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 Abstract -- Over the past decade, many laboratories have 

begun to explore brain computer interface (BCI) technology as a 

new communication option for those with neuromuscular 

impairments that prevent them from using conventional 

augmentative communication methods. This work outlines the 

potential benefits of BCI, summarises a number of developments 

which have been made in recent years and provides an overview of 

the fundamental requirements which must be acknowledged for the 

successful progression of BCI technology. A novel proposal for a 

unique BCI system is also detailed.  
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I INTRODUCTION 

The study of EEG-based communication is a very 

important area of research in the world. Around three 

million people in the UK [1], approximately thirteen 

million people in rural America [2] and an estimated 

1 in 8 people in Australia [3] alone are affected from 

neuromuscular disorders. The pathways that control 

motor neurons in the spinal cord and brainstem are 

affected and in the worst cases patients have no 

control over any of their muscles and thus, have no 

means of communication with other people. A new 

form of communication is essential to aid these 

disabled people and especially those with no 

communication ability whatsoever (i.e. “locked 

out”). Brain-computer interface technology may help 

improve the standard of living for these people. An 

alternative communication channel for those 

physically impaired people is one of the major 

advantages of the BCI. There are, however, other 

advantages, again, from a medical point of view and 

from a similar medical focus (i.e. neuro disorders).      

25% of the world’s 50 million people with 

epilepsy [4] have seizures that can not be controlled 

by medication or epilepsy surgery. Since the 1970s 

clinicians, neuroscientists and engineers have 

proposed technologies for treating seizures, with the 

ultimate goal of implanting stimulators or drug 

infusion devices in the brain to abort seizures before 

clinical onset. Such efforts have received further  

 

boosts in recent years due to evidence suggesting 

that seizures may be predictable [5]. 

Non-linear time series analysis of the EEG 

recorded within the seizure generating area of the 

brain indicate marked changes in non-linear 

characteristics for up to several minutes prior to 

other states or recording sites [6]. However, it 

remains to be established whether different methods 

of non-linear time-series analysis could furnish 

additional precursors that allow extending the 

knowledge about seizure generating mechanisms in 

humans.  

The EEG based BCI technology is aimed at 

offering a new communication channel to those 

people who suffer from neuromuscular disorders or 

in the case of epilepsy a sub-conscious 

communication channel.  This technology provides 

an alternative communication channel which does 

not depend on the peripheral nerves or muscles [7]. 

This method of communication is provided solely by 

the presence of ElectroEncephaloGraphic (EEG) 

activity around the brain. The EEG, measured from 

the scalp, is used to determine what the user is 

attempting to communicate or what action is 

intended. A translation algorithm is used to convert 

or translate the electrophysiological signal, from the 

user, into an output that can be used to control a 

computer. Using the same concepts as that of BCI, 

an epileptic seizure prediction system may also be 
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feasible. In this case it would be a communication 

channel that the user communicates to a device or 

computer sub-consciously that he/she is about to 

have a seizure and the user can then respond with the 

appropriate action.    

The following section describes the EEG signal 

and how it is measured. Various features of the EEG 

signal are discussed and an analysis of these 

characteristics in relation to specific BCI 

applications is given. The method of measuring the 

effectiveness of the BCI is shown in section III and 

section IV provides a review of algorithms used to 

classify the EEG signals. Detailed in section V are 

some unfrequented concepts of the EEG signal in 

relation to chaos theory. Section VI outlines a few 

novel ideas for future research in BCI technology.  A 

conclusion is given in section VII. 

II ELECTROENCEPHALOGRAM (EEG) 

EEG is an electrical activity produced by billions 

of firing neurons within the brain. The neurons carry 

low voltage (≤100mV) spikes which occur in various 

cortical areas at different times causing an electrical 

field of activity all over the surface of the brain. The 

voltages carried within the neurons are relatively low 

thus; the resultant EEG activity is nebulous, ranging 

from 5-100 µV.  

The vast amount of neuronal activity causes the 

EEG signals to be very complex. There are a number 

of other features which add to this complexity, 

causing the observed signal to appear chaotic. The 

Electromyogram (EMG) is an electrical activity 

associated with muscle movement. It is detectable all 

over the scalp and is generally much higher in 

amplitude than the EEG, and overlaps the middle and 

upper parts of the EEG frequency range; therefore 

can be difficult to differentiate between the two. The 

EMG is regarded as a noise source in a BCI system. 

