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SubmergeStyleGAN: Synthetic Underwater Data
Generation with Style Transfer for Domain

Adaptation

Abstract—Underwater computer vision applications are chal-
lenged by limited access to annotated underwater datasets.
Additionally, convolutional neural networks (CNNs) trained on
in-air datasets do not perform well underwater due to the
high domain variance caused by degradation impact of water
column. This paper proposes an air-to-water dataset generator
to create visually plausible underwater scenes out of existing
in-air datasets. SubmergeStyleGAN, a generative adversarial
network (GAN) designed to model attenuation, backscattering,
and absorption, utilizes depth maps to apply range-dependent
attenuation style transfer. In this work, the generated attenuated
images and their corresponding original pairs are used to train an
underwater image enhancement CNN. Real underwater datasets
were used to validate the proposed approach by assessing various
image quality metrics, including UCIQE, UIQM and CCF, as well
as disparity estimation accuracy before and after enhancement.
SubmergeStyleGAN exhibits a faster and more robust training
procedure compared to existing methods in the literature.
Index Terms—Underwater Perception, Deep Learning, Image
Enhancement, Generative Adversarial Network, Style Transfer.

I. INTRODUCTION

Recent advancement in underwater navigation technology has
helped achieve some progress in ocean exploration. However,
almost 95% of the planet’s water bodies remain unexplored.
This can be attributed to the shortcomings of underwater
sensing technology, which makes underwater navigation a
challenging task [1]. Visual perception has established itself as
the perfect candidate for low-cost surface vehicle navigation
[2, 3]. The same, however, cannot be said for underwater
navigation, which still relies heavily on costly acoustic sensors.
Underwater imagery suffers from blurred details, color distor-
tion and low contrast [4, 6]. Unmanned underwater vehicles
are heavily used in vital applications, such as pipeline repairs,
underwater mining, fisheries and military surveillance [5].
Moreover, unmanned explorer-class vehicles are often used to
study geological formations, underwater archaeological sites
and marine life. Computer vision, despite its many challenges,
has a huge role to play in these applications, starting from
image processing, feature extraction and up to 3D image
reconstruction and autonomous navigation [6].
Light attenuation and back-scattering result in reduced illu-
mination and blurred imagery [4], making it challenging for
object detection algorithms to distinguish objects from the
background. Moreover, light absorption alters the color spec-
trum underwater, which negatively impacts the performance
of color-based object detection methods. Several methods
have been developed to address underwater attenuation by

developing detection pipelines which are robust to underwater
effects such as the approach proposed by Bazeille et al. [7]
which accounts for light modifications occurring along its
path between the light source and the camera. In addition
to attenuation, light refraction at the interface of different
media causes epipoloar lines bending which makes disparity
estimation using row matching infeasible. ZhuangS. et al.
[8] addressed this problem using an optimized direction-
information images. The limited visibility range and degraded
image quality underwater make it challenging to obtain robust
visual features. Therefore, in case of visual SLAM algo-
rithms, traditional visual feature extraction methods may not
be applicable, necessitating the development of novel feature
extraction and tracking techniques suitable for underwater
scenarios, where feature tracking errors caused by underwater
attenuation result in inaccurate pose estimation, affecting the
quality and consistency of the generated map. [9].
Lack of annotated underwater datasets poses a significant chal-
lenge to machine learning-based methods. The low contrast,
color distortion, and noise make manual annotation of under-
water objects more challenging, as it requires domain expertise
and manual effort [10]. Furthermore, training machine learning
models using in-air instances of objects fails to generalize
effectively to underwater scenes due to significant domain
differences. To address this issue, certain approaches employ
synthetic underwater datasets, such as synthetic underwater
image dataset (SUID) [11].
This work addresses the challenges associated with the lack of
real underwater datasets by proposing a generative adversarial
network capable of generating synthetically augmented un-
derwater datasets. SubmergeStyleGAN draws inspiration from
[12, 13], which leverages the concept of transferring underwa-
ter attenuation styles from specific underwater surveys to in-
air images. The proposed approach introduces a more efficient
training procedure compared to WaterGAN, by utilizing only
pairs of underwater and in-air RGB images. For the proposed
approach, a depth map is not required for training, which
reduces the training time and effort. Depth maps are only
utilized post-inference to achieve a tunable range-dependent.
The augmented dataset obtained from this process becomes
a valuable resource for training and evaluating computer
vision algorithms tailored for underwater environments. Tn
this study, the generated dataset will be used to train an image
enhancement module.
This paper is organized as follows: section II presents relevant



recent works in the literature, section III gives a thorough
explanation of the methodology used to implement and test
the proposed approach, section IV displays and discusses thee
obtained results, and finally, section V draws the conclusion
of this work.

