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Generating a pure spin current using electrons, which have degrees of freedom beyond spin, such
as electric charge and valley index, presents challenges. In response, we propose a novel mecha-
nism based on intervalley exciton dynamics in arc-shaped strained transition metal dichalcogenides
(TMDs) to achieve the exciton spin Hall effect in an electrically insulating regime, without the need
for an external electric field. The interplay between strain gradients and strain-induced pseudo-
magnetic fields results in a net Lorentz force on long-lived intervalley excitons in WSe2, carrying
non-zero spin angular momentum. This process generates an exciton-mediated pure spin Hall cur-
rent, resulting in opposite-sign spin accumulations and local magnetization on the two sides of the
single-layer arc-shaped TMD. We demonstrate that the magnetic field induced by spin accumula-
tion, at approximately ∼ mT, can be detected using techniques such as superconducting quantum
interference magnetometry or spatially-resolved magneto-optical Faraday and Kerr rotations.

Introduction. The spin Hall effect (SHE) was first in-
troduced by D’yakonov, Perel’ in 1971 [1], revisited by
Hirsch in 1999 [2] and experimentally demonstrated in
2004 [3, 4]. One of the versions of SHE, namely the intrin-
sic SHE arises from strong spin-orbit coupling resulting
in the band structure quantum geometry (Berry curva-
ture), and leading to the appearance of a transverse spin
current when an electric field is applied, without the need
of an external magnetic field. This effect generates edge
spin accumulation, observed in GaAs-based semiconduc-
tors using magneto-optical Kerr rotation measurement
[3]. The quantum spin Hall effect predicted in graphene
[5] and 2D electron gases [6] was experimentally verified
in HgTe, revealing quantized spin-Hall conductance and
absent charge-Hall conductance [7].

Among various 2D materials, monolayers of transi-
tional metal dichalcogenides (TMDs) [8] are of special
interest. This is because of their remarkable compatibil-
ity with various semiconductor/dielectric platforms and
their remarkable properties, such as peculiar 2D screen-
ing leading to dramatic modification of the interaction
potential between the charged carriers [9] and nontrivial
spin and valley dynamics [10–13]. In particular, spin-
valley coupling [14] in doped TMDs is anticipated to in-
duce spin and valley Hall effects, whether arising from
gating potentials or photoexcited density. However, since
the trivial band gap is much larger than the spin-orbit
coupling, MoS2 and WSe2 do not support quantum spin
Hall effect in the insulating regime. Unlike 2H-TMDs,
the 1T′ structure [15] of TMD materials is of greater
topological interest as it supports the quantum spin Hall
effect, even at relatively high temperatures such as 100K
in 1T′-WTe2 [16–18].
Besides intriguing single electron properties, TMD

monolayers possess a remarkable excitonic response as

BK
BK’

st
ra

in
 gr

ad
ie

nt
e’-h

K K’

h

e

h’

e’

(a)

(b) arc-shaped TMD on a substrate

e-h’

Down-K’K

up-KK’

WL
x

y

FIG. 1. (a) The scheme of the low-energy band structure
with two intervalley dark excitonic states in WSe2 mono-
layer. (b) The geometry of the proposed arc-shaped device
designed to induce the exciton-mediated spin Hall effect in
WSe2. Introduction of a non-uniform strain gives rise to a
pseudomagnetic field, generating the Lorentz forces leading
to opposite transverse center-of-mass movement of up-KK′

and down-K′K-excitons. The maximum strain in the system
is given by W/R, where W and R represent the width and
radius of the arc, respectively. The x-direction corresponds
to a zigzag crystallographic orientation.

well. Direct energy band gap and relatively large re-
duced mass of an electron-hole pair combined with truly
2D nature of interacting electrons and holes results in
extremely large excitonic binding energies (∼ 300 meV)
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which make TMD excitons stable even at room temper-
atures [19–21].

It should be noted, that the spin-orbit coupling in
WSe2 differs from that in MoS2, which results in a re-
versed order of spin-polarized bands within the conduc-
tion band, so that the energy of dark intravalley spin-
singlet excitons is below the energy of bright excitons
[9]. Moreover, dark intervalley excitons formed in WSe2
exhibit even stronger binding stability (it lies 16 meV be-
low the spin-forbidden dark exciton state in WSe2) and
even longer lifetime since corresponding recombination
process requires an intervalley transition mediated by a
valley-phonon [22]. The intervalley excitons bear a (+1)
spin for electron-hole pairs originating from the K-valley
electron (e) and the K′-valley hole (h′) (denoted as up-
KK′-exciton in the further discussion), and (−1) spin for
electron-hole pairs arising from the K′-valley electron (e′)
and the K-valley hole (h) (denoted as down-K′K-exciton
in the further discussion). The high stability, long life-
time, electrical neutrality, and finite spin angular momen-
tum of intervalley excitons in WSe2 make them optimal
candidates to mediate the pure spin Hall effect in two
dimensions.

