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Abstract—Nowadays, self-sustained highway transportation
systems (HTSs) are calling for the inter-operation of road net-
works, distribution networks (DNs), and electric vehicles (EVs)
towards the unexpected impacts inducted by extreme weather
events (EWEs). A novel joint resilience assessment scheme is
proposed to quantify the resilience of self-sustained HTSs under
tropical cyclone (TC) events. The impacts of TCs on transmission
lines and highways are formulated using a two-step ambiguity
set. In the first step, a multitask learning (MTL) based model
with a novel training strategy is proposed to simulate the future
TC tracks; the impacts of TCs are then calculated in the second
step based on the simulation results. Using the ambiguity set, the
self-sustained HTSs resilience assessment problem is formulated
based on the dynamic optimal traffic assignment problem, where
EVs are integrated as third-party emergency resources before the
advent of TCs. This scheme is then formulated as a two-stage
distributionally robust optimization (DRO) problem and refor-
mulated as a mixed-integer programming (MILP) problem. Case
studies have been conducted on a self-sustained HTS consisting
of a modified IEEE-14 bus test system with 2 wind farms (WFs)
and a 14-node transportation network with 4 charging stations
(CSs). Numerical results indicate that the proposed scheme can
quantify the resilience of self-sustained highway transportation
systems under the joint operation of EVs and MGs regarding the
unmet travel demand and load-shedding costs. In comparison to
the statistical TC forecasting models, the proposed MTL-based
model is more accurate and can reduce the system cost in most
cases.

Index Terms—Electric vehicles, networked microgrids, re-
silience, self-sustained.

NOMENCLATURE

Main parameters and variables are explained in this nomen-
clature. The rest of them are defined when needed.

A. Indexes

d Index of demand
g Index of generators
w Index of wind farms
s Index of destinations
a Index of links
t Index of time periods
c Index of EV classes
e Index of energy levels for EVs

B. Sets

D Set of demand
G Set of generators
W Set of wind farms
NS Set of source node

A Set of arcs
AS Set of sink arcs
T Set of time periods
C Set of EV classes
Ec Set of energy levels for EVs belonging to

class c

C. Parameters

fTT Travel cost
fg Fuel cost of generator g
fR
g Spinning reserve cost of generator g
fr,+
g , fr,−

g Regulation up/down cost of generator g
fVOUD Cost of unmet traffic demand
fVOLL Cost of load loss
fVOGC Cost of generation curtailment
fVOWC Cost of wind power curtailment
βa Travel time required by the backward

shock wave from the exit to the entry of
link a

Bij Reciprocal of reactance of line (i, j)
ta Free-flow travel time on link a
δ Time period length

D. First-stage Variables

Us,e
a,c (t), V

s,e
a,c (t) Cumulative number of EVs of class c with

energy level e that enter and leave link a
to destination s during period t

Pij(t), Pji(t) Power flow from bus i to j and j to i
during period t

Pg(t) Energy set-point of generator g during
period t

Pw(t) Power output of wind farm w during
period t

P ev
c (t) Cumulative charging/discharging power

of EVs of class c from/to the power
network

P ev
a Charging power of link a

Iij(t) Binary variable. 1 if line (i, j) is online
during period t, 0 otherwise

Rg(t) Spinning reserve of generator g during
period t

r+g (t), r
−
g (t) Regulation up/down reserve of generator

g during period t
Pd(t) Power demand of load d during period t
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E. Second-stage Variables

us,e
a,c(t), v

s,e
a,c(t) Cumulative number of EVs of class c with

energy level e that enter and leave link a
to destination s during period t

pev
c (t) Cumulative charging/discharging power

of EVs of class c from/to the power
network

pev
a Charging power of link a

Dud
a,s(t) Unmet traffic demand during period t

Da,s(t) Predicted traffic demand during period t
pls
d(t) Load shedding of load d during period t

pgc
g (t) Curtailment of generator g during period

t
pwc
w (t) Curtailment of wind farm w during period

t
γi(t) Bus angle at bus i during period t
Iij(t) Binary variable. 1 if line (i, j) is online

during period t, 0 otherwise

I. INTRODUCTION

ONGOING transportation electrification is strengthening
the interaction between highway transportation systems

(HTSs) and coming low-carbon distribution systems, with the
increasing penetration of electric vehicles (EVs). The imple-
mentation of self-sustained HTSs has shown to be effective
in reducing the consumption of fossil fuels and emissions of
greenhouse gas [1]. However, in many regions of the world,
HTSs are exposed to and suffer from extreme weather events
(EWEs), such as tropical cyclones (TCs). Additionally, there is
increasing evidence that the intensity and frequency of EWEs
are increasing in the coming years [2], [3]. Under EWEs,
HTSs should be properly incorporated into the joint emergency
management schemes as self-sustained systems, providing
emergency transportation and power supply to critical users. In
order to guide emergency planning, it is necessary to assess the
resilience of HTSs before the advent of EWEs, considering the
inter-operation of power systems and transportation systems
under emergencies. Due to the uncertain nature of EWEs and
their impacts, it is challenging to conduct a proactive resilience
assessment.

