

Citation for published version: Niroshan, JJ, Liu, Y, Martinez, J, Que, P, Wei, C, Weerakkody, S, Panagoda, G, Weerasena, J, Amarasinghe, TAA, Székely, T, Bond, AL & Seneviratne, SS 2023, 'Systematic revision of the 'diminutive' Kentish Plover (Charadriidae: *Charadrius*) with the resurrection of *Charadrius seebohmi* based on phenotypic and genetic analyses', Ibis. https://doi.org/10.1111/ibi.13220

DOI: 10.1111/ibi.13220

Publication date: 2023

Document Version Peer reviewed version

Link to publication

This is the peer reviewed version of the following article: Niroshan, J.J., Liu, Y., Martinez, J., Que, P., Wei, C., Weerakkody, S., Panagoda, G., Weerasena, J., Amarasinghe, T.A.A., Székely, T., Bond, A.L. and Seneviratne, S.S. (2023), Systematic revision of the 'diminutive' Kentish Plover (Charadriidae: Charadrius) with the resurrection of Charadrius seebohmi based on phenotypic and genetic analyses. Ibis. https://doi.org/10.1111/ibi.13220. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified.

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Re-evaluation of the taxonomic status of the 'diminutive' Kentish Plover Charadrius alexandrinus seebohmi based on phenotypic and genetic analyses

Journal:	IBIS
Manuscript ID	IBIS-2022-OA-038
Manuscript Type:	Original Article
Category:	evolution: speciation, Oriental, systematics: genetics / DNA analysis, systematics: new taxon, waders

SCHOLARONE [™]
Manuscripts

- 1 Re-evaluation of the taxonomic status of the 'diminutive' Kentish Plover *Charadrius*
- 2 alexandrinus seebohmi based on phenotypic and genetic analyses
- 3

BS Review Cool

4 ABSTRACT

The Kentish Plover (Charadrius alexandrinus Linnaeus 1758) is a common shorebird of 5 6 Eurasia and North Africa that breeds in a variety of ecological habitats, exhibits a different extent of migratory behaviour, and is an emerging model species of breeding 7 system evolution. Here, we focus on C. a. seebohmi (Hartert & Jackson 1915), a resident 8 population found in the southern tip of India and Sri Lanka, and re-evaluate its taxonomic 9 10 status based on phenotypic and genetic distinctiveness, from its sympatric, migrant conspecific -C. a. alexandrinus and the recently elevated closely related species, C. 11 12 dealbatus in East Asia. We show that C. a. seebohmi has different body size, moulting pattern and plumage colouration from both conspecifics. Furthermore, based on 2 13 mitochondrial, 2 sex-linked and 11 autosomal microsatellite markers from 28 C. a. 14 seebohmi, 219 C. a. alexandrinus and 131 C. dealbatus individuals, we show that these 15 three taxa have moderate genetic differentiation ($F_{st} = 0.078 - 0.096$), and C. a. seebohmi 16 is sister to the clade of C. a. alexandrinus and C. dealbatus with an estimated 1.34-17 million-year divergence. In addition, we examined ornithological records of major 18 museum collections of C. a. seebohmi in Asia, Europe and North America, to evaluate its 19 range and taxonomic status. Based on the genetic, phenotypic, allochronic migratory 20 pattern and breeding range, we propose species status for *C. a. seebohmi* as *Charadrius* 21 seebohmi (Hartert & Jackson 1915) with the proposed English name 'Hanuman Plover'. 22 23

24 KEYWORDS

25 Hanuman Plover, isolation, South Asia, Sri Lanka, subspecies, Shorebirds

INTRODUCTION

Species with broad geographical ranges are exposed to a variety of physical barriers and 27 28 environmental heterogeneities, therefore have the tendency of population sub-structuring (Peñalba et al. 2019, Liu et al., 2020). Such taxa tend to consist of multiple geographical 29 populations that have distinct morphological characters, and some deserve species or 30 31 subspecies status (Price 2008). Subspecies could exhibit substantial genetic differentiation 32 and eventually diverge into full species due to reproductive isolation. Barn Swallow 33 (*Hirundo rustica*), gulls (*Larus*) and wagtails (*Motacilla*:) are several such examples 34 (Harris et al. 2018, Scodato and Safron 2014, Liebers-Helbig et al. 2001). The Kentish Plover (*Charadrius alexandrinus*) is a cosmopolitan species complex, 35 previously consisting of four subspecies: C. a. alexandrinus Linnaeus 1758 (Linnæi & 36 Salvii 1758), C. a. nivosus Cassin, 1858 (Oberholser, 1922), C. a. dealbatus (Swinhoe 37 1870) and C. a. seebohmi (Hartert & Jackson 1915), separated geographically with some 38 subtle morphological and plumage variations (del Hoyo et al. 1996, Kennerley et al. 39 2008, del Hoyo et al. 2021). Historically, White-fronted Plover Charadrius marginatus 40 was also considered a subspecies of Kentish Plover (e.g., Roberts 1940, Mackworth-41 Praed and Grant. 1960). Geographical barriers, like islands, impact the level of genetic 42 diversity and population genetic differentiation in this species complex (Küpper et al. 43 2009, 2012; Almalki et al. 2016; Küpper & dos Remedios 2019). Recent studies 44 evaluated taxonomic status of some of these subspecies and proposed the elevation of the 45 Snowy Plover C. nivosus (Küpper et al. 2009) and White-faced Plover C. a. dealbatus 46 (Rheindt et al. 2011, Sadanandan et al. 2019, Wang et al. 2019a,b) as full species, based 47

48 on their genetic and phenotypic distinctiveness, which has now been widely recognized

49 (e.g., del Hoyo *et al.* 2021; Gill *et al.* 2021).

Ibis Submitted Manuscript

50	The wide geographic distribution of <i>C. alexandrinus</i> which includes inland lakes,
51	grasslands, high plateaus, coastal beaches, and Salinas (del Hoyo et al. 2021, Meiniger &
52	Székely 1997) and the fact that it breeds on several offshore and oceanic islands (e.g.,
53	Canary Islands, Azores, Cape Verde; AlMalki et al. 2016) provide excellent opportunities
54	for testing speciation hypotheses. Furthermore, C. alexandrinus hybridises with C.
55	dealbatus, and understanding this ongoing process provides us understanding of the role
56	of genetic introgression in species diversification (Wang et al., 2019a). C. alexandrinus is
57	also an emerging model species for breeding system evolution (Székely 2019), since
58	different populations often exhibit different mating systems and parenting, and a series of
59	experimental and observational studies have uncovered the evolutionary costs & benefits
60	and neuroendocrine bases of these different strategies (Kosztolányi et al. 2012, Carmona
61	et al. 2015, Eberhart-Phillips et al. 2017, Song et al. 2020).
62	Here we focus on a diminutive non-migratory form of <i>C. alexandrinus</i> , found in
63	Sri Lanka and the Palk Bay region of south India (Seebohm 1887), which is considered a
64	distinct subspecies based on the differences in plumage and behaviour (Hartert & Jackson
65	1915; Figure 1). C. alexandrinus, breeding in the northern latitudes of Asia
66	(approximately above 40°), migrates to equatorial regions in the non-breeding season
67	(Küpper et al. 2009); so both migratory (C. a. alexandrinus) and resident (C. a. seebohmi)
68	populations are found therein, during the non-breeding season. However, in the breeding
69	season (in May-July), only the resident C. a. seebohmi breeds in these equatorial latitudes
70	(del Hoyo et al. 2021, Rasmussen and Anderton 2005, Henry 1998, Ali and Ripley 1983).
71	The taxonomic history of C. a. seebohmi is convoluted. In 1872, E. H. W.
72	Holdsworth identified small plovers in his collection from Sri Lanka as 'young' Ægialites
73	<i>cantianus</i> (= <i>C. alexandrinus</i> , Holdsworth 1872). This population of <i>C. alexandrinus</i> was
74	recognized as a separate taxon, C. cantianus minutus by Seebohm (1887). Since C.

75	cantianus minutus (Seebohm 1887) and C. minutus (Pallas 1831, referring to C. dubius -
76	Little Ringed Plover) were homonyms and hence invalid, Hartert and Jackson (1915)
77	proposed a nomen novum (a new name) for this taxon, C. a. seebohmi, by assigning an
78	adult male from the Holdsworth Collection in the Rothschild Museum, Tring, UK (now at
79	the American Museum of Natural History; AMNH 736757), collected from "Aripo,
80	Ceylon" (= Arippu, Sri Lanka) on 04 March 1869 as the holotype (Holdsworth 1872,
81	Hartert & Jackson 1915). A male specimen of this same plover, from V. Legge (Natural
82	History Museum, UK; NHMUK 1896.7.1.545), collected on 27 June 1873 from the
83	Southern coast of Sri Lanka (Hambanthota), was described as Leucopolius alexandrinus
84	leggei (Whistler & Kinnear 1936), a junior synonym of C. a. seebohmi Hartert and
85	Jackson 1915 (Rasmussen & Anderton 2005, Pollock 2015).
86	Besides the plumage and morphological differences (Seebohm 1887, Hartert &
87	Jackson 1915, Whistler & Kinnear 1936, Ali and Ripley 1983, Rasmussen and Anderton
88	2005), preliminary field studies suggest that C. a. seebohmi in Sri Lanka also has
89	distinctive courtship displays and vocalizations (Seneviratne unpublished data and vocal
90	recordings; eBird accession numbers: ML 415770261, ML 415770281, ML 415770291, ML
91	415770321, ML 415770331, ML 415770341). These differences suggest that C. a. seebohmi may
92	be a distinctive lineage of C. alexandrinus, and could be considered as a full species.
93	To fill this gap in the taxonomy and biogeography of the C. alexandrinus complex
94	in South Asia, here we critically assess the level of divergence in morphometrics,
95	plumage and genetics, using mitochondrial, sex-linked loci and autosomal microsatellite
96	markers, for a sample set combined of C. a. seebohmi, C. a. alexandrinus and C.
97	dealbatus. In addition, we also examined the historical literature and the specimens in
98	museum collections, to elucidate the conflict in nomenclature and to evaluate the
99	taxonomic position of <i>C. a. seebohmi</i> .

101 METHODS

102 Sample and data collection

103	We captured	l and to	ook blood	samples	from seven f	female and	six ma	le nesting C. a	и.

seebohmi from Mannar Island (near the type locality, Arrippu), Sri Lanka (9°05'15.7" N,

105 79°41'58.6" E and 9°04'37.4" N, 79°47'56.6" E), between May and August 2019. Another

six blood samples with morphometric data were collected alongside the National Bird

107 Ringing Programme (NBRP), in June and August between 2013 and 2020, from Bundala

108 National Park (Hambanthota), Sri Lanka (6° 10' 52.62" N, 81° 14' 5.46" E) (Figure 2).

109 Sampling was carried out using mist nets and funnel traps (as described in Karr 1981,

110 Székely *et al.* 2007), and the captured birds were processed at the capture location and

released immediately with a coloured leg band for later behavioural observations (Hjort &

112 Lindholm 1978).

113 A 50 μ L sample of blood was collected from the brachial vein and samples were 114 stored in cryogenic vials filled with 500 μ L of Queen's lysis buffer (Owen 2011).

115 Measurements of birds (mass, head length, bill length (culmen), bill height and width,

length of the tarsus, flattened wing length, tail length, and length of each primary,

secondary and tertiary feather of left wing) were taken with a Vernier calliper (± 0.02

118 mm), a wing ruler (± 0.1 mm) and a Newton scale (± 1.0 g) as in Seneviratne *et al.* (2012).