Being electrically neutral particles, excitons do not
reveal any significant response to external electric and
magnetic fields. However, one can use strain effects in-
stead. Two-dimensional materials including graphene
and the members of the TMD family possess very rich
strain physics primarily due to the sharing three-fold
symmetry point groups. Static strain leads to the ap-
pearance of a pseudo-gauge field A [23] in addition to
the conventional scalar deformation potential V . Be-
cause of the time-reversal symmetry, this pseudo-gauge
field have different sign for electrons located at the val-
ley points K and K′ which are time-reversal partners,
AK = −AK′ . An inhomogeneous strain leads to a non-
uniform pseudo-gauge field that results in a pseudoma-
gentic field BK = −BK′ = ∇×AK.

The case of a uniform pseudomagnetic field is partic-
ularly interesting as it allows the exploration of strain-
induced cyclotron dynamics, Landau level formation and
the quantum valley Hall effect [24]. Examples of ex-
perimental geometries generating such uniform pseudo-
magnetic fields, exceeding 100s of Tesla [25–27], include
trigonal and hexagonal symmetric nano-bubbles and arc-
shaped straining [28–30]. The latter case, reported in a
recent twisted bilayer graphene experiment [31], is par-
ticularly important, as it allows creation of a uniform
pseudomagnetic fields across larger samples, which is not
possible with nano-bubbles.

In this study, we investigate the effects of the combi-
nation of strain-induced electric and magnetic fields on
inter-valley exciton transport in WSe2, featuring an in-
verted spin-split conduction band. Our results reveal a
distinctive pure spin Hall effect for inter-valley excitons,
which bear no electric or valley charge. We propose an

arc-shaped WSe2 setup depicted in Fig. 1b as a suit-
able geometry for the observation of the effect. In this
situation, up-KK′-excitons and down-K′K-excitons will
first drift along the y axis under a gradient of the scalar
potential ∇V generated by strain, and gain a drift ve-
locity vd = −µX∇V with µX being the exciton mobil-
ity. These moving excitons are affected by the Lorentz
force produced by strain-induced pseudomagnetic field
and generating Hall-like transverse current. In the sta-
tionary regime, an electron-hole pair corresponding to a
up-KK′-exciton feels the Lorentz force

fup−KK′ = vd × (qeBK + qh′BK′) = 2eµX∇V ×B, (1)

where we took qe = −qh′ = −e and used that BK =
−BK′ = B. The Lorentz force acting at a down-K′K-
exciton has opposite direction, fdown−K′K = −fup−KK′

and therefore up and down spins accumulate at opposite
edges of the device as shown in Fig. 1b. Note, that the
proposed mechanism is distinct from conventional exci-
ton Hall effect in TMD monolayers, which is of valley-
selective nature [32–36].
It is also worth mentioning that the Lorentz force act-

ing on a intra-valley exciton vanishes as both an electron
and a hole feel the same pseudomagnetic field, and there-
fore the net force is zero. Note, however, that in this
case pseudomagnetic field will result in the appearance
of a dipole moment of a moving exciton, which leads to
the appearance of the skew scattering term if an exciton
interacts with an impurity and onset of the anomalous
exciton Hall effect [37].
The quantitative model. In semiclassical picture, the

dynamics of an intervalley exciton is described by the
Newton’s law (see Supplemental Material [38] for the de-
tailed derivation):

dp

dt
= −∇V (r)− 2eξvp ×B(r), (2)

where the index ξ = + and ξ = − denotes up-KK′-
excitons and down-K′K-excitons, respectively, vp =
p/M is the particle velocity with M being the exciton
mass. The transport properties of an ensemble of exci-
tons are described by the Boltzmann equation for exciton
distribution function fξ

p(r, t) which reads:

∂fξ
p(r, t)

∂t
+
(
−∇V (r)− 2eξ[vp ×B(r)]

)
·∇pf

ξ
p(r, t)

+ vp ·∇fξ
p(r, t) = −

fξ
p(r, t)

τX
−

fξ
p(r, t)− f̄ξ

p(r, t)

τC
. (3)

Note that f̄ξ
p(r, t) is the local equilibrium density that fol-

lows Maxwell-Boltzmann distribution function. We used
the relaxation time approximation, which accounts for
exciton recombination with characteristic time τX and
exciton scattering on phonons and impurities with char-
acteristic time τC. The exciton density is obtained by
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integrating the distribution function by momentum p,

nξ(r, t) =

∫
d2p

(2πℏ)2
fξ
p(r, t). (4)

The dynamics of total exciton density n = n+ + n− and
spin density Sz = n+ − n−, related to spin polarization
as Pz = Sz/n are described by the following equations
(see the derivation in [38], and the Ref. [39] therein):

∂n(r, t)

∂t
+∇ · j(r, t) = −n(r, t)

τX
, (5)

∂Sz(r, t)

∂t
+∇ · jS(r, t) = −Sz(r, t)

τX
, (6)

where the exciton number current density reads

j(r, t) =
J {n(r, t)}
1 + [τωc(r)]2

+
τωc(r)

1 + [τωc(r)]2
B̂×J {Sz(r, t)},

(7)

and the exciton spin current density follows

jS(r, t) =
J {Sz(r, t)}
1 + [τωc(r)]2

+
τωc(r)

1 + [τωc(r)]2
B̂×J {n(r, t)}.