In this work, the concern for EWEs is emphasized on
TC events, which come with extremely strong winds and
precipitations. TCs can cause great disruptions not only to the
transportation system, but also power distribution facilities in
coastal areas [4]. To assess the impact of TCs, the distributions
of several TC-related parameters (such as wind speed or pres-
sure) at given locations need to be obtained by sampling from
probabilistic TC simulation models. The TC simulation models
can be divided into four categories: statistical, dynamic, en-
semble, and deep learning models. Dynamical and ensemble
models provide more accurate simulations, but are too time-
consuming to run since the dynamical models require super-
computers to process the equations governing the physics [5]
and motion of the atmosphere while the ensemble models often
combine the results of multiple dynamical models to produce a
better quality result [6]. On the other hand, statistical and deep
learning models are more light-weighted but less accurate.

In a resilience assessment problem, where a massive amount
of simulations needs to be generated to properly capture the
uncertainty of TC events, statistical and deep learning models
are more applicable than the other two types of models. The
early probabilistic TC simulation models were based on single
site observation data [7], [8]. Different statistical distributions
were used in this type of model to generate site-specific TC
parameters, such as central pressure, translation speed, and
heading angle, for Monte Carlo sampling. Due to the lack
of data, the tail shape of these distributions could not be
accurately estimated. In 2000, Vickery et al. [9] introduces
the TC track model which generates TC-related parameters
along the TC tracks. Since then, many works have been made
to improve the track model [10], [11]. In recent years, deep
learning-based TC track models have been developed [12]
for TC simulations. Combined with mixture models, deep
learning models are able to make conditional probabilistic
predictions of TC tracks and intensities [13]. Deep learning
models, once properly trained, generally perform better than
statistical models [14]. However, deep learning models are
extremely sensitive to hyperparameters that are hard to tune
manually.

The modeling of TC impacts on HTSs and distribution
networks (DNs) mainly focuses on characterizing the effect
of weather conditions on the reliability attributes of HTSs and
DNs, i.e. line failures, road capacities, and free-flow travel
speeds. The distributions of these attributes during TC events
are primarily affected by the wind speed, rainfall rates, and
water film depth (WFD), which can be obtained by combining
the probabilistic TC track models with statistical or empirical
precipitation [15], wind field [16] and WFD [17] models. For
DNs, TC-induced line failures are often simulated using the
fragility curve of individual DN components, namely tow-
ers [18] and conductors [19]. Subsequently, failure probabili-
ties of the distribution lines can be obtained by combining the
failure models of its components. For HTSs, studies show that
the free-flow travel time and road capacity of the inundated
road segments are affected by the rainfall intensity and WFD
during TC events [20], [21]. Ni et al. [21] suggest that the
free-flow travel time and road capacity models based on Del
Castillo model fit best for the observed traffic data.

For emergency management of HTSs, the dynamic traffic
assignment model is widely adopted in transportation planning
during a TC event [22]. Considering the uncertainties of traffic
demand and flow constraints, a cell transmission model (CTM)
based dynamic traffic assignment problem is proposed as a
two-stage chance-constrained distributionally robust problem
[23]. However, large-scale variables are introduced in the CTM
model, making it difficult to solve the problem, especially
considering uncertainties. The authors in [24] propose the link
transmission model (LTM) to reduce the scale of variables.
However, the energy characteristic of EVs has not been con-
sidered. Based on the LTM, a novel dynamic traffic assignment
model is presented for the emergency reconfiguration where
both gasoline vehicles and EVs are considered [22]. Overall,
the resilience of power systems has yet to be considered in
these works, while the self-sustained HTSs may be impacted
by power shortage. Considering the cascading failure propaga-
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Fig. 1. Illustration of the resilience management scheme for self-sustained HTSs.

tion, an N-2 constraint economic dispatch model is developed
to decrease the generation cost and load shedding [25]. To
reduce the generation cost and deal with the wind power un-
certainty, a two-stage adaptive robust economic dispatch model
is proposed and is solved by a Benders decomposition method
[26]. A two-stage economic dispatch model is formulated
based on the distributionally robust optimization technique in
[27] to minimize the generation cost and curtailment. However,
the interaction of EVs in HTSs is ignored in these works.

To fulfill the research gaps on the proactive resilience
assessment of HTSs considering self-sustaining, a novel re-
silience assessment scheme is proposed under the joint op-
eration of EVs. Deep learning-based probabilities TC track
models with automatic hyperparameter searching schemes
are employed for the impact modeling of EWEs. The main
contributions of this paper can be summarized as follows:

(1) A probabilistic TC simulation model based on multi-
task learning (MTL) and mixture models is developed. To
efficiently train the proposed model, a novel automatic hyper-
parameter tuning strategy is proposed. The impacts of TCs on
distribution networks and HTSs are quantified using a series
of empirical and analytical models based on the TC track
simulation results.

(2) A two-stage distributionally robust optimization problem
is formulated to quantify the resilience of HTSs under uncer-
tain EWEs. The value of proactive resilience assessment with
more accurate EWE predictions and EVs as a mobile energy
source is examined by extensive case studies.

The remainder of the paper is organized as follows: Section
II gives an overview of the resilience management of self-
sustained HTSs. The proposed TC simulation model and
TC impact modeling strategy are presented in Section III.
Section IV introduces the resilience assessment problem of

self-sustained HTS and the solution method. The proposed
approach is validated through case studies in section V.
Conclusions are drawn in sectionVI.

