

Citation for published version:
Goldmann, B, Dawson, J, Zeier, W, Morgan, B & Islam, MS 2023, 'Atomic-scale studies of structural and cation effects in fast-ion conductors', RSC 1st Annual Symposium for Advanced Battery Materials, London, UK United Kingdom, 8/11/23.

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link to publication

Publisher Rights CC BY

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

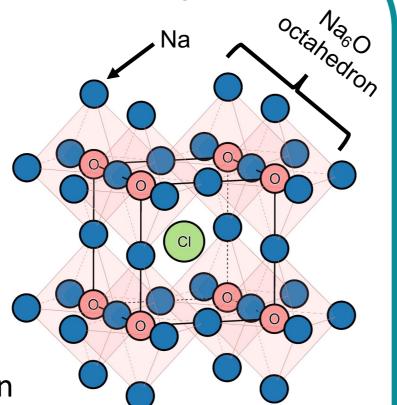
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Jun. 2024

Atomic-scale studies of structural and cation effects in fast-ion conductors

Ben Goldmann, James Dawson, Wolfgang Zeier, Ben Morgan and Saiful Islam


Department of Chemistry, University of Bath, BA2 7AY, UK | email: bag27@bath.ac.uk Department of Materials, University of Oxford, OX2 6NN, UK | email: saiful.islam@materials.ox.ac.uk

Anti-perovskite Na₃OCI

AIM: Atomistic modelling of Na₃OCl solid electrolyte to gain insight into:

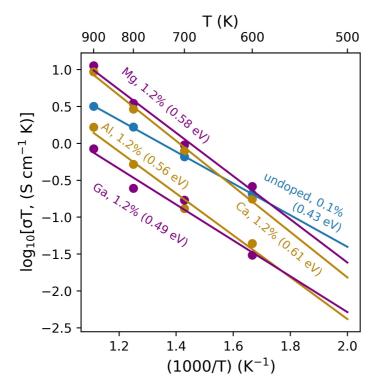

- aliovalent doping to increase Navacancy concentration.
- Na-ion conduction mechanism and performance.

Fig. 1 – The anti-perovskite Na₃OCl structure.

Doping and Na-ion Conduction

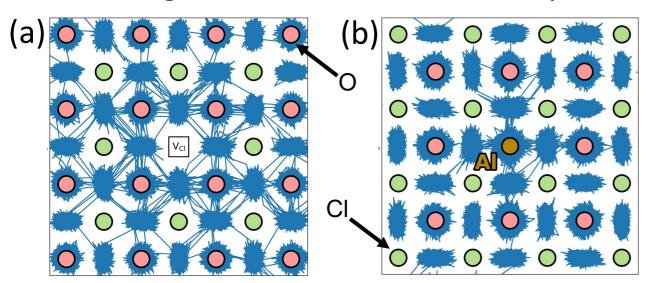
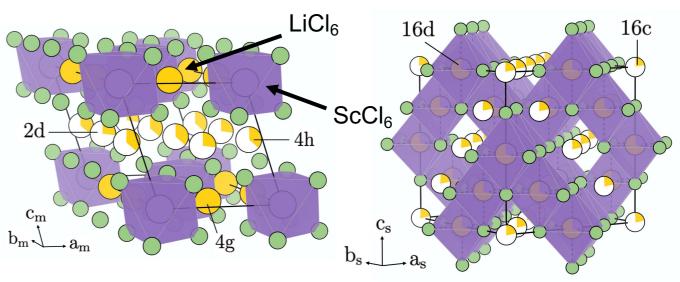

- Favourable
 dopants: Mg²⁺,
 Ca²⁺, Al³⁺ and Ga³⁺
- Max. Na-ion cond. with Mg dopant
- Doped materials:
 higher activation
 energy (E_a) than
 undoped material
 → clustering

Fig. 2 – Temperature-dependent Na⁺ conductivities for doped Na₃OCI with 1.2% vacancy concentration.

Defect Clustering Effects

- Doping → dopant-Na vacancy clustering → higher E_a than undoped with NaCl Schottky
- \blacksquare Clustering trend: Al³⁺ > Ga³⁺ > Ca²⁺ > Mg²⁺
- Clustering minimised: ~1.2% vacancy conc.


Fig. 3 – Na ion trajectories (blue) in (a) undoped and (b) Al-doped Na₃OCI.

<u>PUBLICATION:</u> Goldmann, B. A. *et al.*, *J. Mater. Chem. A*, 2022, **10**, 2249-2255

Li₃ScCl₆ Structures

<u>AIM:</u> Machine-learning assisted modelling of ccp-based Li₃ScCl₆ structures to gain insight into the effect of cation ordering on Li-ion conduction mechanism and performance.

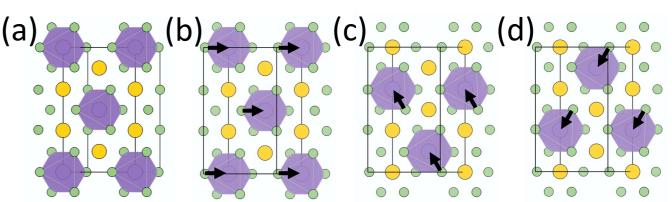


Fig. 4 – Layered monoclinic Li₃ScCl₆. (Bohnsack,1997)

Fig. 5 – Spinel-like cubic Li₃ScCl₆. (Nazar, 2020)

Stacking Faults in Monoclinic

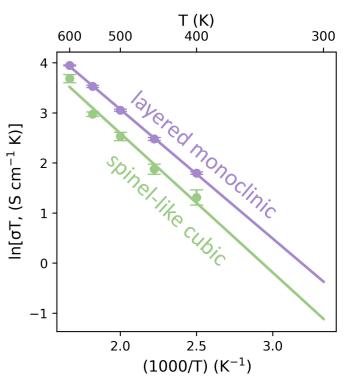

- ccp lattice + no C_3 symmetry in Sc-rich layers \rightarrow 3 different stacking \rightarrow stacking faults
- No significant energy penalty
- Stacking fault monoclinic can appear similar to cubic via spectroscopy

Fig. 6 – Stacking faults in layered monoclinic Li₃ScCl₆. (b-d) Three different stacking relative to (a) looking down the ccp layers.

Li-ion Conduction vs Structure

- Monoclinic with all levels of stacking fault (0, 33, 67, 100%): ~ 2.3 mS/cm RT cond. → all Li sites used for migration
- Cubic: ~ 1.3 mS/cm RT cond. → fully occupied Li sites highly trapping → 65% of Li immobile

Fig. 7 – Temperature-dependent Li⁺ conductivities for layered monoclinic and spinel-like cubic Li₃ScCl₆.