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Drawing on complexity theory, we investigate the structuring processes and underlying mecha-
nisms underpinning the emergence of a new technology. Empirically, we track the emergence of 
blockchain technology by examining international patents issued between 2009 and 2020. Our 
results indicate that technology emergence follows an evolutionary trajectory that progresses from 
disordered to structured interactions among the technological elements, culminating in the forma-
tion of a technological core that acts as a pole of attraction for further interactions and delineates 
boundaries within the technological domain. Technology structuring is fueled by what we term 
“technology fitness” and “self-reinforcing” mechanisms that progressively transform primitive 
structures into more complex, self-organized configurations. Our study offers a novel framework 
of technology emergence, highlighting how dispersed bits of technological knowledge gradually 
aggregate into complex structures that define the specific trajectory of a particular domain.
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I hold it impossible to know the parts without knowing the whole, or to know the whole without 
knowing the parts in detail.

—Blaise Pascal, 1669

Emerging technologies are a critical driver of firm success and economic and social prog-
ress (Kapoor & Klueter, 2020; Soete & Freeman, 2012; Yoruk, Radosevic, & Fischer, 2023). 
New technologies emerge as a result of inventive processes during which technological ele-
ments—building blocks of an invention characterized by unique features (Fleming & 
Sorenson, 2004; Wang, Rodan, Fruin, & Xu, 2014)—are combined to solve a specific 
problem, laying the ground for technological advances (Dosi, 1982; Fleming, 2001; Park, 
Leahey, & Funk, 2023; Xiao, Makhija, & Karim, 2022; Yayavaram & Ahuja, 2008). This 
process of turning inventions into available knowledge is at the core of technological innova-
tion (Savage, Li, Turner, Hatfield, & Cardinal, 2020; Somaya, Teece, & Wakeman, 2011; 
Teece, 2018).

Extant literature has primarily examined how inventors and organizations shape the 
modalities and trajectories through which new technologies emerge. Scholars who study 
modalities have focused on how existing technologies yield new ones. From this perspec-
tive, new technologies emerge from a synthesis of existing knowledge, which may produce 
variations under certain conditions, leading to new morphologies and even to new species 
of technology (Adner & Levinthal, 2002; Cattani, 2006; Fleming & Sorenson, 2001, 2004; 
Kodama, 1992; Levinthal, 1998; Schillebeeckx, Lin, George, & Alnuaimi, 2021). The 
research that has focused on trajectories, on the other hand, has mapped the evolutionary 
processes by which new technologies come into existence and change over time. Technology 
emergence is typically portrayed in terms of either path-dependent processes in which the 
initial technological choices become progressively more difficult to reverse (Arthur, 1989; 
Marin, Stubrin, & Van Zwanenberg, 2023; Sydow, Schreyögg, & Koch, 2009, 2020) or 
punctuated equilibrium, according to which relatively long periods of technological stabil-
ity are punctuated by short bursts of fundamental change and discontinuity (Abernathy & 
Utterback, 1978; Anderson & Tushman, 1990; Grodal, Krabbe, & Chang-Zunino, 2023; 
Suarez, 2004).

Both perspectives presuppose that inventors and organizations play an important role in 
driving technology emergence. The modalities approach highlights the agentic micro pro-
cesses by which inventors and organizations manipulate pieces of existing knowledge to 
create new technologies. Conversely, the trajectories approach recognizes the role of inven-
tors but argues that their agency is constrained by path-dependent trajectories that emerge 
over time because of technological lock-in. Although the two streams of literature have been 
very useful for promoting an understanding of technology emergence, less attention has 
been paid to the structuring process by which the micro permutations that underpin techno-
logical modalities crystallize into stable structures and macro trajectories. This limits our 
understanding of technology emergence as a dynamic process that unfolds across different 
levels of interaction. A more comprehensive picture of technology emergence should simul-
taneously consider the interaction between technological elements at a micro level, the 
underlying modalities, and the lock-in effects generated by technological trajectories at a 
macro level.
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The purpose of this article is to investigate how the structuring process that arises from 
interactions among technological elements affects the emergence of a new technology over 
time. We draw on complexity theory (Dick, Faems, & Harley, 2017; Nicolis & Prigogine, 
1977; Prigogine, 1980; Prigogine & Stengers, 1984) to study technology emergence as a self-
organizing process in which novel and coherent structures arise out of the interactions among 
smaller parts of the system (Goldstein, 1999). Two aspects of the theory are relevant to our 
objective. First, the complex systems theory recognizes that both emergent and intentional 
processes coexist and coevolve (Borzillo & Kaminska-Labbé, 2011). This is because the ele-
ments of complex systems have a semiautonomous agency that allows them to adapt to their 
environment without centralized coordination. In this way, interactions among technological 
elements lead to the formation of organized patterns from the bottom up. Second, complex 
systems evolve by converting loose technological elements into consolidated technological 
cores. Because there is no centralized control, technological structuring is achieved through 
a process of self-organization in which interactions among elements spontaneously give rise 
to increasingly stable patterns (Morel & Ramanujam, 1999).

From an empirical standpoint, we consider the recently emerged blockchain domain—a 
set of technological elements characterized by a shared identity—as our focus of analysis and 
track the emergence of international blockchain patents issued between 2009 and 2020. We 
use network-based mapping to depict the growing complexity of blockchain technology over 
time and apply the knowledge decomposability measure to assess its structuration. Our 
results indicate that technology emergence is guided by technology fitness and self-reinforc-
ing mechanisms. The technology fitness mechanism connotes the intrinsic quality of a spe-
cific technological element to connect with different technological elements within a specific 
technological domain (e.g., Fleming, 2001; Fleming & Sorenson, 2001, 2004). The self-
reinforcing mechanism is based on a historical pattern of past connections according to 
which technological elements with numerous existing connections are more likely to acquire 
new ones, regardless of their intrinsic qualities (Gould, 2002; Sydow & Schreyögg, 2013). 
The interplay of these mechanisms generates increasingly structured interactions among 
technological elements, culminating in the formation of a technological core that acts as a 
pole of attraction for further interactions and delineates boundaries within blockchain tech-
nology. We then extend our analysis beyond the blockchain domain and conduct simulations 
to understand the potential outcomes of structuring processes when both technology fitness 
and self-reinforcing mechanisms are present or when only one of them is involved.

This study has significant implications for the technology innovation literature. First, by 
combining insights from studies on modalities and trajectories, we consider both the micro 
and macro dimensions of technology emergence to theorize the structuring processes through 
which technology emergence is accomplished. Second, we show how the dynamics underly-
ing technology emergence combine in ways that go beyond the agentic intentionality of any 
one actor in the system, revealing how the semiautonomous interactions of technological 
elements, through technology fitness and self-reinforcing mechanisms, facilitate technologi-
cal structuring. Third, our study offers a novel understanding of the spatial and temporal 
dynamics that underpin processes of technology emergence.

This article is organized as follows. First, we review the literature on technology emer-
gence and highlight the modalities and trajectory perspectives. Next, we draw on complexity 
theory to propose a framework that shows how the interactions among technological 
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elements allow a technological domain to structure and become more organized over time. 
We then describe the setting, data, and methodology applied in our study. After presenting 
our results, we discuss the theoretical and managerial implications of this work and note its 
limitations and some avenues for future research.

Theoretical Background

The Dynamics of Technology Emergence

Dosi (1982: 151-152) has defined technology as a set of pieces of knowledge, both directly 
“practical” (related to concrete problems and devices) and “theoretical” (practically appli-
cable but not necessarily actually applied). The suggestion from this perspective is that the 
procedures underpinning the emergence of new technologies are broadly similar to those that 
characterize the construction of scientific knowledge. In line with this conceptualization, 
scholars working on modalities have examined processes of technological speciation and (re)
combination (Cattani, 2006; Cattani & Mastrogiorgio, 2021; Khanna, 2022; Kok, Faems, & 
de Faria, 2019; Schillebeeckx et al., 2021). Speciation has its roots in biology and refers to 
“the separation of one evolving population from its antecedent population, which in turn 
allows populations to follow different evolutionary paths” (Adner & Levinthal, 2002: 51). 
By analogy, new technologies come into being as a result of existing technological knowl-
edge being transplanted to a new application domain, where it evolves in new directions 
(Adner & Levinthal, 2002). For example, Cattani (2006) has documented how Corning’s 
knowledge and experience in the production of glass fibers for medical and military applica-
tions enabled it to identify opportunities in the seemingly unrelated domain of electronics. 
Likewise, Moehrle and Caferoglu (2019) observed several instances of technological specia-
tion in the domain of camera technology, including the action camera, the depth camera, and 
the dashboard camera.

