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Preface

Due to its power to solve large scale problems and analyse vast amounts
of data that would be difficult or time consuming for humans to deal with
manually, the field of Computational Intelligence has grown tremendously in
importance over the past years. We nowadays see widespread use of compu-
tational intelligence in the most varied applications. A few examples include
approaches to detect credit card fraud, recognise faces, transcribe voice to
text, identify spam, route and schedule deliveries, design aerodynamic high
speed trains, etc.

It is thus not surprising that we see a growing number of people who are
keen to learn about this field. However, there is a lack of open resources that
combine several different types of computational intelligence approaches in
one place, so that people can easily get an introduction to this field. Those
eager to learn about computational intelligence may also struggle to get help
from others when trying to understand existing approaches, whereas those
willing to start teaching this topic may struggle to find free resources to guide
them.

This open book has been created as a community effort to overcome these
issues. The notion of openness of this book includes, but goes beyond open
access. In addition to being available through an open license so that resources
on computational intelligence are accessible to all, this book is hosted in
github at:

https://github.com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1.

Such initiative will enable the book to be continuously improved over time
through pull requests to fix typos, add clarifications, add new exercises, add
examples of open software code, add video lectures on the content, etc. There-
fore, this book is open for the community to propose enhancements over time.
The book is also associated to github discussion boards, so that people can
ask questions and the community can help with answering those questions,
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creating an open community that all can join in. The discussion boards can
be found in the github repository at:

https://github.com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1/

discussions

If you would like to propose an enhancement through a pull request
to this book, we ask you to first contact the current chair of the IEEE
Computational Intelligence Society Education Portal Subcommittee (https:
//cis.ieee.org/). The chair will advise you on how to proceed. Minor
changes to existing chapters will be handled by the subcommittee directly,
whereas the subcommittee will liaise with the original authors to obtain their
consent for incorporating larger pull requests.

We thank all the authors who have contributed chapters to this book, all
the anonymous reviewers who have reviewed the chapters, and all the com-
munity members who will contribute with this book and discussion boards
in the future.

We hope that you will find the book a useful resource to learn about
computational intelligence.

Leandro L. Minku, on behalf of the editors of the
IEEE CIS Computational Intelligence Open Book – First Edition
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Mathematical Notation

In general, the following mathematical notations will be used in this book:

• Scalar: lower case, e.g., a, b.
• Column vector: lower case, bold, e.g., x.
• Vector element: lower case with subscript, e.g., x1, x2.
• If enumerating vectors (e.g., having multiple vectors), superscript will be
used to differentiate this from indices, e.g., x(1), x(2).

• Matrix: upper case, bold, e.g., X.
• Matrix element: upper case with subscripts, e.g., X1,2.
• When considering that a matrix is a vector of vectors, row i and column

j can be represented by x
(i)
j .

• Sets: calligraphy font in upper case, e.g., T .
• Generic data structure with unspecified format (e.g., it could be a vector,
a matrix, or any other structure): lower case, bold, e.g., x.
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Chapter 1

History and Definitions of
Computational Intelligence

Leandro L. Minku

Even though the term Computational Intelligence (CI) has been used for
many years, no single agreed definition exists so far. Traditionally, CI has
been considered to be the “theory, design, application and development of
biologically and linguistically motivated computational paradigms” [1]. Pos-
sibly, this definition has been proposed because many researchers adopting
the term CI were associated to the IEEE Computational Intelligence Society
(CIS), which has roots in the IEEE Neural Networks Society (NNS) and its
predecessor the IEEE Neural Networks Council (NNC).

As explained in [2], the IEEE Neural Networks Council (NNC), established
in November 1989, was the publisher of the IEEE Transactions on Neural
Networks, the IEEE Transactions on Evolutionary Computation, and the
IEEE Transactions on Fuzzy Systems journals. Their field of interest was
specified as “the theory, design, application, and development of biologically
and linguistically motivated computational paradigms” [3], which precisely
matches the CI definition given above. The IEEE NNC then transitioned
to become the IEEE NNS in November 2001, with a view of continuing to
focus on the same field of interest [3]. In November 2003, the IEEE NNS then
changed its name to IEEE CIS.

As evidenced by the three journals that were originally published by
the IEEE NNC, the three main pillars of CI have traditionally been neu-
ral networks, evolutionary computation, and fuzzy systems [1]. These are
biologically- and linguistically-inspired topics, being well aligned with the
CI definition above. However, many different biologically-inspired algorithms
have been proposed since then. Moreover, key events sponsored or techni-
cally co-sponsored by the IEEE CIS nowadays also include other CI topics
that are not necessarily biologically- or linguistically-inspired. This includes
flagship conferences such as the International Joint Conference on Neural
Networks (IJCNN) and the IEEE Congress on Evolutionary Computation
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(IEEE CEC). Therefore, the definition above does not include all topics that
may currently be referred to as CI topics.

As of October 2022, the Wikipedia entry of Computational Intelligence [4]
explains that the “expression computational intelligence (CI) usually refers
to the ability of a computer to learn a specific task from data or experimental
observation.” This definition is fairly general, being well aligned with topics
covered in some of the key conferences in the field and not requiring bio-
logical or linguistic inspiration. In particular, this definition is inclusive but
not limited to the traditional CI pillars of neural networks and evolutionary
computation. However, it arguably does not match very well the traditional
pillar of fuzzy systems. This is because fuzzy systems do not necessarily
learn from data or experimental observation. Instead, they may be based on
linguistically-inspired knowledge bases provided by humans.

According to Bezdek [5], it is believed that the term CI originated from
the name of the Canadian’s Artificial Intelligence (AI) society founded in
1974: the Canadian Society for Computational Studies of Intelligence. Nick
Cercone and Gordon McCalla, who were members of the society, decided to
create an AI journal. After much debate and some influence from the term
“Computer Vision”, they decided that the term CI was more adequate to
describe their field than the term AI [5]. Therefore, they created the journal
named International Journal of Computational Intelligence (IJCI) in 1983.
It is unclear from Bezdek [5]’s account whether this means that the term CI
was originally intended to be a sub-field of AI. However, this is a possible
way to view the field of CI.

The term AI itself has many different possible definitions [6]. One of the
well received definitions is the one explained by Russell and Norvig [6]: AI
is concerned with the study of agents that act rationally, i.e., computer pro-
grams that act so as to achieve the best (expected) outcome. This is a very
general definition that can be seen as incorporating all of the CI approaches.
It includes the three traditional CI pillars as well as other non-biologically-
inspired and non-linguistically-inspired approaches commonly seen in current
CI venues. It includes CI approaches that learn to perform a task based on
data or experimental observation, and those that perform a task based on
linguistically-inspired approaches such as fuzzy systems. It also includes ap-
proaches that are not usually considered as CI approaches, such as agents that
act rationally based on a knowledge base consisting of crisp logical statements
(i.e., statements using boolean logics such as propositional logic, first order
logic, etc). Therefore, one may consider CI to be AI algorithms that are not
based on crisp logical statements. This is the view that this book will take.
The focus will be on the algorithms, rather than on the systems where they
may be embedded.

The next parts of this book will give several examples of CI algorithms that
fit within this definition. By the end of this book, we hope readers to become
more familiar with the field, gaining a better understanding of what this
definition means and entails. However, as pointed out by Bezdek [5], many
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different definitions of CI and arguments exist [7, 8, 9, 10, 11, 12, 13, 1].
Therefore, even though this book is adopting this definition, it is important
to emphasize that this is not a universal definition.
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Chapter 2

Introduction to Search-Based
Optimization

Leandro L. Minku

Many real world problems involve finding solutions that minimize or maxi-
mize one or more functions. For example:

• Routing problems, e.g., to find a path from a city of origin to a city
of destination that minimizes the distance travelled, while ensuring that
non-existent direct paths between any two cities are not used.

• Bin packing problems, e.g., to find an assignment of items to bins that
minimizes the number of bins used, while ensuring that the maximum
volume of the bins is not exceeded.

• Scheduling problems, e.g., to find an allocation of staff to tasks in a
software project, so as to minimize the cost and duration of this project,
while ensuring that staff are only allocated to tasks for which they have
the necessary skills.

• Machinery configuration problem, e.g., to find the numeric values of cer-
tain parameters that will maximise the efficiency of a machine.

Such problems are called optimization problems. The variables that one
wishes to optimize (e.g., the path in a routing problem, the assignment in a
bin packing problem, and the allocation in a scheduling problem) are referred
to as design variables. They represent candidate solutions to the problem.
Problems where the design variables are discrete are referred to as combina-
torial optimization problems, whereas problems where the design variables
are continuous are referred to as continuous optimization problems. In prac-
tice, a problem may have a mix of discrete and continuous variables.

The functions to be optimized (e.g., the travelled distance in a routing
problem, the number of bins in a bin packing problem, the cost and dura-
tion in a scheduling problem and the efficiency in a machine configuration
problem) are referred to as objective functions. When the function is to be
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minimized, the objective functions are also often called cost functions, and
when it is to be maximized, they are often called quality functions.

Optimization problems also frequently impose constraints on the solutions
(e.g., ensuring that non-existent direct paths are not used in a routing prob-
lem, ensuring that the maximum volume of the bins is not exceeded in a
bin packing problem, and ensuring that staff have the necessary skills in a
scheduling problem). When such constraints exist, a solution is only valid if
it satisfies these constraints. Candidate solutions to optimization problems
are referred to as feasible if they satisfy the constraints of the problem, and
infeasible when they fail to satisfy one or more constraints.

The solution that maximizes / minimizes the objective functions is re-
ferred to as the optimum. Some optimization problems have a single optimum
whereas others may have multiple optima. Many real world problems have
local optima. These are solutions that are better than other solutions in their
neighbourhood, but are not the optimal solutions for the problem. In such
case, the optimal solutions are typically referred to explicitly as global optima
rather than just optima, not to cause confusion with the local optima.

Some real world problems may require a global optimum to be found.
However, in many real world problems, it is considered acceptable to find
a local optimum whose objective values are good enough / close enough to
those of the global optima. This is a particularly important point to consider
when deciding which algorithm to adopt for solving a given problem. Many
optimization algorithms are not guaranteed to find a global optimum within
a reasonable amount of time, but computational intelligence algorithms can
usually find good enough solutions fast enough. Together with their multi-
purpose applicability, this makes them very attractive for adoption in prac-
tice.

Section 2.1 will explain the elements required to formally define optimiza-
tion problems. Section 2.2 then explains what are search-based optimization
algorithms, which are computational intelligence algorithms to solve these
problems. The next chapters of the book will provide several examples of
search-based optimization algorithms and optimization problems that can be
solved by them.

It is worth noting that, when there are multiple objectives, it may happen
that there is no solution that can maximize / minimize all of the objectives at
the same time. This is because objectives are typically conflicting with each
other. For example, an allocation of staff to tasks in a scheduling problem that
minimises cost may result in a high duration for the project. In this case, one
may be interested in finding an optimal set of solutions, where each solution
represents a different trade-off among the objectives. Solutions within this
optimal set are better than solutions not in this set in terms of the objectives
being optimized. However, no solution in this set can be considered as better
than any other solution in this set when taking all objectives into account at
the same time. For example, an allocation with the minimum possible cost
but a large duration cannot be considered better or worse than a solution



2.1 Formulating Optimization Problems 11

with the minimum possible duration but a large cost when considering both
objectives at the same time. This introductory book will focus on problems
with a single objective to be optimized, but some algorithms for problems
with multiple objectives will be briefly discussed.

2.1 Formulating Optimization Problems

Without loss of generality, an optimization problem is a problem with the
following canonical form:

minimize fk(x), k = {1, 2, · · · , p}
subject to gi(x) ≤ 0, i = {1, 2, · · · ,m}

hj(x) = 0, j = {1, 2, · · · , n}

Here, we wish to find a solution x ∈ X that minimizes the functions
fk(x) while satisfying the constraints gi(x) ≤ 0 and hi(x) = 0, where p is the
number of objective functions to be optimised, m is the number of constraints
of the type gi, n is the number of constraints of the type hj , and X is the
domain of x.

Such kind of problem contains three main components:

• Design variables x. These are the variables that represent candidate so-
lutions to the optimization problem. The domain X of x depends on the
optimization problem. In particular, the variables could be numeric, cat-
egorical or ordinal variables, or any other kind of variable that may be
relevant to the problem. In particular, x could be composed of variables
of different types. It is also worth noting that even though x could be a
vector of variables, it could also be a matrix or some other data struc-
ture. For example, if one is trying to allocate staff members to tasks in
a problem, it would be reasonable to consider that x is a matrix where
the rows represent staff members and the columns represent tasks, where
each position xi,j contains the value 1 if staff member i is allocated to
task j and 0 otherwise.
The design variables and their domain define the search space of the
optimization problem. This is the space of all possible candidate solutions
to the problem.

• Objective function(s) fk(x), where k = {1, 2, · · · , p}. These are the func-
tions that we wish to optimise (maximize or minimize). They represent
potentially conflicting goals. We refer to a problem where p = 1 as a
single-objective optimization problem, and to a problem where p > 1
as a multi-objective optimization problem. When dealing with a single-
objective optimization problem, the k value is frequently omitted from
the name of the objective function, i.e., we typically write f(x) instead of
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f1(x). You may also hear the term many-objective optimization problems
when there are p > 3 objectives.
You will also note that the canonical form above lists a minimisation
problem. We could replace “minimize” by “maximize” in the canonical
form above if we are dealing with a maximisation problem. It is also
possible to use a mix of objectives to be minimized and maximized. How-
ever, as it is possible to convert maximisation problems into minimisation
problems, the canonical form of optimization problems typically lists only
minimisation without loss of generality.
The objective values associated to each possible value of the design vari-
ables are frequently referred to as the objective landscape. This is be-
cause, when plotting them, the plot can resemble a landscape with moun-
tains, valleys and plateaux. For example, Figure 2.1 shows the objective
landscape for an illustrative continuous optimization problem with a 1-
dimensional real valued design variable. It is worth noting, though, that
this figure is for illustrative purposes only. In real world problems, the
objective landscapes can be very complex and involve multi-dimensional
design variables. The exact landscape for such problems is not known
beforehand and would not be possible to entirely plot, reason why an
optimization algorithm is necessary to find the optimum/optima.

Fig. 2.1: Example of objective landscape for an illustrative continuous opti-
mization problem with a 1-dimensional design variable.