119 Biometric and genetic data from 11 populations of *C. a. alexandrinus* and eight

120 populations of *C. dealbatus* were obtained from the Chinese coast, Qinghai Lake and

121 Taiwan (Wang et al. 2019b). In addition to the measurements from live specimens, key

biometric data from 12 museum specimens of *C. a. seebohmi* including six males and six

123 females were obtained from the National Museum of Natural History, Sri Lanka (NMSL).

124 Subspecies level identification was carried out considering the differentiation of plumage

Ibis Submitted Manuscript

125 characters (colour of loral stripe, facial plumage and crown) and the wing length (mean:

126 101.4, range: 96-106 mm), as described in Kennerley et al. (2008), Rasmussen &

127 Anderton (2005) and Hartert and Jackson (1915).

128

129 **Phenotypic data collection and analysis**

Morphometric data of 31 C. a. seebohmi, 379 C. a. alexandrinus and 163 C. dealbatus 130 131 were used in phenotypic analysis. To compare the body dimensions, analyses of variance 132 (ANOVA) and Tukey's honest significant difference (Tukey 1949) were used. A principal 133 component analysis (PCA) was carried out using four biometrics (wing length, bill length, tail length and tarsus length) to visualize the biometric space of the three taxa. Individuals 134 with complete sets of measurements were used in this analysis. Plumage comparisons 135 were conducted using the same set of individuals (above). Due to the possible differences 136 in the patterns of moulting in C. seebohmi, plumage variables were not analysed 137 138 quantitatively (see Results). Biometrics were used in a species delimitation criterion (Tobias *et al.* 2010) to 139 determine the phenotypic rigor of the taxonomic status of C. a. seebohmi. Cohen's d 140 141 effect size (Cohen 1988) was calculated using mean of biometrics to determine the magnitude score of each biometric measurement (Tobias et al. 2010). In addition to the 142 143 known plumage variations, comparisons of photographs published by the Oriental Bird 144 Club (<u>http://orientalbirdimages.org/birdimages.php</u>; n = 20) and eBird (<u>https://ebird.org/</u>; 145 n = 20) were used to differentiate plumage characters. 146 Data from 12 C. a. seebohmi nests were used to assess the breeding behaviour in compared to C. a. alexandrinus. In addition, calls of C. a. seebohmi (n = 10) and C. a. 147

148 *alexandrinus* (n = 12) were retrieved from Xeno-Canto (<u>https://www.xeno-canto.org</u>)

and Macauley Library of Natural Sounds (<u>https://www.macaulaylibrary.org/</u>) to study the

150 vocal differentiations between two taxa.

All statistical analyses were conducted in R version 4.0.5 (R Core Team 2021)

using RStudio, version 2021.09.1+372 (RStudio Team 2020)□.

153

154 **DNA Sequencing and genotyping**

155 Genomic DNA was extracted using the phenol-chloroform DNA extraction method

156 (Burke & Bruford 1987). Extracted DNA was visualized in 0.5% agarose gel in TAE

157 buffer with ethidium bromide (EtBr, 3,8-Diamino-5-ethyl-6-phenylphenanthridinium

bromide) using an ENDURO[™] GDS Gel Documentation System.

Blood samples from breeding males from Sri Lanka were used for the genetic

analysis to ensure that the *C. a. seebohmi* genotype is considered for the analysis.

161 Extracted DNA of 10 male C. a. seebohmi from Mannar (n = 5) and Bundala (n = 5) were

used to amplify a total of 19 genetic markers including two mitochondrial loci – Partial

163 D-loop of the mitochondrial control region (CR), NADH dehydrogenase subunit 3 (ND3)

and two z chromosome-linked regions; Z4 and Z45, and 11 autosomal microsatellite loci

including Calex 01, 04, 05, 08, 11, 18, 19, 22, 23, 32, 37, 39 and 45 (Küpper *et al.* 2007),

166 C204 (Funk et al. 2007) and Hru2 (Primmer et al. 1995) following lab protocol described

in Wang et al. (2019b) with reagents and optimizations from Wenink et al. (1994),

168 Chesser (1999), Funk et al. (2007), Küpper et al. (2007) and Ji et al. (2014). PCR

169 reactions were carried out using a MultiGene[™] OptiMax Thermal Cycler (Labnet

170 International, Inc., New Jersey, USA). The 10 successfully amplified individuals were

sequenced from Macrogen, Inc. (Seoul, South Korea). Raw chromatograms were

manually checked and edited using Chromas (version 2.6.6) (McCarthy 1997).

173 Microsatellite genotyping was carried out using capillary gel electrophoresis in an ABI

174	3500 dx (Applied Biosystems, Massachusetts, USA). Individual microsatellite traces and
175	peak calls in electropherogram files were analysed using Geneious; version 1.4.6 (Kearse
176	et al. 2012) along with a Microsatellite Analysis External Plug-in.
177	We compared our dataset with Wang et al. (2019a), which included 219 C. a.
178	alexandrinus from 11 populations and 131 C. dealbatus from eight populations along the
179	Chinese coast and Taiwan. All the laboratory work for this study was carried out at the
180	Laboratory for Molecular Ecology and Evolution at the Department of Zoology and
181	Environment Sciences, University of Colombo.
182	
183	Phylogenetic analysis
184	To determine the phylogenetic position of <i>C. a. seebohmi</i> , we used amplified samples of
185	CR, ND3, Z4 and Z45 (see above) and additional sequences from NCBI GenBank
186	(https://www.ncbi.nlm.nih.gov/genbank/; numbers MK830765-MK830815, MK830754-
187	MK830764, AM941556-AM941555, and KM001420-KM001422) representing members
188	of the C. alexandrinus complex (Küpper et al. 2009, Rheindt et al. 2011, Wang et al.
189	2019b) . <i>C. pecuarius</i> was used as the outgroup. Final concatenated phylogenetic trees
190	and haplotype networks were built using selected sequences from pre-built consensus
191	trees for each region. Sequences were loaded into MEGA (version 7.0.26: Kumar et al.
192	2016) and nucleotides were aligned using the MUSCLE algorithm (Edgar 2004). Aligned
193	nucleotide sequences were revised into protein coding codon sequence to ensure
194	maximum reliability for the sequence (Wickremasinghe et al. 2017). Concatenated
195	phylogenetic trees were built in both Maximum Likelihood (ML) and Bayesian
196	approaches. ML tree was built using IQ-TREE (version 1.6.12) with 10,000 standard
197	bootstrap replicates (Nguyen et al. 2014). A Bayesian tree was built using MrBayes
198	(version 3.2) with two simultaneous 1,000,000 generations (Ronquist et al. 2012), with

25% of first trees burnt-out to obtain more accurate posterior probabilities. This Bayesian 199 200 inferred execution was based on Markov Chain Monte Carlo (MCMC) analysis (Sorensen 201 & Gianola 2007). Best-fit models for gene partitions were investigated using 202 PartitionFinder (Version 1.1.0: Lanfear et al. 2012) according to Bayesian Information Criterion (BIC) instead of Akaike Information Criterion (AIC) due to lower complexity in 203 204 the dataset (Chen & Chen 2008). FigTree (version 1.4.4) was used to visualize the 205 phylogenetic trees (Andrew 2006). Further, we built haplotype networks for all four loci 206 (CR, ND3, Z4 and Z45) separately according to the median joining network algorithm 207 (Bandelt *et al.* 1999) in PopArt (version 1.7) with the epsilon (ε) value of 0 (Leigh & 208 Bryant 2015). Sequences from CR, ND3 and Z-chromosome linked Z4 and Z45 regions of this study, Rheindt et al. (2011) and Wang et al. (2019b) were used to build haplotype 209 210 maps to represent genetic variation among closely related *Charadrius* plovers. 211

212 **Divergence time estimation**

A time calibrated phylogeny was reconstructed using the CR region in BEAST 2.5.1 213 (Drummond and Bouckaert 2015). We tested the substitution model of the CR gene with 214 215 jModelTest 2.1.4 based on Bayesian Information Criterion (Darriba et al. 2012). The best 216 model HKY+I was implemented in the BEAST analyses. A Yule model was selected as the tree prior, and relaxed uncorrelated lognormal distribution was used as clock model. 217 218 The clock rates were set at 0.013 substitution/site/million year based on the rate estimated 219 for the mitochondrial Control Region (Weir & Schluter 2008). The chain length of MCMC runs was set at 10 million generations, with sampling frequency of every 1000 220 221 generations. Two independent runs were performed. Tracer v1.7 (Rambaut et al. 2018) 222 was used to assess convergence among the two independent runs and to confirm adequate effective sample sizes (ESS) of the parameters (ESS \geq 200). The two runs were then 223

Ibis Submitted Manuscript

224	combined using	LogCombiner v2.4.7	(Drummond and Bouckaert 2015) with 20% burn-
		- /	1	

- in. Finally, the trees were summarized to produce a maximum clade credibility tree with
- TreeAnnotator v1.8.2 (Rambaut and Drummond 2007).
- 227

228 **Population genetic analysis**

- 229 Using the 11 autosomal microsatellite loci, Bayesian clustering was performed in
- 230 STRUCTURE (version 2.3.4; Jonathan *et al.* 2000) to identify genetic clustering among
- the three taxa. STRUCTURE runs were performed as individual simulations with a
- manual input of population number (K) from 1 to 10 in 100,000 MCMC runs with burn-in
- of 10,000. Each K was iterated 10 times to increase accuracy and to obtain ΔK to
- determine the best K value (Evanno et al. 2005, Falush et al. 2003). Structure Harvester
- 235 (version 0.6.94; Earl & VonHoldt 2012) was used to get the best population number. A
- 236 final run under the best K value was performed again in STRUCTURE software with
- 237 1,000,000 MCMC runs with burn-in of 100,000 (Rheindt *et al.* 2011). A second run with
- the known number of populations (K = 3) was also performed (Figure 2) with results
- illustrated as bar plots using Distruct: version 1.1 (Rosenberg 2004) \Box .

240 GenAlex; version 6.5 (Peakall & Smouse 2006) was used to calculate

- 241 pairwise Fst values using Weir and Cockerham (1984) genetic distance. Significance
- was assessed based on 1000 permutations with significance levels adjusted for multiple
- testing using sequential Bonferroni procedure. All the figures were retraced and
- illustrated using Inkscape; version 1.1 (Bah 2007).

245

246 **RESULTS**

247 Morphometric analysis

Biometrics clustered into three distinct groups in the PCA (Figure 3e), and the first three
principal components explained 98% of the variance (Table S1).