The modality of combination conceptualizes inventors who are embedded in organiza-
tions as agents of inventive processes over technological landscapes (Fleming & Sorenson, 
2001, 2004; Grigoriou & Rothaermel, 2014; Schillebeeckx et al., 2021; Wang, 2024; Xiao 
et al., 2022). This inventive activity operates through a combination of existing and new 
technological components from previously joint or disjoint technology areas (Basalla, 
1988; Hargadon, 2003; Hargadon & Sutton, 1997; Henderson & Clark, 1990; Kodama, 
1992; Schillebeeckx et al., 2021). For example, Teece (1986) has illustrated how computed 
axial tomography (CAT) scanning technology resulted from cross-fertilization between 
computer technology and X-ray technology. According to Fleming and Sorenson (2001), a 
core element of technological evolution and other complex systems is the existence of an 
agent of recombination. For example, inventors combine new and old pieces of technologi-
cal knowledge to produce new technologies based on fitness criteria, conveying a view of 
the technology as a spectrum of opportunities (Basalla, 1988; Fleming, 2001; Fleming & 
Sorenson, 2001).

Scholars who study technological trajectories have noted how inventors and organizations 
collectively shape patterns of continuity and discontinuity in technological emergence (Dosi, 
1982). Specifically, continuity has primarily been framed in terms of path dependence 
(Arthur, 1989, 1994; David, 1985, 1986), a situation in which the cumulative effects of prior 
technological choices increasingly constrain the agency of inventors and allow subsequent 
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technological recombination to develop only within the trajectory defined by earlier ones 
(Grodal, Gotsopoulos, & Suarez, 2015; Grodal et al., 2023; Sahal, 1985; Sydow et al., 2009). 
Path dependence is triggered by a critical event—such as an inventor’s decision, choice, or 
solution—that unintentionally sets the path-building process in motion. The technological 
path takes shape through self-reinforcing feedback mechanisms that support the initial event, 
generating a specific pattern that gradually becomes dominant and reduces the initial set of 
alternatives (Grodal et al., 2015). The consolidation of a dominant pattern may lead to a lock-
in (Marin et al., 2023; Sydow et al., 2020; Sydow & Schreyögg, 2013) or even take on a 
deterministic character that results in alternative courses of action ceasing to exist (Clark, 
1985; David, 1985).

While path dependence defines typical trajectories of technological progress, some schol-
ars studying technology emergence through discontinuous trajectories have portrayed this 
progress in terms of punctuated equilibrium (Abernathy & Utterback, 1978; Anderson & 
Tushman, 1990; Tushman & Anderson, 1986; Tushman & Romanelli, 1985), a process in 
which periods of small, incremental change are punctuated by quantum leaps. Specifically, 
the emergence of a technological breakthrough may initiate a period of sharp divergence trig-
gered by the existence of a plethora of technical variations (Anderson & Tushman, 1990; 
Utterback & Abernathy, 1975). Once a dominant design has emerged, the dynamics of tech-
nology competition prompt firms to select the technologies that are most likely to succeed 
and abandon the rest (Anderson & Tushman, 1990; Grodal et al., 2015; Utterback & 
Abernathy, 1975). Periods of technological progress can also be punctuated by moments of 
setbacks (Adner & Kapoor, 2016; Bakker, 2010; Kapoor & Klueter, 2020) that pose a tech-
nological challenge on the road toward technological advancement and may reverse the ini-
tial momentum.

When taken together, these studies portray technology emergence as a process that entails 
combining, separating, and recombining pieces of technological knowledge to form more con-
solidated entities. This is achieved by applying a different emphasis, however. Modalities high-
light the micro processes by which inventors manipulate and synthesize pieces of technological 
knowledge, while trajectories highlight the emergence of macro structures that progressively 
diminish the agency of inventors until a situation of lock-in is reached. What is more, emer-
gence is not accidental: It follows specific mechanisms that shape the configuration of a 
domain. In this regard, the research on modalities emphasizes the significance of integrating 
existing technological elements based on their mutual fitness to create a novel invention. 
Conversely, the studies on trajectories highlight how self-reinforcing interactions among tech-
nological elements contribute to the crystallization of a particular pattern over time.

Importantly, while inventors and organizations may drive the combination of technologi-
cal elements at a micro level, they cannot fully control the outcomes of these combinations: 
that is, the macro structures that emerge at a macro level. There are two reasons for this. First, 
the success of technological combinations depends not only on the inventor’s abilities but 
also on the underlying characteristics of the combined elements and their interdependence. 
These interdependencies empower technology with an intrinsic autonomy that goes beyond 
the purposive behavior of inventors and organizations. Second, the relative influence of an 
individual inventor’s agency decreases over time as the technology gradually takes on a 
structure. In other words, as a technology crystallizes, part of the initial agency of its inven-
tors is transferred to the technology itself, which acquires a life of its own (Latour, 1987).
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If the dynamics of technology emergence involve structuring processes that comprise 
both micro and macro levels of interaction, then there is a need to better understand how 
these levels are connected throughout the emergence process. To bridge this gap, we draw on 
complexity theory (Dick et al., 2017; Goldenfeld & Kadanoff, 1999; Goldstein, 1999; 
Prigogine & Stengers, 1984; Tsoukas, 2017). Complexity theory complements current under-
standings by offering a view of technology emergence as the self-organized outcome of 
dynamic patterns that arise from the interactions among technological elements and progres-
sively strengthen in scope and orders of complexity (Morel & Ramanujam, 1999; Thietart, 
2016). Self-organization means that patterns and regularity emerge spontaneously in a sys-
tem as a result of interactions among interdependent parts. It also implies that the interactions 
among the system’s constituents are not centrally controlled; rather, the interacting units 
combine locally to produce complex coordinated patterns of collective behaviors that change 
and adapt.

From this perspective, technologies come into being as a result of both the intentional 
agency of inventors and organizations and the emergent processes stemming from techno-
logical interdependencies. For example, the inventive act of writing an academic article is 
shaped by the author’s intentions. Once the article has been published, however, it is appro-
priated by other members of the community, who might have different intentions and cite the 
article for their own purposes. As Greenwood and Meyer (2008) point out, an idea that 
emerges from a paper is detached from its authors, who give up the exclusive right to inter-
pret it. Ideas not only become semiautonomous and take on a life of their own; they may also 
be path dependent as the initial reception affects and narrows the core topic, which will later 
be explored further (Gould, 2002; Greenwood & Meyer, 2008). In a similar vein, a new tech-
nology relies on the input of its inventors, who manipulate technological elements to gener-
ate inventions, but once the invention has been granted a patent, it is appropriated by other 
inventors and organizations that use it for their own purposes. In other words, the agency of 
the inventor is to some extent “delegated” to the patent (Latour, 1987), thus blurring the 
boundary between the agency of the inventor and that of the patent.1 As the patent takes on a 
life of its own and becomes semiautonomous, the influence of the individual inventor’s 
agency decreases. Patented inventions therefore become particularly helpful for a study of 
the process of technology emergence.

The example also conveys a process of technology structuring, thus reinforcing the paral-
lel between the emergence of new technologies and the construction of scientific knowledge 
(Dosi, 1982; Park et al., 2023). Just like inventors, academics are engaged in the production 
of novelty. Scientific innovation proceeds by means of an aggregation and accumulation of 
pieces of knowledge that take the form of an academic article. Scientific articles are ensem-
bles of ideas, and when authors cite an article, they embrace one or more study’s ideas, thus 
attaching new pieces of knowledge to the existing ones. In turn, subsequent authors further 
build upon these ideas that they have drawn to expand on what is known. And so the process 
continues. References to previous work are made based on suitability: Authors choose to 
work on those ideas that fit for the purposes of developing their own contribution. Repeated 
references to the same idea or set of ideas included in articles reinforce certain claims, thus 
generating a conceptual core and crystallizing ideas into a coherent body of literature. The 
structuring of emergent technologies follows the logic of reinforced ideas over time. It pro-
ceeds through the accumulation of patents that are created by inventors, taken up by other 
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inventors based on fitness, and progressively aggregated around technological cores that 
attract new patents within an emerging knowledge structure. To investigate these mecha-
nisms at work, we will now present a model of technology emergence as a structuring pro-
cess based on complexity theory.

Technology Emergence as a Structuring Process

Complexity theorists conceptualize emergence as the manifestation of novel, coherent 
structures capable of generating explicit patterns in complex systems (Dick et al., 2017; 
Goldenfeld & Kadanoff, 1999; Goldstein, 1999; Tsoukas, 2017). Complex systems consist 
of numerous interconnected elements that work together without any centralized control, 
functioning collectively as a whole (Prigogine & Stengers, 1984). When technological ele-
ments have extensive opportunities to interact, the system seems disorganized, and patterns 
are difficult to detect. However, spontaneous changes arising out of interacting elements can 
generate new configurations through self-organization (Nicolis, 1979; Prigogine & Stengers, 
1984). Self-organization occurs spontaneously through the mutual adaptation of system ele-
ments (MacIntosh & MacLean, 1999; Miller, 1982; Thietart, 2016) as a result of which the 
micro interactions among the parts generate patterns of an increasingly higher order 
(Devezas & Corredine, 2002; Goldstein, 1999; Prigogine & Stengers, 1984). This implies 
that systems are characterized by ongoing interactions among multiple elements that con-
tinuously affect and shape the configuration of the system over time (Wang et al., 2014; 
Yayavaram & Ahuja, 2008).