• Constraint(s) gi(x) ≤ 0 and hj(x) = 0, where i = {1, 2, · · · ,m} and
j = {1, 2, · · · , n}. These are the constraints that a candidate solution x
needs satisfy in order to be a feasible solutions to the problem. When
m = 0 and n = 0, the problem is called an unconstrained optimization
problem. When m > 0 or n > 0, the problem is called a constrained
optimization problem.
The gi type of constraints are called inequality constraints, whereas the hj

type of constraints are called the equality constraints. Problems may also
involve constraints with inequalities of the type ≥ instead of ≤. However,
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it is possible to convert inequalities of the type ≥ to inequalities of the
type ≤, reason why the canonical form above lists only ≤ without loss of
generality.
Strict inequalities (> or <) are typically not used in optimization prob-
lems, as they can lead to ill-posed problems. For instance, consider a
problem where we wish to minimize f(x) = x2, subject to x > 0, where
x is a real value. Had the constraint been x ≥ 0, the optimal solution
would have been x = 0. However, as the constraint is x > 0, there is
no minimizing value. In particular, we can always get x values that are
closer and closer to zero, without ever reaching a minimum. Alternatively,
if x was an integer value, this problem would not occur. However, in this
case, it would be possible to convert the strict inequality x > 0 into the
inequality x ≥ 1, meaning that the canonical form of the optimization
problem does not need to have strict inequality constraints.
Some people also use terms such as hard constraints and soft constraints.
When such terms are used, hard constraints refer to constraints that
must be satisfied for the solution to be feasible, whereas soft constraints
are constraints that we wish to satisfy, but that do not really lead to
infeasible solutions when violated.

In order to formulate an optimization problem, all the components above
must be specified. The more mathematical the problem formulation is, the
less ambiguous it is likely to be. However, more mathematical formulations
typically become more abstract, meaning that it may become more difficult to
understand its underlying meaning in the context of the problem of interest.
Therefore, it is advisable to provide a problem formulation that is the most
formal (mathematical) possible, while also including an explanation of it
using natural language.

2.2 Search-Based Optimization Algorithms

Optimization algorithms are algorithms that attempt to find optimal so-
lutions to optimization problems. Search-based optimization algorithms are
computational intelligence algorithms that conduct a search process in an
attempt to find an optimal solution. They can be seen as high level frame-
works that try to combine basic heuristics to more efficiently and effectively
explore a search space, thus being frequently referred to as meta-heuristics.
Heuristics are strategies that use readily accessible though loosely applicable
information to control problem-solving processes [2]. Informally, heuristics
can be seen as rules of thumb that may help to solve a problem more effi-
ciently, though potentially loosing in optimality. The ability of search-based
optimization algorithm to find good solutions in a reasonable amount of time
for a variety of different problems has made them popular optimization algo-
rithms.
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Search-based optimization algorithms (or meta-heuristics) typically create
one (or more) full initial candidate solutions to the problem, and then try
to iteratively improve such candidate solution(s) based on some strategies
(heuristics) to search for an optimal solution. For example, a search-based
optimization algorithm to solve a routing problem might start with an initial
solution which consists of a vector of cities [A, B, C, G]. The algorithm would
consider this to be a full candidate solution to the problem, despite it being
infeasible – it does not reach the destination city F. The algorithm would
then modify this candidate solution over time, possibly by replacing, adding
or removing cities, in an attempt to find better candidates solutions to the
problem.

When multiple candidate solutions are created and maintained at each
iteration, the algorithm is typically called a population-based algorithm, in
contrast to algorithms that create and keep a single individual candidate
solution in each iteration. Different search-based optimization algorithms may
spend different amounts of resources on exploring or exploiting the search
space in an attempt to find an optimum. Exploration consists in exploring
different regions of the search space to find which of them are more promising
(more likely to contain better solutions), whereas exploitation consists in
exploiting a specific region in order to find the optimal solution. This part of
the book will explain a number of different popular search-based optimization
algorithms, giving an introduction to this field.
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Chapter 3

Local Search

Sara Ceschia, Luca Di Gaspero, Andrea Schaerf

Local Search is an algorithmic paradigm for combinatorial search and opti-
mization, which has been shown to be very effective for many problems in
the scientific literature. A large number of techniques based on local search
have been proposed to successfully address a variety of practical problems.

Local search techniques belong to the larger class of the so-called selective
methods that are based on the exploration of the search space composed by
complete solutions. This is opposed to constructive methods that start from
an empty solution and build the complete one in a step-by-step manner by
iteratively adding a new piece to the partial solution constructed that far.

In addition, local search techniques are non-exact, as they do not guarantee
to find the optimal solution. In the cases in which the optimal solution is
found, there is no way to prove that it is indeed optimal, unless it has been
established with exact techniques that it is not possible to reach a value lower
than that (i.e., it is a proven lower bound).

Local search is based on the simple idea of navigating the search space by
iteratively stepping from one solution to one of its neighbors. The neighbor-
hood of a solution is the set of states that can be obtained by applying a “local
change” to it, which consists in modifying the value assigned to a small num-
ber of variables representing the solution. The definition of the neighborhood
relation is dependent on the specific problem under consideration, although
there are some common patterns that can be applied to search spaces with
similar structure. The mechanism upon which the neighbor is selected at each
step is one of the main design choices that varies among different local search
techniques. In any case, this selection mechanism relies upon the definition
of the cost function f , which assesses the quality of each neighbor, and it is
also problem dependent.

Even though it is difficult to assess precisely when local search should be
used instead of other optimization methods, a general observation is that its
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behavior depends on the landscape of the cost function. More precisely, if the
landscape is relatively smooth with respect to local changes, it is more likely
that local search techniques will be successful.

In this chapter, we discuss the key elements of the local search paradigm,
which are independent of both the specific problem and the specific local
search technique chosen to solve it.

We also introduce the basic local search techniques and discuss some im-
provements and variations of such basic methods. We refer to the following
chapters and the book by Hoos and Stützle [1] for more complex local search
techniques.

3.1 Local Search Elements

We first introduce one by one the key elements of local search. In detail, we
will introduce the notions of search space, neighborhood relation, cost function,
initial solution selection, move selection and acceptance criterion, and stop
criterion.

3.1.1 Search Space

Given a search or optimization problem P and an instance I of P , we associate
to it a search space S, with the following properties:

• each element s ∈ S represents a solution of I, not necessarily feasible
(i.e., it might violate some constraint of the problem);

• for search problems, at least one feasible solution of I is represented in
S;

• for optimization problems, at least one optimal solution of I is represented
in S.

If the previous requirements are met, we have a valid representation of the
problem. We refer to an element s ∈ S as a state. A state correspond to a
solutions of the problem, but not all solutions are necessarily represented by
some state in the search space.

Consider for example the classical n-queens problem, which consists in
placing n queens in an n × n chessboard so that they do not attack each
other neither vertically, nor horizontally, nor diagonally.

The direct representation of the problem would be with an n × n matrix
of boolean-values, each representing the presence/absence of a queen in the
corresponding square. However, the intuitive search spaces for local search
already partition the chessboard in columns, making use of n integer-valued
variables x = [x1, x2, . . . , xn] such that the assignment xi = j corresponds to
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place a queen in position (j, i) in the chessboard. Since this representation
places only one queen in each column, it implicitly provides against vertical
attacks.

There are two typical options for the definition of the search space for the
n-queens problem:

• Assignment: any variable x1, . . . , xn can assume any value in the domain
χ = {1, . . . , n}.

• Permutation: variables can assume only distinct values in the domain
χ = {1, . . . , n}, resulting in a permutation of the numbers 1, . . . , n.

For example, s1 = [4, 6, 1, 6, 8, 4, 2, 1] is a state for the instance with n =
8 for Assignment, and s2 = [4, 1, 7, 6, 8, 3, 2, 5] is a state for both search
spaces. These states are depicted in Figures 3.1a and 3.1b.
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s  = [4, 1, 7, 6, 8, 3, 2, 5]2

Fig. 3.1a A state for the n-queens prob-

lem in the Assignment search space.

Fig. 3.1b A state for the n-queens prob-

lem in the Permutation search space
(and also in the Assignment one).

In the Assignment space, horizontal and diagonal attacks have to be
taken care by the cost function f . In the Permutation space, instead, since
the search space is restricted so that two variables cannot have the same
value, also horizontal attacks are prevented by construction. In this case, the
only possible constraint violations come from the diagonal attacks. It is easy
to see that both choices are valid representations in the sense defined above.

3.1.2 Neighborhood Relation

Given a problem P , an instance I and a search space S for it, we assign to
each element s ∈ S a set N (s) ⊆ S of neighboring states of s. The set N (s) is
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called the neighborhood of s and each member s′ ∈ N (s) is called a neighbor
of s.

The set N (s) does not need to be listed explicitly, but usually it is implic-
itly defined by referring to a set of possible moves, which define transitions
between states. A move m is defined by a small set of attributes that describe
local modifications of some parts of s. We call s ⊕m the state obtained by
the application of move m to state s. The “locality” of moves is the key in-
gredient of local search, and it has also given the name of the whole search
paradigm. Nevertheless, from the definition above there is no implication
that there is “closeness” in some sense among neighbors, and in fact complex
neighborhood definitions can be used as well.

The only condition that needs to be imposed on the neighborhood relation
N is that the search space S is connected under N . That is, every state s of
S can be reached from any other state s′ by a finite-length sequence of moves
coming from N .

Following the n-queens example, we consider two possible neighborhood
relations:

• Change (C), for Assignment search space:
The move C⟨q, v⟩ assigns value v to variable xq.
Precondition: xq ̸= v.

• Swap (S), for Permutation search space:
The move S⟨q1, q2⟩ swaps the values assigned to variables xq1 and xq2 .
Precondition: q1 ̸= q2.

See Figures 3.2a and 3.2b for an example of each move, where the black
arrows represent the transitions.

Notice that the Change neighborhood could not be applied to the Per-
mutation search space, as the moves would lead outside the search space
by duplicating some values. The Swap neighborhood, instead, can also be
applied to the Assignment search space, but the space would not be con-
nected under this neighborhood, as the number of repetitions of each value
does not change upon the application of Swap moves, so that certain states
(with different number of repetitions) are never reached.

Nowadays there is a large body of scientific literature that shows the ef-
fectiveness of different neighborhoods on the various problem domains (e.g.,
routing and scheduling [2]). Nonetheless, the definition of a suitable neigh-
borhood for the specific novel problem remains a creative activity that the
designers have to undertake using their own intuition and experience. The
proof that the search space is connected under a specific neighborhood is also
a designer’s task, which however is relatively easy to do for most problems.
For example, for the n-queens problem, for the two proposed combinations
of search space and neighborhood, it is rather trivial to show that the search
space is connected.



3.1 Local Search Elements 19

1

2

3

4

5

6

7

8

x1 x2 x3 x4 x5 x6 x7 x8

[4, 6, 1, 6, 8, 4, 2, 1] ⊕ C⟨6, 7⟩

[4, 6, 1, 6, 8, 7, 2, 1] 

→

1

2

3

4

5

6

7

8

x1 x2 x3 x4 x5 x6 x7 x8

[4, 1, 7, 6, 8, 3, 2, 5] ⊕ S⟨1, 4⟩

[6, 1, 7, 4, 8, 3, 2, 5] 

→

Fig. 3.2a An example of Change move. Fig. 3.2b An example of Swap move.

One of the key features of the design of the neighborhood relation is the
possibility to compute efficiently the so-called delta function, which is the
cost difference between two neighbor states. For example, for a Change move
for the n-queens problem, only the attacks created (resp. removed) by the
presence in the new (resp. old) position of the specific queen involved in the
move needs to be evaluated. This is easily done in linear time (with respect to
n). On the contrary, the full evaluation of the new state obtained by applying
the move would have a quadratic computational cost.

3.1.3 Cost Function

The selection of the move to be performed at each step is based on the cost
function f that associates to each element s ∈ S a value f(s) that assesses
the quality of the solution. For the sake of simplicity, we assume that the
value of f is integer-valued and non-negative, or in other words, that the
co-domain of f is the set of natural numbers N.

When applied to search problems, the function f normally counts the num-
ber of constraint violations, which is also known as distance to feasibility. For
example, in the n-queens problem, the customary cost function counts the
number of attacking pairs of queens. For the state s1 = [4, 6, 1, 6, 8, 4, 2, 1] rep-
resented in Figure 3.1a, we have f(s1) = 6, as there are 6 pairs of queens at-
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tacking each other {(x1, x5), (x1, x6), (x2, x4), (x3, x8), (x4, x6), (x7, x8)} con-
nected in the figures with red dotted lines.1

In the case of an optimization problem (which, without loss of generality, is
assumed to be a minimization one), f typically merges together the distance
to feasibility and the objective function f of the problem. Therefore, the
cost function is typically defined as a weighted sum, with the highest weight
assigned to the distance to feasibility, so as to give preference to feasibility
over optimality. An alternative option is to do not assign weights, but rather
consider the cost function as a pair, and perform the comparison of values in
a hierarchical way, with priority assigned to feasibility.

For some optimization problems the search space can be defined in such
a way that it represents only feasible solutions, and in those cases the cost
function normally coincides with the objective function of the problem.

In some cases, the objective function is complemented by some auxiliary
components which account for “invisible improvements” that incorporate
some problem knowledge that is not explicitly considered in the objective
function. These auxiliary components might be useful to guide the search
toward promising regions of the search space. As an example of this concept,
consider the bin-packing problem for which the objective is to minimize the
number of bins and the selected neighborhood just moves one object from
one bin to another. In this case, it could be useful to include in the cost
function an auxiliary component that favors states in which bins are filled
in an unbalanced way, rather then a situation in which objects are equally
distributed in the bids. Indeed, such an auxiliary component could create a
search trajectory composed of improving moves leading towards the removal
of one bin.

Finally, it is also possible that the cost function is a surrogate of the
real objective function in the case that the latter one is computationally
expensive [3].

3.1.4 Initial Solution Selection

An essential component of any local search procedure is the selection of the
initial solution. Typical choices are a random generation or the use of a greedy
constructive heuristic. Greedy constructive heuristics add a new element of
the solution at the time, taking what seems the best option available at the
moment, without worrying whether it will bring the overall optimal solution.
It is also possible to use any other search method to obtain the initial solution.

1 Note that we count also the so-called X-ray attacks, i.e. the ones between non consecutive

queens in a row (or diagonal) of more than two of them, which by the chess rules would
not attack each other.
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For example, for the Permutation space for the n-queens, the random
state can be obtained by creating the identity permutation [1, 2, . . . , n] and
then applying some shuffling procedure.

In order to decide whether to use just a random initial state or spend
some effort to search for a greedy one, we should take into account different
aspects. In fact, on the one hand, a better initial state would in general
require less local search iterations in order to reach high quality solutions.
This saves computational time, which could be used to perform more steps
or more independent runs. On the other hand, though, it is also possible that
the greedy heuristics biases the search toward some specific regions of the
search space, so that it might become difficult to move away toward different
areas.

In some cases, the greedy procedure might be necessary in order to ob-
tain an initial feasible solution that a random procedure would not reach.
This behavior would allows us to avoid to be forced to include the distance
to feasibility in the cost function by finding a feasible initial solution, thus
simplifying the cost function of the local search procedure.