250 Breeding C. a. seebohmi adults of both sexes (Figure 1) were smaller than C. a. alexandrinus and C. dealbatus in bill length, tarsus length, wing length and tail length 251 252 (ANOVA: $F_{2,138}$ = 317.05, P <0.001; Table 1). C. a. seebohmi had shorter wings than that 253 of C. a. alexandrinus (Tukey-Kramer Test P < 0.001, 95% C.I. = -15.80, -12.79), and C. *dealbatus* (P = 0.000, 95% C.I. = -18.12, -14.95; Table 1). Since the assumption of 254 homogeneity of variance was not met for the tarsus, bill, and tail lengths, we used 255 Welch's adjusted F ratios for those comparisons of phenotypic traits. The tarsus length of 256 C. dealbatus was longer than that of the other two studied species ($F_{2, 46.56} = 1845.05$, P < 257 258 0.001; Table 1). C. a. seebohmi had the shortest tarsus (Games-Howell test; P < 0.001, 95% C.I. = -3.38, -1.56; Table 1). 259

Bill length was longer in C. dealbatus (F $_{(2, 75.64)}$ = 88.95, P < 0.001), but not 260 different between C. a. seebohmi and C. a. alexandrinus (Games-Howell Test; P = 0.939, 261 95% C.I. = -0.65, 0.85). Similarly, the tail length differs only in C. dealbatus (Welch's F_2 . 262 263 $_{56.59}$ = 1942.79, P < 0.001), while it did not differ between C. a. seebohmi and C. a. alexandrinus (Games-Howell Test; P = 0.165, 95% C.I. = -7.85, 1.08; Table 1, Figure 264 265 3). Three separate clusters, one for each taxon, were visualized in PCA (Figure 3 e) where 266 the first three principal components explained 98% of the variance (Supplementary Table 267 1). The species delimitation based on phenotype showed a magnitude value of 16 (Table 2). 268

269

270 Plumage and behaviour

It appears that, unlike C. a. alexandrinus and C. dealbatus, C. a. seebohmi does not have 271 272 a rufous cap during the breeding season. The adult breeding male C. a. seebohmi has 273 rufous buff mixed in with its paler cap, dark incomplete breast patches (complete in C. a. alexandrinus) and a black forehead stripe. These breast patches and forehead stripe 274 become paler in the non-breeding plumage. C. a. seebohmi also has an incomplete front 275 276 eye-lore which becomes darker in the breeding plumage. It has dark grey legs in both 277 sexes (C. a. alexandrinus has black legs). Female C. a. seebohmi resembles female C. a. 278 *alexandrinus*, but lacks the warm tone in the forehead stripe, ear coverts, front eye-lore 279 and breast patches in breeding plumage.

280

281 Moult patterns

282 Our observations based on photos of banded birds suggest that the moulting pattern of C. a. seebohmi is more close to that of C. dealbatus, likely driven by their similar non 283 migratory behaviour (Jonathan Martinez, pers. Obs.). They apparently have a very early 284 285 moult into breeding plumage type, very likely during the autumn season and thus much earlier than any C. a. alexandrinus. Birds are starting moulting into nonbreeding plumage 286 287 just before breeding in April and seems to suspend this moult as they start breeding. This suspended moult seems to be variable, and some flight feathers can be already moulted 288 289 before they starts breeding in some individuals. This suspended moult allows them to 290 acquire partial non-breeding plumage before the breeding season (Figure 1), in the same 291 manner of C. dealbatus, but in the latter only contour feathers are concerned (Jonathan 292 Martinez, in prep.).

293

294 Vocalization

On average, *C. a. Seebohmi* has higher number of notes (4) and higher frequency
(2081Hz) in vocalization than that of *C. a. alexandrinus* (2.9 and 1107Hz respectively:
Table 2). Therefore buzzy '*tszwEET*' and '*TreiuT*' calls of *C. a. seebohmi* is slightly
pitchy and of higher frequency (Macaulay Library Accession Numbers; ML 415770261,
ML 415770281, ML 415770291, ML 415770321, ML 415770331, ML 415770341).
Aerial display and flight call at breeding grounds are uncommon in *C. a. seebohmi* (see
ML 415770281 and ML 415770331 for examples of aerial display).

Taking all phenotypic data together, we obtained a magnitude value of 16 (Table
2), which qualifies *C. a. seebohmi* for species status (Tobias *et al.* 2010).

304

305 Genetic analysis

A concatenated dataset of 927 bases from CR and ND3 regions fully supported a 306 separation of C. a. seebohmi from C. a. alexandrinus with a bootstrap value of 100 in the 307 ML tree and a posterior probability value of 0.9976 in the Bayesian tree (Figure 4). We 308 309 used sequences from 345 individuals of C. alexandrinus and C. dealbatus across their 310 range, and gradually reduced the number of sequences to avoid polytomy formation 311 between C. a. alexandrinus and C. dealbatus. Within the C. alexandrinus species complex, C. a. seebohmi is sister to the C. a. alexandrinus and C. dealbatus sister pair 312 313 (Figure 4). Divergence time estimation for C. a. seebohmi from C. a. alexandrinus using 314 sequences of CR was estimated as 1.2 (95% Highest Posterior Density: 0.46 - 2.10) 315 million years ago. 316 Haplotype networks for C. a. seebohmi and four other closely related taxa in the

317 *C. alexandrinus* complex showed a clear and distinct divergence of *C. a. seebohmi* in the

318 CR region (Figure S1) with a nucleotide diversity (π) of 0.02907. The less divergent ND3

319 region showed the least separation ($\pi = 0.01645$). A concatenated sequence of CR, ND3, 320 Z4 and Z45 of 2327 bp had a nucleotide diversity (π) of 0.00184. The level of genetic 321 polymorphism of C. a. seebohmi against its closely related taxa is summarized in Table 322 S2. 323 About 16 variations in allele number repeats (repeat motifs) were seen among the 324 three taxa where C. a. seebohmi was separated from C. a. alexandrinus and C. dealbatus 325 (Table S3). Genetic cluster analysis in STRUCTURE segregated C. a. seebohmi into a 326 distinct cluster from C. a. alexandrinus and C. dealbatus (for both K = 3 and K = 4) 327 (Figure 2). Results of pairwise F_{ST} between groups (0.078-0.095: adjusted P < 0.01) 328 showed a moderate genetic differentiation of C. a. seebohmi compared to C. a. alexandrinus and C. dealbatus which isolates C. a. seebohmi from other members of the 329

330 *C. alexandrinus* cluster (Table 3).

331

332 **DISCUSSION**

333 Using morphometric measurements and plumage characteristics, breeding distribution,

R

334 molecular phylogeny based on mitochondrial and autosomal markers and Bayesian

335 population clustering based on 11 microsatellite markers, we demonstrated the

336 phenotypic and genetic distinctiveness of the resident population of Kentish Plover, C. a.

seebohmi, of Sri Lanka and the Palk Bay region of southern India. Its sister taxa, the

338 widespread Kentish Plover, C. a. alexandrinus, and the White-faced Plover, C. dealbatus,

are larger in size, different in plumage and genetic signature, and do not share the

340 breeding ranges with *C. a. seebohmi*. The small size, shorter wing length, the different

341 moult strategy and timing, and lack of rufus crown and broken loral stripe in breeding

season, separate *C. a. seebohmi* from its congeners in the field (Figure 1).

These results are important for three reasons. First, it is showing another evidence 343 344 of cryptic speciation in the genus *Charadrius* (Küpper & dos Remedios 2019, Wang et al. 345 2019a, Wei *et al.* 2022), presenting a likely case of incipient divergence probably due to allochronic segregation in breeding time (Taylor & Friesen et al. 2017, Tang et al. 2022). 346 Second, based on the substantial genetic and phenotypic differences between C. a. 347 348 seebohmi and other Charadrius populations, we suspect that the breeding ecology of C. a. 349 seebohmi to be different from the well-studied European and Chinese plover populations 350 (Wang et al. 2019a, Székely 2019, Sadanandan et al. 2019, AlMalki et al. 2016). Thus, 351 there is a need to carry out detailed behavioural, ecological and morphological studies of this population. Third, from a broader perspective, endemic and range restricted taxa in 352 the Global South are a major asset in defining and managing natural resources that are 353 354 unequally distributed (IRP 2019). The recognition of such unique biota, therefore, is a 355 vital first step in biodiversity conservation (Avise 2000), because such taxa can act as flagship species to draw much needed conservation attention for critical ecosystems 356 357 (BirdLife International 2004).

358

359 **Phenotypic patterns**

360 The body weight, bill length and tarsus length are often indicators of dominance or

reproductive advantages in smaller plovers (Sadanandan *et al.* 2019). For example, *C*.

362 *dealbatus* is bigger and might displace smaller *C. alexandrinus* in the breeding season,

363 which could provide partial reproductive isolation (Rheindt & Edwards 2011,

364 Sadanandan *et al.* 2019)□. The smaller body size of *C. a. seebohmi* (Rheindt *et al.* 2011)

- 365 could be attributed to less intense sexual selection as suggested for the latitudinal
- variation in size and selection pressures in other plovers (Ji et al. 2014, Wang et al.
- 367 2019a). Allen's (Allen 1877) and Bergmann's (Meiri and Dayan 2003) rules suggest that

Ibis Submitted Manuscript

animals in higher latitudes tend to be larger with relatively shorter protruding appendages 368 369 to counter higher physiological demands of high latitudes. The smaller size of tropical 370 breeding Kentish Plovers in south Asia and tropical Africa could be simply due to the 371 relaxation of such physiological demands. The shorter legs and bill of C. a. seebohmi is indicative of allometry of smaller overall size. Its shorter wings, however, could be 372 373 attributable to the non-migratory behaviour of the tropical population as long-distance 374 migrants have longer primary flight feathers to increase forward propulsion (Lovette & 375 Fitzpatrick 2016, Hera *et al.* 2020)□.

376 C. a. alexandrinus starts breeding in mid-April to May in higher latitudes (Northwest Europe), but in tropical regions in Africa it breeds in as early as mid-377 November (e.g., on Socotra Island; Porter & Suleiman 2014), January (Cape Verde; Snow 378 379 & Perrins 1998), February (Northeast Africa) and in March (Northwest Africa and Iraq; 380 Hanane 2011, del Hoyo *et al.* 2021); therefore the earlier transition to breeding plumage might be an adaptation of C. *alexandrinus* in tropical latitudes. Tropical breeding C. 381 382 dealbatus moults into breeding plumage as early as October (Kennerley et al. 2008). The moulting strategy of C. a. seebohmi differs from that of C. a. alexandrinus (JM 383 384 unpublished data), therefore comparisons of breeding and non-breeding plumages are not 385 feasible with the available anecdotal information on their moulting. Our observations suggest that the moulting pattern in C. a. seebohmi is like that of C. dealbatus (Kennerley 386 387 et al. 2008). It starts moulting into nonbreeding plumage just before breeding in April. However, unlike the latter (del Hoyo et al. 2021), it appears to have a suspended primary 388 389 moult in June from which they acquire partial non-breeding-like plumage before the 390 breeding season. Therefore, C. a. seebohmi moulting into non-breeding plumage led to the fading of 'ornamentation' or 'contrast' observed, especially in males. 391

The disappearance of colourful feather tracts, especially in males of island 392 393 populations, had been observed in several species such as White-winged Fairywrens 394 (Malurus leucopterus; Doucet et al. 2004) and Common Redshanks (Tringa totanus) 395 (Fitzpatrick 1998) . The forces of sexual selection that are mostly responsible for ornamental plumage patterns (Andersson 1994) could be reduced in island and tropical 396 397 birds partly due to the longer and less defined breeding seasons (Sinclair 1978, Diamond 398 1977). However, longer breeding seasons in tropics could intensify selection pressure in 399 some groups through multiple breeding cycles or through polygamy (Lande 1976, 400 Ausband 2018). Fading of colours in longer wavelengths due to the intense solar radiation in tropics could also be a factor in reduction of colour in tropical breeders (Tickell 2003). 401 The different predator assemblages and vegetation profiles could also contribute to this 402 403 fading of coloration (Schluter & Conte 2009, Hubbell 1997). 404