II. RESILIENCE MANAGEMENT OF SELF-SUSTAINED
HTSS

A. Self-Sustained HTSs

Traditional HTSs rely on fossil fuels to power vehicles and
facilities along the roads. As a consequence, the transportation
sector has been one of the main contributors to greenhouse
gas emissions in many countries [28], [29]. In recent years,
self-sustained transportation systems have been introduced
to reduce the dependency on fossil fuels and emissions of
greenhouse gas. Implementing self-sustained HTSs has been
one of the main objectives in the transition from fossil fuels
to renewable energy sources. According to [30], self-sustained
transportation systems should be equipped with polymorphic
renewable energy sources, such as solar and wind, and be able
to convert between different types of energies, such as thermal,
electrical, and hydrogen energy. In such systems, the road
networks, and DNs work together to meet the self-sustained
energy supply and consumption goal. In addition, the traffic
demand can be fulfilled by EVs powered by renewable energy,
further reducing the demand for fossil fuels.

B. Resilience Management Scheme

To reduce the economic losses (e.g., load shedding and
unmet traffic demands) of self-sustained HTSs under uncertain
EWEs, a resilience management scheme is formulated based
on the economic dispatch model. The impact of uncertain
EWEs, which includes the failures of distribution lines, reduc-
tion of free-flow travel speed and road capacity, and change of
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wind farm power output, can be simulated using probabilistic
forecasting models. With the uncertain impact as the ambiguity
set, the reconfiguration and generation of DNs, and the travel
and charging of EVs are jointly optimized using a two-stage
DRO model. Fig. 1 gives an overview of the self-sustained
HTSs resilience management scheme.

III. UNCERTAIN TC SIMULATION AND IMPACT MODELING
FOR SELF-SUSTAINED HTSS

A. Problem Definition

Definition 1: A TC track T is composed of NT consecutive
spatial-temporal points T = {X1, X2, ..., XNT

}. Each spatial-
temporal point Xi contains several parameters that essentially
characterize the TC track at time step i: Xi = [λi, ϕi, pci],
where λi, ϕi are the longitude and latitude coordinates of the
TC center, and pci is the minimum TC central pressure.

Definition 2: A power distribution network D is denoted
as a set of ND transmission lines D = {L0, L1, ..., LND

}.
Each transmission line Li contains its own set of transmission
towers and conductors. The status of a transmission network
at any given time during a TC event can be represented by
a binary vector of length ND, where the status of each Li is
represented by a binary variable (0 = failure and 1 = online).

Definition 3: A road network R is denoted as a set of NR

road segments D = {S0, S1, ..., SNR
}. Each road segment Si

is characterized by its starting and ending positions. The status
of a road network at any given time during a TC event can
be represented by a NR by 2 matrix, where the ith row of the
matrix represents the road capacity and free-flow travel speed
of Si.

Problem 1: Given a power distribution network D, a road
network R, and a TC track T = {X0, X1, ..., X4} that
contains the past 24-hour track information, the goal is to
predict the probability distribution of the status of D and R
in the next 6 hours.

The problem is solved in multiple steps: First, deep learning-
based probabilistic models are trained to predict the TC track
and intensity in the next 6 hours; then, the wind speed
V , rainfall intensity I , and water film depth (WFD) D at
given locations of the road network and distribution lines
are calculated using analytical or empirical models; lastly,
the failure probabilities, the road capacity, and the free-flow
travel speed are calculated using empirical models based on
the predicted V, I , and D.

B. Dataset and Data Preprocessing

In this study, the TC track and intensity models were trained
and evaluated on the CMA Tropical Cyclone Best Track
Dataset [31], [32] obtained from the China Meteorological
Administration (CMA). The dataset covers TCs developed
over the western North Pacific and provides 6-hourly records
for each TC. Each record contains the record date, TC name,
center longitude, and latitude coordinates, intensity category,
minimum central pressure, and two-minute mean maximum
sustained wind speed near the TC center. The longitude,
latitude and minimum central pressure were extracted from
the dataset as the raw track data. A data cleaning process was

performed to remove the extreme values (longitude λ > 180°
E, latitude ϕ > 55° N, or TC translation speed c > 30m/s)
before constructing the input feature space for the model. The
TC translation speed c was calculated using the Haversine
formula:

a = sin2
(
∆λ

2

)
+ cosλ1 · cosλ2 · sin2

(
∆ϕ

2

)
(1)

hav = 2 ·R · arctan
(√

a

1− a

)
(2)

V =
hav

∆t
(3)

To construct the input feature space, a set of common pre-
dictors selected by the climatology and persistence (CLIPER)
model [33] were computed. A total of 26 input features were
obtained (see Table I). The predictors are then normalized and
split into training, validation, and test datasets with a ratio of
7:2:1.

C. Multitask Learning-based TC Track Forecast Model

The prediction of the TC track can be achieved using
artificial neural networks (ANNs or NNs). NNs are layered
machine learning models that mimic the way the human brain
operates. A typical NN consist of an input layer, one or more
hidden layers, and an output layer. Each layer has its associated
activation function, which is usually a threshold function that
determines if the nodes in this layer are activated. Like other
machine learning models, NNs rely on training data to learn
and improve their performance over time. For the deterministic
TC track prediction task, which is a regression task, the NN
model is usually trained by minimizing the mean square error
(MSE) loss on the training data:

θ∗ = argmin
θ
Lθ = argmin

θ

1

N

N∑
i=1

(yi − ŷi)
2 (4)

where θ is the set of trainable parameters of the NN (including
the neural network weights w and biases b), N is the total
number of training data, y is the training target value, and ŷ
is the NN prediction.