3.1.5 Move Selection and Acceptable Criterion

At each search step, a single move is selected. The way this selection is per-
formed characterizes the specific local search strategy, and we will discuss the
different options in the following sections.

However, the selection of a specific move does not inevitably imply that
the move is accepted and performed, so that the current state is changed. On
the contrary, the move is normally subject to an acceptance condition, which
is also dependent on the specific technique under consideration.

As a general rule, moves that improve (i.e., decrease) the cost function are
accepted, but also worsening moves (i.e., increasing ones) could be accepted
in specific situations, so as to let the search move away from a local minimum.
A local minimum is a state s such that f(s) ≤ f(s′) for all s′ ∈ N (s). When
this condition holds also with a strict inequality <, we call the state a strict
local minimum. Escaping from local minima is the key issue of all local search
techniques.

3.1.6 Stop Criterion

To end the presentation of the common key elements of local search we discuss
the stop criterion, which determines when the search is over and the best
solution found that far is returned.
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Many criteria have been proposed in the literature, starting from the basic
ones, typically based on the expiration of a given amount of time, to more
complex strategies (see for example [4, Sect. 3.2]). The basic time-expiration
strategies can either refer to the wall-clock time or to more abstract temporal
measures, such as the number of iterations. The latter one has the advantage
of not being machine dependent.

Other options might regard specific qualities of the solution reached or the
so-called stagnation detection. That is, when no improvement is obtained for
a given number of iterations, the search is stopped. This way, search trials
that are exploring promising paths are let run longer than those that are
stuck in regions without good solutions or where the search is trapped. It is
also possible to combine different criteria, by stopping the search when the
first of a set of conditions is met. Similarly to the initial solution selection, the
stop criterion can be part of the specific technique, therefore we will further
discuss it in the following sections.

Combining all the key elements presented so far, the pseudocode of a
generic local search procedure is shown in Algorithm 1.

Algorithm 1 LocalSearch
Parameters: SearchSpace S, Neighborhood N , CostFunction f
Output: sbest

1: s← InitialState(S)
2: sbest ← s

3: while not StopCriterion do

4: m← SelectMove(s,N )
5: ∆f ← f(s⊕m)− f(s)

6: if AcceptMove(m,∆f) then
7: s← s⊕m

8: if f(s) < f(sbest) then

9: sbest ← s
10: end if

11: end if

12: end while
13: return sbest

The specific definitions of the subprocedures InitialState, StopCriterion,
SelectMove, and AcceptMove characterize the specific local search tech-
nique.

3.2 Basic Local Search Techniques

The simplest local search techniques are based on some form of the so-called
Iterative Descent (also known as Iterative Improvement or Hill Climbing).
The idea behind these techniques is to select at each step a move that im-
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proves the value of the objective function or reduces the distance to feasibility,
never performing worsening moves.

3.2.1 Steepest Descent

The most well-known form of Iterative Descent is the so-called Steepest De-
scent (SD) technique. At each iteration, SD selects, from the whole neigh-
borhood N (s) of the current state s, the element s′ = s ⊕m which has the
best value of the cost function f . The SD procedure accepts the move m
only if it an improving move, i.e., it decreases the value of the cost func-
tion. Consequently, it naturally stops as soon as it reaches a local minimum.
Therefore, assuming (as customary for combinatorial optimization) that the
search space is finite and thus at least one local minimum exists, we don’t
need to define any other specific stop criterion.

The exhaustive exploration of the neighborhood is obtained by enumerat-
ing the moves in a fixed order. For example, the Swap neighborhood for the
5-queens problem, can be enumerated in the following lexicographic order:
{⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨1, 5⟩, ⟨2, 3⟩, ⟨2, 4⟩, ⟨2, 5⟩, ⟨3, 4⟩, ⟨3, 5⟩, ⟨4, 5⟩}.

Notice that if there are two moves that lead to the same state, such as
⟨i, j⟩ and ⟨j, i⟩ in this case, only one of them should be included in order to
prevent wasting time by visiting the same neighbor twice.

The enumeration of the neighborhood raises the issue of tie-breaking in
case of multiple solutions whose value of the cost function is equally good.
The typical strategy is to break ties in a uniform random way. That is, if
there are k neighbors with the same minimal cost, then each of them might
be selected with probability 1/k.

3.2.2 First-Improving Descent

The exhaustive neighborhood exploration prescribed by the SD technique
might be rather expensive from the computational point of view. To overcome
this problem, the First-Improving Descent (FID) technique accepts a move
and moves to a new neighbor as soon as an improving move is found. FID
also stops when there are no improving moves so that a local minimum is
detected.

In order to avoid the bias toward some specific attributes (e.g., the
variables with low indexes in the above example), the exploration of the
neighborhood should not proceed always in the same fixed order. The
simplest way to avoid such a bias is to start from a random move and
proceed onward in a circular way, by going from the last move to the
first one. The procedure stops when the initial random one is encountered
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again. For example, the exploration could proceed in the following order
{⟨2, 4⟩, ⟨2, 5⟩, ⟨3, 4⟩, ⟨3, 5⟩, ⟨4, 5⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨1, 5⟩, ⟨2, 3⟩} and stop as
soon as an improving move has been found.

3.2.3 Random Descent

Another option to mitigate the computation burden of exhaustive neighbor-
hood exploration consists in sampling the neighborhood by drawing random
moves. This leads to the Random Descent (RD) technique that draws a (uni-
form) random move at each iteration and performs it only if it is improving.

Care should be taken to ensure that the draw is uniform. Drawing the
attributes one at the time selecting among available values might bias the
search toward moves that have a smaller number of possible values for the
latest attributes. For example, for the Swap neighborhood, drawing a random
value i between 1 and n − 1 and then a random value between i + 1 and n,
would move the queens with higher indexes move often.

The presence of a local minimum cannot be detected by RD, consequently
one of the stop criteria mentioned in Section 3.1.6 should be used in order to
decide when to finish the search.

Notice that the exhaustive exploration of the neighborhood and the ran-
dom selection can be seen as two extreme options in the trade-off between
effectiveness and efficiency of the move selection strategy. The intermediate
strategies explore exhaustively only a specific share of the neighborhood. To
this regard, a classical choice is to select randomly a variable, but exploring
all possible alternative values for that variable and selecting the best one.

3.2.4 Non-Ascent Techniques

All the techniques discussed above can be modified by changing the accep-
tance rule so that it accepts also states with equal cost value (the so-called
sideways moves). This variant allows the search to move away from a local
minimum, but is still trapped by a strict local minimum.

In this case, we call these methods Non-Ascent techniques, rather than
Descent ones (Steepest, First-Improving, and Random). Non-Ascent tech-
niques have the ability to navigate through plateaux, which are areas of the
search space with equal cost, which are often present in the landscape of
many problems.

The navigation through plateaux is often useful in reaching states from
which the cost can be decreased again. On the other hand, in some cases
such navigation might take a long time without producing any improvement.
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3.3 Discussion

In this concluding section of the chapter we discuss some general issues of
local search procedures.

3.3.1 Diversification vs. Intensification

The main issue of local search techniques is the way they deal with the local
minima of the cost function. Even if the search procedure employs some
specific mechanism for escaping them (see, e.g., the chapter on Simulated
Annealing), a local minimum still behaves as a sort of attractor. Intuitively,
when a trajectory moves away from a local minimum and steps through a
solution “near” to it, even though it is not allowed to go back to the minimum
itself, it still tends to move “forward” it (i.e., is attracted) instead of moving
in an “opposite” direction.

For the above reason, the search procedure needs to use some form of
diversification strategy that allows the search trajectories not only to escape
a local minimum but to move “far” from it thus avoiding this sort of chaotic
trapping.

On the other hand, for practical problems the landscape of the cost func-
tion usually has the property that the value is correlated in neighbors (and
near) states. Therefore, once a good solution is found, it is reasonable to
search in the proximity of it for a better one. For this reason, when a local
minimum is reached the search should be in some way intensified around it.

In conclusion, the search algorithm should be able to balance two some-
times conflicting objectives; it should diversify and intensify by moving out-
side the attraction area of already visited local minima, but not too far from
it.

3.3.2 Smart Neighborhood Exploration

Another issue in local search is the computational cost of the exploration of
the neighborhood. Various ideas have been proposed in the literature in order
to reduce the cost of the exploration, without penalizing the effectiveness of
the search. We mention here just one idea, known as the elite candidate list
(see, e.g., [5, Section 3.2]).

The mechanism is based on the idea of reusing the evaluations made in the
previous explorations of the neighborhood. The intuition is that if a move m
was good in a given solution s, very likely it will be still good in the neighbor
s′ = s⊕m′ obtained by performing another move m′. Based on this intuition,
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during each neighborhood evaluation, aside selecting the best move, we also
collect a set of other promising moves (called elite moves).

In the subsequent iterations, the elite moves previously selected, but not
executed yet, are re-evaluated and possibly executed without redoing the full
exploration. The full exploration, and the corresponding collection of elite
moves, is performed when all previous elite moves have been executed or
discarded.

3.3.3 Strategic Oscillation

A strategy to overcome the risk of being trapped in a local minimum comes
from the manipulation of the cost function.

The cost function of a typical local search procedure is composed by a
weighted sum of a number of components, coming from the distance to fea-
sibility and the objective function of the problem. Such weights reflect the
relative importance of the various components of the objective function and
the constraints.

Even though the weights reflect the “real” importance of the corresponding
components, to improve effectiveness, their values might be modified during
the search procedure so as to vary the landscape of the cost function. The tem-
porary modification of the landscape of the cost function, known as strategic
oscillation can help to escape from local minima.

The idea can be pushed further, by assigning an independent dynamic
weight not to the cost components but to each single constraint. Such finer
grain weighting could be useful for dealing with problems with strong asym-
metries, i.e., problems in which the number of constraints involved can be
different by a large factor from variable to variable.

3.3.4 Complex Neighborhoods

The last topic that we briefly discuss in this introductory chapter on local
search regards the neighborhood relation. We know from the literature that
for most problems there are various potential neighborhood relations avail-
able. Obviously, a state that is a local minimum for one neighborhood might
not be a minimum for another neighborhood, so that the alternate use of
different ones could help with the key issue of escaping local minima.

Even in cases of one single neighborhood, it is possible to consider chains
of moves of length two or more that can be used as alternative relations,
which would clearly have different local minima.

In general, there are different ways to employ more than one neighborhood
relation during the search. They range from considering the set-union of all
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neighborhoods (see, e.g., [6]), to the interleaving of distinct phases in which
the basic neighborhoods are used, to the use of chains of basic moves as the
basic neighborhood.

In all cases, the resulting neighborhood relation would be rather large and
the exhaustive exploration problematic from the efficiency point of view. The
discussion on how to explore a large neighborhood is complex and it is outside
the scope of this chapter (see [7]).

3.4 Exercises

Exercise 1 Consider the classical graph coloring problem, in which a given
indirected graph has to be colored with a fixed number of colors avoiding
that two adjacent nodes have the same color. Define a valid search space, a
suitable neighborhood relation, and the cost function for this problem.

Exercise 2 Consider the classical permutation flow-shop problem, in which
the order of a set of jobs and the start and end times of their processing on
a predetermined sequence of machines has to be decided. The objective is to
minimize the makespan, that is the latest completion time of a job on the
last machine. Define a valid search space, one or more suitable neighborhood
relations, and the cost function for this problem.

Exercise 3 Consider the problem of Exercise 2, with in addition the presence
of strict due dates for the jobs, that is each job must be completely processed
within its due date. How do you modify the cost function? Conversely, if the
due dates are soft and the problem requires to minimize the total tardiness,
i.e., the summation of the lateness of each job, how is the cost function defined
in this case?
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3. Slawomir Koziel, David Echeverŕıa Ciaurri, and Leifur Leifsson. Surrogate-based meth-
ods. In Slawomir Koziel and Xin-She Yang, editors, Computational Optimization, Meth-

ods and Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
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Chapter 4

Simulated Annealing

Alberto Franzin, Thomas Stützle

The origins of simulated annealing lie in the work of Metropolis et al. in sta-
tistical physics [1], who proposed an algorithm to simulate the displacement
of particles in a solid body. A random displacement is effectively performed
(“accepted”) if it lowers the total energy of the system, while it is performed
with probability exp (−∆E/kBT ) if the energy variation ∆E is positive. In
the Metropolis formula, kB is the Boltzmann constant and T is the tem-
perature at which the displacement is evaluated. For a temperature value
T , the higher ∆E, the lower the chance the displacement effectively hap-
pens. Likewise, if the given ∆E is held constant but positive, the higher the
temperature, the higher the probability of the displacement.

In one of the first instances of algorithmic development inspired by natural
phenomena, Kirkpatrick, Gelatt and Vecchi [2], and independently Černy
[3], thought to view a combinatorial optimization problem as a solid, whose
states are the feasible solutions of the problem. The objective function value
of a particular solution is related to the level of energy of the system in a
particular configuration. The system is first heated and then cooled little
by little until it “freezes”. Out of the metaphor, the algorithm starts from
an initial solution and iteratively evaluates candidate ones. The temperature
used to evaluate an exchange starts at a high value, and is progressively
lowered following a geometric trend. For temperature values low enough, the
probability of accepting worsening moves becomes effectively zero, and the
algorithm behaves like an iterative improvement.

The function originally proposed to determine the acceptance or the re-
jection of a move is the so-called Metropolis criterion [1], where a solu-
tion of equal or better quality is accepted always. If, however, the new
solution x′ is worse than the current solution x, it is accepted with a
probability exp (−(f(x′)− f(x))/T ) for minimization or with a probability
exp (f(x′)− f(x)/T ) for maximization problems, where f(·) is the objective
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function. Here, we always will assume minimization problems; it is straight-
forward to adapt the algorithm for a maximization problem. The probability
of accepting worsening moves depends on the relative worsening in terms
of solution quality from the incumbent one and on the scalar parameter T ,
called temperature. For a proposed worsening move, high values of the tem-
perature parameter provide a higher chance of accepting it than lower values.
High temperature values therefore promote a stronger exploration behaviour,
while low values are associated to a strong exploitation. Simulated annealing
can thus be considered as a local search with a diversification mechanism
governed by the temperature parameter.

The choice of the value for the temperature parameter is crucial in obtain-
ing good results. The original formulation, the conventions and the folklore
deriving from the annealing metaphor, but also the theoretical works on simu-
lated annealing, make use of a sequence of values. In general, the temperature
value is set at a “high” initial value, and progressively decreased to a final
“low” value, to make the algorithm transition from a highly exploration be-
haviour to a converging, exploitative one. Optionally, the temperature value
is raised again or restored to its initial value, to promote a cycle of diversifi-
cation and intensification phases.