(8)

Here, ωc(r) = 2eB(r)/M is the exciton cyclotron fre-
quency, with B being the modulus of the strain-induced
pseudomagnetic field, and B̂ = B/B. The drift-diffusion
current functional in the presence of a strain gradient
force, ∇V , is defined as

J {Y (r, t)} = −DX∇Y (r, t)− µXY (r, t)∇V (r), (9)

where, µX = τ/M is the exciton mobility, with τ =
τXτC/(τX + τC) being an effective relaxation time. The
diffusion constant is given by DX = µX(kBT ), where kB
is the Boltzmann constant and T is the temperature. It
is worth to remind that considered semiclassical formal-
ism is valid when ωcτ ≪ 1, yielding in {1 + (τωc)

2}−1 ≈
1 − (τωc)

2. In the opposite regime the system is driven
into a quantum regime where Landau levels are formed
and a full quantum description of magneto-excitons is
required [40, 41].

In addition to the quantitative correction to the longi-
tudinal drift-diffusion current components described by
first terms of Eq. (7) and Eq. (8), pseudomagnetic field
generates transverse Hall current components for both
number and spin channels, as described by the second
terms in Eq. (7) and Eq. (8).

We further consider the specific arc-shaped deforma-
tion that generates a uniform pseudomagentic field. Arc-
shaped strain is defined by an in-plane displacement field
(ux, uy) = (xy/R,−x2/2R), where R is the bending
radius of the arc-shaped TMD flake. The scalar and
gauge fields are given in terms of the strain tensor el-
ements uij = (∂iuj + ∂jui)/2 as V = V0(uxx + uyy) and

1 0 1
x, m

1

0

1

y,
m

(a)
t = 0 ps

0.0

0.2

0.4

0.6

0.8

1.0

1 0 1
x, m

1

0

1

y,
m

(d)
t = 50 ps

0.02

0.01

0.00

0.01

0.02

1 0 1
x, m

1

0

1

y,
m

(b)
t = 50 ps

0.0

0.2

0.4

0.6

0.8

1.0

1 0 1
x, m

1

0

1

y,
m

(e)
t = 50 ps

0.3
0.2
0.1

0.0
0.1
0.2
0.3

2 1 0 1 2
x, m

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

n,
n 0

(c)

2 1 0 1 2
x, m

3
2
1
0
1
2
3

S z
,n

0

×10 2

(f )

FIG. 2. Strain-induced evolution of intervalley excitons’
number and spin densities. Panels (a) and (b) depict snap-
shots of the total exciton density, denoted as n (in units of
n0). These snapshots are taken for a system with a radius
of R = 5 µm and a temperature of T = 300 K at two time
points: t = 0 and t = 50 ps, respectively. The vector field
arrows indicate the exciton current density, denoted as j. (c)
Cross-sections of the total exciton density n along the x-axis
(depicted by the red curve) and the y-axis (depicted by the
blue curve). The temporal evolution results in the broadening
of the Gaussian exciton packet and its drift along the y-axis,
attributed to the strain gradient∇V . Panels (d) and (e) show
snapshots of the exciton spin density Sz (in units of n0) and
the spin polarization Pz = Sz/n at t = 50 ps, respectively.
The vector field arrows in panel (d) illustrate the respective
current density jS. A valley-dependent pseudomagnetic field
leads to the separation of intervalley excitons with opposite
spins along the x-axis. (f) Cross-section of the exciton spin
density Sz along the x-axis. In panels (c) and (f), the thin
curves correspond to t = 25 ps, and the thick curves represent
t = 50 ps.

AK = (βϕ0/2πa0)(uxx − uyy,−2uxy) and read:

AK =
βϕ0

2πa0

y

R
x̂, V = V0

y

R
. (10)

where unity vector x̂ indicates a zigzag orientation in
the hexagonal lattice. The constant pseudomagnetic field
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with opposite signs in the two valleys, is thus given by

|B| = βϕ0/(2πa0R), (11)

with a corresponding magnetic length of ℓB =
√

2a0R/β,
where ϕ0 = h/2e is the magnetic flux quantum, β ∼
3 is the Grünisen parameter describing electron-phonon
coupling [42, 43], a = a0

√
3 is the lattice constant. For

the constant pseudomagnetic field ωc(r) = ωc one has

∇(τωcDX∇nξ × B̂) = 0, so that the respective terms
can be discarded in Eq. (7) and Eq. (8).