405 Potential drivers of divergence in C. a. seebohmi

406 The closest relatives of C. a. seebohmi, C. a. alexandrinus and C. dealbatus diverged at about 0.6 Mya (Wang et al. 2019b, Sadanandan et al. 2019). Despite their genetic and 407 phenotypic distinctiveness (Wang *et al.* 2019a), they have a considerable amount of gene 408 409 flow in sympatry (Wang et al. 2019b), hence, a narrow hybrid zone emerged on the 410 south-eastern Chinese coast (Sadanandan et al. 2019, Wang et al. 2019b). The separation 411 of C. a. seebohmi from its sister clade had taken place much earlier, at about 1.34 Mya 412 (Figure 4). The climatic conditions of the mid-Pleistocene (Berger & Jansen 1994) might 413 have triggered this divergence in the ancestral continental populations in South Asia as 414 shown in other avian groups in the region (Wickramasinghe et al. 2017, Jha et al. 2021). 415 Like its East Asian sister pair, the disjunct breeding distribution of South Asian pair (C. a. alexandrinus and C. a. seebohmi) suggests spatial segregation in breeding range. The 416

Ibis Submitted Manuscript

sympatry in non-breeding (winter) months and the occurrence of non-breeding C. a. 417 418 alexandrinus as 'summer loiterers' in the tropical breeding grounds of C. a. seebohmi, 419 however, suggest a possibility for introgression between these phylogenetically distinct 420 taxa. A detailed future study aiming at much broader sampling of these seemingly 421 allopatric plovers in Sri Lanka and south-central India would shed more light into the 422 population genetic structure of C. a. seebohmi. 423 Allopatric speciation, in which physical barriers restrict gene flow between two 424 populations, facilitating the initiation of divergence through selection (Mayr 1963) \Box or 425 genetic drift (Coyne & Price 2000), is the prevalent mode of speciation in birds (Price 2008). If populations remain isolated for a long enough period after divergence has been 426 established, genome-wide differentiation can be accumulated (Nosil & Schluter 2011). 427 428 The accumulation of genomic changes can be drastic or subtle, yet such changes, even in 429 narrow genomic tracts, can contribute to strong reproductive isolation (Grossen et al. 430 2016). Allopatry due to migratory divides or allochronic difference in migratory 431 behaviour, therefore, would contribute prezygotic isolation and divergence (Delmore et al. 2016, Taylor & Friesen et al. 2017, van Bemmelen et al. 2019). 432 Wang *et al.* (2019b) found genetic and phenotypic distinctiveness along the 433 Chinese coast in the closest relatives of C. a. seebohmi. The divergence of C. dealbatus 434 from C. alexandrinus had been facilitated by sea level fluctuation in the Pleistocene, 435 436 character displacement and associated ecological niche differentiation (Wang et al. 437 2019a) \Box . Sexually mediated traits such as plumage colouration aimed at mate attraction (Andersson 1994) can act as key divergent forces in reinforcing such speciation events 438 439 (Price 2008). Hindrance of gene flow through allopatry can also play a role. As suggested 440 by previous morphometric (Kennerley et al. 2008) and genetic studies (Sadanandan et al. 2019), these plovers maintain allopatry in breeding ranges. The breeding population of C. 441

442	a. seebohmi, for example, is separated from the closest breeding populations of C. a.
443	alexandrinus by ~1200 km and C. dealbatus by about ~1000 km (del Hoyo et al. 1992).
444	C. alexandrinus exhibits high gene flow due to dispersal between breeding sites
445	(Küpper <i>et al.</i> 2012) . Lack of dispersal is key to hindrance of gene flow (Funk <i>et al.</i>
446	2007) where C. a. seebohmi is severely limited, first by the latitudinal segregation and
447	then by the limited linear coastal habitat in Sri Lanka and southern tip of peninsula India.
448	Since the two subspecies do not overlap in the breeding season, C. a. seebohmi does not
449	show a strong parapatric affinity to C. a. alexandrinus. Local adaptations might have
450	further limited dispersal and facilitated divergence (Rheindt & Edwards 2011) \Box .
451	
452	Taxonomic redescription
453	Charadrius seebohmi (Hartert and Jackson 1915)
454	Charadrius cantianus Latham 1801
455	Charadrius cantianus minutus Seebohm 1887 (not Charadrius minutus Pallas 1831)
456	Charadrius alexandrinus seebohmi Hartert and Jackson 1915
457	Leucopolius alexandrinus leggei Whistler and Kinnear 1936
458	
459	Holotype
460	AMNH 736757, male, collected from Aripo, northern Ceylon [=Arripu, Sri Lanka:
461	8°47'48.8"N, 79°55'28.1"E], March 1869, by E.W.H. Holdsworth, from the Rothschild
462	collection. Since Holdsworth misidentified the species as Ægialites cantianus, he
463	described the specimens as young without full plumage, but with a black bill, dark brown
464	irides, dark grey feet and paler legs. The specimen described by Hartert & Jackson was in
465	the "Tring Museum", which at the time (1915) was Walter Rothschild's private
466	collection. Rothschild sold his collection to the American Museum of Natural History

467 (New York,	USA)) in the	1930s,	where the s	pecimen	is now located	(Greenway	y 1978;
	(, _ ~ ,	,	,				(/ - / /

468 Figure 5 a-c). The holotype has a flattened wing length of 101.3 mm.

469

470 Other type specimens

- 471 Paratypes: AMNH 736758 (wing length = 99.2 mm) 15 January 1870, Aripo [=Arripu,
- 472 Sri Lanka], female, collected by E.W.H. Holdsworth; AMNH 736759 (wing length = 94.6

473 mm) – 30 March 1869, "NW Ceylon" [= north-western Sri Lanka], male, collected by

- 474 E.W.H. Holdsworth. A male specimen from W.W.V. Legge's collection (NHMUK
- 475 1896.7.1.545) which was collected on 27 June 1873, from Hambanthota, Sri Lanka, was
- 476 designated the holotype of *Leucopolius alexandrinus leggei* (Whistler & Kinnear 1936)□
- 477 which is now a junior synonym of *Charadrius seebohmi*.

478

479 Other specimens of *C. seebohmi* in major collections

There are 10 specimens from Sri Lanka collected during 1873-1949, plus one of

481 questionable origin collected by R. Meinertzhagen (Dalton 2005) at the Natural History

482 Museum, Tring, UK (NHMUK). The National Museum of Natural History, Sri Lanka

483 (NMSL) houses 13 skin specimens from Sri Lanka, collected during 1881 – 1979. The

484 American Museum of Natural History, New York, USA (AMNH) carries the holotype

and two paratypes from Sri Lanka. The National Museum of Natural History-Smithsonian

- 486 Institution (USNM) has three skins collected by S.D. Ripley in March-June 1944 from Sri
- 487 Lanka. Yale Peabody Museum (YPM) has a single specimen collected by S.D. Ripley
- 488 from Sri Lanka in September 1950 (YPM ORN 20158). Royal Ontario Museum (ROM)
- too has a single specimen collected by Legge in November 1894 from Sri Lanka. The
- 490 Bombay Natural History Society Collection (BNHS) at Mumbai, India houses a single

491 specimen from Kerala, India, collected by Salim Ali (see Supplementary Material for492 details).

493

494 Etymology

The genus Charadrius refers to a nocturnal waterbird where 'the sight of it would cure the 495 496 *jaundice*' (= an open country bird exposed to sun) (Pande *et al.* 2009) \Box . The species 497 name seebohmi represents 'of Seebohm', after Henry Seebohm (1832-1895), an 498 ornithologist who first identified the breeding Sri Lankan population as a possible 499 subspecies in his landmark publication (Seebohm 1887). The English name 'Hanuman Plover' and the vernacular Singhalese and Tamil names, හනුමන් ඔලුවේයා (Hanuman 500 501 Olaviya) and ஹனுமன் உப்புக்கடோத்தி (Hanuman Uppukkothi) respectively, refer to 502 Hanuman, the ape-god of the Hindu mythology of India and northern Sri Lanka. The 503 Rama's Bridge (the present-day sand islands that stretch from Mannar Island to 504 Rameswaram, India), a stronghold for C. seebohmi near the type locality, was 505 constructed, according to the ancient epic *Ramayan*, by Hanuman's army. To celebrate 506 the mythology as 'stories of the people of the native land of this plover', we suggest the 507 name 'Hanuman Plover' as the English common name for this species. 508

509 **Diagnosis**

Hanuman Plover (*C. seebohmi*) is a small plover compared to its congeners. It has white
underparts and grey upperparts, dark grey legs and a white hind neck collar. It has an
incomplete front eye-lore which becomes darker in the breeding plumage (*C. a.*

513 *alexandrinus* has a complete black line). It does not have a rufous cap in the breeding

- season. The adult breeding male has rufous buff mixed in with its paler cap, dark
- 515 incomplete breast patches and a black forehead stripe. Female C. seebohmi resembles

female *C. a. alexandrinus*. It lacks black in the forehead stripe, ear coverts, front eye-lore
and breast patches in both breeding and winter plumages. The buzzy '*tszwEET*' and *'TreiuT*' calls of *C. seebohmi* are slightly pitchy and of higher frequency than that of *C. a. alexandrinus*.

520

521 **Distribution**

522 The C. seebohmi is found in coastal mudflats and adjacent grasslands in arid and dry 523 zones of Sri Lanka and the southern tip of India. In Sri Lanka it is common in Rama's 524 Bridge and Mannar, along the coast of North-western, Northern, Eastern and Southern 525 provinces that include areas of Chilaw, Kalpitiya, Veddithalathive, Irranathivu, Jaffna Peninsula, islands off Jaffna, Chundikulum National Park, Mullativu, Trincomalee, 526 Batticaloa, Kumana and Yala National Parks, and Hambanthota wetlands including 527 Bundala National Park (Wijesundara et al. 2017). It can also be seen near large inland 528 freshwater tanks in the dry zone (Henry 1998). In India, it is found in the coastal wetlands 529 and grasslands of Kochi, Kerala to Chennai, Tamil Nadu including the coastal wetlands 530 of Kollum, Rameswaram, Point Calemere, Cuddalore and Chengalpattu. Breeding has 531 been reported in inland wetlands such as Vidarbha Maharashtra (Kasambe 2007) and 532 Vani Vilasapuram, Karnataka (Rao *et al.* 2018) 533 The historical specimens that we studied in collections from 1869 to 1980 534 535 (Supplementary Table 3) yielded C. a. seebohmi skins in Sri Lanka and South India, and C. a. alexandrinus skins from elsewhere. All the putative C. a. seebohmi specimens 536 537 collected outside their current geographic range (e.g., YPM 42366 & YPM 42367 from

538 Bihar (North India) and UMMZ 76855 from Sind (Pakistan)) ended up being *C. a.*

539 alexandrinus based on the plumage characteristics and wing measurements. Skins of C. a.

seebohmi had shorter wing lengths (mean \pm SD: 100.88 \pm 3.45 mm) and the identifiable plumage patterns in the face and crown (Table 1, Figure 1).