Immediately after its introduction, simulated annealing attracted the at-
tention of several researchers, thanks to its simple formulation and the quality
of the results obtained in several works. It became therefore one of the most
popular algorithms for combinatorial optimization problems, and it has been
used in thousands of works. Along with its use, researchers became interested
in modeling its behaviour from a theoretical perspective. A series of works,
mostly in the 80s’ and early 90s’, focused on conditions for the cooling scheme
to obtain the optimal solution for a given problem and instance, mostly under
unrealistic conditions such as an infinite number of evaluations [4, 5, 6, 7].
Yet, by simply enumerating the search space one could guarantee to find the
optimal solution even in finite time but, in the end, very large time which is
usually infeasible. Thus, a more important question would refer to the con-
vergence speed of simulated annealing, that is, how quickly good solutions
are found; yet, results addressing this question are rare. Also, practical an-
nealing schedules decrease the temperature much faster than what is implied
by the theoretical results and therefore the convergence proofs do not apply
in this case.

In this chapter we summarize research on simulated annealing and its be-
haviour. We show how implementing a simulated annealing algorithm can be
seen as a configuration task, and makes use of efficient artificial intelligence
tools to automatically generate high-performing algorithms for different sce-
narios. We then explore quickly the results and the algorithms we obtain and
then conclude the chapter.
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4.1 A simulated annealing algorithm

4.1.1 A basic simulated annealing algorithm

Implementing a basic simulated annealing algorithm is quite fast. First, one
needs a starting solution, which can be a uniformly random solution in the
simplest case, or one computed using a simple heuristic like a constructive
one. Second, one needs a neighbourhood, which is an essential ingredient.
Sometimes the neighbourhood can be more complicated as for some problems
one needs to have various neighbourhoods and decide how to schedule them.
Then one has to choose a simulated annealing acceptance criterion. As the
simplest one, use the Metropolis criterion, which we have detailed in the
introduction of this chapter [1, 8, 9]. As a reminder, an improving or equal
move is always accepted and a worsening one is accepted with a probability
exp (−(f(x′)− f(x))/T ). The rest is embedding the annealing criterion in an
annealing schedule, which is also called cooling schedule. It is defined by an
initial temperature T0, a scheme saying how the new temperature is obtained
from the previous one, the number of search steps to be performed at each
temperature, and a termination condition. A common choice is in simulated
annealing to use a geometric cooling, which is that Ti+1 = αTi, where α is a
parameter with 0 < α < 1. This operation, called annealing step, is usually
done after a number of search steps (that is, candidate solution evaluations)
performed at the same temperature, often for a number of evaluations that
is a multiple of the neighbourhood size. Finally the termination criterion is
often based on the acceptance ratio, that is, the ratio of proposed steps versus
the accepted steps.

4.1.2 A component-based overview of simulated annealing

To use a full-fledged simulated annealing one has to set still the control
parameters, such as the initial temperature value, the temperature update
factor, or the number of moves to be evaluated at the same temperature. We
have now a somewhat reasonable algorithm and in the meantime, with the
thousands of papers, much more involved simulated annealing algorithms
have been proposed. So in [10], we identified a total of seven components,
whose function and connection define what a simulated annealing is, and
how it works. Two other components are necessary to elaborate information
for the specific problem considered, and are not unique to simulated anneal-
ing. Problem-specific components can be considered as inputs to simulated
annealing. The outline is given in Algorithm 2, and the components are sub-
sequently described.
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Algorithm 2 Component-based formulation of SA. The components we have
identified for our analysis are written in Smallcaps.
Parameters: a problem instance I, a Neighbourhood N for the solutions, an Initial

Solution x0, control parameters
Output: the best solution x∗ found during the search.

1: best solution x∗ := incumbent solution x̂ := x0

2: i := 0

3: Initialize temperature T0 according to Initial Temperature

4: while Stopping Criterion is not met do
5: choose a solution xi+1 in the Neighbourhood of x̂ according to Neighbourhood

Exploration criterion

6: if xi+1 meets Acceptance Criterion then
7: x̂ := xi+1

8: if x̂ improves over x∗ then

9: x∗ := x̂
10: end if

11: end if
12: if Temperature Length is met then

13: update temperature according to Cooling Scheme

14: reset temperature according to Temperature Restart scheme
15: end if

16: i := i + 1

17: end while
18: return x∗

Initial Temperature. The initial value of the temperature parameter,
and, usually, the maximum value the temperature will take. It also defines
the maximum amount of diversification, that is, how likely the algorithm
is to accept worsening moves, and it is therefore best computed starting
from instance characteristics. For example, the initial temperature can be set
proportionally to the initial solution value, or computed according to some
search space statistics such as the maximum gap or the average gap between
consecutive moves computed during a preliminary random walk.

Initial Solution (problem-specific). Simulated annealing starts from an
initial solution that has to be provided by a problem-specific component, for
example, using a constructive heuristic, another local search, or even a ran-
dom solution. Anyway, if one starts from a problem-specific, good candidate
solution one should use a low temperature start, since otherwise the initial
solutions gets destroyed.

Neighbourhood (problem-specific). The neighbourhood function gener-
ates the solutions that are at distance of one move from the incumbent one.
This is also the component that deals with constraints when necessary, re-
pairing infeasible solutions or ensuring that the candidate solutions generated
are feasible. In the simplified environment this is one neighbourhood, but it
may be that for other problems various neighbourhoods are important.

Neighbourhood Exploration. This component is devoted to selecting
one candidate solution to evaluate for acceptance, in the neighbourhood of
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the incumbent one. The traditional simulated annealing uses the random
selection of a neighbour solution, but alternative schemes are possible, such
as a sequential evaluation following an enumeration of the solution in the
neighbourhood, or even mini-local searches [11, 12].

Acceptance Criterion. The function that determines whether the so-
lution selected by the Neighbourhood Exploration should be accepted
and replace the incumbent. The traditional and most popular criterion is
the Metropolis condition described at the beginning of this chapter, but sev-
eral other criteria have been proposed. Notably, the Threshold Acceptance
is a deterministic variant of simulated annealing that always accepts candi-
date moves that worsen the solution quality of an amount bounded by the
temperature value [13, 14]. The Late Acceptance Hill Climbing can also be
considered as an acceptance criterion that can be fit in the simulated anneal-
ing structure [15]. This latter scheme maintains a history of accepted moves,
and always accepts a candidate solution that is improving over either the
incumbent one, or the incumbent solution of κ iterations before.

Cooling Scheme. The function that controls the decrease of the tem-
perature parameter. The original simulated annealing papers use a geomet-
ric criterion, that decreases the temperature value by a multiplicative factor
α ∈ (0, 1), i.e. Ti+1 = αTi, with α constant throughout the whole search [2, 3].
In accordance with the annealing metaphor and the idea of transitioning from
exploration to exploitation, cooling schemes generally yield monotonically de-
creasing sequences of temperature values. Some authors have, however, devi-
ated from the annealing behaviour and proposed schemes that always keep
the same temperature value, or have the temperature value “fluctuate”, al-
lowing for phases of both controlled increase and decrease of the temperature
parameter [16]. This fluctuation is intended to exhibit a behaviour similar
to a fixed temperature value, while at the same time promoting alternating
phases of limited exploration and exploitation, thus bridging the two opposite
SA behaviours.

Temperature Length. This component controls the amount of candi-
date solutions that will be evaluated using the same temperature value; in
other words, it determines when the Cooling Scheme should be used. The
simplest options are constant values, either absolute or proportional to some
problem characteristic such as instance or neighbourhood size [17, 18]. How-
ever, adaptive schemes that make the decision on when to update the tem-
perature based on the outcome of the search (for example, a certain amount
of accepted moves [19]) can provide a more fine-grained control of the explo-
ration/exploitation trade-off.

Temperature Restart. This component determines if and when the
temperature value should be reset to its original value, or set to another higher
value (reheat). Its purpose is to promote a new phase of exploration once the
temperature has decreased enough to void its diversification potential. As for
the Temperature Length there are many possibilities, both constant and
adaptive [20, 21].
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Stopping Criterion. The last algorithmic component determines when
the search terminates. This can be set according to fixed conditions such as
a given runtime or amount of moves evaluated, or adaptive conditions such
as a too low acceptance rate [8, 9].

4.1.3 Composing efficient simulated annealing algorithms

To implement a new or existing simulated annealing, the developer needs to
face several choices. First of all, it is necessary to define the choices that are
related to the specific problem considered, that is, an initial solution from
where to start the search, and the neighbourhood function used to generate
new candidate solutions. Then the search components, that determine how
to select a new candidate solution, whether to accept it, and how to update
the control parameters have to be implemented.

Since the structure of SA is fixed, designing a simulated annealing algo-
rithm means to choose which components and which numerical parameters
to use. A good starting point to determine which choices to make is the exist-
ing body of literature. Even when limiting ourselves to the algorithm-specific
components, we can find plenty of options for each one of them.

In [22] we collected a total of 66 different options for all the components,
reported in Table 4.1, which are enough to assemble millions of valid simu-
lated annealing algorithms. Many of those components have their own set of
numerical parameters to choose [23, 24].

The traditional, manual implementation of an algorithm is effectively an
exploration of the space of possible valid algorithms. Finding the one that
performs the best over the entire application space (i.e. the whole test set) is
clearly a daunting task. Developers therefore often revert on results from the
literature and on established practices and conventions. The first reasonable
algorithm, either assembled or found in the literature, is then fine-tuned on
a limited set of instances.

Aside from being tedious, this process has several drawbacks. First, the
combination of components and parameters raises a complex interaction that
is often unexpected to the user. The developer is then forced to evaluate
a restricted set of options on a limited set of instances, thus prioritizing
the algorithmic solutions already explored in past applications and in the
literature. The bias that follows from this process likely results in sub-optimal
algorithms, whose behaviour and results are unexplained.

In this chapter we demonstrate how the use of powerful algorithm en-
gineering tools is beneficial in automatically designing simulated annealing
algorithms that can outperform manually designed ones. We follow the Pro-
gramming by Optimization philosophy that envisages increasing levels of au-
tomation of the development process [25]. The implementation of an algo-
rithms moves away from a purely manual task, to one that relies on auto-
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Table 4.1: List of options we implemented for the algorithmic components of
simulated annealing. Several of these components include additional numer-
ical parameters. For a more formal description of each component and their
implementation we refer to [10].

Initial Temperature Fixed value; proportional to initial solution value; proportional

to maximum gap in random walk; proportional to average gap

in random walk; Connolly initial temperature scheme; Mise-
vicius initial temperature scheme; simplified Misevicius initial

temperature scheme.

Neighbourhood Exploration Random; sequential; Ishibuchi-Misaki-Tanaka 1; Ishibuchi-
Misaki-Tanaka 2.

Acceptance Criterion Metropolis; bounded Metropolis; precomputed Metropo-

lis; Generalized simulated annealing; geometric acceptance;
Threshold acceptance; Great Deluge; Record-to-Record; Late

Acceptance Hill Climbing; Hill Climbing.

Cooling Scheme Geometric 1; geometric 2; Lundy-Mees 1; Lundy-Mees 2; Q8-7;
quadratic; arithmetic; no cooling; temperature band.

Temperature Length Fixed; # moves proportional to problem size; proportional to
neighbourhood size; # of accepted moves; bounded (# accepted

moves, max # moves); arithmetic increase; geometric increase;

logarithmic increase; exponential increase.
Temperature Restart Never; Restart or reheat based on: # moves; minimum temper-

ature value; % of initial temperature value; global acceptance

rate; acceptance rate in the last moves; no recently accepted
moves.

Stopping Criterion runtime; # moves; minimum temperature; # cooling steps; #

temperature restarts; # moves with no accepted solution; global
acceptance rate; most recent acceptance rate; no new recent best

solution.

matic tools to improve existing algorithms, towards an automatic design of
new algorithms.

This task can be framed as a machine learning one [26]. In a nutshell, our
goal is to find the parameter configuration that obtains the best results on a
test set of instances, that ideally represent a realistic practical application. In
absence of an explicitely structured knowledge on the relationship between
configurations and instance characteristics in terms of results, we employ a
training set of instances, different from the test set but belonging to the
same distribution. On this training set we select the configuration with the
best results overall. For more detailed instructions we refer to the existing
literature, e.g. [25, 27, 28, 29] in general, and [10] for SA specifically.
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4.2 Experiments

4.2.1 Materials and methods

We consider the Quadratic Assignment Problem (QAP), one of the classic
NP-hard problems where we want to find the assignment of n facilities to
n locations with the minimal cost [30]. A QAP instance is defined by two
matrices, one with the distances Dk,l between two locations k and l, and one
with the flows Fi,j between two facilities i and j. We represent a solution as
a permutation π, whose elements π(i) contain the location of facility i. The
objective function is

min

n∑
i=1

n∑
j=1

FijDπ(i)π(j). (4.1)

We use two groups of different QAP instances. In the first one the distance
matrices define a structure in the landscape, and we refer to it as the class of
structured instances. In the second one, instead, the matrices are generated
uniformly at random, and we call this the random instances class. Each class
contains 100 instances of sizes 60, 80 and 100, equally partitioned into a
training set and a test set. The training set is used to automatically configure
and design the algorithms using irace, and the test set is used to evaluate
the configurations obtained, whose results are reported in the rest of this
section. Every simulated annealing execution runs for ten seconds. We use
the EMILI framework, where we implemented 66 components and the relative
numerical parameters, for a total of 100 configurable parameters [29]. We
use a budget of 2000 experiments to configure the numerical parameters of
two existing simulated annealing algorithms, and we automatically design
simulated annealing algorithms using 10K, 20K, 40K and 80K experiments,
where one experiment is a SA run. The experiments are done on a machine
with two Intel Xeon E5-2680v3 CPUs at 2.5GHz with 16MB cache, with
2.4GB of RAM available for each experiment.

The algorithm configurator irace implements the iterated racing algorithm
in an easy-to-use R package [24, 31, 32]. The basic idea is to spend computa-
tional budget only on configurations that are worth evaluating, rather than
waste it on poor ones. To configure an algorithm it requires only the defini-
tion of the parameters, a training set of instances, and a script that executes
the algorithm with a list of command-line parameters (provided by irace as
input to the script) and returns a measure of the quality of the configuration
observed on the instance. Such metric defines the configuration task as an
optimization problem, and commonly used ones include the solution qual-
ity found by heuristic algorithms, or the runtime needed to find the optimal
solution. irace starts from a set of random configurations, and begins to eval-
uate all of them on the training instances, sequentially. The configurations
are ranked for each instance, based on the results reported. After a few in-
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stances, irace begins to discard the configurations that perform statistically
worse than the best ones, and proceeds to evaluate only the surviving ones.
This process of configuration evaluation and statistical test, called race, is
iterated until either the budget for evaluations is exhausted, or a minimum
number of surviving configuration remains. At this point, new configurations
are sampled, with parameter values around the surviving configurations, and
a new race takes place. Race after race, the new configurations get sampled
increasingly closer to the last best ones. When the total evaluation budget is
terminated, irace returns to the user the best configurations found.