Overall, complexity theory provides an understanding of technology emergence that 
brings together insights from both the modality and trajectory perspectives. On the one 
hand, it considers how efforts to combine interdependent technological elements generate 
connections and define technological modalities (Fleming & Sorenson, 2001), while on the 
other, it illustrates the self-organization dynamics by which micro interactions among tech-
nological elements crystallize into ordered patterns that define technological trajectories 
over time.

Our work develops these concepts within the framework shown in Figure 1. In this illus-
tration, a complex system evolves through the aggregation of technological elements into 
patterns that progressively become more interconnected and complex, eventually culminat-
ing in the emergence of a new technology.

Figure 1a illustrates a situation in which technological elements are present but not yet 
connected. Although they are not linked in a formal sense, however, they may engage in 
initial efforts to form connections according to their potential interdependencies (Haken, 
1981). These preliminary attempts can be viewed as ongoing experimentation through trial 
and error (Wang et al., 2014). The more of these attempts there are, the more likely it is that 
a connection among previously uncombined technological elements will be made. For 
instance, Branly’s invention of the coherer in 1890 was key to the development of radio 
transmission; in 1894, Lodge tried to use it as a receiver, but the signals were not comprehen-
sible. In the same year, Marconi experimented with wireless telegraphy, making several 
attempts not only with Branly’s coherer but also with other technological components. 
Experimentation enhances the understanding of technological interdependencies and eventu-
ally leads to successful connections.
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Figure 1b illustrates the earliest connections among technological elements, meaning that 
the first invention has given birth to the domain. Inventions are meant to solve specific prob-
lems (Dosi, 1982). These technical solutions may include two or more technological ele-
ments sharing certain technical features that facilitate their connection (Carnabuci & 
Bruggeman, 2009; Carnabuci & Operti, 2013). For instance, Marconi combined several tech-
nological components, such as Hertz’s spark, Branly’s coherer, Popov’s antenna, Lodge’s 
tuning circuit, and Morse code, to build the first long-distance wireless telegraph. All these 
components already existed (Figure 1a), but it was only after years of experimentation that 
Marconi was able to discover the interdependencies among them and connect them success-
fully. During this inception phase, all the technological elements exhibit the same level of 
fitness in the nascent technological domain and play a part in its emergence. Inventors shape 
the domain by selecting and connecting certain technological elements based on the specific 
goal of the inventing process (Capaldo, Lavie, & Messeni Petruzzelli, 2017; Grigoriou & 
Rothaermel, 2014; Schillebeeckx et al., 2021; Wang & Chen, 2018).

Figure 1c depicts how connections aggregate and generate elementary structures with 
the potential to subsequently evolve. Early inventions foster subsequent inventive activity 
that exploits previous combinations while attracting new technological elements. Although 
the technological interdependencies are the same as in Figure 1b, some of the technologi-
cal elements in Figure 1c exhibit a higher level of technology fitness, which is an intrinsic 
quality of a specific technological element to be connected, thanks to the inventors, who 
act as agents—with different technological elements within a specific technological 
domain. This mechanism explains why some technological elements are more attractive 
than others (for example, technological element C1) even though they possess the same 

Figure 1
The Process of Technology Emergence
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number of previous connections. By using their knowledge and creativity, inventors can 
activate the technology fitness mechanism when they embody technical knowledge that is 
malleable and can easily connect with other technological elements, thus increasing a sys-
tem’s complexity. The modalities approach is helpful here as a means of explaining the 
mechanism of technology fitness because the original attributes and intrinsic characteris-
tics of the technological elements serve as drivers for recombination (Fleming, 2001; Kok 
et al., 2019; Wang et al., 2014). For example, in the early 1800s, the British chemist 
Humphry Davy discovered a chemical reaction that generated hydrogen. His discovery 
attracted further connections and was applied to the automotive industry in 1807 when the 
Swiss inventor Francois Isaac de Rivaz created a four-wheel vehicle powered by hydrogen 
and oxygen. In our framework (see Figure 1c), hydrogen can be represented by the techno-
logical element C1. Thanks to its fitness, it allows connections with many other elements, 
thus increasing the system’s complexity. These examples show how inventors are rela-
tively free to create something from scratch by combining different technological elements 
(Figure 1b). Their agency diminishes compared with Figure 1b, however, since they are 
more likely to combine technological elements that exhibit a high degree of technology 
fitness (i.e., C1) while also being free to discover new connections.

Figure 1d captures the self-reinforcing mechanism by which specific technological ele-
ments become predominant over time. For instance, de Rivaz’s hydrogen-powered vehicle 
received positive feedback that was confirmed in the late 1930s when William R. Grove cre-
ated a hydrogen fuel cell. Both de Rivaz’s and Grove’s intuitions were further reinforced by 
a Belgian inventor who developed and tested a large vehicle with a combustion engine in the 
1860s. In the move from one invention to another, some technological elements (including 
electrodes and electrolytes) were ignored and disappeared, while others, such as the cylinder, 
ignition systems, piston, crankshaft, and fuel storage, became prerequisites for further devel-
opments. This means that subsequent efforts by inventors became constrained by these core 
elements. For the sake of clarity, in Figure 1d, the self-reinforcing mechanism can be observed 
in the technological elements C1 and C2 (see Figure 1d), which gradually gain prominence 
and form a more stable structure compared with Figure 1c. Subsequent inventions relating to 
the combustion engine reinforced the link among these technological elements. These exam-
ples show how an initial path becomes increasingly crystallized with the potential to set a 
dependent trajectory. The predominance of specific paths constrains the agency of inventors 
since they have less influence when it comes to changing or modifying those paths once they 
have been established.

Moreover, the emergence of a more complex structure around two technological elements 
(C1 and C2 in Figure 1d) generates a pole of attraction. Subsequent inventions are built around 
core technological elements that are further reinforced by increasing the number of existing 
connections, but inventors also introduce new technological elements, thus expanding the 
scope of the technology. The fundamental difference between technology fitness and self-
reinforcing mechanisms lies in the criteria by which technological elements acquire new 
connections. The technology fitness mechanism is based on the intrinsic quality of a particu-
lar technological element to connect with other technological elements within a specific tech-
nological domain. Technology fitness makes some technological elements more attractive 
for new connections, regardless of their previous number of connections. In contrast, the 
self-reinforcing mechanism is predicated on a historical pattern of past connections where 
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technological elements with many existing connections are more likely to gain new ones 
irrespective of their intrinsic qualities. This implies that the technology fitness and self-rein-
forcing mechanisms can work jointly. For example, the anode is a core component of hydro-
gen fuel cell technology. It is essential for hydrogen oxidation and was initially characterized 
by a high level of technology fitness thanks to its compatibility with a variety of catalysts. 
This intrinsic quality attracted extensive research and development that led to a series of 
inventions. As these components became more established in the technological domain, self-
reinforcing mechanisms started to influence their further development. The widespread use 
and proven performance of the anode encouraged further research and optimization, thus 
reinforcing its technological dominance. The activation of the two mechanisms depicted in 
Figure 1 allows a technology to emerge.

Overall, our model explains technology emergence through two core mechanisms—tech-
nology fitness and self-reinforcing—that shape the configuration of a new technology. First, 
the technology fitness mechanism is activated by inventors as a result of the intrinsic quality 
of a specific technological element to connect with other technological elements within a 
specific technological domain. In line with the modalities approach, these connections are 
guided by both the intrinsic attractiveness of the technological elements and the inventors’ 
ability to embody them in an invention (Dosi, 1982). Technological elements with high levels 
of technology fitness act as a sort of magnet, attracting heterogeneous but compatible tech-
nological elements and fostering the integration of these elements by steering them in a 
specific direction. Second, the self-reinforcing mechanism crystallizes this direction by 
bonding connections in technology structures. The concurrent activation and persistence of 
these two forces transform elementary and easily malleable structures into more complex and 
rigid ones. The increased structuring restricts subsequent technology development. As a 
result, technological elements become less dependent on the inventor’s agency and contrib-
ute to further structuring through their semiautonomous agency. Indeed, in this case, a single 
inventor cannot intentionally force the positioning of a technological element within the 
technological domain, for instance, by moving one element from a peripheral to a more cen-
tral position.

Method

Following the theoretical framework outlined already, this research examines technology 
emergence as a structuring process in which sets of technological elements connect on an 
ongoing basis and generate spontaneous structure through the activation of technology fit-
ness and self-reinforcing mechanisms. To investigate the dynamics underpinning technology 
emergence and how they shape the configuration of a technology, we examine the recently 
emerged blockchain technology and track how it acquired structure over time.

We proceed as follows. First, we use network analysis to map and visualize connections 
among technological elements and detect the two mechanisms at work as blockchain tech-
nology emerges (Wang et al., 2014; Yayavaram & Ahuja, 2008). Second, we apply the 
decomposability measure (Yayavaram & Ahuja, 2008) to assess the structuring of the tech-
nological domain and show the interaction of the technology fitness and self-reinforcing 
mechanisms. Last, we use simulation techniques (Oberg, Korff, & Powell, 2017; Pham, 
Sheridan, & Shimodaira, 2016, 2020) to show how the two mechanisms shape the structuring 
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and emergence or non-emergence of any technology. We develop a simulation to create con-
trolled environments within which we can vary parameters representing our proposed mech-
anisms and observe the resulting dynamics. This allows us to consider the roles of these 
mechanisms in shaping technological domains beyond what we observe in the context of our 
study of the emergence of a specific technology.