II. RELATED WORK

Traditional image enhancement techniques, such as Histogram
Equalization [15], have been used to mitigate degradation
impacts by increasing image contrast, or by forcing the
average of each colour channel to be gray over the entire
image, as in Gray-World assumption. However, these methods
lack knowledge of the range-dependent attenuation,leading
to photo-metric inconsistencies for the same scene across
different viewpoints. This poses a challenge for computer
vision algorithms relying on feature matching, such as object
detection and stereo matching. Since pixels with comparable
colors have a higher likelihood of belonging to the same
object, and by understanding the scene’s depth, it becomes
possible to estimate and correct for the color and contrast
changes [16]. Some approaches highlight the correlation
between depth estimation and color correction [13, 17]. By
leveraging RGB-D images as a sufficient photo-metric and
geometrical representation, the light attenuation behavior can
be better characterized. Wang and Wu [18] relied on Jaffe-
McGlamery model as a range-dependent physical model.
However, obtaining the model parameters requires prior
knowledge of the full-depth map and specific experiments
at a given survey site. This approach suffers from limited
generalization due to the model’s simplicity and the need to
repeat experiments when water characteristics change.

To address the generalization problem and capture more
complex models, neural networks can be trained end-to-end
[12, 13, 19]. This approach offers the flexibility of repeating
the training process in case of changes in water charac-
teristics. Nevertheless, acquiring a sufficiently large dataset
of real underwater attenuated images with corresponding
ground truth scenes after water removal is impractical. Skinner
el al.introduced UWStereoNet [17] that provides a solution
which eliminates the need for annotated underwater datasets.
UWStereoNet enhances stereo underwater images by utilizing
an unsupervised learning approach that incorporates photo-
metric wrapping, cyclic reconstruction constraints, and image
quality metrics. However, the lack of supervision often leads
to low performance due to higher uncertainty and variability
in the learned representations or patterns. Skinner et al. intro-
duced WaterGAN [12] that employs generator and discrimina-
tor networks within an adversarial training framework to gen-
erate synthetic underwater images. These synthetic images are
created using both RGB-D in-air images and RGB underwater
images as input. The resulting synthetic dataset is then utilized
to train a Convolutional Neural Network (CNN) that estimates
monocular depth maps and utilizes them for color restoration.
While WaterGAN’s generator was constructed to incorporate
light attenuation, back-scattering and camera-related distor-

tions, the model was simplified to stabilize the GAN’s training
process. This simplification adversely affects the ability to
fine-grain control over specific synthesis parameters, such
as depth-dependent attenuation, accordingly, the realism of
the generated images and the capability to generate custom
underwater scenes that precisely mimic specific scenarios are
restricted. Cui et al. at [19] utilized CycleGAN [20] proposed
by Zhu et al. for style transfer, utilizing RGB in-air images to
generate synthetic underwater images. The generated synthetic
underwater images were used to train an underwater dispar-
ity estimation network, thus reducing the domain variance
between in-air and underwater images and improving the
disparity estimation performance. However, CycleGAN does
not possess the capacity for fine-tuning to achieve multiple
sets of weights of style transfer. Additionally, the absence of
explicit annotations in the mapping between two domains can
lead to inconsistencies or unexpected results. Although the
choice to exclude the depth map information enabled the use
of CycleGAN as a data generator, it was not successful in
generating data that accurately captures the depth-dependent
attenuation which is a crucial characteristic of realistic un-
derwater scenes. This limitation impacts the learning capacity
of the disparity estimation network, as it lacks the ability to
leverage pixel’s attenuation as an additional clue for predicting
a pixel’s disparity. Ye et al. [13] adopted an adversarial training
framework to generate a synthetic underwater dataset using an
RGB-D in-air dataset. Additionally, the style transfer approach
proposed by Gatys et. al at [14] is incorporated, utilizing
content loss for both the generated images and in-air images,
while style loss is applied to both the generated images and
underwater images. The generated dataset was used to jointly
train depth estimation and color correction modules, where
the inclusion of style transfer losses enhanced the training
convergence compared to WaterGAN.