EMILI is a C++ algorithmic framework for the development of modular
stochastic local search algorithms [29]. Algorithms are instantiated at run-
time by selecting the desired combination of command-line parameters, that
determine which components and numerical parameters are selected, and
how they are combined. The modular structure of EMILI makes it possible
to design algorithms bottom-up, so, in principle, of any shape. However, its
flexibility can of course be exploited to design algorithms of a given structure,
as we do in this chapter by requiring the components to be placed in their
proper place in the template of simulated annealing in Algorithm 2.

4.2.2 Simulated annealing algorithms for the QAP

We start by reproducing two of the many simulated annealing algorithms pro-
posed for QAP. These algorithms are called BR1 and Q8-7 [33, 11]. The only
common algorithmic component between the two algorithms is the Metropo-
lis acceptance criterion. BR1 starts from an initial temperature computed as
the maximum gap observed between consecutive solutions in a random walk
[33]. It uses the random exploration of the neighbourhood to select a move
to evaluate. The temperature is updated with a geometric cooling scheme
with coefficient 0.5 every 2×n proposed moves, where n is the problem size,
and restarted to its original value after |N(x)| moves, that is, the size of the
neighbourhood. BR1 therefore performs only a few but substantial tempera-
ture updates. In its original formulation, BR1 terminates its search after 10
temperature restarts.

The Q8-7 algorithm from [11] uses a custom mechanism to define the ini-
tial temperature, relating it to the final one. This algorithm uses a sequential
exploration of the neighbourhood to select candidate moves, imposing an or-
der on the solutions in the neighbourhood and following it. One particular
characteristic of this algorithm is the Q8-7 cooling scheme, an adaptation of
the Lundy-Mees cooling scheme [5]. After the cooling phase, once m consec-
utive moves have been rejected, this scheme restores the temperature to the
value at which the current best solution was found, forces the acceptance of
the current proposed move, and stops the temperature update, keeping the
same value until the end of the search. The m parameter is set proportionally
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to the total number of moves evaluated by the algorithm. During the initial
cooling phase of the Q8-7, the temperature is lowered after every move eval-
uated, and there is no temperature restart. The algorithm as reimplemented
from the original paper terminates after 50× |N(x)| moves.

Both algorithms start from a randomly generated permutation, and use
the 2-exchange neighbourhood

N (π) = {π′ | π′(j) = π(h) ∧ π′(h) = π(j) ∧ ∀l /∈ {j, h} : π′(l) = π(l)} (4.2)

that swaps two elements in positions i and j in a solution π. In total, BR1 has
five tunable numerical parameters, while Q8-7 has six; as we will not tune
the termination condition, this number reduces to respectively four and five.
The pseudocode for BR1 and Q8-7 is reported, respectively, in Algorithms 3
and 4.

Algorithm 3 Component-based formulation of BR1 with its original param-
eters. The components are highlighted in italic. The tuned numerical param-
eters we obtained are: θ′ = (k = 8.979, β = 51, α = 0.9163, γ = 83) for the
structured instances and θ′ = (k = 6.3173, β = 94, α = 0.9206, γ = 79) for
the random instances, and the termination is replaced with a time-based one
(10 seconds).
Parameters: a problem instance I, the 2-exchange neighbourhood, a random permutation

x0, control parameters θ = (k = 1, t = 10, β = 2, α = 0.5, γ = 1)

Output: the best solution x∗ found during the search.

1: best solution x∗ := incumbent solution x̂ := x0

2: i := 0
3: Initialize temperature T0 as the max gap between consecutive solutions in a random

walk of length l = 104, with a scaling factor k
4: while less than t temperature restarts have happened do

5: choose a solution xi+1 in the 2-exchange neighbourhood of x̂ at random

6: if xi+1 meets Metropolis criterion then
7: x̂ := xi+1

8: if x̂ improves over x∗ then

9: x∗ := x̂
10: end if

11: end if

12: if β times the instance size number of moves have been evaluated then
13: update temperature according to geometric cooling with factor α

14: reset temperature to initial value γ times the neighbourhood size
15: end if
16: i := i + 1
17: end while
18: return x∗
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Algorithm 4 Component-based formulation of Q8-7 with its original pa-
rameters. The components are highlighted in italic. The tuned numerical
parameters we obtained are: θ′ = (k = 6.7411, α = 0.9114, β = 0.2183,m =
600676, j = 97) for the structured instances and θ′ = (k = 5.5683, α =
0.8597, β = 0.04,m = 234615, j = 76) for the random instances, and the
termination is replaced with a time-based one (10 seconds).
Parameters: a problem instance I, the 2-exchange neighbourhood, a random permutation

x0, control parameters θ = (k = 1, t = 10, α = 1, β = 1,m = |N(s)|, j = 1)

Output: the best solution x∗ found during the search.

1: best solution x∗ := incumbent solution x̂ := x0

2: i := 0

3: Initialize temperature T0 according to custom formula [11], with scaling factor k

4: while less than t× |N(x)| moves have been evaluated do
5: choose a solution xi+1 in the 2-exchange neighbourhood of x̂ using a sequential

neighbourhood exploration

6: if xi+1 meets Metropolis criterion then
7: x̂ := xi+1

8: if x̂ improves over x∗ then

9: x∗ := x̂
10: end if

11: end if

12: if j moves have been evaluated then
13: update temperature according to Q8-7 cooling scheme with parameters α, β, m

14: never reset temperature

15: end if
16: i := i + 1

17: end while
18: return x∗

4.2.2.1 Reinstantiating and improving existing algorithms

We start with three types of experiments. In the first one we run the al-
gorithms using their original parameter settings, including the termination
(thus resulting in different running times); in the second one we take the
original parameters but force each algorithm to run for 10 seconds; and a
third one where we tune the parameters with irace, forcing an algorithmic
runtime of 10 seconds. The results are reported in Figure 4.1.

In the first experiment the results obtained by BR1 and Q8-7 are similar,
with a relative percent deviation (RPD) around 4%. This is because the al-
gorithms are fairly old and most likely they have been manually fine-tuned
on small instances with little computational power available. If we let them
run for a longer time, which can be done by simply replacing the termination
condition, this clearly favours BR1 that improves its results. The same modifi-
cation has however a surprising effect on Q8-7, which significantly worsens its
results. This can be explained by considering how the Q8-7 cooling scheme is
defined in the original paper. When this component is re-implemented exactly
as described, one of the parameters is computed relatively to the expected
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Fig. 4.1: Percentage deviation from the best known solutions obtained by the
two simulated annealing algorithms on our structured and random QAP test
set in their default settings, when let run for ten seconds, and when tuned
using irace on a separate training set.

number of total move evaluations of the search. This value defines therefore
a delicate balance, that collapses if this value increases dramatically, as it is
the case in our experiments. The resulting value makes therefore the tem-
perature update too slow, and the algorithm is unable to remain on good
converging paths as it has a very high probability of accepting worsening
moves for a too large part of the search. We then tune the numerical param-
eters of the algorithms using irace, paying attention to modifying the Q8-7
cooling scheme such that its parameters can be independently configured.
In this case, on both instance classes both algorithms significantly improve
their performance. On the structured instances, however, BR1 with an RPD
of around 0.2% clearly outperforms Q8-7, which finds solutions on average
worse than 1% over the best known ones. On the random instances, instead,
both algorithms obtain solutions on average just below 1% of RPD, with BR1

marginally better than Q8-7.

4.2.2.2 Generating new algorithms

Finally, we exploit the whole set of options identified in the literature for
the different simulated annealing components, using irace to automatically
select the best combination and thus design new algorithms from scratch.
We report in Figure 4.2 the results obtained by the algorithms that result
from automated design tasks with 10K, 20K, 40K and 80K experiments. The
algorithms obtained with the highest budget are reported in Algorithms 5
and 6 for structured and random instances, respectively.

On the structured instances the results are slightly better than those ob-
tained by BR1, with the exception of the configuration found with 20K experi-
ments. This is a somewhat easy scenario, and it takes relatively little effort to
find good solutions. The random instances scenario is instead more challeng-
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Fig. 4.2: Percentage deviation from the best known solutions obtained when
automatically designing simulated annealing algorithms from scratch using
10K, 20K, 40K and 80K experiments on our structured and random QAP
test set, compared with BR1 tuned with 10K experiments.

Algorithm 5 Component-based formulation of the SA automatically de-
signed for the structured instances with a tuning budget of 80 thousands
experiments. The components are highlighted in italic.
Parameters: a problem instance I, the 2-exchange neighbourhood, a random permutation

x0, control parameters θ = (p, 0.2249, k = 0.6969, β = 4645.392, α = 0.6921, γ = 32)
Output: the best solution x∗ found during the search.

1: best solution x∗ := incumbent solution x̂ := x0

2: i := 0

3: Initialize temperature T0 as the value that gives an expected initial acceptance proba-

bility p of worsening moves in a random walk of length l = 104, with a scaling factor
k

4: while less than 10 seconds of runtime do

5: choose a solution xi+1 in the 2-exchange neighbourhood of x̂ at random
6: if xi+1 meets Metropolis criterion then

7: x̂ := xi+1

8: if x̂ improves over x∗ then
9: x∗ := x̂

10: end if
11: end if

12: if the temperature value drops below β then

13: update temperature according to geometric cooling with factor α
14: reset temperature to initial value γ times the neighbourhood size

15: end if

16: i := i + 1
17: end while

18: return x∗

ing, and it takes more experiments to find a suitably good configuration. In
fact, while the tuning with 10 thousand experiments improves a lot over BR1,
it takes 40 thousand experiments to marginally improve the results. Using 80
thousand experiments, however, it is possible to find configurations that find
solution qualities comparable to the structured instances case.
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Algorithm 6 Component-based formulation of the SA automatically de-
signed for the random instances with a tuning budget of 80 thousands exper-
iments. The components are highlighted in italic.
Parameters: a problem instance I, the 2-exchange neighbourhood, a random permutation

x0, control parameters θ = (k = 0.5438, δ = 632, α = 0.0.5927, β = 0.65, γ = 1208, r =

71822, s = 0.0828)
Output: the best solution x∗ found during the search.

1: best solution x∗ := incumbent solution x̂ := x0

2: i := 0

3: Initialize temperature T0 as the average gap between consecutive solutions in a random
walk of length l = 104, with a scaling factor k

4: while less than 10 seconds of runtime do

5: choose a solution xi+1 in the 2-exchange neighbourhood of x̂ as the best one among
δ randomly chosen ones

6: if xi+1 meets Metropolis criterion then

7: x̂ := xi+1

8: if x̂ improves over x∗ then

9: x∗ := x̂

10: end if
11: end if

12: if exponentially increasing temperature length with parameters r, s is met then
13: update temperature according to geometric cooling variant with factors α, β

14: reset temperature to the one of the best solution found if no move accepted in

the last γ ones
15: end if

16: i := i + 1

17: end while
18: return x∗

For different budgets, the results obtained on the structured instances are
very similar, and so are the algorithms. They all feature original simulated
annealing components such as the Metropolis acceptance, a geometric cooling
scheme with cooling rates between 0.61 and 0.83 and a random neighbour-
hood exploration. There are instead different strategies for the temperature
length and restart. The initial temperature is defined in different ways, all
of them relatively to some statistics computed during a preliminary random
walk in the solution space. The algorithms obtained for the random instances
are more different among each other. The only common component is the
Metropolis acceptance criterion. A closer inspection of the search trajectory
reveals instead that the algorithms effectively maintain the same or almost
the same temperature value for large portions of the search. In other words,
the tuning process ends up shaping a relatively complex algorithm that works
like a very simple one. Our set of options includes the possibility of main-
taining the same temperature throughout the whole search, but it is more
difficult to initially sample one with good settings, that has the chance of
surviving during the tuning.

The difference in the algorithms obtained can be explained with a closer
inspection to the landscapes traversed by the algorithms. On the random
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instances the neighbourhoods have a distribution of solution values rela-
tively similar to solutions in areas of different quality around the solution
space, making this a scenario that does not require variations of the algorithm
parameters. On the structured instances, instead, neighbourhoods centered
around average quality solutions have different distributions of values than
neighbourhoods around good solutions, and in this case the flexibility of sim-
ulated annealing makes it more likely to adapt the algorithm to the different
areas of the landscape encountered [34].

It has to be noted that we considered only one tuning task for every budget,
and repeating each task with a different random seed may give algorithms
that are different, to a certain extent. At the same time, we have run the
configuration tasks for the algorithm that has the full training set of 100
parameters for four different budgets. We commonly observe that a higher
budget usually is good especially if the configuration tasks have many pa-
rameters. Anyway, one should observe that on the structured instances with
20K one has a relatively poor algorithm, something that can happen due to
the stochasticity in the configuration process.

4.3 Summary and Discussion

In this chapter, we have seen how to implement a simulated annealing algo-
rithm in terms of the design choices to make. We have shown how to combine
the knowledge on algorithmic components and parameter settings with auto-
matic configuration tools to develop efficient simulated annealing algorithms.
This methodology is nonetheless general, and works for any stochastic local
search method. There are some inherent advantages for this such as making
these components and parameters available for future use, allowing experi-
mental analyses to identify the circumstances under which every component
will be most successful, and exploiting directly the recent advances in the
automatic configuration of algorithms. This applies even more strongly when
we want to design an algorithm that finds good solutions as soon as possible,
or, in other words, that exhibits a good anytime behaviour.

In the experiments we observed how good simulated annealing algorithms
look like for different QAP instance classes. In general, in [10] we have many
more simulated annealing algorithms for the QAP identified and, independent
of which simulated annealing we have, we found the automated configured
simulated annealing with the variety of our settings always superior to these
specifically designed algorithm for the QAP. An importance analysis con-
ducted across different problems and instance classes indicated in fact that
the acceptance criterion is the most important component in a simulated
annealing, followed by the neighbourhood exploration criterion. These two
components are precisely the ones that operate locally in the neighbourhood.
In general, we have seen that different scenarios require different algorithms,
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but even for the same scenario we may have different algorithms that perform
equally well. Quantifying the appropriate diversification and understanding
what algorithm could obtain the desired behaviour are anyway tasks better
performed with the help of automatic tools. They can, in fact, select the best
options for each algorithmic component and parameter, thus making the best
out of the available body of knowledge that can be found in the literature.

A different approach is extending our approach to other stochastic local
search methods and to generate extended frameworks. Ideally, these exten-
sions would be generated within a same framework so that possibly rich
hybrids among these methods may be generated. This would enable us to
compare automatically designed simulated annealings against other auto-
matically designed stochastic local searches, to study the role, impact and
composition of simulated annealing algorithms when combined with or used
as part of other stochastic local searches. Ultimately, we can try to under-
stand when and how to move beyond the simulated annealing structure, to
automatically design bottom up new methods without constraining them to
a predetermined form.

