data) show some difficulty with smaller targets in particular, with overlapping boxes
for each instance. The third case performs more poorly than the others, with less success with
larger targets and several overlapping boxes.

Performance is quantified with an intersection over union (IoU) test using the model predic
tions and the ground truth bounding boxes. Figure 5 shows precisionrecall curves per class for
each testing combination, with the area under the curve (AUC) values indicated. The second
test case performs marginally better than the others, with the poorest performance exhibited
by the third case (train basic, test advanced). This is understandable when considering that
the advanced data incorporates more geometric features (i.e. specular highlights, layover) than
the basic data. This may make distinguishing targets in advanced data more reliable, while
hindering a model trained without those features.

5. CONCLUSIONS AND FUTUREWORK

We have successfully trained two classifiers based on two different simulation techniques.
The first used a basic SAS image simulator that is fast, but trades realism for that speed. The
second simulator, while still faster than traditional raw data simulation methods, is slower but
incorporates more realistic features such as specular highlights and layover. The models were
separately trained on datasets comprising 2500 images from each simulator using the YOLO
v5s model and employed on a further set of 1250 images for testing.

The models show the best results when tested on data from the simulator they were trained
on. Significant degradation in prediction quality results when testing the basic model on ad
vanced data, halving the AUC score, as is expected, as the advanced data incorporates more
realistic features. We hypothesise that realism in training data does have a significant effect on
a classifier’s performance, and that a more sophisticated simulation model has a positive effect
on performance. We assert that the more closely a simulation model can represent real data
(including introducing errors such as multipath), the more effectively the classifier trained on
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it can perform. Future work will be focused on testing this hypothesis, by training models on a
variety of synthetic data and testing on real labelled data.
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