Results and discussion. We simulate the macroscopic
transport equations (5) with initial Gaussian distribu-

tions nξ = n0e
−(x2+y2)/(2∆2), where ∆ is the character-

istic size of an initial excitonic packet. In our numerical
calculations we set ∆ = 0.5 µm, R = 5 µm, τC = 0.26 ps
[44], T = 300 K, V0 = 300 meV [45], τX = 200 ps [22],
M = 0.75m0, with m0 being the free electron mass [46].
The respective pseudomagnetic field is then B ≈ 2.15 T.

The evolution of intervalley excitons’ number and spin
densities under the influence of strain-induced driving
fields are presented in Fig. 2. As seen in panels (a) and
(b), the total density n gradually broadens by diffusion,
and the distribution maximum shifts in the y-direction
due to strain-induced exciton drift. The cross-sections
of the total exciton density at different time snapshots
shown in Fig. 2 (c) indicate the overall longitudinal drift
in the y-direction. The transverse separation of two
species of intervalley excitons, characterized by exciton
spin density Sz and polarization Pz, is depicted in Fig. 2
(d) and (e), respectively. The cross-sections of the spin
density in Fig. 2 (f) further confirm the spin Hall current
in the x-direction and the spin accumulation on two sides
of the 2D materials almost identical to the electronic spin
Hall effect [3].

In order to quantify the average strength of exciton
spin Hall effect relative to average longitudinal exciton
number current, we introduce a Hall angle θ. For a uni-
form pseudomagnetic field it reads

tan θ =
⟨jSx⟩
⟨jy⟩

=

∫
jSxdxdy∫
jydxdy

= −τωc = −2eBτ

M
, (12)

Thus, the Hall angle scales with the arc radius as tan θ ∝
B ∝ 1/R and it can be enhanced by reducing the arc
radius that implies increasing the curvature.

Experimental realization. An intervalley exciton is the
lowest energy exciton state, lying 16 meV below the spin-
forbidden dark exciton state in WSe2 [22]. The respec-
tive peak is clearly visible in photoluminescence spectrum
at low free carrier concentration and under non-resonant
optical excitation. The optical excitation/recombination
of an intervalley exciton is accompanied by the respec-
tive absorption/emission of a chiral phonon [47], medi-
ating the electron intervalley transition. In this process,
the polarization of the absorbed/emitted photon is de-
termined by the spin orientation of a hole, for which

spin-valley locking holds. As intervalley excitons have
sufficiently large lifetime of about 200 ps, in the con-
sidered configuration of arc-shaped WSe2 monolayer af-
ter sufficiently long time away from the initial localized
excitation pump spot the luminescence will have oppo-
site circular polarizations, corresponding to the opposite
spins of the excitons for positive and negative values of
x-coordinate. This can be probed experimentally by near
field measurement.

Moreover, spatial separation of spin polarizations gen-
erates an effective magnetic field. Indeed, the quantity
Sz(x, y) = n+(x, y) − n−(x, y) is associated with the
spin angular momentum density. Taking into account
the intervalley exciton g-factor g ≈ −12 [22], one can
derive the magnetic moment density in a 2D system as
m(x, y) = gµBSz(x, y) where µB = 57.9 × 10−6eV/T is
the Bohr magneton [48]. Accounting for finite thickness
of our 2D material, d ≈ 0.7 nm, we introduce an effective
3D magnetization,

M(x, y) =
gµB

d
n(x, y)Pz(x, y) ≈

gµB

d
n0Pz(x, y). (13)

which allows to estimate the corresponding magnetic field
B0 = µ0M where µ0 is the magnetic permeability of the
vacuum. For realistic exciton concentrations n0 ∼ 1012

cm−2 this gives an estimated value of B0 ∼ 0.002 T,
which is quite significant and falls within the range of
magnetic fields typically measured in the spin Hall effect
in 2D electron gas systems [3].

The exciton spin Hall effect results in a local magne-
tization (and magnetic field) of sufficient magnitude to
be probed by different magnetometry methods, such as
superconducting quantum interference devices (SQUID),
as well as magneto-optical techniques like Faraday and
Kerr rotation spectroscopy. The linear polarization rota-
tion angle can be calculated using

φF = VdB0. (14)

The Verdet constant in TMD monolayers is shown to
be strongly frequency dependent and it can be as large
as Vd ∼ 5 × 10−6 rad/T [49, 50], which yields φF ∼
10−8 rad. Rotation angle can be further amplified by
placing a monolayer in an optical cavity [51, 52]. Further-
more, we can enhance the effect by increasing the level of
straining. The maximum strain in an arc-shaped geome-
try occurs at the outer edge, where the maximum strain
is given by umax

xx = W/R, as shown in Fig. 1. When con-
sidering a fixed maximum strain, we can achieve an en-
hanced pseudomagnetic field by using smaller arc radii in
nanoribbon systems with a narrow widthW . In addition,
we can utilize nano-bubble structures made of WS2 and
WSe2, which can generate substantial pseudomagnetic
fields in the range of hundreds of tesla [25–27], thereby
leading to a significantly large spin accumulation due to
the strain-induced exciton spin hall effect.
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In conclusion, we proposed a mechanism of spin Hall
effect for intervalley excitons in arc-shaped monolayers of
WSe2. In the considered geometry, the strain gradient re-
sults in both the drifting force and valley-dependent net
Lorentz force acting on intervalley excitons, resulting in
the onset of the transverse spin current. The proposed
effect can be directly probed via spatially resolved near
field photoluminescence spectroscopy, pump-probe Fara-
day and Kerr rotation techniques, or SQUID for high res-
olution magnetometry. This effect is quite general and
can also manifest itself in other indirect excitonic sys-
tems with hexagonal symmetry, such as bilayer and bulk
TMD systems, where electrons and holes belong to dif-
ferent valley points that are time-reversal counterparts of
each other.