4.4 Exercise

In addition to BR1 and Q8-7, in the literature there are several papers propos-
ing SA algorithms for the QAP or for problems that can be modeled as such.
We propose an open-ended exercise to become acquainted not only with Sim-
ulated Annealing, but also with a component-based perspective on stochastic
local search algorithms, and its automatic optimization. You can take inspi-
ration from the Supplementary Material of this chapter1, but you can also
start with a new clean implementation.

1. Choose a SA for the QAP to implement. You can start from the works
we cited in this Chapter, or you can look for other SA algorithms.

2. Identify the components of the algorithm you chose comparing it with
against the template we provide in Section 4.1.2, along with their numer-
ical parameters.

3. Understand how they interact: think about each of them as a separate
function, and analyze which data can be considered input and output.
Use the template given in Algorithm 2 as a reference to determine the
flow of information among the components.

4. Implement the algorithm, making sure you can specify the numerical
values as command line parameters. SA is a stochastic algorithm, so
remember to make it possible to specify a random seed too.

1 https://github.com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1/tree/

main/Part%202%20-%20Search-Based%20Optimization/Simulated%20Annealing/

SupplementaryMaterial
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5. Run some tests on the instances we provide in the Supplementary Mate-
rial2. Use different random seeds and record the results you observe.

6. Play with the numerical parameters, trying to find a parameter com-
bination that performs consistently better than the original parameter
values.

7. Use irace and the templates provided in the Supplementary Material3 to
automatically tune the numerical parameters [24]. Re-run the tests, and
observe the difference of results.

8. If you feel brave, implement alternative components, such as new func-
tions to update the temperature value, or to determine whether to accept
a candidate solution. You can take these ideas from existing papers, or
come up with new components on your own. An implementation that
reflects the component-based perspective of SA will make it way easier
to observe the impact of your new components. You can even introduce
a new command line parameter to add the choice at runtime.
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Chapter 5

Particle Swarm Optimization

Diego Oliva, Alfonso Ramos-Michel, Mario A. Navarro, Eduardo H. Haro,
Angel Casas

Nature is the source of inspiration for different processes in science and en-
gineering. Since nature is an example of the world, humans have tried to
imitate different behaviors over the years. This occurs not only in a personal
way but also happens in the creations and constructions. The collective be-
havior that is present in an animal that lives in groups is a clear example of
how nature solves the problem of finding sources of food, shelters, or places
to migrate. In the case of food sources or hunting, a group is more capable
of finding food than a single animal. This means that with more members of
the group have more probability of catching prey.

In computer sciences, intelligent algorithms’ design could be seen as an
attempt to imitate nature. In this sense, techniques such as Particle Swarm
Optimization (PSO) is an example of inspiration from nature as a base to
solve complex problems [1]. The PSO is part of a group of methods called
meta-heuristic algorithms that are widely important in artificial intelligence
and applied mathematics. Meta-heuristic algorithms can use a biological,
physical, or social phenomenon as a source of inspiration and provide the
basis for modeling operators to perform optimization.

The PSO was initially proposed by Kennedy and Eberhart in 1995. It was
developed to simulate the unpredictable choreography of birds flocking, but
later it was used to solve many problems defined discrete-valued spaces where
the domain of the variables is infinite [1]. Nonetheless, particle swarm opti-
mization has attracted the scientific attention of miscellaneous engineering
and physics areas; this is because there are several fields of study where it
is necessary to find better solutions according to specific established crite-
ria. Some other classical optimization approaches cannot be used in these
types of problems because they could get caught in local optima [2]. Even
though particle swarm optimization has some similarities with genetic algo-
rithms and other optimization approaches, the main difference is that instead
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of using mutation/crossover operators, it uses the global communication and
real-number randomness as the swarm particles [3].

The PSO works with a population of candidate solutions that are called
particles. Each particle of the population collaborates with its search strategy
to improve the quality of the solutions. In the early research related to PSO,
we can see that the operators move the population as birds flock or school
of fishes. PSO is then a simple optimization algorithm that allows to explore
a search space and find the optimal solution. Due to its simplicity, PSO
is a popular method, and it has been applied in different domains, from
benchmark optimization problems to medical applications [4]. PSO has been
studied by researchers over the years not only to use it for solving complex
problems but also to understand how this algorithm works and to validate
its performance from theoretical and empirical points of view [5]. PSO is
considered a powerful tool for optimization, and it is a classical approach
that helps to inspire other algorithms such as swarm intelligence [6]. However,
PSO, like many other algorithms, has some drawbacks; for example, it could
be trapped in sub-optimal solutions in complex search spaces (multi-modal
problems). In this sense, in the related literature, they are more than 100
modifications of the PSO, and their modification is still growing every year
[7].

The popularity of PSO is reflected in the number of cites and publications
indexed in different databases like Scopus. Figure 5.1 shows a plot extracted
from Scopus related to PSO from 2010 to 2021. From this graph, it is possible
to see that in 2010 they were around 4000 documents published, and in 2020
the number of publications was between 8000 and 9000.

Fig. 5.1: Number of articles per year of PSO between 2010 and 2021.
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To graphically show where the PSO impacts in the last ten years Fig. 5.2
presents a pie chart. The main field of application is engineering, followed by
computer sciences, and third place in mathematics.

Fig. 5.2: Documents by subject area related to PSO between 2010 and 2021.

In this chapter, an introduction to the PSO algorithm is given. The goal is
to provide an overview of the PSO, explain its basic concepts and operators,
and present examples and exercises. Besides, the variants of the PSO are
also discussed based on their importance in the scientific community. In the
same context, they also studied the most important application of this vital
algorithm.

The rest of the chapter is organized as follows: Section 5.1 explains the
operators of the PSO. Section 5.2 discusses the main modification of the PSO.
In Section 5.3 are analyzed the most important PSO applications. Finally,
Section 5.4 discuses some conclusions and proposes some exercises.

5.1 The Fundamentals of the PSO Algorithm

This section introduces the basic concepts of the standard PSO and how
it works. The pseudocode is described easily, and an example permits an
analysis of the behavior of the algorithm.
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5.1.1 The PSO Structure

Essentially, each particle in the swarm (which is considered a candidate so-
lution) is randomly distributed and represented by a vector in a multidimen-
sional search space; all this set of particles is considered the initial population.
Once established the initial population, PSO searches for optima by updat-
ing each particle according to notions such as position, velocity, inertia, etc.
These notions can be defined as a vector usually called the velocity vector,
which helps to determine the next movement of the particle. Nonetheless, this
movement is not entirely random; each particle is attracted towards both its
own personal best position and the best position of the swarm. Then, the
population is evaluated in the objective function to determine the popula-
tion quality. This also allows finding the best element that will be defined as a
criterion to beat in the subsequent evaluation. The new generated positions
of the particles and the speed with which they are moving are calculated
considering the value of the best global element and the actual value of every
particle compared with a random number [8].

When the population is initialized and evaluated, the particle with the
lowest or highest objective value is obtained depending on whether it is a
minimization or maximization problem, respectively. This found particle is
called the global particle gB. On the other hand, in each iteration of the al-
gorithm, the current particle is compared with the newly generated particle;
in other words, particles have to be evaluated in the objective function every
time they are moved. If the generated particle is better than the current one,
then it is replaced by the new particle, receiving the usual name of the actual
best particle lB. The general pseudocode of the particle swarm optimization
algorithm is shown in Algorithm 7. In contrast, the phases of initialization
and movement of particles that compose the PSO are explained in the fol-
lowing two subsections.

In order to better understand the pseudocode shown in Algorithm 7, it is
enough to appreciate that it is divided into two main parts, the unnumbered
part and the numbered part. The unnumbered part refers to those terms
that the algorithm requires in order to perform its operation, terms such as
the population number, dimensions, etc. Once the previous points have been
established, the numbered part is given, which begins with the initialization of
the population and its respective evaluation. The terms “repeat” and “until”
refer to the beginning and end of the while loop, which is the main body of
the algorithm.
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Algorithm 7 Particle swarm optimization pseudocode
Parameters → Dimensions, Bounds, Maximum iteration number, Number of particles.

Output → gB.

1: Initialize the particles of population.

2: Evaluate the objective function.
3: repeat

4: for All particles in all dimensions do
5: Generate a new velocity.

6: Calculate a new position.

7: Evaluate again the objective function.
8: end for

9: Update the best particle of population.

10: until the maximum number of iterations is reached.

5.1.1.1 Initialization of the PSO

All meta-heuristic algorithms have an initialization phase that has the pri-
mary purpose of creating the initial population, where each particle repre-
sents a candidate solution for the optimization problem. These particles are
randomly generated in a search space, which is delimited by the established
bounds. Generally, the initialization phase also defines the parameters of the
problem to optimize [8]. The initialization of the PSO algorithm is defined
by Eq. 5.1, which describes the optimization of its individual particles.

xt
i,j = lbj + rand(ubj − lbj) (5.1)

where xt
i,j is the i − th population particle, i ∈ {i = 1, 2, 3, ..., N} repre-

sents the index of a given particle, N is the maximum number of particles,
j represents the jth dimension of the design variable, where 0 < j ≤ d and
d is the dimensionality of the design variable. The iteration number is repre-
sented by t. While lbj and ubj define the lowest and upper limit of the design
variable, respectively. It is worth saying that rand is a uniformly distributed
random number between 0 and 1. Once established the respective position
of each particle, it is necessary to define the velocity each one of them will
move around the search space to find the global optimal. We will explain that
phase next.

5.1.1.2 Velocity and Movement of Particles

To find the velocity, it is necessary to get the best global and local values of
each particle, commonly called gBt and lBt

i respectively. Eq. 5.2 defines the
velocity calculation for each particle i:

vt+1
i = w × vt

i + c1 × r1t
i × (lBt

i − xt
i) + c2 × r2t

i × (gBt − xt
i) (5.2)
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xt+1
i = xt

i + vt+1
i (5.3)

where vt+1
i is the particle i’s velocity of the iteration t+ 1, vt

i is the particle
i’s velocity in the previous iteration, the vector that contains each particle
i’s position is xt

i and r1t
i and r2t

i represent d-dimensional vectors containing
uniformly distributed random numbers between 0 and 1. It is worth to say
that c1 and c2 are called learning coefficients, and w represents an inertia
weight that affects the convergence and exploration-exploitation trade-off in
PSO process. Since inception of inertia Weight in PSO, a large number of
variations of Inertia Weight strategy have been proposed, nonetheless, it is
generally established as 1. Meanwhile, Eq. 5.3 is used to displace the particles
to new positions in the next iteration. Where xt+1

i is the vector where the
new obtained position of particle i at iteration t+1 is stored, xt

i corresponds
to the previous position of particle i calculated at iteration t, and finally vt+1

i

is the velocity vector obtained by Eq. 5.2.
It is essential to mention that the majority of modifications to the PSO

algorithm have as purpose to find new ways to accelerate the particles as
best as possible [9]. To end this section, Fig. 5.3 shows a graphic description
of particle’s velocity and their movement in the particle swarm optimization
algorithm for a better understanding by the reader.

Fig. 5.3: Velocity and movement of particles in PSO.
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5.1.2 A PSO Example

To show how the PSO works here is presented a graphical example. Fig-
ure 5.4a shows the peaks function plotted in 3D with a lateral view. This
function is commonly used in the literature to explain the behavior of op-
timization algorithms. Figure 5.4b shows the random initialization of the
population of a particle (swarm) in PSO [1]. The population has 30 particles
uniformly distributed in the search space defined by the peaks function with
an upper bound as ub = 3 and a lower bound as lb = −3 (from the top view).
The examples show the distribution of particles at different stages of the opti-
mization process establishing 1000 iterations as a stop criteria. In Figs. 5.4c,
5.4d, 5.4e and 5.4f it is shown the interaction of the swarm in 50, 300, 600
and 999 iterations in the test function. Finally, in Fig. 5.4f it is possible to
see that the swarm has found the zone of the global minimum according to
the color bar for the z-axis of Fig. 5.4a.

5.2 The PSO Variants

This algorithm has been so successful since its emergence that it has been
the base for designing new methods. Same that preserves the essence and
structure of the PSO but adds improvements in operators, parameters, ini-
tialization, or combines concepts that make the algorithm more specialized
for specific problems. The most important variants are listed below, divided
into two fields, single-objective and multi-objective optimization:

5.2.1 Top PSO Variants for Single-Objective Problems

There are many publications related to PSO variants for single-objective
optimization. Most of them were compiled and sorted by year of publication,
adding the citations obtained from publication date up to the current year
2021. Based on this information, the top 30 most cited PSO variants were
obtained (see Table 5.2.1).
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(a) Peaks function.
(b) Distribution of the swarm at the initial-

ization.

(c) Distribution of the swarm at 50 iterations.
(d) Distribution of the swarm at 300 itera-

tions.

(e) Distribution of the swarm at 600 itera-
tions.

(f) Final distribution of the swarm at 999 it-
erations.

Fig. 5.4: An example of the PSO along the iterative process.
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Table 5.1: Top 30 PSO variants

PSO variants publication year current citations

PSO(PSO) 1995 68303
Binary PSO (BPSO) 1997 6051
Comprehensive Learning PSO (CLPSO) 2006 3426
Cooperative PSO (CPSO S) 2004 2303
Fully-informed PSO (FIPS) 2004 2030
Quantum Delta- Potential-Well-Based PSO (QDPSO) 2004 1990
Fuzzy PSO (FPSO) 2001 1876
Quantum-inspired version of the PSO algorithm (QPSO) 2004 1080
Dynamic neighborhood PSO (DNPSO) 2003 976
Bare bones particle swarms 2003 806
Cooperatively Coevolving Particle Swarms (CCPSO) 2008 679
Fitness-to-Distance Ratio PSO (FDRPSO) 2003 598
Attractive Repulsive Particle Swarm Optimization (ARPSO) 2002 597
PSO with passive congregation (PSOPC) 2004 470
Dissipative PSO (DPSO) 2002 464
PSO with spatial particle extension (SEPSO) 2002 457
Species in a Particle Swarm Optimizer (SPSO) 2004 366
Optimized PSO (OPSO) 2006 333
Standard PSO(SPSO) 2011 308
Orthogonal PSO (OPSO) 2008 275
Hybrid gradient descent PSO (HGPSO) 2004 264
Extended Particle Swarms (XPSO) 2005 264
Dual Similar PSO Algorithm (DSPSOA) 2006 264
Parallel PSO (PPSO) 2005 255
Evolutionary Iteration PSO (EIPSO) 2007 255
Adaptive PSO (APSO) 2002 218
Iteration PSO (IPSO) 2007 190
Enhanced leader PSO(ELPSO) 2015 190
Angle Modulated PSO (AMPSO) 2005 169
Co-evolutionary PSO 2002 162

The following is a brief description of the most widely used PSO vari-
ants. Considering the ranking in Table 5.2.1 and some state of the art re-
views, [10], [11] [12] [13] indicating which are the most popular variants. The
objective is to present some of the most representative varieties of the PSO
algorithm considering significant modifications in terms of several concepts
such as social topology between particles, new definitions of equations for
velocity and position, and methodologies that make the algorithm adaptive
in some of its global parameters.