Other sources of superfluous noise include eyelid 

and facial muscle movement and EEG signals which 

are not required for a specific BCI system. The EEG 

signal is measured from the scalp using electrodes 

and the signal is usually amplified before being 

digitised for storage or processing within the 

computer. A standard sampling frequency of about 

128Hz is usually used and the signals can be band-

pass filtered between 0.5Hz and 50Hz, as this 

frequency range contains the most informative 

components. Figure 2 shows an example of an EEG 

signal taken from an electrode positioned at C3, as in 

the standard electrode positioning nomenclature 

shown in Figure 1. The signal shown is taken over a 

four second period and is an imagery of imagined 

left arm movement.  

a) EEG Signal Analysis 

The EEG activity recorded at the scalp can be 

analysed and quantified in the time domain, as 

voltage versus time, or in the frequency domain, as 

voltage versus frequency. The time domain is usually 

used in a system when the user is trying to produce 

EEG in response to exogenous stimulus such as a 

directional arrow flashing on a computer monitor. 

Figure 1: The standard (10/20 system) 64 scalp 

electrodes, their index reference and position [8]. 

 

 

 

 

Figure 2: An example of an EEG signal taken from 

electrode positioned at C3. 

 

Visual Evoked Potentials (VEPs) are the 

potentials produced in the EEG signals in response to 

brief visual stimuli and these signals can be recorded 

from the posterior scalp over the visual cortex. There 

are number of types of VEPs such as the short 

latency VEP which is a frequency change that occurs 

approximately 100ms preceding a stimulus. Other 

potentials have a longer latency component, which is 

a positive peak that reaches a maximum 

approximately 300ms after a stimulus, known as the 

P300 potential. When a person is presented with a 

stimulus series composed of several different types, 

and P300 potentials are measured for each type, 

amplitude is found to be larger for stimuli that are 

presented only rarely [8,9]. Using the P300 potential 

it has been reported in [10] that users can 

communicate up to 12 bits/min with accuracy rates 

reaching 95%. The Steady State VEP (SSVEP) 

constitutes response signals that change amplitude 

depending on the frequency of a blinking stimulus, 

such as a light flashing.  



EEG signal responses to exogenous stimuli are 

referred to as Event Related Potentials (ERP). The 

main advantages of using the evoked response 

stimuli are that the EEG activity occurring at a 

specific time, amplitude or frequency can be 

analysed or focused on thus, the exogenous BCI may 

not require extensive training but does require an 

environment where the desired EEG patterns have to 

be evoked or stimulated.  

Other BCI systems use the frequency domain 

features to analyse spontaneous EEG activity. This 

EEG activity is referred to as spontaneous because it 

is not related to an evoking stimulus. These BCI 

systems usually work on the µ (8-12.5Hz) or β (13-

32Hz) ranges (rhythms) of the EEG activity 

occurring in specific areas of the cortex, largely 

limited to the sensorimotor cortex. The advantages of 

spontaneous EEG based methodologies are that this 

method does not require an evoking stimulus or the 

constant requirement of any sensory modalities, such 

as the eyes or ears. Endogenous BCIs provide a 

better fit to a control model because the trained user 

exercises direct control over the environment [7] but 

in many cases this method has the disadvantage of 

requiring extensive training.  

III SPEED AND ACCURACY 

The capacity of a communication system is given 

by its information transfer rate, normally measured 

in bits/min [12]. With systems which rely on 

accuracy and speed, the main objective is to 

maximise the number of bits that can be 

communicated with high accuracy in a discrete 

message. In the present BCI systems the speed is of 

less concern than the accuracy. For example, the BCI 

systems in [11], [12], [13], and [14] must be able to 

accurately decipher the EEG signals and respond 

correctly to its interpretation of the user’s command. 

If the response is to select an option from a menu, 

the first objective is to ensure that the correct option 

has been recognised in response to the user’s desire, 

with a real-time response being the next priority. 

Considering this, the BCI success is dependent on 

both speed and accuracy being developed 

simultaneously.  