542 Initial reports of the 'tropical' 'diminutive' form (Seebohm 1887) of the Kentish plover referred to 'Ceylon' [=Sri Lanka] and south India, as well as 'Somaliland' 543 [=Somalia], 'Red Sea area' and Djibouti (summarized in Hartert & Jackson 1915). In the 544 545 subspecies description, Hartert and Jackson (1915) stated "Besides Ceylonese birds, some 546 from Massaua [=Eritrea] and Somaliland in the British Museum undoubtedly belong to the 'small race'". A female from Socotra (Gulf of Yemen), considered by Sharpe (1896) 547 548 as C. a. seebohmi, appears to be doubtful due to longer wing length (108 mm) and more contrasting facial plumage; therefore, we considered this west African specimen to be of 549 C. a. alexandrinus. Based on three specimens, Friedmann (1930) stated that, "It (C. a. 550 551 seebohmi) is confined to the coast of the Indian Ocean from Ceylon to the Mouth of the 552 Red Sea (Somali coast). In Africa its range is restricted, as far as known, to the coast from 553 Massawa [=Eritrea], to French Somaliland [=Djibouti]. The birds of southern Somaliland [=Somalia] are probably C. alexandrinus, as well as birds of Egypt, Syria, and Palestine. 554 It is not known if C. a. seebohmi is resident in the Somali coast or not, as all the 555 specimens taken are winter birds" (Friedmann 1930). According to Whistler & Kinnear 556 (1936), the most important difference of the Sri Lankan race is that it does not acquire the 557 chestnut cap of the breeding plumage of the nominate race. "This absence of a distinctive 558 559 breeding plumage is a characteristic of other Cinghalease [=of Sri Lanka] race and is of great interest" (Whistler & Kinnear 1936). Based on that difference, Whistler and Kinnear 560 (1936) proposed *Leucopolius alexandrines leggei* as the name for the taxon with the type 561 being a specimen collected from Hambanthota (in Southeast coast of Sri Lanka) in 1873 562 (NHMUK 1896.7.1.545). However, later authors considered this nomenclature (Whistler 563 and Kinnear 1936) as a junior synonym for C. a. seebohmi (Hartert and Jackson, 1915). 564

565	Since the skins from the Red Sea region came from winter months and that the
566	morphometrics and plumage characters were aligned to C. alexandrinus, later authors
567	considered the 'Kentish Plover of tropical North Africa' as C. a. alexandrinus
568	(Mackworth-Praed & Grant 1960, Del Hoyo et al. 1992, Peters 1931).
569	
570	Conservation implications
571	Sri Lanka and southern India is a global biodiversity hotspot (Myers et al., 2000), an area
572	of high endemicity threatened with risk of extinction (Mittermeier et al., 2004). The range
573	of C. seebohmi has one of the highest human population densities in the planet (MoME
574	2021, Luck 2007). Therefore, both breeding habitats and nonbreeding sites of the species
575	are severely threatened with encroachment, pollution, dogs and linear infrastructure such
576	as highways, ports and wind farms (MoME 2021). The description of C. seebohmi as a
577	regional endemic could make this species a flagship species in conservation prioritization
578	of some of the most important wetlands of the Central Asian Flyway in Sri Lanka (eg.
579	Mannar Island, Veddithalativu Nature Reserve and Kalametiya Sanctuary). Since
580	conservation attention is mainly driven by few charismatic megafauna and endemics in
581	the tropics (Abeyrama and Seneviratne 2017), endemic-taxa-poor coastal wetlands such
582	as Palk Bay region and Mannar (critical overwintering sites for migratory waterbirds;
583	Wetlands International 2020) would greatly benefit from such regional endemics in
584	capturing much needed conservation attention for the benefit of millions of migratory and
585	resident shorebirds.
586	
587	Acknowledgments
588	

589 Author Contributions

591 Data Availability Statement

- 592 Upon the completion of review process: DNA sequences will be deposited at NCBI
- 593 Genbank (https://www.ncbi.nlm.nih.gov/genbank/), phenotypic measurement data will be
- by deposited at Dryad database (https://datadryad.org/stash), and the vocal data will be
- 595 deposited at (https://www.macaulaylibrary.org/).

596

597 **REFERENCES**

- Abeyrama, K.D. & Seneviratne, S.S. 2017. Evolutionary distinctiveness of Sri Lankan
 Avifauna. *WildLanka* 5: 1–10.
- Ali, S. & Ripley D.M. 1983. The handbook of the birds of India and Pakistan, Vol. 1-4.
- 601 Delhi: Oxford University Press.
- 602 Almalkl, M., Kupán, K., Carmona-Isunza, M.C., López, P., Veiga, A., Kosztolányi,
- A. & Küpper, C. 2016. Morphological and genetic differentiation among Kentish
- 604 Plover *Charadrius alexandrinus* populations in Macaronesia. *Ardeola* 64(1): 3-16.
- 605 Andersson, M. 1994. Sexual Selection. Princeton: Princeton University Press.
- 606 Andrew, R. 2006. FigTree. <u>http://tree.bio.ed.ac.uk/software/figtree/</u>.
- Ausband, D.E. 2018. Multiple breeding individuals within groups in a social carnivore.
- 608 *Journal of Mammalogy* **99(4)**: 836-844.
- 609 Avise, J.C. 2000. Phylogeography: The history and formation of species. Cambridge,
- 610 USA: Harvard University Press.
- 611 **Bah, T.** 2007. Inkscape: guide to a vector drawing program.
- 612 Bandelt, H., Forster, P. & Röhl, A. 1999. Median-joining networks for inferring
- 613 intraspecific phylogenies. *Mol. Biol. Evol.* **16**: 37–48.

614	Berger, W.H. & Jansen, E. 1994. Mid-Pleistocene Climate Shift - The Nansen
615	Connection (O. M. Johannessen, R. D. Muench and J. E. Overland, Eds.).
616	Washington DC: American Geophysical Union (AGU).
617	BirdLife International. 2004. Birds in the European Union: a status assessment.
618	Wageningen, The Netherlands: BirdLife International.
619	Bouakkaz, A., Belhassini, K., Bensouilah, T., Bensouilah, M.A. & Houhamdi, M.
620	2017. Breeding behaviour of the Kentish plover (Charadrius alexandrinus) in a salt
621	marsh from the Eastern High Plateaux, northeast Algeria. J. King Saud Univ Sci.
622	29 : 291–301.
623	Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard,
624	M.A., Rambaut, A. & Drummond, A.J. 2014. BEAST 2: A Software Platform for
625	Bayesian Evolutionary Analysis. PLOS Comput. Biol. 10: e1003537.
626	Brown, W.L. & Wilson, E.O. 1956. Character displacement. Syst. Zool. 5: 49-64.
627	Burke, T. & Bruford, M.W. 1987. DNA fingerprinting in birds. <i>Nature</i> 327 : 149–152.
628	Carmona-Isunza, M.C., Küpper, C., Serrano-Meneses, M.A. & Székely, T. 2015.
629	Courtship behavior differs between monogamous and polygamous plovers.
630	Behavioral Ecology & Sociobiology 69 : 2035–2042.
631	Chen, J. & Chen, Z. 2008. Extended Bayesian information criteria for model selection
632	with large model spaces. <i>Biometrika</i> 95 : 759–771.
633	Chesser, R.T. 1999. Molecular Systematics of the Rhinocryptid Genus Pteroptochos.
634	<i>Condor</i> 101 : 439–446.
635	Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Routledge.
636	Coyne, J.A. & Price, T.D. 2000. Little evidence for sympatric speciation in island birds.
637	Evolution. 54 : 2166–2171.
638	Dalton, R. 2005. "Ornithologists stunned by bird collector's deceit." <i>Nature</i> , 437: 7057.

639 del Hoyo, J., Elliott, A. & Sargatal, J. 1996. Handbook of the birds of the world, Vol. 3.

640 Barcelona: Lynx Edicions.

del Hoyo, J., Wiersma, P., Kirwan, G.M., Collar, N., Boesman, P.F.D. & Sharpe,

- 642 C.J. 2021. Kentish Plover (*Charadrius alexandrinus*). In Keeny, B.K. (eds) *Birds of*
- 643 *the World version 1.1.* Ithaca, NY, USA: Cornell Lab of
- 644 Ornithology. <u>https://doi.org/10.2173/bow.kenplo1.01.1</u>

del Hoyo, J., Wiersma, P., Kirwan, G.M., Collar, N., Boesman, P.F.D. and Sharpe,

- 646 C.J. 2021. White-faced Plover (*Charadrius dealbatus*). In Billerman, S.M. (eds)
- 647 Birds of the World version 1.0. Ithaca, NY, USA: Cornell Lab of Ornithology..
- 648 https://doi.org/10.2173/bow.whfplo2.01
- 649 Delmore, K.E., Toews, D.P.L., Germain, R.R., Owens, G.L. & Irwin, D.E. 2016. The
- 650 Genetics of Seasonal Migration and Plumage Color. *Curr. Biol.* **26**: 2167–2173.
- 651 Delany, S., Scott, D., Dodman, T. & Stroud, D. (eds) 2009. An Atlas of Wader
- 652 *Populations in Africa and Western Eurasia*. Wageningen, The Netherlands:
- 653 Wetlands International.
- 654 Diamond, J.M. 1977. Continental and Insular Speciation in Pacific Land Birds. Syst.
- 655 *Biol.* **26**: 263–268.
- 656 Dos Remedios, N., Lee, P.L.M., Burke, T., Székely, T. & Küpper, C. 2015. North or

657 south? Phylogenetic and biogeographic origins of a globally distributed avian clade.

- 658 Mol. Phylogenet. Evol. **89**: 151–159.
- 659 Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModelTest 2: more
- models, new heuristics and parallel computing. *Nature methods*, **9(8)**, 772-772.
- 661 Doucet, S.M., Shawkey, M.D., Rathburn, M.K., Mays Jr, H.L. & Montgomerie, R.
- 662 2004. Concordant evolution of plumage colour, feather microstructure and a

663	melanocortin receptor gene between mainland and island populations of a fairywren.
664	Proc. R. Soc. Lond. Ser. B Biol. Sci. 271: 1663–1670.
665	Drummond, A.J. & Bouckaert, R.R. 2015. Bayesian evolutionary analysis with BEAST.
666	Cambridge, UK: Cambridge University Press.
667	Earl, D.A. & VonHoldt, B.M. 2012. STRUCTURE HARVESTER: a website and
668	program for visualizing STRUCTURE output and implementing the Evanno method.
669	Conserv. Genet. Resour. 4: 359–361.
670	Eberhart-Phillips, L.J., Küpper, C., Miller, T.E., Cruz-López, Maher, K.H., dos
671	Remedios, N., Stoffel, M.A., Hoffman, J.I., Krüger, O. & Székely, T. 2017. Adult
672	sex ratio bias in snowy plovers is driven by sex-specific early survival: implications
673	for mating systems and population growth. Proceedings of The National Academy of
674	<i>Sciences US</i> 114 : E5474-E5481.
675	Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
676	throughput. Nucleic Acids Res. 32: 1792–1797.
677	Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of
678	individuals using the software structure: a simulation study. Mol. Ecol. 4(2): 359-
679	361.
680	Excoffier, L. and Lischer, H.E.L. 2010 Arlequin suite ver 3.5: A new series of programs
681	to perform population genetics analyses under Linux and Windows. Molecular
682	Ecology Resources 10: 564-567.
683	Falush, D., Stephens, M., Pritchard, J.K. 2003. Inference of population structure using
684	multilocus genotype data: linked loci and correlated allele frequencies. Genetics
685	164 :1567–1587.
686	Fernando, S.P., Irwin, D.E. & Seneviratne, S.S. 2016. Phenotypic and genetic analysis
687	support distinct species status of the Red-backed Woodpecker (Lesser Sri Lanka