Setting

Blockchain is an emerging software-based technology that has become essential for firms’ 
success and survival in the digital era (Bailey, Faraj, Hinds, Leonardi, & von Krogh, 2022; 
Chen, Pereira, & Patel, 2021; Hsieh & Vergne, 2023; Iansiti & Lakhani, 2017; Tapscott & 
Tapscott, 2017). Developed by Satoshi Nakamoto in 2008, it is one of the megatrends that are 
shaping today’s businesses and society (World Economic Forum Report, 2020).  Nakamoto’s 
(2008) white paper proposed the virtual currency known as Bitcoin to facilitate transactions. 
The author conceived blockchain as a distributed data ledger that would be capable of safely 
storing digital transactions without the intervention of a central authority, thus revolutioniz-
ing the traditional concept of currency. The emphasis on a peer-to-peer network generates 
currency exchanges between users by recording all transactions in a shared ledger that is 
dispersed across the world (Kher, Terjesen, & Liu, 2021). The first Bitcoins were created in 
a collaborative, open-source environment by Nakamoto, who was active until mid-2010. The 
project was subsequently transferred to the community.

Although it was initially aimed at the financial sector, blockchain’s scope has extended to 
the realm of cryptocurrency, enabling a wide range of applications of blockchain technology 
in the domains of gaming and entertainment, mobility, supply chains, and health care, among 
others (Biais, Capponi, Cong, Gaur, & Giesecke, 2023; Chen et al., 2021; Clarke, Jürgens, & 
Herrero-Solana, 2020; Schmeiss, Hoelzle, & Tech, 2019). In this regard, a prominent role has 
been played by Vitalik Buterin, who in 2014 introduced Ethereum,2 a next-generation block-
chain platform designed for executing smart contracts (a self-executing contract with the 
terms of the agreement between the parties directly written into lines of code). Because of its 
vast potential, numerous firms working on blockchain technology have emerged, pushing 
them to protect it from further development. This need for protection has translated into a 
rush to patent blockchain inventions (Clarke et al., 2020; Kaye & Wagstaff, 2017). An analy-
sis of these patented inventions can therefore provide a comprehensive picture of the struc-
turing process of the blockchain domain over time.

Data Collection

We collected international blockchain patents that are globally protected through the 
World Intellectual Property Organization to reduce any bias in national or regional patent 
activity (Criscuolo & Verspagen, 2008). We retrieved the patent documents using the Derwent 
Innovation Database,3 which enables the grouping of patents into families to reduce redun-
dancy in a sample (Harrigan, Di Guardo, Marku, & Velez, 2017). To this end, we used 
Clarivate Analytics, whose experts developed the search queries in Table 1. Searches were 
run on the patent title, claims, or abstract. The combination of the three queries after any 
duplications had been removed led to a final sample of 1,388 patent families distributed in a 
time frame from 2009 to the second trimester of 2020.
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We used the Derwent World Patent Index (DWPI) as our patent classification system. We 
reviewed the DWPI patent classification codes in depth to determine whether any of the 
codes had been reclassified, as this might have introduced bias into our data. We found that 
there had been no patent reclassification during the period under examination. Next, we 
transformed our sample into an appropriate data structure by pooling patents according to the 
year they were applied for.

Mapping and Visualizing Connections and Mechanisms

This study adopts a network-based approach, employing patent co-classification as a particu-
larly suitable method for revealing the structure and the earliest dynamics of a technological 
domain, thereby facilitating the design of maps without the time lag associated with citation-
based methods (Engelsman & van Raan, 1994; Tijssen, 1992). To conduct our network anal-
ysis, we first calculated co-occurrence matrices to capture yearly changes in the frequency of 
the appearance of two technological elements in patents. P denotes the set of all patents. Each 
patent p ∈ P is characterized by an application year y(p) and an associated set of technologi-
cal elements T(p) identified by the patent classification codes. For each separate year y 
observed in our dataset, we defined an N × N matrix Ay where N represents the total number 
of unique technological elements identified across all patents. The entry Aij

y  in the matrix Ay 
quantifies the connections between technological element i and technological element j for 
application year y. Each entry in the matrix is defined as

	 A i T p j T pij
y

p y p y= ∈ ∧ ∈=∑ : ( ) ( ( ) ( )), 	 (1)

where  is the indicator function that takes a condition as its argument and returns 1 if the 
condition is true or 0 otherwise. In our case, the indicator function checks if both technologi-
cal elements i and j are present in the set T(p) of a given patent p. If both are present, it returns 
1; if they are not, it returns 0. The summation then counts the number of patents in year y 
where both i and j co-occur.

Using the matrices Aij
y, we then proceeded to aggregate these matrices over specific time 

windows to capture cumulative interactions. Once disclosed, the technological knowledge 
included in patents becomes part of the collective technological landscape and can affect 
subsequent inventions. Therefore, for a series of end years Y = {2010, 2012, 2015, 2020}, we 
built cumulative matrices CY such that: CY = Σ y

Y
yA−2009 . Each matrix Cy includes the cumula-

tive co-occurrence of technological elements from the base year 2009 up to the respective 
end year in Y.

Using a multivariate analysis, we transformed the high-dimensional data in CY into a 
reduced-dimensional space. For network analysis, we interpreted each cumulative matrix CY 
as a weighted undirected graph GY. The technological elements in GY correspond to the 
unique technological elements (that is, the patent classification codes), with connection 
weights determined by the aggregated co-occurrence frequencies from the matrix (Yayavaram 
& Ahuja, 2008). The size of the technological elements reflects the frequency with which a 
particular technological element appears in a pool of patents: The greater the frequency, the 
larger the size. The more two classification codes co-occur in patent documents, the more 
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intense their interaction will be. According to our theoretical framework, the initial phase of 
technology emergence is characterized by the presence of a small number of technological 
elements with limited interconnections, reflecting the initial outcome of the inventive pro-
cesses. As these processes advance, technology fitness allows for the integration of new 
technological elements. This leads to a scenario of increased complexity translated into a 
large number of technological elements. Some of these technological elements become more 
prominent, activating a self-reinforcing mechanism that further increases their dominance in 
the technological domain.

Measuring Technology Structuring

We used the decomposability measure to capture the structuring process resulting from 
the interplay of technology fitness and self-reinforcing mechanisms. This measure quantifies 
both the cohesiveness of a structure and the strengthening of connections over time (Simon, 
1962; Yayavaram & Ahuja, 2008). Specifically, the technology fitness mechanism increases 
the number of new connections, thus adding complexity, while the self-reinforcing mecha-
nism enhances the number of strong connections associated with specific elements and aids 
in forming a core within the technological structure. To assess how technology is structured, 
we first identified each technological element’s microstructure, which includes all the direct 
connections of the focal technological element with its neighbors as well as the connections 
between these neighbors (Yayavaram & Ahuja, 2008). We then categorized connection pat-
terns as strong or weak according to the frequency of connections between two technological 
elements relative to all possible connections inside the focal technological element’s 

Table 1

Patent Search Query

Query (Q) Patent Families

Q1 (blockchain or block ADJ chain) OR CTB=(blockchain or block ADJ chain)) 
AND CTB=((hash near3 point*) or (link* near3 blocks) or (timestamp and 
transact*) or (Cryptography or cryptology) or ((record* near3 transact*) 
same (across* and (multiple or computers or devices or terminal*))) or 
e-cash or *currenc* or Bitcoin or Ethereum or Ripple or Litecoin or digital 
ADJ token)

620

Q2 ((distribut* ADJ ledger*) or ((distribut* near3 data*) and ((store* or accross*) 
near5 multiple))) OR CTB=((distribut* ADJ ledger*) or ((distribut* near3 
data*) and ((store* or accross*) near5 multiple)))) AND CTB=(decentral* 
or Consensus ADJ algorithm or blockchain or block ADJ chain or (comput* 
same (dispersed near5 network*) same (intercon* or connect*)) or (peer 
adj2 peer))

758

Q3 ((((smart ADJ contract*) and agreement) or (enforced near3 without near3 
interaction) or (autom ated ADJ escrow)) or ((protocol* or Consensus ADJ 
algorithm) near5 (agreement and transaction))) OR CTB=((((smart ADJ 
contract*) and agreement) or (enforced near3 without near3 interaction) 
or (automated ADJ escrow)) or ((protocol* or Consensus ADJ algorithm) 
near5 (agreement and transaction)))

161

  Q1 or Q2 or Q3 (duplicates removed) 1,388
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microstructure. Following prior literature, we proceed in determining a threshold connection 
value cvi operationalized as

	 cvi
j

r

j

i

w

C
= =∑ 1 , 	 (2)

where wj represents the number of connections occurring between technological elements 
ni and nj. We indicate with r the number of technological elements in the microstructure. Ci 
is the number of all possible connections of the focal technological element ni in the micro-
structure.4 Thus, cvi is a positive discrete number for each technological element ni. If the 
observed number of co-occurrences is above the threshold connection value, the connec-
tion pattern is strong. Conversely, values below the threshold indicate weak connection 
patterns. Then, we proceed with assessing the integration level Ini defined for each focal 
technological element ni as Ini =  q

Ci
, where q refers to the number of weak connection 

patterns.
Finally, decomposability measure D is determined as

	 D z I

i

N
i i= − ×

=
∑1

1

( ),	 (3)

where zi ranges between 0 and 1 and represents the relative size of each technological ele-
ment (that is, the ratio of the number of occurrences of a technological patent class and the 
total number of occurrences), Ii assumes values between 0 and 1 and measures its integration 
value, and N is the number of total technological elements. This formulation aggregates the 
technological element data, combining aspects of size and integration to measure how cohe-
sive the overall structure is.