However, for highly uncertain prediction tasks such as TC
track prediction, we may also want to obtain the conditional
probability distribution of future TC tracks. The prediction of
the probability distribution can be achieved by combining an
NN and a mixture model, resulting in an MDN. The mixture
model consists of NM mixture components which belong to a
particular parametric distribution function. The mixture model
can be expressed as a weighted sum of its components, and
the weights add up to 1. For example, a Gaussian mixture
model with KM can be written as:

N (y|µ, σ) = 1

σ
√
2π

e−
(y−µ)2

2σ2 (5)

p(y|x) =
K∑
i=1

πi(x)Ni(y|µi(x), σ
2
i (x)) (6)

KM∑
i=1

πi = 1 (7)
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TABLE I
PREDICTORS USED BY THE PROPOSED MODEL

Predictor Description

x1 − x4 Central pressure at current time, -6h, -12h, and -18h
x5 − x8 Longitude at current time, -6h, -12h, and -18h
x9 − x12 Latitude at current time, -6h, -12h, and -18h
x13 − x16 Zonal motion at current time, -6h, -12h, and -18h
x17 − x20 Meridional motion at current time, -6h, -12h, and -18h
x21 − x23 Longitude difference of past 6h, 12h, and 18h
x24 − x26 Latitude difference of past 6h, 12h, and 18h

where πi is the mixture component weight and p(y|x) denotes
the conditional probability distribution of the output y given
input x. The mixture model parameters, namely pii, µi, and
σi, are predicted by an NN, and the mixture model works
as the output layer in an MDN. To properly train an MDN
model, the negative log-likelihood (NLL) loss is minimized
on the training dataset:

θ∗MDN = argmin
θMDN

LθMDN = argmin
θMDN

N∑
i=1

− log(yi|xi) (8)

The deterministic and probabilistic TC track prediction
models can be combined into one model to produce better-
quality results by utilizing MTL. The different tasks in the
MTL model share low-level hidden layer features to improve
generalization ability. Each task also has its own task-specific
layers and loss on top of the shared layers. The total loss of an
MTL model is a weighted sum of the individual task losses.
In this work, the MDN is employed to predict the probability
distribution of the residual between the deterministic track
prediction and the true values. Therefore, the total loss of the
proposed MTL model LθMTL is given by:

LθMTL = αLDet + (1− α)LProb (9)

LDet =
1

N

N∑
i=1

(yi − ŷi)
2 (10)

LProb =

N∑
i=1

log(yi − ŷi|xi) (11)

where LDet is the deterministic prediction loss, LProb is the
MDN prediction loss, ŷ is the output of the deterministic
prediction, α is a hyperparameter that denotes the weights
of different loss terms, and xi, yi are from the training set
{xi, yi}Ni=1. To reduce the burden of hyperparameter tuning,
the problem of predicting λ, lat, and pc is solved using three
different MTL models, respectively.

D. Forecast Model Training with Automatic Hyperparameter
Tuning

The NN model performance is highly sensitive to hyper-
parameters. Manually adjusting the hyperparameters is very
inefficient and time-consuming since you need to fully train
the model every time you adjust the hyperparameters. Apart
from the common hyperparameters of NN models, such as type

of optimizer, learning rate, and batch size, the proposed MTL
model has two unique hyperparameters that need to be tuned:
the loss weights α and the number of mixture components
KM . In this work, two automatic hyperparameter tuning meth-
ods were developed to tune the two unique hyperparameters.

1) Uncertainty and Variance-based Automatic Loss Weight-
ing: Uncertainty-based loss weights tuning was first proposed
in [34]. Recently, the authors in [35] proposed a revised
version of the uncertainty-based method. The original and
revised uncertainty-based tuning strategies are proven to be
effective in many applications. However, [36] made a com-
parison of different loss weighting strategies and suggested
that for different tasks, the best strategies might be different.
Therefore, in this work, we train the same model with different
loss weighting strategies and preserve the trained model with
the best test performance. The different strategies used in
this work include the original and revised uncertainty-based
strategies and a naive variance-based strategy. The naive
variance-based strategy can be expressed as:

(θMTL, α)
∗ =argmin

θMTL,α
LθMTL,α (12)

LθMTL,α =αLDet + (1− α)LProb+

(αLDet − L)2 + ((1− α)LProb − L)2 (13)

L =
αLDet + (1− α)LProb

2
(14)

where L represents the mean of the loss terms. The naive
variance-based strategy just makes α a trainable parameter of
the NN model and minimizes the loss term variance to avoid
trivial values of α (i.e. 0 or 1).

2) Differntiable Hyperparameter Search for KM : The dif-
ferentiable architecture search (DARTS) was first proposed
in [37]. DARTS enables gradient-based optimization of hy-
perparameters, which is significantly faster than the conven-
tional evolutionary algorithm or reinforcement learning-based
approaches. However, the original DARTS only works for
convolutional neural networks (CNNs) or recurrent neural
networks (RNNs). In this work, we developed a differentiable
search method for the mixture model layer of the MDN.
Similar to DARTS, a set of KM values were selected as
candidate operations which represents some function o(·) to
be applied to the input of the mixture model. The DARTS
algorithm requires that all the operations have the same
input and output dimensions. Therefore, the operation for a
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Algorithm 1: Training process of the proposed MTL
model with automatic hyperparameter search.