III. METHODS

The objective of this work is to train a Convolutional Neu-
ral Network (CNN)-based Image Enhancement module that
enhances the quality of underwater images by mitigating the
underwater attenuation. The aim is to improve contrast and
clarify the features in these images. In an ideal scenario,
we would evacuate the water from the images to obtain the
ground truth images, which would serve as the ideal training
data for the module. However, this approach is not practical.
To overcome this challenge, a style transfer module (Sub-
mergeStyleGAN) is employed as a synthetic data generator.
This module takes in-air images xa sampled from distribution
Xa, and underwater images xw sampled from distribution
Xw, and generates synthetic images xg . The generated images
xg must preserve the content (objects, structures, etc.) from
the in-air image, while incorporating the desired visual style
associated with the underwater image. The generated images
xg , are then used as inputs to an image enhancement module,
where the original in-air images, xa, serve as ground truth
references.



A. Style Transfer Module (SubmergeStyleGAN)

The SubmergeStyleGAN shown in Figure 1 is responsible for
blending the content of an in-air image xa with the underwater
style of an underwater image xw. It follows a Generative
Adversarial Network (GAN) framework, which involves a
minimax game setting. During training , the module includes a
generator G trained to apply an underwater attenuation effect
to the in-air image. The generated image xg should appear
realistic to the discriminator D when compared to a real
underwater image, contributing to the loss term LGAN :

LGAN = Exw∼Xw [logD(xw)]+

Exa∼Xa [1− logD(G(xa) + xa)] (1)

The proposed approach is innovated by Ye et al. at [13].
However, one key distinction is the exclusion of the in-air
depth map during the training process. Instead, the generator
is only required to apply the average attenuation style from
the corresponding underwater survey uniformly to the in-air
images. Depth maps are only utilized during the inference
stage to implement a tunable range-dependent attenuation.
It was found that by excluding the depth map as an input,
the training process becomes more efficient and resilient.
This is because the discriminator has no access to the depth
map information of the underwater image, consequently, it is
unable to recognize the correlation between the attenuation
in real underwater images and the corresponding depth maps.
As a result, the discriminator will not penalise a high loss
if the generator applies attenuation to the in-air images
independent of their corresponding depth maps. Accordingly,
SubmergeStyleGAN is expected to face challenges in
effectively utilizing the provided in-air depth maps. Another
advantage of incorporating depth maps during inference, is
the ability to easily adapt to different attenuation levels by
adjusting a tunable parameter without the need to re-train the
entire module, which sets this approach apart from related
methods [12, 13]. Furthermore, in case of the absence of the
depth maps of the corresponding in-air images, the approach
can still generate an acceptable synthetic underwater dataset.

The approach proposed by Gatys et al. in [14] is used to
expedite the style transfer process from underwater images
to in-air images. The generated image features fg should
exhibit Gramians similar to the underwater image features fw
when both images propagate through a pre-trained VGG19
network, contributing to the an additional loss term LStyle.
Computing the style loss is accomplished by first extracting
features that are predominantly influenced by the image’s style.
The 4th and 5th layers were experimentally found to be the
most appropriate layer for capturing the desired style features
from underwater images while differentiating them from in-air
images. Style loss can be computed as follows:

LStyle =
∑
l∈Ls

wl

∥∥∥∥Gl(fw)−Gl(fg)

∥∥∥∥2
2

(2)

The use of style loss for underwater dataset generation is
innovated by the approach proposed by [13]. One other
key difference in the proposed approach, is the exclusion
of content loss. This decision is driven by the fact that the
original image is forwarded and combined with the output
attenuation generated by the network. By incorporating the
original image in this way, it is not necessary to learn high-
resolution content, eliminating the need for skip connections
in the generator’s encoder-decoder architecture. This design
choice allows the network to focus solely on learning the
low-resolution attenuation.