The decomposability measure, which ranges from 0 to 1, helps us understand the struc-
turation process. Values between 0 and 0.5 reasonably indicate a nondecomposable struc-
ture. In this scenario, technological elements are interconnected, but the connections are 
distributed so broadly that no distinct structure or pattern emerges. For values greater than 
0.5 but less than 1, the structure is considered to be nearly decomposable. Here, the struc-
ture is more discernible, with a core technology emerging amid weaker connections. 
Finally, values equal to 1 signify a fully decomposable structure. This represents a scenario 
in which the technology is characterized by a lack of weak connections, meaning that the 
technology is highly self-contained, with each part operating independently rather than 
interdependently. As a result, the technology becomes locked in, with each component 
functioning in isolation, leading to a system that is resistant to external influences or inte-
gration with other technologies. This condition reflects a rigid structure that limits the 
potential for evolution. Following our theoretical framework, we expect a nearly decom-
posable structure (values higher than 0.5 and lower than 1) in the blockchain context, with 
increasing values of the decomposability measure over time. This is the result of the tech-
nology fitness mechanism, which produces an increase in weak connections, and the self-
reinforcing mechanism, which fosters the emergence of a technology core. We have 
included an additional example in Appendix A (see online supplement) with more detailed 
operationalization.
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Estimating Technology Fitness and Self-Reinforcing Mechanisms

According to our theoretical model, technology emerges thanks to technology fitness and 
self-reinforcing mechanisms. To jointly estimate these mechanisms, we use the PAFit 
method. This method is particularly suitable for modeling networks where both the number 
of connections between technological elements and their individual characteristics evolve 
dynamically (Pham et al., 2016). Following Pham et al. (2020), we indicate Pi(t) as the prob-
ability that a technological element ni receives a new connection at time t:

	 P t A ti i ki( ) ( ),αη × 	 (4)

where ηi is the technology fitness of technological element ni, Ak denotes the self-reinforcing 
mechanism, and ki(t) is the number of connections technological element ni has at time t.

When considering the technology fitness mechanism in isolation, the probability Pi(t) that 
a technological element ni connects at time t is given by a positive number ηi, independent 
of the number of connections the technological element possesses (k is not considered here). 
To measure ηi, in the formalization (4) the effect of the self-reinforcing mechanism is neu-
tralized by setting Aki(t) = 1 (Caldarelli, Capocci, De Los Rios, & Munoz, 2002; Pham et al., 
2020). The values of ηi are typically higher than 0, since the absence of technology fitness 
ηi = 0 would imply the technological element cannot form a new connection. Differences 
between technological elements in terms of values ηi explain why technological elements 
that joined the technological domain later can surpass those that were already there.

When the self-reinforcing mechanism is considered in isolation, the probability Pi(t) that 
a technological element ni connects at time t depends on the existing number of connections 
ki(t) that specific technological element ni already possesses; k ranges from 0 to the maxi-
mum number of connections composing the technology structure. The self-reinforcing mech-
anism Ak assumes a log-linear form Ak = kα, where α represents the self-reinforcing exponent 
(Krapivsky, Rodgers, & Redner, 2001; Pham et al., 2020). Understanding the value of the α 
exponent is fundamental because it explains to what extent established technological ele-
ments continue to dominate and thus influence technology structuring. When α = 1, it indi-
cates a situation in which a few technological elements become very highly connected. 
Values of α < 1 suggest that most technological elements have a moderate number of con-
nections; however, there are very few highly connected. In contrast, when α > 1, it represents 
a lock-in scenario where highly connected core technological elements dominate the overall 
technological domain, with less chance for less prominent technological elements to emerge.

Finally, we chose a 95% confidence interval to make our results more robust. The estima-
tion process in PAFit utilizes a majorization-minimization (MM) algorithm, which in the 
context of our model ensures efficient and effective estimation of both technology fitness and 
self-reinforcing mechanisms (Pham et al., 2016).

Results

Structuring of the Blockchain Domain

Figure 2 provides a comprehensive overview of the structuring process observed within 
blockchain technology, illustrating the results of the two mechanisms at play. By delineating 
the technological elements and mapping their connections over time, the figure highlights 
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Figure 2
The Structuring of the Blockchain Domain

I) 2009-2010 II) 2009-2012

No. patents: 5
No. tech. elements: 16
No. connections: 134

Decomposability
measure: 0.605

Highest connected tech. elements
1) T01-D01: 16 connections
2) T01-J05: 14 connections
3) T01-N02: 12 connections
4) T01-J12: 10 connections
5) W01-A05: 10 connections
6) T01-G03: 9 connections
7) T01-N01: 9 connections
8) S05-G02: 8 connections
9) T01-E01: 8 connections
10) W01-A06: 8 connections

No. patents: 12
No. tech. elements: 27
No. connections: 216

Decomposability
measure: 0.809

Highest connected tech. elements
1) T01-J05: 28 connections (+12)
2) T01-D01: 16 connections (+0)
3) T01-J12: 16 connections (+6)
4) T01-N02: 12 connections (+0)
5) T01-H01: 10 connections (+4)
6) W01-A05: 10 connections (+0)
7) T01-G03: 9 connections (+0)
8) T01-N01: 9 connections (+0)
9) T01-E01: 8 connections (+0)
10) W01-A06: 8 connections (+0)

IV) 2009-2020 III) 2009-2015

No. patents: 1,388
No. tech. elem: 287
No. connect.: 27,780

Decomposability
measure: 0.922

Highest connected tech. elements
1) T01-J05: 3,519 connections (+3,443)
2) T01-N01: 3,208 connections (+3,124)
3) T01-N02: 2,917 connections (+2,855)
4) T01-D01: 2,811 connections (+2,747)
5) T01-S03: 1,632 connections (+1,572)
6) T01-J12: 1,552 connections (+1,521)
7) W01-A05: 1,470 connections (+1,427)
8) W01-A06: 1,113 connections (+1,083)
9) T01-E04: 922 connections (+900)
10) W01-C01: 522 connections (+516)

No. patents: 41
No. tech. elements: 45
No. connections: 746

Decomposability
measure: 0.813

Highest connected tech. elements
1) T01-N01: 84 connections (+75)
2) T01-J05: 76 connections (+48)
3) T01-D01: 64 connections (+48)
4) T01-N02: 62 connections (+50)
5) T01-S03: 60 connections (+60)
6) W01-A05: 43 connections (+33)
7) T01-J12: 31 connections (+15)
8) W01-A06: 30 connections (+22)
9) T01-E04: 22 connections (+22)
10) W01-A03: 22 connections (+22)

DESCRIPTION OF THE PATENT CLASSIFICATION CODES (ordered alphabetically)
S05-G02: Medical and Digital Health systems, hospital equip.
T01-D01: Data Encryption and Decryption
T01-E01: Sorting, selecting, merging, or comparing data
T01-E04: Comparing digital values; random number generators
T01-G03: Using redundancy in operation or hardware
T01-H01: Interconnections to Random Access Memory (RAM)
T01-J05: Data processing systems for administration, commerce, or 
information retrieval

T01-J12: Program management, GUI/WIMPS/HCI
T01-N01: Internet and information transfer - applications
T01-N02: Communications and control
T01-S03: Claimed software products
W01-A03: Multiple use of transmission path
W01-A05: Secret communication
W01-A06: Exchanges; connections between exchanges
W01-C01: Telephony - Subscriber equipment
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technology emergence and evolution in terms of complexity and structuring. We explain this 
process using four distinct time windows to convey how the technological elements self-
organize, attract each other, and self-reinforce their position. Each window in Figure 2 reports 
the number of patents, the number of technological elements, the number of connections, and 
the top 10 most connected technological elements ranked according to their total number of 
connections. The decomposability measure is also included to capture the degree of structur-
ing and assess temporal changes.