VS acknowledges the support of ‘Basis’ Foundation
(Project No. 22-1-3-43-1). HR acknowledges the sup-
port of Swedish Research Council (VR Starting Grant
No. 2018-04252).

∗ vanikshahnazaryan@gmail.com
† hr745@bath.ac.uk; Current affiliation of H. Rostami is:
Department of Physics, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom

[1] M. I. Dyakonov and V. I. Perel, Current-induced spin ori-
entation of electrons in semiconductors, Physics Letters
A 35, 459 (1971).

[2] J. E. Hirsch, Spin hall effect, Phys. Rev. Lett. 83, 1834
(1999).

[3] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D.
Awschalom, Observation of the spin hall effect in semi-
conductors, Science 306, 1910 (2004).

[4] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jung-
wirth, Experimental observation of the spin-hall effect
in a two-dimensional spin-orbit coupled semiconductor
system, Phys. Rev. Lett. 94, 047204 (2005).

[5] C. L. Kane and E. J. Mele, Quantum spin hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[6] B. A. Bernevig and S.-C. Zhang, Quantum spin hall ef-
fect, Phys. Rev. Lett. 96, 106802 (2006).

[7] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang,
Quantum spin hall effect and topological phase transi-
tion in hgte quantum wells, Science 314, 1757 (2006),
https://www.science.org/doi/pdf/10.1126/science.1133734.

[8] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz,
Atomically thin mos2: A new direct-gap semiconductor,
Phys. Rev. Lett. 105, 136805 (2010).

[9] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz,
X. Marie, T. Amand, and B. Urbaszek, Colloquium:
Excitons in atomically thin transition metal dichalco-
genides, Rev. Mod. Phys. 90, 021001 (2018).

[10] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelec-
tronics from inversion symmetry breaking, Phys. Rev. B
77, 235406 (2008).

[11] P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek,
X. Marie, and S. A. Crooker, Gate-controlled spin-valley
locking of resident carriers in wse2 monolayers, Phys.
Rev. Lett. 119, 137401 (2017).

[12] X.-X. Zhang, Y. Lai, E. Dohner, S. Moon, T. Taniguchi,
K. Watanabe, D. Smirnov, and T. F. Heinz, Zeeman-
induced valley-sensitive photocurrent in monolayer mos2,
Phys. Rev. Lett. 122, 127401 (2019).

[13] A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B. J. van
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[39] A. Jüngel, Transport equations for semiconductors, Vol.
773 (Springer, 2009).

[40] V. E. Bisti, A. B. Van’kov, A. S. Zhuravlev, and L. V. Ku-
lik, Magnetoexcitons in two-dimensional electronic sys-
tems, Physics-Uspekhi 58, 315 (2015).

[41] O. L. Berman, R. Y. Kezerashvili, Y. E. Lozovik, and
K. G. Ziegler, Strain-induced quantum hall phenomena of
excitons in graphene, Scientific Reports 12, 2950 (2022).

[42] H. Rostami, F. Guinea, M. Polini, and R. Roldán, Piezo-
electricity and valley chern number in inhomogeneous
hexagonal 2d crystals, npj 2D Materials and Applications
2, 15 (2018).

[43] V. Shahnazaryan and H. Rostami, Nonlinear exciton drift
in piezoelectric two-dimensional materials, Phys. Rev. B

104, 085405 (2021).
[44] F. Cadiz, C. Robert, E. Courtade, M. Manca, L. Mar-

tinelli, T. Taniguchi, K. Watanabe, T. Amand, A. Rowe,
D. Paget, et al., Exciton diffusion in wse2 monolayers
embedded in a van der waals heterostructure, Applied
Physics Letters 112 (2018).