The generator in this module follows the same architecture
as the one proposed by CycleGAN architects [20], the dis-
criminator consists of four convolutional layers, each followed
by batch normalization, leaky ReLU activation, and average
pooling for downsampling. The model progressively increases
the number of feature maps in each layer (64 → 128 → 256
→ 512) . After the last convolutional block, the output is
flattened and fed into three fully connected layers with 1024,
512, and 64 neurons, respectively, activated by leaky ReLU
functions. Finally, sigmoid activation is used in the output
layer to classify whether the sample is fake or real.

Fig. 1. Architecture of SubmergeStyleGAN for (a) training stage and (b)
inference stage

B. Image Enhancement Module

The objective of the image enhancement module (Fig.2) is to
reverse the effects of water attenuation, resulting in enhanced
images with improved contrast and sharper features. The
image enhancement module is trained using the dataset of



attenuated images xg generated by SubmergeStyleGAN.
Additionally, original in-air images xa are provided as ground
truth references. The proposed approach allows the model
to learn the necessary adjustments to mitigate the impact of
water attenuation effectively.

In underwater environments, color attenuation is proportional
to the distance from the camera. This makes depth maps
crucial for accurately retrieving the original colors in
the scene. Therefore, during the training of the image
enhancement module, both the depth maps and their
corresponding synthetically generated underwater attenuated
images are used. However, certain algorithms like stereo
matching and SLAM may only require the sharpening of
key visual features in the image, which involves removing
only distance-dependent haze and do not necessarily require
actual color restoration. Furthermore, some approaches as
the approach proposed by Pérez et al. at [21] have been
developed to estimate depth maps in underwater images
by leveraging the distance-dependent attenuation as a clue.
Accordingly, it is reasonable that the additional burden of
providing depth maps for image enhancement can be avoided,
and the enhancement module can still learn to minimize
distance-dependent underwater haze, achieving acceptable
results.

In this approach, both image enhancement methods are em-
ployed: one with depth maps and one without. The evaluation
of each method involves stereo matching performance metrics,
assessing the feature strength in both cases. This comparison
reveals the trade-offs between full color restoration using depth
maps and feature sharpening alone without using depth maps,
offering insights into their suitability for different scenarios.
The module is trained using L2 per-pixel difference between
the enhanced image and its in-air counterpart.
The proposed module follows an encoder-decoder architecture.
The encoder begins with an initial convolutional layer, produc-
ing 64 output channels, and is followed by four dense blocks
as proposed by Huang et al. [22]. Each dense block comprises
three convolutional layers with a growth rate of 12, and tran-
sition blocks are inserted after each dense block to reduce the
concatenated input channels. The first transition block reduces
the channels to 128, the second to 256, and the third to 512.
After the final dense block, batch normalization and ReLU
activation are applied, followed by a 1x1 convolutional layer
to compress the feature maps to 512 channels. The decoder
consists of three transposed convolutional layers that upsample
the feature maps, starting with 64, 128, and 512 channels.
Each decoder layer is accompanied by batch normalization and
ReLU activation. The Atrous Spatial Pyramid Pooling (ASPP)
module proposed by Chen et al. [23] is applied after the third
decoder layer, retaining 512 channels to effectively capture
multi-scale contextual information. The module concludes
with a convolutional layer with 512 input channels and 3
output channels, corresponding to RGB color channels, to
generate the final output.

Fig. 2. Architecture of the image enhancement module for both (a) training
stage and (b) inference stage

IV. EXPERIMENTS AND RESULTS

A. Training

1) SubmergeStyleGAN: The training procedure involved
augmenting the stereo KITTI2015 dataset with 250 underwater
images from a custom dataset collected from a swimming
pool, using a batch size of 4 and images of size 320 × 240..
The Adam solver was employed with parameters β1 = 0.5
and β2 = 0.999, and the learning rate was set to 2 × 10−4.
For the style loss components in Equation 2, wl is set to 500
for both the 4th and 5th layers. The model underwent training
for 15 epochs, and the style loss was applied only after
the 2nd epoch. During inference, to apply range-dependent
attenuation, the maximum depth map was set to 15 m for
numerical stability, and the attenuation weight Watten was
set to 30. Figure 3 shows an example for an in-air image
and its corresponding transformed synthetic underwater-style
images created through the style transfer process from a real
underwater image.