Moving from the upper-left-hand side, Figure 2 (I) illustrates blockchain’s earliest con-
nections in the 2009-to-2010 time frame. The combination of 16 technological elements 
included in five patented inventions is an expression of the initial efforts of inventors at a 
micro level. These results are consistent with our theorization (as depicted in Figure 1b and 
further in Figure 1c). In particular, the mechanism of technology fitness is evident in this 
phase, and it may determine different paths for the technological elements. For instance, the 
technical features of T01-D01 (data encryption and decryption) allowed it to establish 16 
successful connections (exhibiting higher technology fitness) while T01-F02 (interrupt, mul-
tiprogramming, multitasking) was able to connect only once. Structuring can therefore be 
considered as the outcome of successful connections among technological elements that self-
organize. The decomposability measure for this time interval is consistent with these obser-
vations, as it displays a value that falls into the nearly decomposable level (0.605).

Figure 2 (II) shows a more complex structure that transforms the blockchain domain into 
a new configuration consisting of 27 technological elements and 216 connections in the 
2009-to-2012 time frame. The key aspect that needs to be highlighted in this snapshot is the 
appearance of the self-reinforcing mechanism. This dynamic is illustrated by the initial pre-
dominance of one technological element—T01-J05 (data-processing systems for administra-
tion, commerce, or information retrieval)—over the rest. Consistent with our model (see 
Figure 1d), the reinforced connections foster structuring, as evidenced by an increase in the 
decomposability value (0.809) for the time window. At the same time, it is also possible to 
observe the technology fitness mechanism at work. This mechanism explains why techno-
logical elements with the same number of connections evolve in different ways, as is the case 
with W01-A05 (secret communication), which was able to attract more connections than 
T01-J12 (program management), even though they had had the same number of connections 
in the previous time frame (10 each). The emergence of an initial, albeit fragile, path that was 
primarily related to Bitcoin reduced the scope of the experimentation—an early, but weak, 
signal of the diminishing agency of the inventors.

Figure 2 (III) depicts the cumulative growth of blockchain in the time frame 2009 to 2015. 
Compared with the previous time frames, the domain has acquired greater complexity (45 
technological elements linked 746 times), and a higher degree of structuring has led to the 
generation of an initial technological core. In this time frame, we see that the domain includes 
almost 4 times as many patents compared with the previous period (41 vs. 12) while the num-
ber of technological elements has less than doubled. This means that the inventors are increas-
ingly keen to combine existing technological elements that fit together better. Figure 2 (III) 
shows how some technological elements increased their size and consolidated their connec-
tions (signaled by thicker connections). Indeed, all the technological elements included in the 
list of the highest connected technological elements (Figure 2) acquired new connections to 
varying degrees. These differences in amount depend on the magnitude of and interplay 
between technology fitness and self-reinforcing mechanisms. For instance, T01-N01 (internet 
and information transfer–applications) shifted from the eighth position (nine connections) in 
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the second time frame to the first position (84 connections) in the third. Thanks to the self-
reinforcing mechanism, existing connections among technological elements were confirmed, 
while the technology fitness yielded new ones. This is not surprising, because the field began 
to proliferate during this time window due to Ethereum, whose white paper was released in 
2014. Ethereum highlights the fundamental role played by its inventor, Vitalik Buterin, whose 
agentic action paved the way for the rapid development of technology beyond the financial 
sector. Domain structuring over the 7-year window is evidenced by the increase in the decom-
posability value (0.813), indicating a more cohesive structure over time.

In the final window (2009-2020) depicted in Figure 2 (IV), we observe the exponential 
growth of the blockchain domain in terms of the number of patents (1,388), number of tech-
nological elements (287), and number of connections (27,780). This intensive inventive 
activity has profoundly changed the domain configuration, which now reveals a clearer 
technological core. The four technological elements listed in Figure 2 (IV) have 45% of all 
the connections while representing 1% of the overall domain. This is an expression of the 
self-reinforcing mechanism, which has consolidated certain specific technological ele-
ments. Technology fitness has also fostered complexity by attracting new technological 
elements and shaping the blockchain domain. For example, technological solutions such as 
cryptography, proof of work, and proof of stake are considered to have greater fitness 
because they enhance the security of the blockchain. The accumulation of micro interac-
tions among the technological elements has formed a specific trajectory that is now revealed 
at a macro level. The increase in structuring (2009-2020) is confirmed by an increase in the 
decomposability value (0.922), which depicts a nearly decomposable structure with defined 
microstructures and numerous connections that bridge them. Also, thanks to the interplay 
between the two mechanisms, the primitive core described in Figure 2 (III) is transformed 
into a technological core that serves as an “attractor,” encompassing a domain’s identity. A 
technology core can be difficult to change unless self-reinforcing and technology fitness 
mechanisms definitively cease.

It should be noted that almost all the technological elements listed in the top 10 most con-
nected elements in the first time frame (2009-2010) also appear in the top 10 lists in subse-
quent time frames, although more than a decade has passed. The massive contribution of 
numerous inventors worldwide is heavily grounded on and profoundly influenced by the 
initial intuition of a few. We observed that path dependence increases with time, while the 
inventors’ agency decreases as technology trajectories become more evident. Indeed, inven-
tors face technology constraints that “force” them to comply with a technology core and a 
defined, although malleable, technological structure. New technological elements that join 
the blockchain domain cannot occupy a random position; rather, they must self-organize 
according to their connection with the existing technological elements. To capture the post-
Ethereum structuring process, we mapped the blockchain domain in the 2014-to-2020 time 
window. The results are very similar to those from 2009 to 2020, suggesting the importance 
of the role played by Ethereum in shaping the blockchain domain.

Technology Emergence: Joint Estimation of the Mechanisms at Work

To show the joint influence of the two mechanisms on technology structuring, Table 2 
includes the estimation of the α exponent when considering the self-reinforcing mechanism 
in isolation (Model 1) and the joint estimation of α when both self-reinforcing mechanism 
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and technology fitness are considered (Model 2). Blockchain technology presents a sublinear 
case in which α < 1 in both models, with values of 0.923 and 0.907 for Model 1 and Model 
2, respectively. This result confirms that while technological elements with more connections 
are more likely to acquire even more, the rate at which they receive new connections is not 
directly proportional to their current number of connections (k).

Moreover, when the technology fitness mechanism is included in Model 2, the α exponent 
decreases. This result is consistent with our theorization that both technology fitness and self-
reinforcing mechanisms jointly affect technology structuring. Indeed, the self-reinforcing 
mechanism is not the sole driver of technology, but also technology fitness is present. The 
latter allows technological elements with fewer connections to become more influential, 
independently of the number of existing connections, thus leading to a more heterogeneous 
technology structure. Note that the 95% confidence intervals do not include the value 1, mak-
ing the results of a sublinear case more robust. Although the details are beyond the scope of 
the present study, in Appendix B online, we include additional analyses aimed at measuring 
the individual contribution of the two mechanisms in shaping blockchain technology.

Simulating Different Paths of Technology Emergence

We carried out simulations to generalize from our observations in the blockchain domain 
and show how technology structuring unfolds when the two identified mechanisms operate 
independently or jointly. By simulating the two mechanisms at work, we were able to assess 
alternative configurations of technology (non-)emergence against the path observed for 
blockchain technology, thus providing a further test of the robustness of our results. The 
methods we used to develop these simulations are included in Appendix C online. In this 
subsection, we present the results in terms of the different configurations that can potentially 
arise in any technological domain.

Figure 3 visualizes the simulation outcomes. Three scenarios are considered: (a) Only the 
technology fitness mechanism is present, (b) only the self-reinforcing mechanism is present, 
and (c) the technology fitness and self-reinforcing mechanisms work jointly.

Simulation 1 presents a scenario in which the presence of technology fitness has fostered 
connections with new technological elements but the formation of the technological core is 
not evident. The absence of a self-reinforcing mechanism leads to a more distributed and 
interconnected structure, resulting in a non-emergence of the technology. The technology is 
in its earliest stages of development, during which a variety of paths can still be explored 
through experimentation. Without a clear core, however, this scenario involves a high 
degree of uncertainty regarding the evolution of technological patterns. This situation 
depicts a fully decomposable structure in which connections are broadly distributed and no 

Table 2

Estimation of Self-Reinforcing and Technology Fitness Mechanisms

Model 1 Model 2

α exponent 0.923 0.907
95% confidence interval [0.880, 0.965] [0.876, 0.937]
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specific trajectory is established. Considering that no constraint is imposed by a dominant 
trajectory, inventors are free to generate unexpected combinations of technological ele-
ments that might give rise to profound changes in the technology.

In Simulation 2, the technological structure is shaped exclusively by the self-reinforcing 
mechanism. As discussed in our theoretical framework, the technology fitness mechanism is 
essential because it enables connections. To simulate the absence of the technology fitness 
mechanism, all the technological elements are considered as having an equal ability to attract, 
and connections occur on a random basis. In this simulation, we observe the powerful force 
of this mechanism, which has fostered a dense, interconnected technological core at the 
expense of complexity and variety, and as clearly emerges, the number of elements compos-
ing the technology decreases significantly and a rigid trajectory is laid out. Under these cir-
cumstances, the technology becomes locked in around its core elements, thus limiting 
experimentation with new technological combinations and restricting growth opportunities. 
This scenario suggests a nondecomposable structure, where core technological elements are 
profoundly interconnected, and changing even one can have significant implications for the 
entire structure. A scenario like this highlights the overreliance of the technological domain 
on a few technological elements, offering inventors very limited options for technological 
advancement.