Bit rate is used as the performance measure of the 

BCI system in many experiments. It depends on both 

speed and accuracy. If a trial has N selections, and 

the selection accuracy (the probability that the 

desired selection will actually be selected) is P, then 

bit rate, or bits/trial (B) is  

   B = log2N + P log2P +  (1-P)log2[(1-P)/(N-1)].   (1) 

Equation (1) shown above is derived by Pierce 

and is described in [15] and is also referred to in 

[11]. Bit rate calculation, also referred to as 

information transfer rate, can be affected by the 

number of targets. If the number of targets (e.g. no. 

of options in a menu list) does not affect the trial 

duration, the greatest bit rate will be obtained by 

choosing the value of N for which B is greatest and 

then using N targets in each trial [11]. Depending on 

the duration of each trial for target selection a 

corresponding bits/min transfer rate can be 

calculated. 

It is reported that the maximum information 

transfer rates for EEG based BCI systems used to 

move a cursor or select an option from a menu range 

from 5-25 bits/min. Higher information transfer rates 

have been reported in [16]. The BCI system 

described uses a SSVEP to allow the user to select 

from twelve buttons similar to that on a phone. The 

buttons are virtually displayed on a computer 

monitor with each button blinking at a different 

frequency, ranging from 6 – 14 Hz. Using the EEG 

signals monitored over the occipital lobes, utilising 

electrodes positioned at O1 and O2, the user is able to 

select a button, using their SSVEP, simply by 

looking at the button. The translation algorithm 

decides which button the user is looking at. 

Depending on the frequency of the blinking button 

the frequency and amplitude of the EEG signal 

changes, the computer analyses the EEG signals, and 

then allocates an evoked potential to each button 

hence no training of the BCI system is required. Out 

of five volunteers in this experiment the results were 

encouraging with two subjects achieving 100% 

accuracy, selecting 20 numbers ranging from 0-9, 

with information transfer rates up to 3.32 bits/trial or 

44.29 bits/min. 

There may be a number of factors affecting the 

results, compared to other experiments such as the 

difference in location of the EEG signals analysed. 

Many of the experiments that report a 5-25 bits/sec 

use EEG signals analysed from the central regions of 

the brain such as the sensorimotor cortex and 

somatosensory areas. EEG in these areas may be 

heavily contaminated with noise. In this case the 

information transfer rate may be decreased because 

of the ratio of correct responses to incorrect 

responses. Other factors such as the evoking stimulus 

may have a significant effect on the overall 

information transfer rate. Selecting a letter from a 

choice of four by training the µ and β rhythms of the 

EEG signal may be significantly more difficult to 

achieve than allowing the algorithm to allocate a 

button to ten different EEG signals visually evoked 

by ten different blinking frequencies (stimuli). The 

practical application of each type of evoked response 

must also be acknowledged and considered from a 

medical point of view and the question must be 

asked, is the evoking stimulus suitable and 

realistically viable for patients suffering from 

neuromuscular disorders? In the experiment 

previously described feedback was not presented to 

the patient indicating whether he or she had chosen 

the correct button. Other experiments use feedback 

as a contributing factor in the method for training the 

BCI translation algorithm and in some cases [11] 
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accuracy is improved with response verification (i.e. 

feedback). The following section discusses the 

importance of the translation algorithm. 

IV THE TRANSLATION ALGORITHM 

The Translation Algorithm (TA) must have the 

ability to rapidly analyse the EEG signal and learn 

patterns or complex sequences to encode the heavily 

impeded and contaminated EEG signal. 

Consequently, the TA must be able to recognize 

patterns contained in the EEG signal and accurately 

interpret or encode the user’s request or thought.  

There are a number of types of TA which various 

research groups have investigated and these involve 

both classical classification techniques and artificial 

intelligence processing techniques. Adaptive 

Autoregression (AAR) is a classical technique used 

for parametric modelling by which a mathematical 

model is fitted to a time series. The EEG signal is 

well fitted with an AAR model. The model is used 

for feature extraction and is suited to capturing the 

dominant features in the EEG signal. Linear 

Discrimanant Analysis (LDA) is commonly used in 

conjunction with AAR to classify two or more 

signals. If a number of EEG patterns relating to a 

thought process (e.g. imagined right or left arm 

movement) are produced by a subject over a number 

of trials, this forms a training data set. Each trial is 

initiated with a directional arrow on a computer 

monitor pointing either left or right. The AAR is 

used to model the EEG from each training set and 

each AAR model produced contains a number of 

coefficients (usually between 3 and 7). LDA uses the 

coefficients from all the models to discriminate 

between the two signals. AAR and LDA have been 

shown to be more accurate at offline EEG data 

classification than Neural Networks (NN) (discussed 

below). 