2) Image Enhancement Module: The training procedure in-
volved utilizing the synthetic underwater dataset generated by
the style transfer module, with its corresponding in-air images
as ground truth. During training, a batch size of 4 and image
dimensions of 640 × 480 were used. The Adam solver was
employed with parameters β1 = 0.5 and β2 = 0.999, and
the learning rate was set to 2 × 10−4. The model underwent
training for 40 epochs. It is important to note that two versions
of the model were trained: one that takes the input image’s
depth map and one that doesn’t. This was done to examine
the model’s behavior in case the requirement of a depth map
is computationally heavy or impractical.



B. SubmergeStyleGAN’s Evaulation:

To justify the selection of the 4th and 5th layers of pre-
trained VGG-19 as appropriate style feature extractors for
the analysis, a comparison of Gramian matrices derived from
features extracted from a sample from the testing pool dataset
was conducted. These matrices were contrasted with matrices
obtained from other sets of images, including 100 underwater
images from the testing pool, 100 in-air KITTI images [24],
and 100 generated synthetic underwater images (samples from
the mentioned datasets are shown in Figure 3). The comparison
was based on the mean squared difference, quantifying the
dissimilarity of style features. The distribution of the style dif-
ference depicted in Figure 4 demonstrate that the style features
extracted from layers 4th and 5th exhibit a low mean square
difference regarding both underwater images and synthetic
underwater images. This suggests that these layers effectively
capture common style features present in underwater scenes
while distinguishing them from in-air images. Conversely, a
higher mean square difference is observed regarding in-air
KITTI images, indicating that the style features extracted from
these layers differ significantly from the style characteristics
found in in-air images. As we delve deeper into the pre-trained
VGG19 model, reaching layers 8 and 13, the distributions
corresponds to synthetic underwater images and in-air images
tend to become more similar, as shown in Figure 4. This
convergence in distributions occurs because the higher-level
features present in the deeper layers of VGG19 are primarily
focused on capturing content-related information rather than
style. Hence, the 4th and 5th layers are confirmed to be
appropriate for capturing and distinguishing style features in
underwater images
.
The effectiveness of SubmergeStyleGAN is evaluated by com-
paring it to WaterGAN [12]. The evaluation involves assessing
both the stability of the training procedure and the quality
of the generated synthetic images. In Figure 5, we observe
that the losses of the generator and the discriminator in Sub-
mergeStyleGAN show stronger indications of convergence.
This suggests that the training process is more stable and
effective compared to WaterGAN. Furthermore, when gen-
erating synthetic underwater images, WaterGAN encounters
difficulties in accurately capturing the true colors of the
underwater style. Additionally, challenges were faced during
the adjustment of WaterGAN’s tuning parameters to obtain
more accurate results that represent the true characteristics of
underwater attenuation. On the other hand, SubmergeStyle-
GAN demonstrates superior performance in preserving and
representing the authentic colors associated with underwater
environments.

C. Image Enhancement Module’s Evaulation

In the evaluation, three non-reference metrics, namely UCIQE
[25], UIQM [26], and CCF [27], are utilized, which are
commonly employed for assessing the quality of underwater
images. The UCIQE score provides an indication of the bal-
ance among chroma, saturation, and contrast in the output. A