Data: Training and validation dataset {xtr,i, ytr,i}Ntr
i=1,

{xval,i, yval,i}Nval
i=1, untrained MTL model M

parametrized by NN weights θ, and the set of
candidate KM values K

Result: Trained neural network with weights θ∗

1 Replace the mixture model layer of M with a mixed
operation based on K parameterized by w to get
model M ′.

2 Create 3 different models M1,M2,M3 based on M ′

using the 3 loss functions described in section III-D1.
These 3 models are essentially parameterized by
M1 = (θ1, α1, w1), M2 = (θ2, α2, w2), and
M3 = (θ3, α3, w2).

3 foreach Mi ∈ {M1,M2,M3} do
4 Set the initial learning rate ξi ← ξ0i for the

optimizer. Randomly initialize θi, αi, and wi.
5 while Lval(θi, αi, wi) is not converged do
6 Update wi by descending

∇wiLval(θi − ξi∇θiLtr(θi, αi, wi), αi −
ξ∇αiLtr(θi, αi, wi), wi).

7 Update θi, αi by descending ∇θiLtr(θi, αi, wi).
8 end
9 K∗

M,i ← argminKM∈K w∗
i

10 end
11 M ′′ ← argminMi∈{M1,M2,M3} Lval(Mi). Set

KM ← K ′′∗
M for the original model M and set the

loss function of M to be the same as M ′′

12 Re-initialize θ and α, train M until validation loss
converges. Save the weights of M as θ∗

particular KM value is defined as a fully connected layer
with identity activation followed by a mixture model layer
with KM mixture components. The fully connected layers in
different operations ensure that the correct number of mixture
parameters are created from the same input. The number of
output dimensions of the mixture model layer is equal to
the number of probabilistic predictions, which is identical for
all operations. Once the operations are properly defined, a
softmax over all the operations is applied to relax the search
space to a continuous space. The different operations are
weighted and summed up via element-wise concatenation. In
this way, the weights of different operations can be optimized
together with the NN weights. After the optimization, the
operation with the maximum weight values is preserved as
the search result.

The proposed training strategy is a combination of III-D1
and III-D2. The pseudocode of the proposed hyperparameter
tuning strategy is presented in Algorithm 1.

E. Status of Distribution Lines and Highway Road Segments
under TC Events

1) Precipitation and Wind Field Model: Once the proposed
TC track models are properly trained, the prediction results of
the models can be used for sampling precipitation and wind

speed at given locations in an HTS during TC events. An
empirical rainfall model [15] and a linear height-resolving
wind field model [16] are employed to generate the rain rate
and wind speed. The inputs of both models include central
pressure, translation speed, radius to maximum winds, and
storm track, which can all be obtained based on the track
forecasting results.

2) Failure Status of Distribution Lines: The failure status
of a distribution line is decided by the failure status of its
components, namely towers and conductors. The tower failure
probability calculation is based on fragility analysis [38]. First,
the equivalent wind speed is computed based on wind speed
and rainfall intensity. The failure probability ptw,i(t) of a
transmission tower can then be calculated by a lognormal
fragility curve [38], while considering the wind attacking an-
gle [18]. The failure rate of a conductor segment is calculated
using a Poisson regression-based model [19]. Since repair of
the failure components is not considered during a TC event,
the failure probability of towers and conductors also needs
to be updated based on the failure status of previous time
steps [39]. The towers and conductors along a distribution line
are assumed to fail independently. The distribution line fails
if at least one of its conductor segments or towers fails.

3) Road Capacity and Free-Flow Speed of Road Segments:
For inundation-sensitive road segments, the free-flow travel
time vf and road capacity qc are assumed to be affected by
the rainfall and waterlogging on the road. To get vf and qc
on highway road segments, the water film depth (WFD) is
computed using an analytical model [17] based on the road
segment location and predicted rainfall described in III-E1.
Then, the empirical models described in [40] are employed to
calculate vf and qc based on the WFD and rainfall prediction
on road segments.

IV. RESILIENCE ASSESSMENT PROBLEM FOR
SELF-SUSTAINED HTSS

This section presents a two-stage resilience assessment
model for self-sustained HTSs. The uncertainty factors (i.e.,
wind power, line status, road capacities, and free-flow speeds)
obtained in the previous section are considered in this model.
The resilience assessment is modeled based on the integrated
problem of dynamic traffic assignment and optimal power
flow (OPF) [22]. The problem is formulated as a two-stage
economic dispatch problem [23] integrated with a two-stage
distributionally robust optimization (DRO) framework [27].
The two-stage model is presented in subsections A and B.
Then, the DRO framework is depicted in part C. In part
D, the solution method based on the mixed integer linear
programming (MILP) reformulation is introduced.