[45] H. Moon, G. Grosso, C. Chakraborty, C. Peng,
T. Taniguchi, K. Watanabe, and D. Englund, Dynamic
exciton funneling by local strain control in a monolayer
semiconductor, Nano letters 20, 6791 (2020).
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SUPPLEMENTAL MATERIAL FOR:
EXCITON-MEDIATED INTRINSIC SPIN HALL EFFECT IN ARC-SHAPED WS2

Strain-induced center of mass force on exciton

The classical Hamilton function for electron and hole belonging to different valleys reads H = He+Hh+Heh where

He =
1

2me
(pe − (−e)(+ξ)A(re))

2
+ Ec(re), (S1)

Hh =
1

2mh
(ph − (+e)(−ξ)A(rh))

2 − Ev(rh), (S2)

Heh = HC(re − rh). (S3)

Note that ξ = +(−) indicates the K (K′) valley point, andme,h, pe,h, and re,h represent the effective mass, momentum,
and coordinate for electrons and holes, respectively. Ec, Ev are the position dependent conduction and valence band-
edge energies, HC is the Coulomb interaction potential, A(re,h) is the strain-induced pseudogauge field. We change
the variable in terms of the center of mass and relative position vectors:

r =
mere +mhrh

M
, ρ = re − rh. (S4)

Considering pe,h = me,hṙe,h, p = M ṙ with M = me +mh and q = µρ̇ with reduced mass µ = memh/M we find

p = pe + ph, q =
mhpe −meph

M
. (S5)

Here we are only interested in the dynamics of center of mass momentum p. Using Hamilton equation of motion we
can obtain the time derivative of the center of mass momentum in terms of Poisson brackets:

dp

dt
= {p,H} = {pe,He}+ {ph,Hh}+ {p,Heh}. (S6)

Note that {ph,He} = {pe,Hh} = 0 since electron and hole are independent particles.

{pe,He} = −eξṙe ×B(re)− ∂reEc(re), (S7)

{ph,Hh} = −eξṙh ×B(rh) + ∂rhEv(rh), (S8)

{p,Heh} = −∂rHC(ρ) = 0. (S9)

Note that B(re,h) = ∂re,h ×A(re,h). The last term in the above relation implies that strain-induced center of mass
force is independent from electron-hole interaction potential and therefore the center of mass force is give by

dp

dt
= −eξ[ṙe ×B(re) + ṙh ×B(rh)]− ∂reEc(re) + ∂rhEv(rh). (S10)

We can rewrite this force in the center of mass frame:

re = r+
mh

M
ρ, ∂re = ∂r +

mh

M
∂ρ, (S11)

rh = r− me

M
ρ, ∂rh = ∂r −

me

M
∂ρ. (S12)

Therefore, the effective Lorenz force reads

ṙe ×B(re) + ṙh ×B(rh) = ṙ×
[
B
(
r+

mh

M
ρ
)
+B

(
r− me

M
ρ
)]

+ ρ̇×
mhB

(
r+ mh

M ρ
)
−meB

(
r− me

M ρ
)

M
. (S13)

Now, we make an approximation and neglect the dependence of the magnetic field on the relative distance ρ. This
is a valid approximation since the wavelength of deformation is usually much larger than the size of excitons. In
particular, for a uniform magnetic field, this is an exact treatment. Therefore, we obtain

ṙe ×B(re) + ṙh ×B(rh) ≈ 2ṙ×B(r) +
mh −me

M
ρ̇×B(r). (S14)
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Similarly, the scalar potential force is given as follows

∂reEc(re) = ∂rEc

(
r+

mh

M
ρ
)
+

mh

M
∂ρEc

(
r+

mh

M
ρ
)
, (S15)

∂rhEv(rh) = ∂rEv

(
r+

me

M
ρ
)
− me

M
∂ρEv

(
r− me

M
ρ
)
. (S16)

Within the same approximation of long wavelength deformation, we obtain

∂reEc(re) ≈ ∂rEc(r), (S17)

∂rhEv(rh) ≈ ∂rEv(r). (S18)

Therefore, the center of mass force reads

dp

dt
≈ −2eξṙ×B(r)− eξ

mh −me

M
ρ̇×B(r)− ∂r[Ec(r)− Ev(r)]. (S19)

We neglect the relative dynamics of electrons and holes, as the center-of-mass movement is significantly larger than
the exciton size. Therefore, we can safely omit the term dependent on ρ̇. Accordingly, we finally obtain

dp

dt
≈ −2eξvp ×B(r)− ∂rV (r), (S20)

where vp = ṙ is the center of mass velocity and V (r) = Ec(r) − Ev(r) stands for the strain-induced band-gap
renormalization.

Microscopic derivation of transport equations

At quasiclassical limit, the gas of KK′ and K′K intervalley excitons can be characterized by distribution function
fξ
p(r, t). At local equilibrium the distribution function follows Maxwell-Boltzmann type with the local particle density
(instead of the global one) as the pre-factor:

f̄ξ
p(r, t) =

nξ(r, t)

N
e
− (p2/2M)

kBT , (S21)

where N = (MkBT )/(2πℏ2). Here nξ(r, t) is the intervalley exciton density, reading as

nξ(r, t) =

∫
d2p

(2πℏ)2
f̄ξ
p(r, t). (S22)

Later, we will see that the correction to the distribution function has odd parity in momentum and, therefore, it does
not contribute to the particle density but gives rise to the current density. In this regard, we can also replace f̄ξ with
fξ as in Eq. (4) of the main text. The Boltzmann equation (3) of the main text for exciton gas distribution reads

dfξ
p(r, t)

dt
=

∂fξ
p(r, t)