(a) In-air image (b) Real underwater image (c) Synthetic underwater image

Fig. 3. Style transfer from a real underwater image to an in-air image using
SubmergeStyleGAN (a) in-air image (b) real underwater image (c) synthetic
underwater image.
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higher UCIQE score suggests that the resulting image exhibits
a better balance of these color-related elements. A higher
UIQM score indicates that the output aligns more consistently
with human visual perception. Additionally, the CCF metric
assesses the colorfulness, contrast, and fog density of the
image, offering insights into these specific visual attributes.
The evaluation was conducted on samples from three different
datasets: SQUID dataset [28], Roboflow Aquarium dataset
[29] and a custom dataset collected from a testing pool.
The image enhancement module trained with depth maps was
evaluated using enhanced samples from the SQUID dataset,
generated by state-of-the-art image enhancement techniques,
such as fusion-based enhancement by Ancuti et al. [31],
image enhancement using depth estimation by Peng et al.
[32], and image enhancement using transmission estimation
by Drews et al. [34]. The SQUID dataset samples and the
outputs of these techniques can be found at [30], as shown
in Figure 7 and Table I. Additionally, the performance of
the image enhancement module that doesn’t require depth
maps was evaluated on the Aquarium dataset and a custom
dataset collected from a test pool. This module was compared
against various state-of-the-art techniques, including BAL
[35], fusion-based enhancement by Ancuti et al. [31], and
UWCNN [36]. The techniques used in these comparisons can
be generated at [37], as illustrated in Figures 8 and 9, and
Tables II and III.

It is observed from Tables I,II and III that the best performers
in terms of UCIQE and UIQM metrics do not align with
the subjective pairwise comparisons, despite the fact that
both UCIQE and UIQM claim to account for human visual
perception. Moreover, the analysis indicates that UCIQE
tends to give higher scores to images with greater contrast,
yet it does not adequately account for color shifts and artifacts
in the results (as observed in the outcomes of [34] and [32]
shown in Figure 7 and Table I). The visual evaluation results
do not always align precisely with the quantitative scores
obtained from non-reference metrics. This discrepancy is
attributed to a gap between the objective quantitative scores
and the subjective visual quality perceived by humans. In
essence, the current image quality evaluation metrics designed
for underwater images have limitations in certain cases.

The feature sharpening capabilities of the two versions of
the image enhancement module, with a focus on feature
enhancement without full color restoration as discussed in
Section III-B, were assessed using a STereo TRansformer
(STTR) model. This model was initially trained on the Kitti
dataset [24] and further fine-tuned on the original underwater
SQUID dataset [28]. The results, depicted in Figure 6 and
Table IV, showed a slight improvement when using depth
maps for image enhancement. This indicates that for specific
applications where emphasizing features is essential, the use
of depth maps may not be necessary and does not significantly
enhance the overall performance.

TABLE I
THE EVALUATION THAT COMPARES THE PROPOSED APPROACH WITH

DIFFERENT STATE-OF-THE-ART METHODS ON SAMPLES FROM SQUID
DATASET [28], USING THE UIQM [26], UCIQE [25], AND CCF [27]

METRICS.

Method UCIQE UIQM CCF
Raw Images 0.40 0.24 19.50
Proposed method 0.53 0.57 25.30
Peng et al., [32] 0.56 0.52 17.96
Ancuti et al., [33] 0.57 0.48 13.68
Drews et al., [34] 0.65 0.72 27.53

TABLE II
THE EVALUATION THAT COMPARES OUR APPROACH WITH DIFFERENT

STATE-OF-THE-ART METHODS ON SAMPLES FROM ACQUARIAM DATASET
[29], USING THE UIQM [26], UCIQE [25], AND CCF [27] METRICS.

Method UCIQE UIQM CCF
Raw Images 0.51 0.58 23.30
Proposed method 0.55 0.71 31.46
Peng et al., [35] 0.60 0.70 41.53
Ancuti et al., [31] 0.61 0.67 20.54
Li et al., [36] 0.50 0.59 15.87

TABLE III
THE EVALUATION THAT COMPARES OUR APPROACH WITH DIFFERENT

STATE-OF-THE-ART METHODS ON SAMPLES FROM A CUSTROM DATASET
COLLECTED FROM A TESTING POOL, USING THE UIQM [26], UCIQE

[25], AND CCF [27] METRICS.

Method UCIQE UIQM CCF
Raw Images 0.45 0.54 20.20
Proposed method 0.56 0.69 37.09
Peng et al., [35] 0.59 0.77 45.02
Ancuti et al., [31] 0.58 0.68 15.62
Li et al., [36] 0.45 0.54 10.80

(a) Raw underwater image (b) Enhanced w/o depth map (c) Enhanced w/ depth map

Fig. 6. Visual comparison on a sample from SQUID dataset [28], from left to
right, shown raw underwater image, enhanced Image without and with depth
map.