Finally, Simulation 3 depicts a general model of technology emergence in which the 
technology fitness and self-reinforcing mechanisms work together. Here, the structure 
appears to be nearly decomposable, with sets of strongly connected technological elements 
forming a core, even though numerous weak connections are also present. Within this 
framework, inventors reinforce the recombination of core technological components while 
exploring multiple new technological options. This scenario reflects the case of blockchain 
technology, where certain technological elements have activated the self-reinforcing mech-
anism, becoming dominant and crystallizing their position at the core. Technology fitness 
has attracted many technological elements, further fostering exploration. When both mech-
anisms are at work, even peripheral technological elements can potentially enter the core. 
This entry can be facilitated by an exponential growth of connections with one or more 
existing core technological elements. Thus, the model illustrates how the emergence of 

Figure 3
Simulations

S1: Only technology fitness is present S2: Only self-reinforcing mechanism is 
present

S3: Both mechanisms are present
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technology is the outcome of complex interactions between technology fitness and self-
reinforcing mechanisms. These interactions not only allow emergence but also shape any 
technological domain.

Discussion

The aim of our study was to investigate the structuring processes that underpin the emer-
gence of a technology. We have drawn on complexity theory to build a theoretical model that 
depicts how sets of technological elements that have been synthesized in patented inventions 
self-organize and gradually aggregate into more complex structures that serve as a basis for 
further technology development. The progressive aggregation and structuring of the techno-
logical elements occur through the interaction of two distinct mechanisms: technology fit-
ness and self-reinforcing. The technology fitness mechanism embodies the attractiveness 
force working at a technological element level, while the self-reinforcing mechanism synthe-
sizes the force of a connection between technological elements, and the emergence of a pre-
dominant connection over time crystallizes patterns and trajectories, leading to technology 
emergence.

The application of the model to the blockchain domain showed that an increasing number 
of inventions and the modalities of putting together new and existing technological ele-
ments—facilitated by the technology fitness mechanism—considerably increased the com-
plexity of the domain. The successful combination of technological elements reinforced 
specific connections, thanks to the self-reinforcing mechanism. Furthermore, the joint activa-
tion and persistence of both technology fitness and self-reinforcing mechanisms enabled 
certain technological elements to attract numerous others, strengthening their connections 
and thereby consolidating into a technology core. Our simulations extended the dynamics of 
technology emergence observed in the blockchain domain to other technological domains 
based on variations in the presence or absence of the technology fitness and self-reinforcing 
mechanisms. Our results suggest three theoretical contributions, which we discuss next.

Understanding Technology Emergence as a Structuring Process

Our study brings together two important dimensions of technology emergence. First, it 
bridges the micro and macro processes of technology structuring; and second, it combines 
the agency of inventors with that of technological elements. Existing studies on the modali-
ties of emergence have focused on the micro dimension of technology speciation and recom-
bination. From this perspective, emergence is conceptualized as an aggregation process that 
involves elementary pieces of knowledge combined in an invention (Basalla, 1988; Cattani, 
2006; Cattani & Mastrogiorgio, 2021; Fleming & Sorenson, 2004; Hargadon, 2003; Kodama, 
1992; Levinthal, 1997; Xiao et al., 2022). In contrast, the literature on trajectories has pre-
dominantly examined the macro dimension of technology emergence and development, dis-
entangling patterns and directionalities (Anderson & Tushman, 1990; Tushman & Anderson, 
1986; Utterback & Abernathy, 1975). Although these two perspectives represent the core 
foundations of innovation literature, they have been hitherto considered separately.

By integrating research on modalities and trajectories, our study suggests that technology 
emergence results from the interaction of micro- and macro level dynamics that gradually 
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take a system from simplicity to complexity and from loose interactions to structured pat-
terns. Specifically, activating the technology fitness mechanism facilitates a broader combi-
nation of technological elements, thus increasing complexity, while activating the 
self-reinforcing mechanism generates patterns that crystallize into cores and progressively 
structure the system. These observations are theoretically important because they explain 
how a technological domain is shaped and under what conditions of emergence, non-emer-
gence, and locked-in scenarios.

Our model of semiautonomous agency also expands current understandings by recogniz-
ing both the efforts of inventors and the agentic properties of technological elements during 
processes of technology emergence. Admittedly, technological innovation is a human 
endeavor that relies on the initiative of multiple inventing subjects and the sharing of knowl-
edge between academic scientists and industrial research managers (see, e.g., Evans, 2010; 
Fleming & Sorenson, 2001): On the one hand, inventions imply the existence of an agent of 
recombination (Fleming & Sorenson, 2001; Kok et al., 2019), while on the other, the institu-
tionalization of inventions into patents with legal status turns human inventive acts into tan-
gible technological elements that acquire semiautonomous agency. In this regard, the 
emergence of a technology is similar to the construction of scientific knowledge (Dosi, 
1982), in which initial ideas gradually detach from their originator, becoming semiautono-
mous and taking on a life of their own (Gould, 2002; Greenwood & Meyer, 2008). While 
combinations of technologies are created by inventors or organizations, the success of those 
combinations also depends on the underlying characteristics of the technological elements 
themselves, and hence, we argue that a model of technology emergence should simultane-
ously consider the agentic actions of inventors and organizations and the self-organizing 
processes arising from the interacting technological elements.

Our study shows how the mechanisms of technology fitness and self-reinforcing affect 
inventors’ efforts by shaping technology opportunities and constraining future developments. 
In the case of the blockchain domain, we observed that the inventor’s initial intuition to com-
bine key technological elements, such as data encryption and decryption, secret communica-
tion, and data-processing systems, crystallized into a technology core. The path-dependent 
trajectory compelled subsequent inventors to follow the emergent pattern, and so the inven-
tor’s agency to independently shape technology gradually decreased. This happens because 
technological elements can self-organize through a semiautonomous agency, following rules 
of technology fitness and self-reinforcement. Although the self-reinforcing mechanism 
increases over time, the blockchain field does not exhibit a locked-in situation, which sug-
gests that changes to and the persistence of these mechanisms may counteract the decrease in 
the inventors’ agency. These findings are theoretically important because they contribute to 
debates on the agency of things (Latour, 1987) relating to processes of technological emer-
gence. They suggest that inventors delegate agency to patents, which interact in a semiau-
tonomous manner and are eventually combined in nonpredictable technological 
configurations. These agency mechanisms shape technological modalities and trajectories.

The Role of Space and Technological Distance

This study has implications for our understanding of the spatial dimension of technol-
ogy in general, and specifically the role of technological distance in management studies 
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(Capaldo et al., 2017; Rosenkopf & Almeida, 2003; Rosenkopf & Nerkar, 2001; Wang & 
Chen, 2018). Technological distance, which is commonly viewed as the difference in the tech-
nological profile of two patent portfolios (Nooteboom, Van Haverbeke, Duysters, Gilsing, & 
Van den Oord, 2007; Savage et al., 2020), has mostly been investigated in contexts like merg-
ers, acquisitions, and inter-company collaborations to examine partner selection and innova-
tion performance (see Ahuja & Katila, 2001; Mowery, Oxley, & Silverman, 1998). Studies in 
this stream of research have mainly assessed technological distance by taking patents and 
simply counting the number of classification codes shared by two enterprises’ portfolios 
(Diestre & Rajagopalan, 2012). A more recent study by Capaldo et al. (2017) has investigated 
technological distance at a patent level by accounting for the distance of technological ele-
ments included in a single patent. While these patent-based indicators are effective for analyz-
ing large datasets, their lack of inherent temporal and sectoral dynamics is a limitation.

Our results challenge previous understandings (see, e.g., Ahuja & Katila, 2001; Capaldo 
et al., 2017; Rosenkopf & Nerkar, 2001) and highlight the fact that technological distance can 
be treated not as an absolute measure but rather in the context of a specific technological 
domain. Technological elements have varying roles in the domain, which may change over 
time. We showed that in the case of blockchain technology, the structuring process brought 
together distant, previously unconnected technological elements, such as cryptography, 
secret communication, and financial applications. Once the newly born domain has been 
formed and its technological core has been structured, a new trajectory is defined. For inven-
tions to align with this emerging trajectory, they must incorporate components of blockchain 
technology. Thus, individual technological elements of subsequently patented inventions 
may seem distant when viewed separately but are closely linked when considered within the 
context of blockchain technology.