A. First-stage Optimization

The first stage minimizes the total travel time of the ve-
hicles and the costs of generation and reserves based on the
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uncertainty factors, as follows:

min
∑
s∈NS

∑
a∈A/AS

∑
t∈T

∑
tc∈C

∑
e∈Ec

fTTδa
[
Us,e
a,c (t)− V s,e

a,c (t)
]

+
∑
t∈T

∑
g∈G
{fgPg(t)δ + [fR

g Rg(t) + fr,+
g r+g (t) + fr,−

g r−g (t)]δ}

(15)

s.t.
∑
d∈D

Pd(t) +
∑
ji

Pji(t) +
∑
c∈Cj

P ev
c (t)

=
∑
ij

Pij(t) +
∑
g∈G

Pg(t) +
∑
w∈W

Pw(t),∀t, j
(16)

P ev
c (t) =

∑
a∈M(c)

∑
s∈NS

∑
e∈Ec

P ev
a

[
Us,e
a,c (t)− V s,e

a,c (t)
]
,

∀c ∈ C, t
(17)

The power balance constraint is given by Eqn. (16). The
EV interaction is represented by Eqn. (17), where M(c) is the
mapping from the charging station set to the charging link set.

B. Second-stage Optimization
Based on the real value of the uncertainty factors, the

generation pg(t), and EV interaction pev
c (t) are re-dispatched

to minimize the unmet traffic demand Dud
a,s(t), load shedding

pls
d(t), curtailment of generation pgc

g (t), and wind power pwc
w (t)

in the second stage, as follows:

min
∑
s∈NS

∑
t∈T

∑
a∈AS

fVOUDD
ud
a,s(t) +

∑
t∈T

∑
d∈D

fVOLLp
ls
d(t)δ

+
∑
t∈T

∑
g∈G

fVOGCp
gc
g (t)δ +

∑
t∈T

∑
w∈W

fVOWCp
wc
w (t)δ

(18)

s.t.
∑
c∈C

∑
e∈E

us,e
a,c(t) +Dud

a,s(t) =

Da,s(t) + ∆Da,s(t),∀a ∈ AR, s, t (19)

us,e
a,c(t) = Us,e

a,c (t),∀a ∈ A/AC, c, s, e, t (20)

vs,ea,c(t) = V s,e
a,c (t),∀a ∈ A/AC, c, s, e, t (21)∑

s∈NS

∑
c∈C

∑
e∈E

[vs,ea,c − us,e
a,c(t− ta)] ≤ 0,

∀a ∈ A/AC, t

(22)

∑
s∈NS

∑
c∈C

∑
e∈E

[us,e
a,c(t)− vs,ea,c (t− βa)] ≤ Lakjam,

∀a ∈ A/AC, t

(23)

∑
ji

pji(t)−
∑
ij

pij(t) =
∑

w∈Wj

[Pw(t) + ∆pd(t)− pwc
w (t)]

+
∑
g∈Gj

[pg(t)− pgc
g (t)]−

∑
d∈Dj

[Pd(t) + ∆pd(t)− pls
d(t)]

−
∑
c∈Cj

pev
c (t),∀t, j

(24)

pev
c (t) =

∑
a∈M(c)

∑
s∈NS

∑
e∈Ec

peva
[
us,e
a,c(t)− vs,ea,c(t)

]
,

∀c ∈ C, t
(25)

(Iij(t)− 1)M ≤ pij(t)−Bij (γi(t)− γj(t))

≤ (1− Iij(t))M, ∀t, ij
(26)

Constraint (19) defines the unmet traffic demand. The real
traffic flow is depicted by Eqn. (20)-(21). The free-flow travel

time and the backward waves travel time are limited by Eqn.
(22)-(23). Constraint (24) relaxes the power balance constraint
to realize load shedding. The second-stage EV interaction is
represented by Eqn. (25). The impact of line failure on power
flow is represented by (26). For more details of the two-stage
problem constraints, please refer to [22], [23], [27].

C. DRO Formulation

The resilience assessment problem is formulated as the fol-
lowing two-stage distributionally robust optimization problem:

min
x∈X

cTx+ ρmax
P∈P
{E[QDRO(x, ξ)]

+ (1− ρ)CVaR,β [QDRO(x, ξ)]}
(27)

QDRO(x, ξ) = min
y∈Y

dTy (28)

where c and x are the decision variables and cost coefficients
of the first stage, y and d are the second-stage decision
variables, and the cost coefficients, ξ is the vector of uncer-
tain variables, CVaR,β represents the conditional value at risk
(CVaR) under confidence level β, ρ is a risk aversion factor,
and P is the ambiguity set

P =

{
P :

∑
ω∈Ω

|π0
ω − πω| ≤ τDRO

}
(29)

where π0
ω and πω are the discrete probabilities responding to

the scenario ω in nominal and true distribution, τDRO is the
total variation distance threshold, and Ω is a probability space
with finite scenarios, whose empirical probability distribution
could be estimated by non-parametric estimation.

D. Solution Methods

To solve the problem (27), the Lagrangian dual method is
adopted in this work. Problem (27) is reformulated into the
following MILP problem [41]:

min cTx+ τDROz + (1− ρ)η +
∑
ω∈Ω

π0
ω(z

+
ω − z−ω ) + ϑ (30)

s.t. Gx+ Wyω ≥ h−Mξω,∀ω ∈ Ω (31)

dT
ω yω +

1− ρ

1− βDRO
vω ≤ z+ω − z−ω + ϑ,∀ω ∈ Ω (32)

z+ω + z−ω − z ≤ 0,∀ω ∈ Ω (33)

dT
ω yω − η ≤ vω,∀ω ∈ Ω (34)

z, z+ω , z−ω , vω ≥ 0 (35)

where z, ϑ, z+ω , z−ω , vω are auxiliary variables. η is the value-
at-risk (VaR) of QDRO(x, ξ) corresponding to confidence level
βDRO. This MILP problem is solved by Gurobi in this work.