TABLE IV
STTR [38] MODEL’S PERFORMANCE COMPARED WITH THREE INPUT

STEREO IMAGES SCENARIOS: ORIGINAL UNDERWATER IMAGES,
ENHANCED WITHOUT AND WITH DEPTH MAPS.

Input Images 3 px Error EPE
Raw Underwater Images 15.49 0.99
Enhanced Images (w/o depth information) 10.75 0.65
Enhanced Images (w/ depth information) 9.9 0.89



Raws Proposed Method [32] [33] [34]

Fig. 7. Visual comparison on samples from SQUID dataset [28], from left to right, shown raw underwater images, the porposed method, image enhancement
using depth estimation by Peng et al., (2015) [32], color transfer by Ancuti et al., (2017) [33], and image enhacement using transimission estimation by Drews
et al., (2013) [34].

Raws Proposed Method [35] [31] [36]

Fig. 8. Visual comparison on samples from Aquarium dataset [29], from left to right, shown raw underwater images, the proposed method, BAL [35],
fusion-based by Ancuti et al., (2018) [31] and UWCNN [36]

Raws Proposed Method [35] [31] [36]

Fig. 9. Visual comparison on samples from a custom dataset collected from a testing pool, from left to right, shown raw underwater images, the proposed
method, BAL [35], fusion-based by Ancuti et al., (2018) [31] and UWCNN [36].



V. CONCLUSION

In Conclusion, this paper tackles the scarcity of annotated
underwater datasets in underwater computer vision applica-
tions, and the limitations of CNNs trained on in-air data due
to high domain variance caused by underwater degradation.
To overcome these challenges, the paper proposes an inno-
vative air-to-water dataset generator that synthesizes realistic
underwater scenes from in-air datasets. SubmergeStyleGAN,
effectively models attenuation, backscattering, and absorption
and using depth maps for range-dependent attenuation style
transfer. Using the generated synthetic underwater images and
their originals, an underwater image enhancement CNN is
trained. Evaluations show that SubmergeStyleGAN outper-
forms WaterGAN in generating realistic underwater images
and achieving more efficient training. The image enhancement
module is evaluated on three real underwater datasets, showing
promising results through visual evaluation and various image
quality metrics, such as UCIQE, UIQM, and CCF. Also, the
concept of enhancing underwater images without relying on
computationally expensive depth maps is explored, aiming to
improve features without restoring the exact image colors.
To evaluate this approach, the paper establishes a benchmark
that measures the accuracy of disparity estimation, serving as
an indicator of the features’ strength, which reveals a slight
accuracy difference between image enhancement with and
without using depth maps.

REFERENCES

[1] Sun, Kai, Weicheng Cui, and Chi Chen. ”Review of underwater sensing
technologies and applications.” Sensors 21.23 (2021): 7849.

[2] Sun, Yao, et al. ”Visual perception based situation analysis of traffic
scenes for autonomous driving applications.” 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Systems (ITSC). IEEE,
2020.

[3] Shi, Weijing, et al. ”Algorithm and hardware implementation for visual
perception system in autonomous vehicle: A survey.” Integration 59
(2017): 148-156

[4] Lu, Huimin, et al. ”Underwater optical image processing: a comprehen-
sive review.” Mobile networks and applications 22 (2017): 1204-1211.

[5] Bonin, F., Antoni Burguera, and Gabriel Oliver. ”Imaging systems
for advanced underwater vehicles.” Journal of Maritime Research 8.1
(2011): 65-86.
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[7] Bazeille, Stéphane, Isabelle Quidu, and Luc Jaulin. ”Color-based un-
derwater object recognition using water light attenuation.” Intelligent
service robotics 5 (2012): 109-118.

[8] Zhuang, Sufeng, et al. ”A dense stereo matching method based on opti-
mized direction-information images for the real underwater measurement
environment.” Measurement 186 (2021): 110142.
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