NNs have also been used for classification of 

EEG signals. NNs have proven to be faster at online 

data classification at the expense of accuracy [17]. In 

this case the user is told to perform the same thought 

as before for the first few trials and during this time 

the NN learns patterns within the signal. The user is 

then presented with a feedback signal (cursor 

movement) to indicate whether he/she is producing 

the correct EEG signal. After further trials the NN 

adapts further to interpreting the user’s thought plus, 

with the presence of feedback, the user can become 

more successful at training the NN. 

V CHAOS THEORY AND EEG  

Signals or patterns, such as that of EEG, are 

commonly referred to as random or chaotic and even 

though it is difficult if not impossible to observe 

repetitive patterns or sequences within these signals 

there has been methods or theorems developed to 

attempt the intimidating task of deciphering these 

multifarious and volatile signals.   

The concept of chaos is one of the most exciting 

and rapidly expanding research topics of recent 

decades. Ordinarily, chaos is disorder or confusion. 

In the scientific sense, chaos does involve some 

disarray and a hallmark in a chaotic system is that 

even the smallest discrepancy in initial conditions 

would result in a huge discrepancy at a later time. 

Chaos involves how something changes over time 

and, in fact, change and time are the two 

fundamental subjects that together make up the 

foundation of chaos [18]. A chaotic time-series can 

be shown using a simple equation  
                    

Xt+1  = 1.9 – Xt
2                                          (3) 

 

Iterating this process approximately thirty times 

produced a record of widely fluctuating values of 

Xt+1, as plotted in Figure 3. Analysing the time-series 

on the graph shown in Figure 3 many of the 

characteristics of chaos can be shown. 

 

 

Figure 3: Results plotted from thirty iterations of (3) 

Graph was reproduced using Matlab. 

This simply simulated time series shows several 

key traits of chaos which are very similar, if not 

identical, to characteristics observed from the EEG 

signal. The indiscriminate looking pattern came from 

a specific equation but even though the chaotic 

equation looks haphazard it really is deterministic, 

meaning that it follows a rule. That is, some law, 

equation or fixed procedure determines or specifies 

the results [18]. Comparing this to an EEG signal, 

the EEG signal is essentially a chaotic electrical 

signal created by billions of neurons firing within the 

brain. As different neurons fire at different times 

continuously, the EEG signals are continuously 

changing. If it was known which neurons were firing 

and when, then the EEG signals may be deterministic 

and could be described as deterministic chaos 

originating at a microscopic level from the large 

community of firing neurons within the brain. This 

may be a very strange and crude comparison 

considering the simplicity of (3) and the complexity 

of the human brain but none the less it does have a 

logical or natural association at a macroscopic level.  

There are other interesting characteristics which can 
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be portrayed through the iteration of (3) which may 

not be as closely associated with the origins of the 

EEG signal. The chaotic behaviour was generated by 

just one variable thus chaos does not have to come 

from the interaction of many variables. The chaotic 

EEG signal does originate from a complex origin but 

chaos can originate from either simple or complex 

origins and the EEG signal originates from the 

interaction of many variables (i.e. billions of 

oscillating neurons).  

 

 

Figure 4: Two graphs with different initial values Xt. 

---- X0  = 0.9 ——X0  = 0.1 

It is not true to say that the more chaotic the 

origin is the more chaotic the result but one of the 

main characteristics of chaos is its sensitive 

dependence on initial conditions.  Observing the two 

graphs shown in Figure 4, which were both 

generated using (3), it can be seen that both graphs 

are considerably different. This is due to the fact that 

the initial value of Xt (i.e. the initial condition) was 

different for each set of iterations of (3). The 

sensitivity of the EEG signal to initial conditions is 

also a very important aspect and is probably what 

makes the EEG signal so complex and difficult to 

decipher. The EEG is the electrical activity resulting 

from many neurons firing. The firing neurons can be 

considered as the initial conditions of the EEG 

patterns because depending on which neurons are 

firing the resultant EEG signals acclimatize. For 

example, if a person thinks one thought and one 

thought only, such as imagining moving the right 

arm, then supposedly a specific set or number of 

neurons would be firing and thus the same EEG 

pattern would occur. This may be true but it must 

also be considered that each time a different thought 

is produced many different neurons are firing and the 

so called initial conditions are continuously changing 

which in fact means that the initial condition is only 

the initial condition for as long as that corresponding 

initial thought is maintained.  If one sequence of 

EEG is repeated over and over then this chaotic 

signal can be learned or recognised by the techniques 

described in previous sections.  