688	Flameback: Dinopium psarodes) of Sri Lanka. The Auk: Ornithological Advances
689	133(3) : 497-511.
690	Fitzpatrick, S. 1998. Intraspecific Variation in Wing Length and Male Plumage
691	Coloration with Migratory Behaviour in Continental and Island Populations. J. Avian
692	<i>Biol.</i> 29 : 256.
693	Friedmann, H. 1930. Birds collected by the Childs Frick Expedition to Ethiopia and
694	Kenya colony. Bulletin of the Smithsonian Institution 153: 20.
695	Funk, W.C., Mullins, T.D. & Haig, S.M. 2007. Conservation genetics of snowy plovers
696	(Charadrius alexandrinus) in the Western Hemisphere: Population genetic structure
697	and delineation of subspecies. Conserv. Genet. 8: 1287–1309.
698	Gill, F., Donsker, D. & Rasmussen, P. (eds) 2021. IOC World Bird List (v11.2). doi :
699	10.14344/IOC.ML.11.2.
700	Greenway, J.C. 1978. Type specimens of birds in the American Museum of Natural
701	History. Part 2, Otididae, Jacanidae, Rostratulidae, Haematopodidae, Charadriidae,
702	Scolopacidae, Recurvirostridae, Burhinidae, Glareolidae, Thinocoridae,
703	Stercorariidae, Laridae, Alcidae, Pteroclididae, Columbidae, Psittacidae,
704	Musophagidae, Cuculidae, Tytonidae, Strigidae, Podargidae, Nyctibiidae,
705	Aegothelidae, Caprimulgidae, Apodidae, Hemiprocnidae, Trochilidae, Coliidae,
706	Trogonidae, Alcedinidae, Momotidae, Meropidae, Leptosomatidae, Coraciidae,
707	Upupidae, Phoeniculidae, Bucerotidae, Galbulidae, Bucconidae, Capitonidae,
708	Indicatoridae, Ramphastidae, Picidae. Bull. Am. Mus. Nat. Hist. 161: 1-305.
709	Grossen, C., Seneviratne, S.S., Croll, D. & Irwin, D.E. 2016. Strong reproductive
710	isolation and narrow genomic tracts of differentiation among three woodpecker
711	species in secondary contact. Mol. Ecol. 25: 4247-4266.

712	Hanane, S. 2011. Breeding ecology of Kentish Plovers Charadrius alexandrinus in rocky
713	and sandy habitats of north-west Morocco (North Africa). Ostrich. 82(3): 217-223.
714	Harris, R.B., Alström, P., Ödeen, A. & Leache, A.D. 2018. Discordance between
715	genomic divergence and phenotypic variation in a rapidly evolving avian genus
716	(Motacilla). Molecular Phylogenetics and Evolution DOI:
717	10.1016/j.ympev.2017.11.020
718	Hartert, E. & Jackson, A.C. 1915. Notes on some Waders. Ibis 57: 526–534.
719	de la Hera, I., Hernández-Téllez, I., Pérez-Rigueiro, J., Pérez-Tris, J., Rojo, F.J. &
720	Tellería, J.L. 2020. Mechanical and structural adaptations to migration in the flight
721	feathers of a Palaearctic passerine. J. Evol. Biol. 7: 979–989.
722	Henry, G.M. 1998. A guide to the Birds of Sri Lanka. 3rd edition. Oxford University
723	Press.
724	Hjort, C. & Lindholm, C.G. 1978. Annual bird ringing totals and population
725	fluctuations. Oikos 387–392.
726	Holdsworth, E.W.H. 1872. Catalogue of the birds found in Ceylon: with some remarks
727	on their habits and local distribution, and descriptions of two new species peculiar to
728	the island. Proc. Zool. Soc. Lond. 1872: 404-483.
729	Hubbell, S.P. 1997. A unified theory of biogeography and relative species abundance and
730	its application to tropical rain forests and coral reefs. Coral reefs 16(1): S9-S21.
731	IRP 2019. Global Resources Outlook 2019: Natural Resources for the Future We Want.
732	A Report of the International Resource Panel. United Nations Environment
733	Programme, Nairobi, Kenya.
734	Ji, W., Zhang, G.R., Ran, W., Gardner, J.P.A., Wei, K.J., Wang, W.M. & Zou, G.W.
735	2014. Genetic diversity of and differentiation among five populations of blunt snout

736	bream (Megalobrama amblycephala) Revealed by SRAP markers: Implications for
737	conservation and management. PLoS One 9(9): e108967.
738	Jonathan, K.P., Stephens, M. & Peter, D. 2000. Inference of Population Structure
739	Using Multilocus Genotype Data. Genetics 155(2): 945-959.
740	Karr, J.R. 1981. Surveying birds with mist nets. Stud. Avian Biol. 6: 62-67.
741	Kasambe, R. 2007. First record of breeding of Kentish Plover (Charadrius alexandrinus
742	seebohmi) from Vidarbha, Maharashta. NLBW 47(2): 30.
743	Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S. &
744	Thierer, T. 2012. Geneious Basic: an integrated and extendable desktop software
745	platform for the organization and analysis of sequence data. <i>Bioinformatics</i> 28:
746	1647–1649.
747	Kennerley, P., Bakewell, D. & Round, P. 2008. Rediscovery of a long-lost Charadrius
748	plover from South-East Asia. Forktail 24: 63–79.
749	Kosztolányi, A., Küpper, C., Chastel, O., Parenteauc, C., Yılmaz, K.T., Miklósi, Á.,
750	Székely, T. & Lendvai, Á.Z. 2012. Prolactin stress response does not predict brood
751	desertion in a polyandrous shorebird. Hormones and Behavior 61: 734-740.
752	Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: molecular evolutionary genetics
753	analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874.
754	Küpper, C., Augustin, J., Kosztolányi, A., Burke, T., Figuerola, J. & Székely, T.
755	2009. Kentish versus Snowy Plover: Phenotypic and Genetic Analyses of
756	Charadrius alexandrinus Reveal Divergence of Eurasian and American Subspecies.
	-
757	Auk 126: 839–852.
757 758	Auk 126: 839–852. Küpper, C. & dos Remedios, N. 2019. Defining Species and Populations: Molecular
757 758 759	 Auk 126: 839–852. Küpper, C. & dos Remedios, N. 2019. Defining Species and Populations: Molecular Genetic Studies in Plovers. Pages 16-43 in The Population Ecology and

761	Küpper, C., Edwards, S.V., Kosztolányi, A., Alrashidi, M., Burke, T., Herrmann, P.,
762	Argüelles-Tico, A., Amat, J.A., Amezian, M., Rocha, A., Hötker, H., Ivanov, A.,
763	Chernicko, J. & Székely, T. 2012. High gene flow on a continental scale in the
764	polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 21: 5864–5879.
765	Küpper, C., Horsburgh, G.J., Dawson, D.A., Ffrench-Constant, R., Székely, T. &
766	Burke, T. 2007. Characterization of 36 polymorphic microsatellite loci in the
767	Kentish plover (Charadrius alexandrinus) including two sex-linked loci and their
768	amplification in four other Charadrius species. Mol. Ecol. Notes 7: 35-39.
769	Lande, R. 1976. Natural Selection and Random Genetic Drift in Phenotypic Evolution.
770	Evolution 30(2) : 314–334. https://doi.org/10.2307/2407703
771	Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. 2012. PartitionFinder: combined
772	selection of partitioning schemes and substitution models for phylogenetic analyses.
773	Mol. Biol. Evol. 29: 1695–1701.
774	Leigh, J.W. & Bryant, D. 2015. Popart: full-feature software for haplotype network
775	construction. <i>Methods Ecol. Evol.</i> 6 : 1110–1116.
776	Liebers-Helbig, D., Helbig, A.J. & Knijff, P.D. 2001. Genetic differentiation and
777	phylogeography of gulls in the Larus cachinnans-fuscus group (Aves:
778	Charadriiformes). <i>Molecular Ecology</i> 10 : 2447-62.
779	Linnæi, C. & Salvii, L. 1758. Systema Naturæ. 10: 150.
780	Liu, S., Liu, Y., Jelen, E., Alibadian, M., Yao, C.T., Li, X., Kayvanfar, N., Wang, Y.,
781	Vahidi, F.S., Han, J.L. & Sundev, G., 2020. Regional drivers of diversification in
782	the late Quaternary in a widely distributed generalist species, the common pheasant
783	Phasianus colchicus. Journal of Biogeography 47(12): 2714-2727.
784	Lovette, I.J. & Fitzpatrick, J.W. 2016. Handbook of bird biology. London: John Wiley
785	& Sons.

- 786 Luck, G.W. 2007. A review of the relationships between human population density and
- 787 biodiversity. *Biological Reviews* 82: 607-645. <u>https://doi.org/10.1111/j.1469-</u>
- 788 <u>185X.2007.00028.x</u>
- Mackworth-Praed, C.W. & Grant, H.C.B. 1960. Birds of Eastern and North Eastern
 Africa: African Handbook of Birds. Longmans.
- 791 Mayr, E. 1963. Animal species and evolution. Cambridge, MA and London, England:
- 792 Harvard University Press.
- 793 McCarthy, C. 1997. Chromas. Griffith Univ., Brisbane, Queensland.
- 794 Meiri, S. & Dayan, T. 2003. On the validity of Bergmann's rule. J. Biogeogr. 30: 331–
- 795 351.
- 796 Meininger, P.L. & Székely, T. 1997. Kentish Plover *Charadrius alexandrinus*. Pages
- 797 260-261 in The EBCC Atlas of European Breeding Birds: Their Distribution and
- 798 *Abundance* (W. J. M. Hagemeijer and M. J. Blair, Eds.).. London: T & A D Poyser.
- 799 Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier,
- 800 C.G., Lamoreux, J. & da Fonseca, G.A.B. 2004. Hotspots revisted: Earth's
- biologically wealthiest and most threatened ecosystems. *CEMEX*, México DF.
- 802 Washington, D. C. pp. 99-103,
- 803 **MoMD&E** 2019. Biodiversity Profile Sri Lanka, Sixth National Report to the Convention
- on Biological Diversity, S. Jayakody, E.D. Wikramanayake, S. Fernando, C.
- 805 Wickramaratne, G.M. Arachchige, Z. Akbarally (eds.), p. 211, Biodiversity
- 806 Secretariat, Ministry of Mahaweli Development and Environment, Sri Lanka. Myers,
- N., Mittermeier, R., Mittermeier, C., da Fonseca, G. & Kent, J. 2000.
- Biodiversity hotspots for conservation priorities. *Nature* **403**: 853-858.
- 809 Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. 2014. IQ-TREE: a fast
- and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
- 811 *Mol. Biol. Evol.* **32**: 268–274.

812	Nosil, P. & Schluter, D. 2011. The genes underlying the process of speciation. Tra	ends
813	<i>Ecol. Evol.</i> 26 : 160–167.	

- 814 **Oberholser, H.C.** 1922. Notes on North American birds. XI. Auk **39**: 72–78.
- 815 Owen, J.C. 2011. Collecting, processing, and storing avian blood: a review. J. Field
- 816 *Ornithol.* **82**: 339–354.
- 817 Pallas, P.S. 1831. Zoographia Rosso Asiatica. Volumen Secundum. Academiae
- 818 Sciantiarum Impress, Petropoli
- 819 Pande, S., Sant, N. & Shivkumar, P. 2009. Avifaunal survey of south-and Middle-

Andamans, November 2009. *Indian BIRDS* **104**: 104-106.

Peakall, R. & Smouse, P.E. 2006. genalex 6: genetic analysis in Excel. Population

genetic software for teaching and research. *Mol. Ecol. Notes* **6**: 288–295.