5.2.1.1 Standard PSO 2011

In the initialization process of standard PSO (SPSO), the size of the swarm
is defined by the user, but it is empirically suggested N = 40 particles. The
algorithm starts initializing the particles following a random distribution [14],
while the other elements are initialized following a uniform distribution. If any
element goes out of bounds, these act as a barrier returning the element within
the bounds [lbj , upj ] resetting the particle velocity to 0, where j corresponds
to the dimension number. Until the 2007 versions, the velocity is updated
dimension by dimension, as can be seen in Eq. 5.2, and the performance of
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the algorithm depends mainly on the coordinate system obtained (rotation
sensitivity) [15], [16].

Fig. 5.5: Geometrical representation of standard PSO until 2007

Figure 5.5 shows that each particle at each time step gets its distribution
of all nearby positions and which is also a combination of two rectangles D
with sides parallel to the axes, with uniform probability distribution within
each rectangle. In contrast, the variant proposed in 2011 [15] suggests the
idea of an adaptive random topology in terms of communication between
search agents and exploits the idea of rotational invariance (see Fig. 5.6).

Fig. 5.6: Geometrical representation of standard PSO

For each particle i and at each time stage t, a center of gravity gt
i is defined

around three points:

• The current position (xt
i)
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• Point a little “beyond” the best previous personal position (pt
i) defined

as:

pt
i = xt

i + c1r1
t
i ⊗ ( lBt

i − xt
i) (5.4)

• Point a little “beyond” the best previous position in the neighborhood (lti)
defined as:

lti = xt
i + c2r2

t
i ⊗ ( gBt − xt

i) (5.5)

• Center of gravity(gt
i) finally defined as:

gt
i =

(
xt
i + pt

i + lti
)

3
(5.6)

In the case of Fig. 5.6 the distribution of all possible next positions
(DNPP) obtained is a D-dimensional sphere defined asHi(g

t
i, ||gt

i,x
t
i||), which

is rotational invariant about its center, i.e., it does not change when the
function is rotated.
In SPSO-2011, velocity is updated as follows:

vt+1
i = wvt

i+Hi(g
t
i, ||gt

i − xt
i||)− xt

i (5.7)

While particle position is updated following Eq. (5.3).

5.2.1.2 Fully-informed PSO

Human social behaviors inspired the authors to conclude that individuals are
not influenced by a single individual but by those around them. Based on
observations, they proposed a modification of the velocity equation of the
canonical version of PSO [1] with the purpose that each particle is influenced
by the performance of all its neighbors and not by the performance of a single
individual. The equations for the update of velocity and position are defined
as:

vt+1
i = wvt

i +

|Ci|∑
m=1

γt
m

(Yt
m − xt

i)

|Ci|
(5.8)

xt+1
i = xt

i + vt+1
i (5.9)

Inspired by the fact that an individual is influenced by the behavior of the
individuals around him, the authors define the Eq. 5.8. Where Ci is the set
of particles in the neighborhood of i, and γt

m ∈ [0, c1 + c2]
j , where c1 and

c2 are the learning coefficients, j is the dimensionality of the problem and
the position Yt

m represents the best position that particle m has visited until
iteration t (a position that has obtained the best evaluation of the objective
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function). The main contribution of this algorithm published in 2004 that
makes it different from other variants is the type of topology used in its
particles [17]. Since they all have the exact source of information, there is no
difference in the amount of information shared. Some of the topologies that
can affect or improve the performance of PSO are the following:

• Ring : this topology has a network configuration where the particle con-
nections create a circular trajectory. Each particle in the network is fully
connected to two others, thus forming a single continuous route, resulting
in a ring structure as illustrated in Fig. 5.7a. The algorithm that results
from this topology is called Lbest PSO; in addition, such a topology can
be generalized to a network structure in which neighborhoods of larger
size are used.

• Star : this social topology is shown in Fig. 5.7b. Here, it is observed that
all the particles in the swarm are interconnected. A PSO using the star
topology is commonly named the Gbest PSO . The original implementa-
tion of the PSO used the star topology [1].

• Von Neumann: this topology is a square grid where each particle has
four neighbors. The 2-D variant is represented in Fig. 5.7c, and the 3-D
variant is represented in Fig. 5.7d. This class of topologies allows the
communication between the particles to be unusual and different from
other social communication topologies.

(a) Ring. (b) Star. (c) Square. (d) Cube.

Fig. 5.7: Social topologies

5.2.1.3 Comprehensive Learning PSO

The main novelty of this algorithm is that the authors propose a new function
for updating the particle velocity defined as:

vt+1
i = w ∗ vt

i + c ∗ r1t
i ∗
(
lBt

fi − xt
i

)
(5.10)

where fi = [fi(1), fi(2), · · · , fi(D)] defines which particles of lB the particle
i should follow, and D represents the dimensionality of the problem. The
value of lBfi(j),j can be any particle’s lB including its own lB. The decision
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depends on probability Pc, referred to as the learning probability, which can
take different values for different particles. For each dimension of particle
i, the authors generate a random number. If this random number is higher
than Pci , the corresponding dimension will learn from its own lB; otherwise,
it will learn from another particle’s lB.The selection method used by the
tournament and the main steps for selection are as follows:

• First, two particles are chosen randomly from the population, except the
particle with its updated velocity.

• The objective value of the two particles(lB) is compared, and the best of
these is selected. In CLPSO the objective value is defined as the higher,
the better, which means that to solve minimization problems, use the
negative values of the function as objective values.

• Finally, using the winning particle as an example for the next generations
to learn from that dimension, if all individuals are their own lB, then a
random dimension is chosen for the particles to learn from the best lB
particles working on it.

5.2.1.4 Fuzzy Adaptative PSO

This version of PSO is based on fuzzy inference systems. For more information
about this computational area, the reader is advised to refer to the following
references [19, 20]. Readers may understand this version of PSO more fully
after learning about fuzzy inference systems, but a brief description of this
approach is provided below.

Fuzzy inference systems are basically conditional statements expressed in
the form IF A THEN B, where A and B are labels of fuzzy sets defined by
appropriate membership functions [18]. A fuzzy inference system is depicted
in Fig. 5.8 and is composed of four functional blocks as described below:

Fig. 5.8: Fuzzy inference system
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• A knowledge base containing a number of fuzzy if-then rules and the
definitions of the memebership functions of the fuzzy sets used in the
fuzzy rules.

• A fuzzy inference engine which performs the inference operations based
on the fuzzy rules.

• A fuzzification interface that transforms the crisp inputs into degrees of
match with linguistic values.

• A defuzzification interface which transforms the fuzzy results of the in-
ference into a crisp output.

The authors of the paper [21] published in 2001 proposed to adapt PSO by
using a fuzzy system to adjust the inertia weight dynamically. As mentioned
previously, the inertia weight is an important parameter in PSO, since it
affect the convergence and exploration-exploitation trade-off in PSO process.
As the inertia weight is a global variable, it can be applied to the whole
population. The authors thus designed a fuzzy system to adapt the inertia
weight dynamically as a global variable. The fuzzy system’s input variables
are the performance of the best candidate solution found so far by the PSO
in normalised format and the current inertia weight, whereas the output
variable is the change in inertia weight. All variables are associated to three
fuzzy sets: low, medium, and high with associated membership functions as
left triangle, triangle and right triangle, respectively. The definitions of
these three membership functions are:

fleft triangle =


1 if x < x1

x2−x
x2−x1

if x1 ≤ x ≤ x2

0 if x > x2

(5.11)

ftriangle =


0 if x < x1

2 x−x1

x2−x1
if x1 ≤ x ≤ x2+x1

2

2 x2−x
x2−x1

if x2+x1

2 < x ≤ x2

0 if x > x2

(5.12)

fright triangle =


0 if x < x1

x−x1

x2−x1
if x1 ≤ x ≤ x2

1 if x > x2

(5.13)

where x1 and x2 are critical parameters that determine the shape and location
of the functions. Other definitions of membership functions are possible, but
the authors have found that the ones they proposed are useful for various
problems and are easy to implement on microcontrollers and microprocessors.
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5.2.2 Major PSO Variants for Multi-Objective Optimization

PSO is a powerful tool for solving single-objective problems; for that rea-
son, researchers expanded its capabilities to the multi-objective domain. The
idea is to generate PSO-based approaches that can optimize more than one
objective function. Assume a multi-objective optimization problem in the
canonical form given in the introduction of Part II of this book:

minimize fk(x), k = {1, 2, · · · , p}
subject to gi(x) ≤ 0, i = {1, 2, · · · ,m}

hj(x) = 0, j = {1, 2, · · · , n} ,

where x ∈ X is the design variable being optimised, p is the number of
objective functions to be optimised, m is the number of constraints of the
type gi and n is the number of constraints of the type hj . Multi-objective
optimization (MO) aims to find a set of solutions called a Pareto set [22],
where each solution is non-dominated by any other solution in the search
space. A solution x(1) is said to dominate another solution x(2) if and only
if:

∀i, fi(x(1)) ≤ fi(x
(2)) and

∃i, fi(x(1)) < fi(x
(2))

(5.14)

As such, the Pareto set can be seen as composed of solutions that represent
different trade-offs among the objectives. This section briefly discusses the
most relevant versions of the PSO for MO problems. These variants were
selected based on their citations in scientific repositories.

5.2.2.1 MOPSO

This algorithm proposed in 2002 introduces concepts of multiobjective opti-
mization to modify the original PSO algorithm and implement it to solve mul-
tiobjective optimization problems. The authors named this approach Multi-
Objective Particle Swarm Optimization (MOPSO) [23] and validated it by
comparing it with algorithms such as Pareto Archived Evolution Strategy
(PAES) [24] and the Non-dominated Sorting Genetic Algorithm II (NSGA
II) [25]. The general structure of the MOPSO algorithms is listed below:

1. Initialize population with random position and velocity vectors.
2. Evaluate the objective values of each particle.
3. Archive=non-dominated solutions found so far.
4. Determine the personal best of each particle.
5. Apply Eqs. 5.2 and 5.3.
6. Repeat steps 2 to 6 until the stop criterion is reached.
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In MOPSO the velocity and position update equations remain similar to
Eq. (5.2) and Eq. (5.3) of PSO, but the personal best and global best are
computed differently. The personal best is determined based on the non-
dominance concept. If the new position of a particle dominates the previous
personal best of this particle, the new position replaces the previous personal
best. If the previous personal best dominates the new position, then the pre-
vious personal best is kept. If the new position and the previous personal best
are non-dominated by each other, one of them is chosen uniformly at random
to become (or remain) the personal best of this particle. The global best is
randomly selected among the non-dominated solutions from the archive by
giving higher chance to select solutions located in less crowded regions of the
search space, i.e., in regions where there are few archive solutions.

This multi-objective algorithm has been widely used in the literature for
applications in different fields; three of the most notable fields, according to
the reports in [26] are Electrical Engineering, Industrial Engineering, Flow-
shop, and Job-shop Scheduling.

5.2.2.2 SMPSO

In 2009, Nebro et al. [27] studied six representative variants of MOPSO and
found that they had problems solving multi-modal problems, i.e., problems
with two or more optimal solutions. The problem was the “swarm explo-
sion” [28]: erratic movements toward the upper and lower boundaries of par-
ticle positions that occur when particles acquire very high velocity. Based
on a MOPSO algorithm, they presented in [27] a new multi-objective PSO
algorithm using the velocity constraint strategy [28]. Their proposal could
obtain proper particle positions when high velocity was present, avoiding the
swarm explosion effect. The new algorithm, called Speed-constrained Multi-
objective PSO (SMPSO), uses the following equations to adjust the velocity
of the particles:

χ =
2

2− φ−
√
φ2 − 4φ

(5.15)

where

φ =

{
c1 + c2 if c1 + c2 > 4

1 if c1 + c2 ≤ 4
(5.16)

where c1 and c2 are the parameters to control the effect of the personal
and global best particles. Once the velocity of the particles is calculated
in the original form [27], it is multiplied by the constriction coefficient χ,
which helps to enable diverse solutions so that exploitation is not too much
intensified. Then, the velocity is constrained by Eq. 5.17:
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vti,j =


∆bj if vti,j > ∆bj
−∆bj if vti,j ≤ −∆bj
vti,j otherwise

(5.17)

where

∆bj =
(ubj − lbj)

2
(5.18)

where ub and lb are the upper and lower boundaries of search space defined
by X , and ∆bj is the center point between them. By implementing this strat-
egy, SMPSO overcomes the swarm explosion effect of MOPSO algorithms.
They reported that the approximations to the Pareto front found by their
algorithm were better than the MOPSO algorithms. The SMPSO was the
fastest algorithm converged to the Pareto front in their experiments.

5.2.2.3 FC-MOPSO

This algorithm presented in 2017 [29] originally targeted at the problem of
multi-objective design of engineering problems with few function evaluations.
It generalizes the concept of personal best lBt

i to the set Pi, which contains
all non-dominated solutions found so far by the particle i. A particle called
pseli is selected from Pi for the purpose updating the velocity (and position)
of the particle i in the algorithm. Similarly, the concept of local best lBi,
which is used by some PSO variants to capture the best particle found in
the neighbourhood of particle i instead of in the population of particles as a
whole, is also generalized to randomly select non-dominated solutions.

The authors also suggest that FC-MOPSO starts with random velocities
no greater than vm = 0.1(ub − lb), where ub and lb are the upper and the
lower boundaries of the search space defined by X , respectively. In other
words, they prevent the method from starting with large velocities while
starting with some speeds to start the search at a more advanced stage.

5.3 PSO Applications

The applications presented here were chosen based on the relevance of cur-
rent works consulted in the GoogleScholar repositories.
In recent years, robotics has undergone significant development. The spe-
cialization of many tasks requires the optimization of execution times and
precision in the robot’s movements. In this sense, the modeling parameters
of the robot were explored in [30], where the researchers used a combination
of the Least Square (LS) method and PSO to estimate a robotic arm’s in-
ertia parameters. The estimation performed automatically by the algorithm
matches closely with the manufacturer-provided values. Trajectory planning
for mobile robots through PSO was implemented by Abdalla et al. [31], Zeng
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et al. [32], and Wang et al. [33]. Zeng et al. used a PSO based on a non-
homogeneous Markov chain and Differential Evolution algorithm to generate
a path into a space with obstacles for intelligent robots. Abdalla et al. pro-
posed a combination of the artificial potential field (APF) with fuzzy logic,
where PSO was used to optimize the membership functions of the fuzzy con-
troller to acquire the mobiles robot trajectory, and Wang et al. combined the
PSO algorithm with kinematics equations to trajectory planning in the free-
floating space robot, simulating a couple of a spacecraft and a manipulator
robot.