 As the human brain is an adaptive system, 

continuously processing rapidly varying inputs from 

various sensory modalities while constantly learning 

new things the complexity of the brain and the 

number of neurons that function is increasing in most 

humans every day thus, the initial conditions and 

therefore the chaotic EEG signals are continuously 

changing. EEG signals may not be well modelled by 

stationary dynamics over long times therefore, 

methods that allow measurement of dynamical 

change that occurs continuously or intermittently 

may be essential for the BCI. 

 For reasons which have been made apparent, 

methods of non-linear dynamics and deterministic 

chaos theory can be used to analyse the state of the 

brain and recognize chaotic sequences within the 

EEG signal. Chaos theory has been used by many 

research groups for medical applications and not 

specifically for BCI. Standard quantifiers of chaotic 

systems such as Lyapunov exponents have been used 

by some researchers to show that the diminishing 

chaos in the brain may lead to serious pathology, 

such as epileptic seizures. Other researchers have 

experimented with other standard chaotic quantifiers 

such as time-delay, embedding dimension, pointwise 

correlation dimension and the largest Lyapunov 

exponents, for EEG signal analysis to find out if 

these techniques would be suitable for chemotherapy 

assessment. However, in [19] it is reported that these 

methods seem to be unsuitable for that particular 

application. In [20] it is reported that fractal 

dimension of EEG-signals in the time domain works 

as a relative index of the signal’s dimensional 

complexity and may be useful for doctors, e.g. in 

semi-automatic differentiation of sleep stages.  

VI FUTURE DEVELOPMENT  

There has not yet been a significant amount of 

experimentation with Self Organizing Fuzzy Neural 

Networks (SOFNN) or Adaptive Fuzzy Inference 

Systems (ANFIS) in the BCI development, therefore 

these key areas are to be explored as it is possible 

that these techniques may be more appropriate. It is 

proposed to develop a novel neural classifier system 

that classifies the EEG patterns associated with 

specific thoughts. In order to attain significantly 

higher classification accuracy, the proposed system 

would make use of both the time domain and the 

frequency domain parameters for neural network 

training. A novel Self-Organising Fuzzy Neural 

Network (SOFNN) architecture would be used for 

network design. This hybrid architecture would 

facilitate the incorporation of fuzzy reasoning 

capability (in a similar approach to a human EEG 

expert), in addition to the learning capability of the 

neural networks. The SOFNN [21] uses an online 

learning algorithm that makes automatic adaptation 

in both the number of neurons in the hidden layer 

and the parameters of the neurons. This adaptive 

feature may help improve the classification speed as 

well as creating a BCI system that can be more 



adaptable to each individual users EEG patterns.  

As mentioned above, the EEG signal appears to 

be chaotic. Chaos theory has been used to find some 

order within disordered systems or signals. Also, 

given that previous behaviour of a chaotic system is 

known, chaos theory has been used to make 

reasonably accurate predictions about future 

behaviour of chaotic systems. The fact that ANFIS (a 

well known neuro-fuzzy architecture) has been used 

for predicting chaotic time series [22] these 

techniques appear to be promising. The idea of semi- 

accurately predicting future EEG signals whilst 

analysing and classifying current EEG signals could 

help in progressing towards a faster and more 

accurate translation algorithm. These techniques may 

also be the key to developing an advance warning 

system to predict the onset of epileptic seizure.        

VII CONCLUSION 

 The anticipated benefits of BCI are definitely 

inspiring. If BCI technology could provide those 

patients who have no form of communication 

whatsoever (“locked out”) the ability to answer 

simply “yes” or “no” or predict an epileptic seizure 

occurring even a few seconds in advance, then the 

BCI could be regarded as a great success. Even 

though BCI is in its early stages of development, 

initial results prove it has potential. BCI is a 

revolutionary technology and has been identified by 

the European Commission proactive initiative in 

Information Society Technologies (IST) to be 

addressed as a long term objective in a wide range of 

interdisciplinary research. The fundamental 

prerequisites of BCI have been made clear and a 

number of uncommon approaches to the problem, 

yet to be explored, have been outlined.  
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