823 Peñalba, J.V., Joseph, L. & Moritz, C. 2019. Current geography masks dynamic history

of gene flow during speciation in northern Australian birds. *Mol. Ecol.* **28**: 630–

- 825 **643**.
- 826 Peters, J. L. 1931. Checklist of the birds of the world. Cambridge: Harvard University

827 Press.

- Pollock, A.W. 2015. Binomial and trinomial index to The Auk, 1884-1940, also
- including the Nuttall bulletin, 1876-1883, and the A.O.U. checklist of North

830 American birds. American Ornithologists' Union.

- 831 **Porter, R.F. & Suleiman, A.S.** 2014. The populations and distribution of the breeding
- birds of the Socotra archipelago, Yemen: 2. Shearwaters to Terns. *Sandgrouse* **36(1)**:
- 833 8–33.
- 834 **Price, T.** 2008. *Speciation in birds*. CO, USA: Roberts and Co.

- 835 Primmer, C., Møller, A. & Ellegren, H. 1995. Resolving genetic relationships with
- 836 microsatellite markers: a parentage testing system for the swallow *Hirundo rustica*.
- *Mol. Ecol.* **4**:493-498.
- **R Core Team**. 2017. *R: A Language and Environment for Statistical Computing.*
- 839 http://r.meteo.uni.wroc.pl/web/packages/dplR/vignettes/intro-dplR.pdf
- Rambaut, A. & Drummond, A.J. 2007. TreeAnnotator.
- 841 <u>http://beast.bio.ed.ac.uk/TreeAnnotator</u>.
- 842 Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. 2018. Posterior
- summarization in Bayesian phylogenetics using Tracer 1.7. *Systematic biology*
- **67(5)**: 901.
- 845 Rao, G.B., Babu, S., Kumara, H.N. & Bilaskar, M. 2018. Ceylon Kentish Plover
- 846 *Charadrius alexandrinus seebohmi* breeding in Vani Vilasa Sagara, Hiriyur Taluka,
- 847 Karnataka, India. J. Threat. Taxa 10: 11237–11239.
- **Rasmussen, P.C. & Anderton, J.C.** 2005. *Birds of south Asia: the Ripley guide.*
- 849 Barcelona, Spain: Lynx Edicions.
- 850 Rheindt, F.E. & Edwards, S. V. 2011. Genetic Introgression: An Integral but neglected
- component of speciation in birds. *Auk* **128**: 620–632.
- 852 Rheindt, F.E., Székely, T., Edwards, S. V., Lee, P.L.M., Burke, T., Kennerley, P.R.,
- Bakewell, D.N., Alrashidi, M., Kosztolányi, A., Weston, M.A., Liu, W.T., Lei,
- W.P., Shigeta, Y., Javed, S., Zefania, S. & Küpper, C. 2011. Conflict between
- genetic and phenotypic differentiation: The evolutionary history of a 'lost and
- rediscovered' shorebird. *PLoS One* **6(11)**: e26995.
- **Ripley, S.D.** 1949. Avian Relicts and Double Invasions in Peninsular India and Ceylon.
- 858 *Evolution* **3**:150-159.
- **Roberts, A.** 1940. *The Birds of South Africa*. London: H. F. & G. W. Witherby.

- 860 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S. &
- 861 Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference
- and model choice across a large model space. *Syst. Biol.* **61**: 539–542.
- **Rosenberg, N.A.** 2004. Distruct: a program for the graphical display of population
- structure. *Molecular ecology notes*. **4(1)**: 137-138.
- 865 RStudio Team 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston,
- 866 MA. URL http://www.rstudio.com/.
- 867 Sadanandan, K.R., Küpper, C., Low, G.W., Yao, C.T., Li, Y., Xu, T., Rheindt, F.E.
- & Wu, S. 2019. Population divergence and gene flow in two East Asian shorebirds
 on the verge of speciation. *Sci. Rep.* 9(1): 1–9.
- 870 Schluter, D. & Conte, G.L. 2009. Genetics and ecological speciation. Proc. Natl. Acad.
- 871 Sci. U.S.A. 106: 9955–9962.
- 872 Scodato, S.C. & Safron, R. J. 2014. Geographic variation in sexual selection and
- implications for speciation in the Barn Swallow. *Avian Research*.
- doi.org/10.1186/s40657-014-0008-4
- 875 Seneviratne, S.S., Toews, D.P.L., Brelsford, A. & Irwin, D.E. 2012. Concordance of
- genetic and phenotypic characters across a sapsucker hybrid zone. *Journal of Avian*
- 877 *Biology* **43**: 1-12.
- 878 Seebohm, H. 1887. The Geographical Distribution of the Charadriidae, or the Plovers,
- 879 Sandpipers, Snipes, and Their Allies. London: Henry Sotheran & Co.
- 880 Sharpe, A. 1896. The Geography and Resources of British Central Africa. The
- 881 *Geographical Journal* **7(4)**: 366-387.
- 882 Sinclair, A.R.E. 1978. Factors affecting the food supply and breeding season of resident
- birds and movements of Palaearctic migrants in a tropical African Savannah. *Ibis*
- **120**: 480–497.

885	Snow, D.W.	& Perrins,	C.M. ((eds)	1998.	The	Birds	of the	Western	Palearctic.	Concise
-----	------------	------------	---------------	-------	-------	-----	-------	--------	---------	-------------	---------

886 Edition. Volume 1. *Non-passerines*. Oxford, UK: Oxford University Press.

887 Song, Z., Lin, X., Que, P., Halimubieke, N., Huang, Q., Zhang, Z. & Liu, Y. 2020.

- 888 The allocation between egg size and clutch size depends on local nest survival rate in
- a mean of bet-hedging in a shorebird. *Avian Research* **11(1)**: 1-10.
- 890 Sorensen, D. & Gianola, D. 2007. Likelihood, Bayesian, and MCMC methods in
- 891 *quantitative genetics*. Springer Science & Business Media.
- 892 Swinhoe, R. 1870. On the plovers of the genus Ægialites found in China. *Proc. Zool. Soc.*
- *London* 136–142.
- 894 Székely, T., Kosztolányi, A. & Küpper, C. 2008. Practical guide for investigating
- breeding ecology of Kentish plover *Charadrius alexandrinus*, v 3. Unpublished

896 Report, University of Bath.

- ⁸⁹⁷ Tang, Q., Burri, R., Liu, Y., Suh, A., Sundev, G., Heckel, G. & Schweizer, M. 2022.
- Seasonal migration patterns and the maintenance of evolutionary diversity in a
 cryptic bird radiation. *Molecular Ecology* 31: 632-645.
- 900 Taylor, R. S. & Friesen, V. L. 2017. The role of allochrony in speciation. *Molecular*
- 901 *Ecology* **26**: 3330-3342.
- 902 Tickell, W.L.N. 2003. White Plumage. *Waterbirds* 26: 1–12.
- 903 Tobias, J.A., Seddon, N., Spottiswoode, C.N., Pilgrim, J.D., Fishpool, L.D.C. &
- 904 **Collar, N.J.** 2010. Quantitative criteria for species delimitation. *Ibis* **152**: 724–746.
- Tukey, J.W. 1949. Comparing Individual Means in the Analysis of Variance. *Biometrics*5: 99–114.
- 907 van Bemmelen, R.S.A., Kolbeinsson, Y., Ramos, R., Gilg, O., Alves, J.A., Smith, M.,
- 908 Schekkerman, H., Lehikoinen, A., Petersen, I.K., Þórisson, B., Sokolov, A.A.,
- 909 Välimäki, K., van der Meer, T., Okill, J.D., Bolton, M., Moe, B., Hanssen, S.A.,

910	Bollache, L., Petersen, A., Thorstensen, S., González-Solís, J., Klaassen, R.H.G.
911	& Tulp, I. 2019. A Migratory Divide Among Red-Necked Phalaropes in the
912	Western Palearctic Reveals Contrasting Migration and Wintering Movement
913	Strategies. Front. Ecol. Evol. 7: 86.
914	Vidal, M.M., Hasui, E., Pizo, M.A., Tamashiro, J.Y., Silva, W.R. & Guimarães, P.R.
915	2014. Frugivores at higher risk of extinction are the key elements of a mutualistic
916	network. <i>Ecology</i> 95 : 3440–3447.
917	Wang, X., Maher, K. H., Zhang, N., Que, P., Zheng, C., Liu, S. & Liu, Y. 2019a.
918	Demographic histories and genome-wide patterns of divergence in incipient species
919	of shorebirds. Frontiers in genetics 10: 919.
920	Wang, X., Que, P., Heckel, G., Hu, J., Zhang, X., Chiang, C.Y., Zhang, N., Huang,
921	Q., Liu, S., Martinez, J., Pagani-Núñez, E., Dingle, C., Leung, Y.Y., Székely, T.,
922	Zhang, Z. & Liu, Y. 2019b. Genetic, phenotypic and ecological differentiation
923	suggests incipient speciation in two Charadrius plovers along the Chinese coast.
924	<i>BMC Evol. Biol.</i> 19 : 1–18.
925	Wei, C. T., Schweizer, M., Tomkovich, P., Arkhipov, V.Y., Romanov, M., Jonathan
926	Martinez, J., Lin, X., Halimubieke, N., Que, P.J., Mu, T., Huang, Q., Zhang,
927	Z.W., Székely, T. & Liu, Y. 2022. Genome-wide data reveals paraphyly in the sand
928	plover complex (Charadrius mongolus/leschenaultii). Ornithology. DOI:
929	10.1093/ornithology/ukab085
930	Weir, B.S. & Cockerham, C.C. 1984. Estimating F-Statistics for the Analysis of
931	Population Structure. Evolution 38(6): 1358–1370.
932	Weir, J. T. & Schluter, D. 2008. Calibrating the avian molecular clock. <i>Molecular</i>
933	<i>Ecology</i> 17(10) , 2321-2328.

934	Wenink.	P	.W	Baker.	Α.	J. &	Tilanus.	M.G	J.	1994.	Ν	lito	chor	ndrial	contro	l-region
			,	· · · ·)												- 0 -

- sequences in two shorebird species, the turnstone and the dunlin, and their utility in
- population genetic studies. *Mol. Biol. Evol.* **11**: 22–31.
- 937 Wetlands International. 2020. Asian Waterbird Census: https://south-
- 938 asia.wetlands.org/our-approach/healthy-wetland-nature/asian-waterbird-census/
- 939 Whistler, H. & Kinnear, J.C. 1936. The Vernay Scientific Survey of the Easter Ghats

940 (Ornithological Section), Part XV. J. Bombay Nat. Hist. Soc. **39**: 246-263.