V. CASE STUDIES

The performance of the probabilistic TC track models is
hard to evaluate solely based on the resilience assessment
results. Therefore, in this section, we first evaluate the perfor-
mance of the proposed MTL models against statistical models
in subsection A. In subsection B, the proposed resilience
assessment problem is studied under different cases.
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TABLE II
NLL AND PI EVALUATION RESULTS

NLL PI-based Accuracy Mean PI Length

MLR 2152.1368 94.63% 1.5040
Longitude Trivial MTL 1159.7517 94.79% 1.3542

Proposed MTL 1102.7261 94.98% 1.3545

MLR 1036.4191 94.81% 1.1941
Latitude Trivial MTL 144.8669 95.35% 1.1326

Proposed MTL 122.4152 95.72% 1.1107

MLR 13287.4320 94.69% 14.7657
Intensity Trivial MTL 141.7534 93.11% 14.4262

Proposed MTL -3372.3504 94.86% 14.4879

A. TC Track Models

1) Case Description: The proposed TC track models are
tested against the following models:

• MLR: Multiple linear regression (MLR) models with nor-
mally distributed random error terms. The MLR coeffi-
cients and the normal distribution parameters are obtained
by fitting the models with the same training dataset as the
proposed model.

• Trivial MTL: MTL models with the same architecture as
the proposed model but trained with trivial hyperparam-
eters. The trivial weights are set to be 1 for all the loss
terms and the number of mixture components is fixed at
64.

The set of candidate KM values of the proposed model is
set to be {16, 32, 64, 128, 256, 512}. In each case, 3 different
models are trained for longitude, latitude, and central pressure,
respectively. The neural network models are implemented and
trained using Tensorflow[42] on a machine equipped with an
NVIDIA GeForce RTX 3090 GPU.

2) Evaluation Metrics: NLL and prediction interval (PI)
are used for evaluating the performance of the probabilistic
prediction models. PI is a common tool to evaluate model
prediction uncertainty with a given probability. PI gives a
range within which the model is reasonably sure that the future
observation lies. The given probability describes the sureness
of the model about a certain PI. In this study, we evaluate the
models using 95% PI. While the PI of the normal distribution
is easy to calculate, the PI of the mixture model can not be
calculated directly. In this work, the PI of the mixture model is
estimated by solving for the 2.5% and 97.5% percentile based
on the cumulative distribution function of the mixture model
using Brent’s method [43].

The NLLs and PIs of the models are evaluated on the test
dataset. We propose the following 2 metrics based on the PIs:

• PI-based Accuracy: If the observed test data is within
95% PI, the probabilistic prediction is considered correct.
The PI-based accuracy is then defined as the number of
correctly predicted test cases divided by the total number
of test cases.

• PI Length: For probabilistic prediction models, a wider
PI indicates higher uncertainty. The model is preferable

if it can capture the unseen observations with a smaller
PI length. For MLR models, since the distribution of the
residual term is fixed, the PI length is a fixed value. For
the proposed model, the PI lengths depend on the input
TC conditions.

3) Evaluation Results: Table II shows the evaluation results
of the models. The NLL of the MTL models is significantly
lower than that of the MLR models. While the longitude and
latitude NLLs of the trivial MTL and the proposed MTL are
similar, the proposed MTL has a significantly lower NLL on
intensity prediction than that of the trivial MTL. The intensity
forecasting is known to be much harder than the longitude
and latitude prediction [11]. Therefore the intensity models are
harder to train properly. The proposed MTL yields much lower
NLL than the trivial MTL, indicating that the proposed training
strategy is more effective for more complex models. Overall,
the proposed MTL yields the lowest NLL in probabilistic
predictions.

Table II also shows that the proposed MTL has the highest
PI-based accuracy among all three tasks. The PI lengths of
the MTL models are also smaller than the MLR models.
To further investigate the predictive ability of the proposed
models, the violin plots of the PI lengths of the MLR and
proposed MTL models are plotted in Fig. 2. The plots indicate
that the proposed MTL model has obviously more narrow PIs
for longitude and latitude predictions. The distribution of the
intensity PI lengths has two peaks: one above and one below
the MLR PI length. This can be explained by plotting the PI
lengths for a specific test TC (Fig. 3). While the mean PI
lengths of the proposed MTL model is smaller than that of
the MLR model, the PI lengths of the proposed MTL model
get larger when the target values have larger fluctuations,
accounting for larger uncertainties. The proposed model does a
better job of capturing the uncertainties in TC track predictions
than the conventional statistical models.

B. Resilience Assessment

1) Case Description: To assess the effectiveness of the pro-
posed resilience assessment scheme for self-sustained HTSs
under TC events, a modified IEEE-14 test system with 2 wind
farms (WFs) and a 14-node transportation network with 4
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charging stations are employed for simulations. All the system
parameters can be accessed online [44]. The following three
cases are studied under 20 predicted scenarios:

• Case 1: The uncertain TC-related parameters are pre-
dicted by the MLR model, and EVs only work as charging
loads.

• Case 2: The uncertain TC-related parameters are pre-
dicted by the proposed MTL model, and the EVs only
work as charging loads.