When viewed from this perspective, measures of technological distance should consider 
both the interactions that exist between technological elements in a given technological 
domain and the evolution of these interactions. Several key recommendations suggest them-
selves here. First, patent-based measures of technological distance should preserve the gran-
ularity of technology knowledge embedded in inventions by looking at the multiple and 
distinct patent classification codes. Second, to account for the interaction between techno-
logical elements, the co-occurrence of patent classification codes should reflect temporal 
changes in their likelihood of appearing jointly within a specific domain, indicating whether 
or not they are positioned at the core of the technology. The introduction of a dynamic tech-
nological distance indicator may prove to be an important advance in this regard. Last, as 
these interactions change over time, the calculated likelihood should refer to a specific time 
frame. A patent indicator should thus weigh the relevance and interactions of patent classifi-
cation codes within the evolving technology. By improving measures of technological dis-
tance, we can more effectively recognize and leverage potential complementarities and 
synergies in innovation strategies. Appendix D in the online supplement includes a dynamic 
measure of technological distance.

A Temporal Model of Technology Emergence

Our results suggest a new perspective on the temporal dynamics underpinning technology 
emergence. On the one hand, studies on modalities conceptualize emergence as a focal event 
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where the interaction between technological components has the potential to yield a new 
technological domain (Basalla, 1988; Cattani, 2006; Cattani & Mastrogiorgio, 2021; Fleming 
& Sorenson, 2004; Hargadon, 2003; Kodama, 1992; Levinthal, 1997). On the other, research 
on trajectories has explained links in time showing how technology emergence might follow 
specific paths that unfold linearly (path dependence) or are punctuated by radical shifts 
(punctuated equilibrium) (Anderson & Tushman, 1990; Tushman & Anderson, 1986; 
Utterback & Abernathy, 1975). Thus, while the studies on modalities have looked at the syn-
chronic aspects of technology emergence, the research on trajectories has disentangled the 
diachronic issues.

Our model tracks the emergence of new technologies by showing both synchronic and 
diachronic evolutionary dynamics. Specifically, our review of the blockchain domain pro-
vides synchronic snapshots of the state of a given technology at different points in time from 
inception to later evolution. In each snapshot, our analyses have captured processes of self-
organization driven by technology fitness and self-reinforcing mechanisms that portray 
micro-level interactions among technological elements. In the specific domain of blockchain, 
both technology fitness and self-reinforcing mechanisms played a crucial role. By connect-
ing the different snapshots and expanding the time frame, we have been able to observe 
changes in the mechanisms at work. Specifically, technology fitness allows more recent tech-
nological elements to increase their influence in the domain while self-reinforcing leads 
prominent technological elements to increase their influence over time. By providing a more 
holistic picture of the temporal structuring of technology, our study can help researchers 
understand what initial constraints based on the initial decisions taken by inventors might 
determine specific technological paths and enable a core structure to be identified in the 
technological domain (Arthur, 1994).

The temporal structuring of emerging technologies also has important consequences for 
predicting future developments of a technological trajectory. Our study has focused on the 
micro and macro dynamics of technology emergence in a technological domain that is still 
evolving. On the basis of our simulations, we identify three distinct evolutionary scenarios—
non-emergence, lock-in, and emergence—in which the presence or absence of technology 
fitness and self-reinforcing mechanisms shape the structuring of a new technology. Specifically, 
technology fitness facilitates connections among diverse technological elements, increasing 
the complexity and the scope of technology, while the self-reinforcing mechanisms contribute 
to the formation of a technology core and the consolidation of technological trajectories.

These scenarios have important management implications because they can guide man-
agers toward the adoption of a successful technology strategy. At this time, many innova-
tors are struggling to contribute to the emergence of new domains. An example of this 
might be cultured meat technology, which is attracting substantial investment and encour-
aging the entrance of new players, including start-ups. Although the promise of a new 
market is there, however, the technological domain has not yet emerged. To make this 
happen, innovators should first attract new technological elements by borrowing them 
from other fields (such as plant-based meat), reinforcing successful procedures and tech-
nological patterns. In other words, to innovate effectively, firms need to assess emerging 
configurations of technology fitness and self-reinforcing and make informed decisions 
about how novel or conforming their technological innovations should be (Brewer, 1991; 
Zhao, Fisher, Lounsbury, & Miller, 2017).
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On the basis of the outcomes of our simulations, we expect that technology is more likely 
to emerge when firms and innovators exercise agency in relation to the lacking mechanism. 
In a scenario of non-emergence, where technology fitness is the only mechanism being acti-
vated, innovators should concentrate their efforts on exploiting existing connections and 
helping crystallize the core domain, thus providing it with a stronger identity. Conversely, 
when self-reinforcing mechanism is being used in isolation, firms and innovators need to 
concentrate on fostering technology fitness, thus avoiding lock-in effects. Managers should 
thus aim for an “optimal point” where their technological innovations are distinct enough to 
avoid lock-in effects but also sufficiently aligned with the core domain to ensure relevance 
and applicability (Hsu, Hannan, & Koçak, 2018; Zhao et al., 2017; Zuckerman, 2016). In this 
case, innovators should experiment with other complementary domains, thereby increasing 
technological opportunities and expanding the scope of the technology. These considerations 
can also be read in terms of implementing a strategic balance between consolidating core 
technologies and fostering technological diversity (Hsu et al., 2018) concerning technology 
emergence since the value of an innovation is maximized either when extending its techno-
logical scope and opportunities in a technological domain or when investing in strategic 
activities close to the core of the domain. Finally, firms and innovators should also consider 
the agency of the technological elements themselves. This means understanding the inherent 
characteristics, strengths, and integration of the relevant technology and how they might 
influence and shape the domain.

Conclusion

As with any study, this work has some limitations that can set the stage for future research. 
First, we used patents to examine inventive activity in a particular domain. It has long been 
argued that not all inventions are patented, either because firms rely on secrecy (Leten, 
Belderbos, & Van Looy, 2016) or simply because some inventions are open-source. This lat-
ter aspect is particularly relevant for the blockchain domain because the first Bitcoins were 
created in a collaborative, open-source environment. Nevertheless, although it was not pos-
sible to track non-patent-related information, we might deduce that the patents included in 
our sample encompass key technology features at that specific time. To this extent, they can 
be considered to be representative of the overall knowledge of blockchain. Future studies 
should extend our understanding of the role of non-patent-related information in setting new 
technology patterns. Second, this study employs patent co-classification to investigate emer-
gence as a structuring process, focusing on the blockchain domain. Although this fine-grained 
lens is particularly suitable to capture technology dynamics and early-stage developments, 
future studies could utilize patent co-citation analysis (e.g., Jaffe, Trajtenberg, & Henderson, 
1993; Jaffe & de Rassenfosse, 2017) to measure and track the knowledge flows and examine 
further evolutionary stages of the blockchain technology. Third, our results portray the for-
mation of a technological core that acquires increasing complexity and broadens the scope of 
application. This points to the establishment of blockchain as a general-purpose technology 
(see, e.g., Bresnahan & Trajtenberg, 1995; Goldfarb, Taska, & Teodoridis, 2023). Future 
studies might investigate these dynamics by empirically examining how and to what extent 
technology fitness and self-reinforcing mechanisms contribute to structuring a domain as a 
general rather than a narrowly structured objective. Fourth, this study does not account for 
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market dynamics. Market feedback is fundamental for directing a firm’s R&D efforts to sat-
isfy customer needs. We have assumed that firms are willing to develop technologies that 
appear to be more promising, thereby allowing them to gain a competitive advantage. Future 
research might consider both technology and market forces to build a more comprehensive 
overview of the emergence and structuring of a technology domain. Finally, in line with prior 
recombination literature, our analysis is based on pairs of technological elements (Carnabuci 
& Operti, 2013; Fleming, 2001; Fleming & Sorenson, 2001, 2004). We have assessed how 
their connections change over time and eventually create a specific trajectory. Although we 
have used the decomposability measure to assess technology structuring by accounting for a 
broader set of connections rather than direct connections, future research might examine trios 
or even larger elementary configurations to assess structural stability. Such an expansion 
might build upon our current findings, offering a more complex and nuanced understanding 
of technological domains.

This study contributes to our understanding of technology emergence by looking at the 
structuring processes by which technological elements progressively aggregate and crystal-
lize into stable outcomes. In line with the tenets of complexity theory, our study assumes that 
technology is always in the process of becoming or turning into something different (Tsoukas, 
2017). From this perspective, technology emergence is an interactive accomplishment that 
begins as an open-ended process and becomes progressively constrained by the boundaries 
of emerging technological patterns and self-reinforcing mechanisms. It is hoped that our 
findings will encourage future research on technology emergence aimed at testing and 
extending our theoretical insights across different technological domains.
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Notes
1.	 The concept of delegated agency resonates with the literature on memetic evolution (Blackmore, 2000), 

according to which technological elements act as “meme machines,” that is, as replicators that fuel the evolution of 
ideas by means of memetic processes of copying, varying, and selecting knowledge irrespective of the intentionality 
of the initiators of those ideas.

2.	 See https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.
pdf.

3.	 Derwent Innovation Database is one of the most comprehensive worldwide patent databases. It includes 
information on around 70 million patents issued by 52 patent authorities worldwide.

4.	 Ci accounts for all possible connections of the focal technological element ni within the microstructure, 
including both the direct connections of the focal technological element with its neighbors and the connections 
among these neighbors (Yayavaram & Ahuja, 2008).
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