941 Wickramasinghe, N., Robin, V.V., Ramakrishnan, U., Reddy, S. & Seneviratne, S.S.

- 942 2017. Non-sister Sri Lankan white-eyes (genus *Zosterops*) are a result of
- independent colonizations. *PLoS One* **12**: e0181441.
- 944 Wijesundara, C.S., Warakagoda, D., Sirivardana, U., Chathuranga, D.,
- 945 Hettiarachchi, T., Perera, N. & Weerakoon, G. 2017. Diversity and conservation
- of waterbirds in the northern avifaunal region of Sri Lanka. *Ceylon Journal of*
- 947 Science **46(5)**: 143.
- 948

949	TABLES AND FIGURES
950	
951	TABLE 1
952	Morphometric comparison of C. a. seebohmi, C. a. alexandrinus and C. dealbatus from
953	Sri Lanka and eastern China
954	
955	TABLE 2
956	Phenotypic character segregation of C. a. seebohmi and C. a. alexandrinus, as indicated
957	in Tobias et al. (2010) character delimitation
958	
959	TABLE 3
960	Genetic divergence among C. a. seebohmi, C. a. alexandrinus and C. dealbatus. Above
961	diagonal: pairwise F_{ST} between groups. Below diagonal: estimates of evolutionary
962	divergence over sequence pairs between groups. C. nivosus is also considered for the
963	divergence estimates ($P < 0.01$ in all the analysis).
964	
965	FIGURE 1
966	Adult male (A) and female (B) C. a. seebohmi from Mannar Island, Sri Lanka and adult
967	male (C) and female (D) C. a. alexandrinus from Bohai Bay, China. Open wings of (E)
968	C. seebohmi and (F) C. alexandrinus. Photo credits: (A-B, E: JJN, C-D: PQ, F: Chenjing
969	Huang)
970	
971	FIGURE 2
972	Map of Asia showing breeding range of C. a. seebohmi, C. a. alexandrinus and C.
973	dealbatus. Inset (box) showing field sites in Sri Lanka (A) and China (B). Structure plots

- of Bayesian genetic clustering for three subspecies; K=4 (above) and K=3 (below) with
- 975 respect to their sampling locations. Numbers represent: 1 Mannar and 2 Hambantota (Sri
- 976 Lanka), 3-13 C. a. alexandrinus populations and 14-21 C. dealbatus populations (China),
- 977 a-c locations of museum specimens at NMSL.
- 978

979 **FIGURE 3**

- 980 Morphometric analysis of C. a. seebohmi, C. a. alexandrinus and C. dealbatus indicated
- 981 in: (A) wing length, (B) bill length, (C) tail length and (D) tarsus length of both male and
- 982 female C. a. seebohmi, C. a. alexandrinus and C. dealbatus; horizontal lines within boxes
- represent the median values. The Principal Component Analysis (E) of *C.a. seebohmi*,
- 984 C.a. alexandrinus and C. daelbatus.
- 985

986 FIGURE 4

987 Phylogenetic affinities in the *C. alexandrinus* complex generated using mitochondrial CR

- and ND3 regions. Values above the branches indicate bootstrap values in Maximum
- 989 likelihood framework, values below indicate posterior probability in Bayesian

990 framework.

991

992 **FIGURE 5**

- 993 Holotype: AMNH 736757: a male C. a. seebohmi, collected in 1872 from Arripu (near
- Mannar), Sri Lanka by E. W. H. Holdsworth. Dorsal (A), ventral (B) & side aspects (C).
- 995 (Photo credit Paul R Sweet: American Museum of Natural History).

996

997

999	
1000	SUPPLEMENTARY MATERIAL
1001	Museum specimen details from NMSL, ROM, NHML, Smithsonian, UMMZ, AMNH &
1002	BNHS
1003	
1004	SUPPLEMENTARY TABLE 1
1005	Eigenvalues and percentage of variance of the Principal Component Analysis of C. a.
1006	seebohmi, C. alexandrinus and C. dealbatus
1007	
1008	SUPPLEMENTARY TABLE 2
1009	Genetic polymorphism of C. a. seebohmi against its closely related taxa
1010	
1011	SUPPLEMENTARY TABLE 3
1012	Number of repeat motifs of different studies for 13 microsatellite loci
1013	
1014	SUPPLEMENTARY FIGURE 1
1015	Haplotype analysis of ND3, CR, Z4 and Z45

1017 Tables and Figures

- 1018 **TABLE 1.** Morphometric comparison of *C. a. seebohmi*, *C. a. alexandrinus* and *C. dealbatus*
- 1019 from Sri Lanka and eastern China. (mean \pm SD)

	C. a. seebohmi	C. a. alexandrinus	C. dealbatus
	(n = 23)	(n = 291)	(n = 127)
Bill length (mm)	16.84 ± 1.67	16.74 ± 1.02	18.00 ± 1.00
Tarsus (mm)	26.10 ± 1.89	28.57 ± 1.09	50.03 ± 1.85
Wing length (mm)	100.88 ± 3.45	115.18 ± 3.18	117.41 ± 3.97
Tail length (mm)	45.96 ± 4.87	48.66 ± 2.07	28.11 ± 1.18

Ibis Submitted Manuscript

1021 **TABLE 2**

- 1022 Phenotypic character segregation of *C. a. seebohmi* and *C. a. alexandrinus*, as indicated in
- 1023 Tobias *et al.* (2010) character delimitation

	seebohmi	alexandrinus	Magnitude score	Score
Morphological	shorter wing	longer wing	effect size $d = 4.31$	
(Biometric			moderate - magnitude score of	2
characters)			2	
	slightly longer	slightly shorter	effect size $d = 0.07$	0
	bill	bill	magnitude score of 0	0
	slightly shorter	slightly longer	effect size $d = 0.72$	
	tail	tail	minor - magnitude score of1	0
			(co-varying with wing length)	
	slightly shorter	slightly longer	effect size $d = 1.60$	
	tarsus	tarsus	minor - magnitude score of1	0
			(co-varying with wing length)	
Acoustic	has high total	has less total	effect size d = -1.35 moderate -	
characters	number of notes	number of notes	magnitude score of 2	2
	(n=4)	(n=2.9)		
	high minimum	low minimum	effect size $d = -6.83$	
	frequency in the	frequency in the	major - magnitude score of 3	2
	song (f= 2082.8	song (f= 1106.7		3
	Hz)	Hz)		

Plumage	dull brown cap	rufous cap of	different colour and tone of	2
characters and	of breeding	breeding males	strongly demarcated body part	3
bare body parts	males		major - magnitude score of 3	
	dull brown	dull dark brown	different tone of significant	
	(washed)	upperparts	area of feathering	1
	upperparts		moderate - magnitude score of	1
			1	
	Showing a		partial moulting into non-	
	marked		breeding plumage before	
	difference in		breeding and arrest of	2
	moulting		moulting in breeding season.	
	strategy		Moderate- magnitude score 2	
	Discontinuous	Continuous eye-	weak divergence in a plumage	
	eye-lore of male	lore of male in	feature	1
	in breeding	breeding	minor - magnitude score of 1	
	plumage	plumage		
Ecological and	on average	on average	No magnitude score	
behavioral	inhabits softer	inhabits softer		
characters	mud and dry	mud along tidal		0
	grasslands	channels		U
		(Rheindt et al.		
		2011)		

Geographical	Resident	Migration	Parapatric geographic	
characters	subspecies in Sri	during winter,	distribution - moderate -	
	Lanka and	no overlapping	magnitude score - 2	2
	South-east India	breeding ranges		2
		with C. a.		
		seebohmi		
Total assigned	value			16

1024

1025

1026 **TABLE 3**

- 1027 Genetic divergence among C. a. seebohmi, C. a. alexandrinus, and C. dealbatus. Above
- 1028 diagonal: pairwise F_{ST} between groups. Below diagonal: estimates of evolutionary divergence
- 1029 over sequence pairs between groups. C. nivosus is also considered for the divergence
- 1030 estimates (P < 0.01 in all the analysis).

	C. seebohmi	C. dealbatus	C. alexandrinus
C. seebohmi		0.095	0.078
C. dealbatus	0.020574		0.013
C. alexandrinus	0.019909	0.001995	
C. nivosus	0.066708	0.048628	0.050291

1032 FIGURE 1

- Adult male (A) and female (B) C. a. seebohmi from Mannar Island Sri Lanka and adult male 1033
- (C) and female (D) C. a. alexandrinus from Bohai Bay, China. Open wings of (E) C. 1034
- seebohmi and (F) C. alexandrinus. Photo credits: (A-B, E: JJN, C-D: PQ, F: Chenjing Huang) 1035

1039 **FIGURE 2**

1040 Map of Asia showing breeding range of *C. a. seebohmi*, *C. a. alexandrinus and C. dealbatus*.

1041 Inset (box) showing field sites in Sri Lanka (A) and China (B). Structure plots of Bayesian

1042 genetic clustering for three subspecies; K=4 (above) and K=3 (below) with respect to their

sampling locations. Numbers represent: 1 Mannar and 2 Hambantota (Sri Lanka), 3-13 C. a.

1044 alexandrinus populations and 14-21 C. dealbatus populations (China), a-c locations of

1045 museum specimens at NMSL.

1048 FIGURE 3

- 1049 Morphometric analysis of C. a. seebohmi, C. a. alexandrinus and C. dealbatus indicated in:
- 1050 (A) wing length, (B) bill length, (C) tail length and (D) tarsus length of both male and female
- 1051 C. a. seebohmi, C. a. alexandrinus and C. dealbatus; horizontal lines within boxes represent
- 1052 the median values. The Principal Component Analysis (E) of *C.a. seebohmi, C.a.*
- 1053 alexandrinus, and C. daelbatus.

1055 **FIGURE 4**

- 1056 Phylogenetic affinities in the C. alexandrinus complex generated using mitochondrial CR and
- 1057 ND3 regions. Values above the branches indicate bootstrap values in Maximum likelihood
- 1058 framework, values below indicate posterior probability in Bayesian framework.

1060 **FIGURE 5**

- 1061 Holotype: AMNH 736757: a male C. a. seebohmi, collected in 1872 from Arripu (near
- 1062 Mannar), Sri Lanka by E. W. H. Holdsworth. Dorsal (A), ventral (B) & side aspects (C).
- 1063 (Photo credit Paul R Sweet: American Museum of Natural History).

1064

830x1343mm (68 x 68 DPI)

644x355mm (197 x 197 DPI)

254x457mm (87 x 87 DPI)

515x464mm (197 x 197 DPI)

529x509mm (197 x 197 DPI)

Sampath S. Seneviratne PhD

Professor in Zoology PI: Avian Evolution Node, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka Phone: +94-710-821177; Fax: +94-112-583148 e-mail: sam@sci.cmb.ac.lk Website: http://www.evolution.cmb.ac.lk/ http://www.cmb.ac.lk/academic/Science/departments/zoology/staff/academic-staff/dr-s-s-seneviratne

February 23, 2022

The Editor IBIS,

Dear Sir,

Herewith, we submit our manuscript, 'Re-evaluation of the taxonomic status of the 'diminutive' Kentish Plover *Charadrius alexandrinus seebohmi* based on phenotypic and genetic analyses' for publication as an original article.

The Kentish Plover is a common shorebird of Eurasia and North Africa and is an emerging model species of breeding system evolution. Here, we focussed on *C. a. seebohmi* (Hartert & Jackson 1915), a resident population found in the southern tip of the Indian Subcontinent, and re-evaluated its taxonomic status based on an assortment of phenotypic, and genetic characteristics. We showed that *C. a. seebohmi* has different body size, moulting pattern and plumage colouration from its conspecifics. Based on two mitochondrial, two sex-linked and 11 autosomal microsatellite markers, we showed that it is sister to the clade of Kentish and White-faced Plovers with an estimated 1.34-million-year divergence. We examined ornithological records of major museum collections of *C. a. seebohmi* in Asia, Europe and North America. Based on the genetic, phenotypic, allochronic migratory pattern and breeding range, we propose species status for *C. a. seebohmi* as *Charadrius seebohmi*.

We believe that this study provides an illustrative example of divergence in isolation, and the use of modern and historic material for species delimitation in ornithology.

Our submission consisted of the complete text including five Figures and three Tables, and Supplementary Material. Please note that this manuscript has not been submitted for publication elsewhere and it does not overlap with previously published work. All contributors have read and approved the content.

We thank you in advance for your consideration of this manuscript for publication.

Sincerely,

Sampath Seneviratne Ph.D Corresponding author on behalf of Yang Liu, Jude Niroshan, Jonathan Martinez, Pinjia Que, Chentao Wei, Sanjaya Weerakkody, Gayomini Panagoda, Jagathpriya Weerasena, Tamás Székely and Alex Bond