• Case 3: The uncertain TC-related parameters are pre-
dicted by the proposed MTL model, and the EVs can be
both charging loads and mobile energy storage, i.e. both
the charging and discharging of the EVs are considered.

The input initial TC conditions are from the test data set.
The obtained first-stage decisions of the three cases are then
simulated under 80 scenarios generated by the proposed MTL
model.

TABLE III
RESULTS UNDER THE GIVEN FIRST STAGE DECISION IN CASES 1-3

Case Expected total cost ($) Total cost under ξ∗ ($)

1 521240 708740
2 498560 771100
3 498810 761460

2) Assessment Results: As listed in Table III, the expected
cost in Case 2 is 22680$ lower than that in Case 1. The
cumulative density function (CDF) of the total cost is plotted
in Fig. 4. In the scenarios with a probability of less than 0.05%,
the cost in Case 2 is higher than in Case 1. The maximum cost
in Case 2 is 62360$ higher. Compared with Case 2, although
the expected cost in Case 3 is increased by 250$, the costs
are reduced in scenarios with the probability of 0.1%, and the
maximum cost is reduced by 9640$. Results indicate that more
accurate forecasting data may reduce costs in most scenarios.
In addition, although the expected cost increases when EVs
are treated as mobile energy storage resources, the costs in
extreme scenarios may decrease.

The results of unmet traffic demand are illustrated in Fig.
5. As seen in Fig. 5, the unmet traffic demand in Case 2 is the
lowest. This is because the mean free-flow time predicted by
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Fig. 2. PI lengths of the MLR and proposed MTL models. The red dots are
the PIs of the MLR models.
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the proposed MTL model is less than, and the road capacities
are larger than those obtained by the MLR model. The unmet
traffic demand in Case 3 is more than that in Case 2. The
reason is that the charging of 120 vehicles cannot be satisfied
due to limited charging piles and the long interaction time of
EVs as energy storage resources.

The results of load shedding are illustrated in Fig. 6. As
seen in Fig. 6, load shedding occurs in 5 scenarios in Case 1.
In Case 1, the generators in time slot 15 are set to 240MW



10

9000 9200 9400 9600

Unmet traffic demand (veh)

0

0.2

0.4

0.6

0.8

1
C

D
F

Case 1

Case 2

Case 3

Fig. 5. Cumulative probability density function of unmet traffic demand under
the given first stage decision in Cases 1-3

under the 215MW expected wind power obtained by the MLR
model, which is not enough in these 5 scenarios with less
wind power. In Cases 2 and 3, the generator outputs are set
to 450MW under the 16MW expected wind power obtained
by the proposed MTL model, which is enough for the power
load. Thus there can be 0 load shedding in Cases 2 and 3.
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Fig. 6. Cumulative probability density function of load shedding under the
given first stage decision in Cases 1-3

The results of generation curtailment are shown in Fig. 7.
As seen in Fig. 7, generation curtailment in Case 1 is the
lowest while that in Case 2 is the highest in scenarios with
a probability of 0.08% scenarios. The wind power is high in
these scenarios. Since the set point is higher in Case 2, the
generation curtailment is larger. In comparison with Case 2,
EVs as energy storage can reduce the generation curtailment
by charging under high wind power and discharging under low
wind power.

This case study results suggest that the total cost can be
reduced if the TC prediction is more accurate. For the selected
TC initial condition, the 95% prediction intervals of case 1 and
case 2 models are [936.93 hPa, 964.18 hPa] and [936.10 hPa,
950.86 hPa], respectively. The real value is 955 hPa. Therefore,
the MLR model in this specific case always underestimates
the central pressure, resulting in lower travel speed and road
capacity prediction values. Therefore, in most scenarios, the
total cost in case 1 is higher than in case 2.

0 200 400 600 800 1000 1200

Generation curtailment (MW)

0.9

0.95

1

C
D

F

Case 1

Case 2

Case 3

Fig. 7. Cumulative probability density function of generation curtailment
under the given first stage decision in Cases 1-3

VI. CONCLUSION

The resilience assessment problem for HTSs under EWEs is
addressed in this paper. An MTL-based probabilistic prediction
model is proposed to assess the impact of TC events. The
proposed MTL model is trained using a novel automatic
hyperparameter searching algorithm to avoid manual hyper-
parameter tuning. A proactive resilience assessment scheme is
formulated as a two-stage distributionally robust optimization
problem, which considers the self-sustainability of HTSs as
a joint emergency management problem. The proposed MTL
model is tested against statistical models, while the proposed
resilience assessment scheme is verified by simulation on a
system consisting of a modified IEEE-14 test system with
2 WFs and a 14-node transportation network. The main
conclusions include:

• The proposed MTL model outperforms statistical models
in probabilistic prediction tasks. The conditional proba-
bility density prediction ability and variable length pre-
diction interval of the proposed model allow for more
accurate modeling of the TC uncertainty.

• The hyperparameters of the proposed MTL model can be
automatically tuned using the proposed hyperparameter
search method. The performance of the MTL model
trained using the proposed hyperparameter search method
is better than the MTL model trained using trivial hy-
perparameters, especially when the prediction problem is
harder.

• The resilience levels of self-sustained HTSs under differ-
ent modes can be quantified by the proposed resilience
assessment scheme. The simulation results show that the
more accurate EWE prediction models and using EVs as
a mobile energy storage system can reduce the total cost
of the proposed resilience assessment scheme.
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