∂t
+ vp ·∇fξ

p(r, t)− (∇V + 2evp ×B(r)) ·∇pf
ξ
p(r, t) = −

fξ
p(r, t)

τX
−

fξ
p(r, t)− f̄ξ

p(r, t)

τC
, (S23)

From now on, we omit the superscripts ξ for the shorthand writing, and consider the case of KK′ intervalley excitons.
The derivation for K′K exciton is identical. For the derivation of macroscopic transport equations we proceed with
first introducing dimensionless variables. One can define the mean free path as λC = uτC, where u =

√
kBT/M is the

thermal velocity. Denoting the sample length as L, we define the characteristic space and time scales as λ0 =
√
LλC,

τ0 = L/u. Furthermore, we introduce dimensionless variable α = λC/λ0 =
√
λC/L =

√
τC/τ0, and the momentum

unit reads p0 = Mu. Accordingly, we rewrite the model parameters in terms of this physical units and dimensionless
quantities:

r = λ0r̃, t = τ0t̃, p = p0p̃, vp =
p

M
= up̃, V = (kBT )Ṽ . (S24)

Using this parameterization, the Boltzmann kinetic equation reads

1

τ0

∂f

∂t̃
+

u

λ0
p̃ · ∂r̃f −

(
kBT

λ0

1

Mu
∂r̃Ṽ + 2e

1

Mu
u[p̃×B(r̃)]

)
· ∂p̃f +

f

τX
= −f − f̄

τC
. (S25)
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Multiplying by τC, we note that

τC
τ0

= α2,
uτC
λ0

= α,
τCkBT

λ0Mu
= α. (S26)

Recalling that B(r̃) = B(r̃)B̂, and cyclotron frequency ωc(r̃) = 2eB(r̃)/M , we finally obtain

α2 ∂f

∂t̃
+ αp̃ · ∂r̃f −

(
α∂r̃Ṽ + τCωc(r̃)[p̃× B̂]

)
· ∂p̃f +

τC
τX

f = −f + f̄ . (S27)

In the regime of weak magnetic field τCωc/α =
√
τCτ0ωc ≪ 1. We then apply a Chapman–Enskog expansion [39]

where the population can be written by the following ansatz:

fp̃(r̃, t̃) = ñ(r̃, t̃)fMB
p̃ e

− τ0
τX

t̃
+ αgp̃(r̃, t̃)e

− τ0
τX

t̃
, (S28)

where fMB
p̃ = 2πe−p̃2/2 is the Maxwell-Boltzmann distribution in terms of dimensionless variables. The first term

represents the local equilibrium distribution, taking into account the finite recombination lifetime of excitons τX. Note

that n(r̃, t̃) = ñ(r̃, t̃)e
− τ0

τX
t̃
. The function gα denotes the correction to the distribution function caused by external

perturbations, which, in this case, are strain-induced fields. Plugging Chapman–Enskog ansatz of distribution function
(S28) into the kinetic equation (S27), we get

α

(
∂ñ

∂t̃
− τ0

τX
ñ

)
fMB + α2

(
∂g

∂t̃
− τ0

τX
g

)
+
(
fMBp̃ · ∂r̃ñ− ñ∂r̃Ṽ · ∂p̃fMB

)
+ α

(
p̃ · ∂r̃g − ∂r̃Ṽ · ∂p̃g

)
− τCωc(r̃)

α
[p̃× B̂] · ñ∂p̃fMB − τCωc(r̃)[p̃× B̂] · ∂p̃g +

τC
τXα

ñfMB +
τC
τX

g = −g. (S29)

We note that τC/(τXα) = (ατ0)/τX, leading to the cancellation of respective terms. In addition, [p̃ × B̂] · ∂p̃fMB =

−[p̃× B̂] · p̃fMB = 0. We are looking for the leading-order correction that can be obtain considering the limit α ≪ 1
[39]. Therefore, we obtain

g − τωc[p̃× B̂] · ∂p̃g = Sp̃ = − τ

τC

(
fMBp̃ · ∂r̃ñ− ñ∂r̃Ṽ · ∂p̃fMB

)
. (S30)

where τ = τCτX/(τX+ τC) is an effective relaxation time. This equation is a first-order differential equation for g with
a source function Sp̃. We first consider the homogeneous equation by setting Sp̃ = 0:

g − τωc[p̃× B̂] · ∂p̃g = 0. (S31)

In polar coordinates p̃ = (p̃ cosϕ, p̃ sinϕ), one can find

g + τωc
∂g

∂ϕ
= 0, (S32)

yielding in the following general solution

g = C0e
− ϕ

τωc . (S33)

where C0 is a contant. We now use the above ansatz for g where we replace C0 with C that is a function of position,
momentum and time. Given that ∂p̃f

MB = −p̃fMB, we obtain the angular derivative of C:

∂C

∂ϕ
= − e

ϕ
τωc

τCωc
p̃ ·

(
∂r̃ñ+ ñ∂r̃Ṽ

)
fMB. (S34)

Integrating the last equation we get:

C = C0 −
τ

τC

e
ϕ

τωc

1 + (τωc)2

[
p̃ ·

(
∂r̃ñ+ ñ∂r̃Ṽ

)
− (τωc)

(
[p̃× ∂r̃]zñ+ ñ[p̃× ∂r̃]zṼ

)]
fMB. (S35)
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The constant C0 contributes to the general solution in the absence of strain gradient. However, in the local equilibrium,
we must have g = 0, which implies C0 = 0. Accordingly, we obtain the particular solution of g as follows

g = − τ

τC

fMB

1 + (τωc)2

[
p̃ · ∂r̃ñ+ (∂r̃Ṽ ) · p̃ñ− (τωc)

(
[p̃× ∂r̃]zñ+ ñ[p̃× ∂r̃]zṼ

)]
, (S36)

which can be rewritten as

g = − τ

τC

fMB

1 + (τωc)2

[
p̃ · ∂r̃ñ+ (∂r̃Ṽ ) · p̃ñ− (τωc)

(
[B̂× p̃] · ∂r̃ñ+ ñ[B̂× p̃] · ∂r̃Ṽ

)]
, (S37)

We next perform momentum integration of Eq. (S29) which leads to

⟨fMB⟩∂ñ
∂t̃

+ α
∂⟨g⟩
∂t̃

+
∂r̃ñ · ⟨p̃fMB⟩ − ∂r̃Ṽ ñ · ⟨∂p̃fMB⟩

α
+ ⟨p̃ · ∂r̃g⟩ − ∂r̃Ṽ · ⟨∂p̃g⟩ −

τCωc⟨[p̃× B̂] · ∂p̃g⟩
α

= −⟨g⟩
α

.

(S38)

Where ⟨O⟩ ≡
∑

p Op. We note that ⟨fMB⟩ = 1, and the terms ⟨p̃fMB⟩, ⟨∂p̃fMB⟩, ⟨g⟩, and ⟨[p̃× B̂] · ∂p̃g⟩ are odd in
p̃ and thus vanish. Moreover, the boundary integral ⟨∂p̃g⟩ =

∑
p ∂p̃gp̃ = 0. Therefore, we obtain

∂ñ

∂t̃
+ ⟨p̃ · ∂r̃g⟩ = 0. (S39)

Plugging the expression of g given in Eq. (S37) into the above relation, we achieve

∂ñ

∂t̃
− τ

τC
∂r̃ ·

(
1

1 + (τωc)2

[〈
p̃
(
p̃ · ∂r̃ñfMB

)〉
+

〈
p̃
(
∂r̃Ṽ · p̃ñfMB

)〉
−τωc

〈
p̃ ·

(
[B̂× p̃] · ∂r̃ñfMB

)〉
− τωc

〈
p̃ ·

(
ñfMB[B̂× p̃] · ∂r̃Ṽ

)〉])
= 0. (S40)

The first two terms in the bracket result in:

⟨p̃(p̃ · ∂r̃ñfMB)⟩ = ∂r̃ñ,

⟨p̃(∂r̃Ṽ · p̃ñfMB)⟩ = ñ∂r̃Ṽ . (S41)

The third term is evaluated as

τωc

〈
p̃ ·

(
[B̂× p̃] · ∂r̃ñfMB

)〉
= τωc

(
x̂
∂ñ

∂ỹ
− ŷ

∂ñ

∂x̃

)
= τωc[∂r̃ñ× B̂]. (S42)

The same manner for the last term one has

τωc

〈
p̃ ·

(
[B̂× p̃] · (∂r̃Ṽ )ñf̄0

)〉
= τωc[∂r̃Ṽ × B̂]ñ. (S43)

The rate equation for ñ then reads

∂ñ

∂t̃
=

τ

τC
∂r̃ ·

(
1

1 + (τωc)2

(
∂r̃ñ+ ñ∂r̃Ṽ − τωc[∂r̃ñ× B̂]− τωc[∂r̃Ṽ × B̂]ñ

))
. (S44)

We recall that ñ = ne
τ0
τX

t̃
, resulting in

∂n

∂t̃
+ ∂r̃ · J̃ = − τ0

τX
n, (S45)

with the following current density

J̃ = − τ/τC
1 + (τωc)2

(
∂r̃n+ n∂r̃Ṽ − τωc[∂r̃n× B̂]− τωc[∂r̃Ṽ × B̂]n

)
. (S46)

Finally, by restoring the dimensional units, we obtain the density rate equation and corresponding current density as
follows.

∂n

∂t
+ ∂r · J = − n

τX
, (S47)

where the current density reads

J = −DX∂rn+ µXn∂rV

1 + (τωc)2
+

τωc

1 + (τωc)2
(DX∂rn+ µXn∂rV )× B̂. (S48)

Here µX = τ/M , DX = µX(kBT ) indicate the mobility, and diffusion coefficient of excitons, respectively.
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