Electrical energy has been studied for centuries, and its use has been
extended to all possible areas in recent decades. Now, with the renewable
production of electrical energy, it is imperative to optimize its use and its
distribution and production for maximum utilization. Electricity sometimes
comes from a cascade system of hydroelectric generators. Evaporation, ir-
rigation systems, and other factors affect the water level in the reservoirs.
Mahor and Saroj [34] used a PSO based algorithm to optimize the genera-
tion schedule of a real system of hydroelectric cascade system in India. In
[35], Bahrami et al. used the PSO algorithm to determine the optimal pa-
rameter in a grey model. This model brings the opportunity to forecast the
electric load in the short term, using minimal historical data. The method
was used to forecast the load in Iran and New York electrical networks. In
2016, Mesbahi et al. used a hybrid PSO-Nelder-Mead algorithm to identify
and model electric vehicle batteries and then used this information to simu-
late vehicle energy demand, which allows maximum energy harvesting [36].
Finally, Mesbahi et al. compared their results against the power consumption
of a physical urban electric vehicle, with a modeling error inferior to 0.5%.
Mozafar et al. applied a multiobjective algorithm, using PSO combined with
GA to optimize the location and capacity of renewable power sources and
electric vehicle charging stations within the same distribution network. [37].

5.4 Summary and Discussion

The PSO is an interesting algorithm that has attracted the attention of re-
searchers and practitioners from different areas over the years. The simplicity
of the PSO makes it a popular mechanism for single-objective optimization.
Their operators are easy to implement and permit finding solutions to com-
plex problems. Since the PSO has been extensively used, it has also been
modified to improve its performance. Multi-objective problems require more
sophisticated algorithms that permit handle with them. In this sense, the
PSO has been extended for multi-objective optimization. Regarding the im-
portance of the PSO, it is possible to see how this method stills being a source
of research from different repositories. The multiple modifications of the PSO
algorithm are an excellent example of this. This chapter just considered the
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most relevant derivative work of PSO from 2010 to 2020. There exists more,
but analyzing them is a complex and irrelevant task to the present work
scopes. The quantity of derivative works is similar to the number of applica-
tions of the PSO; since its implementation is relatively easy and the code is
entirely available, it is possible to find a significant number of articles that
reports result from different fields of applications. It is possible to conclude
that the PSO is one of the most important meta-heuristic algorithms, and
the research related to it is still has lots to promise.

5.4.1 Exercises

1. Program the Rosenbrock function defined as follows:

f(x1 · · ·xn) =
n−1∑
i=1

(100(x2
i − xi+1)

2 + (1− xi)
2) (5.19)

where −2.048 ≤ xi ≤ 2.048 and the minimum at f(1, 1, · · · , 1) = 0.
Once you have implemented the Rosenbrock function plot its surface in
2 dimensions.

2. Considering the Rosenbrock function, initialize a random population of 50
particles and plot them in the the 2-dimensional surface of the function.

3. Implement the standard version of the PSO explained in this chapter
to minimize the Rosenbrock function. You need to obtain the curve of
convergence of the best solution at each iteration and plot it.

4. Implement a code of the Fully Informed PSO that was explained in this
chapter. The Fully Informed PSO should be able to minimize the Rosen-
brock function. Obtain the convergence curve and compare it with the
one obtained by the standard PSO.

5.4.2 Answers to the exercises

1. Rosenbrock function top view
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Fig. 5.9: Rosenbrock function

2. Initialization of a random population of 50 particles on the 2-dimensional
surface of the Rosenbrock function.

Fig. 5.10: Initialization of 50 particles on the Rosenbrock function

3. Convergence plot of standard particle swarm optimization version
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Fig. 5.11: SPSO convergence graph

4. Comparison of convergence plots between standard particle swarm opti-
mization (SPSO) and Fully informed Particle Swarm (FIPS).

Fig. 5.12: SPSO vs. FIPS convergence plots
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Chapter 6

Other Search-Based Optimization
Approaches

Roberto Santana

In previous chapters we have seen detailed examples of search-based opti-
mization algorithms. Here, we present an overview of other search-based tech-
niques. This class of methods can be grouped according to different criteria,
among them:

• Single solution versus multiple solutions search-based algorithms.
• Black-box versus gray-box optimization algorithms.
• Model-less versus model-based algorithms.

As the name indicates, single-solution search-based algorithms organize
the search by maintaining a single solution at each step. The transitions be-
tween solutions can be done according to different criteria. Examples of single-
solution base-search algorithms are the Iterative Descent (or Hill-Climbing)
and Simulated Annealing methods presented in previous sections. The differ-
ence between Iterative Descent and Simulated Annealing illustrates that in
these algorithms, although a single solution is kept in each iteration, multi-
ple evaluations might be needed (e.g, a neighborhood of solutions for some
variants of Iterative Descent) in order to decide which is the next solution to
be selected.

The best-known family of algorithms that simultaneously uses multiple
solutions are population-based evolutionary algorithms such as genetic algo-
rithms (GAs) [1]. The distinguished characteristic of population-based algo-
rithms is that they use selection and recombination operators as a way to
identify and exploit partial solutions of high quality (“fitness”) in order to
conduct an efficient search of the promising areas of the search space. This
goal is more difficult to achieve for search-based methods that use single
solutions. We will we present GAs in more detail in Section 6.1.

Black-box optimization algorithms do not assume the existence of any in-
formation about the function or problem being optimized. On the other hand,
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gray-box optimization methods start from some description of the problem
characteristics (e.g., some representation of the problem structure) and use
this information to implement specialized and more efficient search operators.
Most heuristic optimization methods, including those covered in previous
chapters are black-box methods.

Model-less optimization methods are those where no global representation
of the characteristics or the best solutions or the search progress is created and
exploited. They are commonly a choice for problems for which no information
is available a-priori. However, in several optimization domains, modeling the
characteristics of the promising solutions can contribute to a more efficient
search. Model-based search methods are a family of algorithms that imple-
ment this approach. Simple GAs usually apply variation operators on one or
two solutions and they are considered model-less methods. Other evolution-
ary algorithms apply selection to identify high fitness solutions, but instead
of applying mutation and recombination operators, they learn a model that
captures the relevant information from the selected solutions. The model is
then used to generate or sample new solutions and the steps of selection,
modeling and sampling are repeated in each generation.

While the three criteria considered in this chapter serve to group opti-
mization algorithms into different classes, a variety of other criteria could be
used [2]. The rest of this chapter is organized as follows, Section 6.1 discusses
the difference between single-solution and multiple-solutions search-based al-
gorithms using the GA as an example. A comparison between black-box and
gray-box search-based methods is presented in Section 6.2. A description of
optimization techniques that use modeling of the best solutions is presented
in Section 6.3. Finally, Section 6.4 provides an example of how to apply dif-
ferent search-based algorithms to the HP protein model, a simple model of
protein folding.

6.1 Single solution versus multiple solutions
search-based algorithms

Examples of search-based methods that maintain a solution in each itera-
tion, and of population-based algorithms have been presented in previous
sections. Here we focus on GAs [1] since they are one of the most success-
ful optimization methods that have achieved excellent results across a wide
range of problem domains. GAs are inspired in the theory of natural selec-
tion, e.g., survival of the fittest, and on the application of genetic crossover
and mutation operators on a population of candidate solutions.

Algorithm 8 shows the pseudocode of a simple GA. In Step 1 of the al-
gorithm an initial set of solutions is generated. Usually, these solutions are
generated randomly. However, seeding strategies can be applied to start the
search from a pool of high-fitness solutions. In Step 3, the solutions are eval-
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uated and subsequently, in Step 4, a subset of solutions is selected according
to a predefined selection method. Such method usually gives higher chance to
select solutions of better quality. Among the most used strategies for selection
are: proportional, tournament, and truncation selection [3].

In Step 5 of Algorithm 8, genetic operators are applied on the selected
population. These are operators that are used to generate new solutions
based on the solutions selected in the previous step. In the traditional ap-
proach, parents chosen from the selected solutions are combined (“mated”)
using operators called recombination or crossover operators (e.g., one-point
or multiple-point crossover). The offspring then go through another operator
called mutation operator (e.g., bit-flip mutation for problems with a binary
representation). While the crossover operator produces new solutions, muta-
tion operators modify single solutions. Finally, in Step 6, the offspring pop-
ulation and the previous population are used to create the new population.
This is called “replacement”. Among the most used replacement strategies
is elitism, a strategy in which the best solution of the previous population is
guaranteed to be part of newly generated offspring. As termination criterion
a maximum number of iterations (generations) or some measure of lack of
improvement in the solutions are commonly used.

Algorithm 8 Simple genetic algorithm

1: pop = generate population()
2: repeat

3: fitness = evaluate population(pop)
4: selected pop = select solutions(pop, fitness)

5: offspring = apply genetic operators(selected pop)

6: pop = apply replacement(pop,offspring)
7: until Stop criterion is satisfied

One of the reasons that have been used to explain GA’s success is the
systematic creation and parallel recombination of partial solutions or build-
ing blocks [1]. Considered from that point of view, GAs can be seen as a
class of automatic problem decomposition procedures in which information
about promising partial solutions is synthesized in multiple ways and refined
along generations. However, it has been reported that in many difficult prob-
lems blind crossover recombination is not an appropriate choice to exchange
information between solutions since partial solutions tend to be disrupted [4].

6.2 Black-box and gray-box search algorithms

Gray-box optimization methods [5, 6] develop strategies to solve the opti-
mization problems for which some a-priori information is available, notably,
those problems with a “suitable” structure. The underlying assumption is
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that knowing this type of “structural” information can not only serve to
improve traditional search-based optimization methods, but also to create
significantly novel and more efficient approaches.

Several works assume that the problem structure corresponds to the struc-
ture of the interactions among the problem variables. For instance, in addi-
tively decomposed functions (ADFs) [7], the objective function is the sum of
the evaluations of a number of subfunctions defined on subsets of all the vari-
ables. If we consider that these subsets of (interacting) variables define the
structure of the problem, and this structure is known, then ADFs can be seen
as a gray-box optimization problem. Several real-world problems could be in-
cluded in the class of gray-box, e.g., MAX-kSAT, Ising model, NK-landscape,
etc. [6].

Even if the difference between black-box and gray-box optimization prob-
lems seems sufficiently clear, there are situations in which information about
the problem exists but it is only partial. For instance, we could know which
are the groups of related variables where subfunctions are defined, but not
the way in which they are related (i.e., the expression for the subfunctions
defined in each group). It is also possible that structural relationships are
only known for a limited number of groups, i.e., some definition sets of the
function are unknown. Therefore, for addressing real-world problems a finer
grain definition of the type of available problem information is required. The
information can be: 1) About the structural relationships among variables
(definition sets); and 2) About the way in which the interactions are expressed
within each group (definition of the subfunctions). A detailed categorization
of optimization problems based on these two criteria is presented in [8].

Taking into account the type of available problem information, we can
describe different types of gray-box search-based optimization methods. For
example, Partition Crossover is a specialized genetic operator used by some
gray-box GAs [9, 6]. It works by analytically decomposing the parents into
recombining components which, in turn, allows the evaluation function to
be decomposed into linearly separable subfunctions during recombination. In
[9], it was applied to challenging combinatorial problems. While there are no
apparent reasons to set constraints on the structural characteristics in the
general class of gray-box optimization problems, for feasibility and efficiency
reasons, gray-box optimizers assume that the structure of the problem is
constrained. For instance, it is assumed that the size of any definition subset
of the ADF to be optimized is upper-bounded by a parameter k (e.g., k-
bounded pseudo-Boolean functions as presented in [6]).

Other population-based optimization algorithms that can be considered as
gray-box optimizers are factorized distribution algorithms (FDAs) [7]. How-
ever, they can be also covered under the umbrella of model-based optimiza-
tion methods and therefore we cover them in the next section. Gray-box op-
timizers can be also local-search optimizers. In particular, efficient variants of
Iterative Descent algorithms have been proposed that exploit the information
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about the problem structure at the time of exploring the neighborhood of a
current solution [10, 11].

6.3 Model-less versus model-based algorithms

Model-based search optimizers build a model of the most promising solutions
already evaluated by the algorithm and use this model to generate new solu-
tions. The rationale behind this type of algorithm is that the model will be
able to capture the patterns shared by multiple high-fitness solutions, and
the methods that generate new solutions from the models, i.e., the sampling
methods, will be able to reproduce these patterns in the newly generated
solutions.

Algorithm 9 Model-based evolutionary algorithm

1: pop = generate population()
2: repeat

3: fitness = evaluate population(pop)

4: selected pop = select solutions(pop, fitness)
5: model = create model(selected pop)

6: offspring = sample model(model)

7: pop = apply replacement(pop,offspring)
8: until Stop criterion is satisfied

Algorithm 9 shows the pseudocode of a typical model-based optimizer.
Steps 1-4 and 7 are similar to the simple GA described in Algorithm 8. The
main difference is in the way the selected solutions are used to generate
the new population. As previously discussed, in GAs, recombination and
mutation operators are applied. In model-based evolutionary algorithms, the
model is built from the selected solutions in a first step, and only after the
model has been learned, new solutions are sampled from it.

Different types of models have been used with this type of algorithms, from
simple probability models such as histograms [12], to probabilistic graphical
models [13], and neural networks [14]. Estimation of distribution algorithms
(EDAs) [15, 13], also known as model-building EAs, are perhaps the most
popular family of model-based EAs. They represent the most salient pat-
terns of the selected solutions using a graphical structure that encodes the
probabilistic dependencies between the variables, and a set of tables of condi-
tional and marginal probabilities of the variables configurations. The particu-
lar choice of the model depends on many factors including the problem repre-
sentation (e.g., discrete, continuous, mixed) and the number and strength of
the problem interactions (when they are known). Typical sampling methods
used by EDAs comprise Probabilistic Logic Sampling and Gibbs Sampling
[16].
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While several EDAs learn the graphical structure and the probabilistic ta-
bles from data, some algorithms directly derive the model dependencies from
the problem structure. They were originally called factorization-based distri-
bution algorithms (FDAs) [7] and can be considered as gray-box optimizers.

Neural networks have been increasingly applied as models for search-based
algorithms [17, 18]. In neural networks, information about the problem struc-
ture is usually represented by hidden variables or distributed structures. This
representation makes interpretability of the model a difficult task. The inter-
pretability of the representation is one important difference between the way
neural networks and probabilistic graphical models are used in model-based
EAs. Another important difference is that neural networks require specific
sampling methods that have not been applied to practical optimization prob-
lems to the same extent that those used by graphical models. This fact has
led to the investigation of new methods for generating new solutions from
neural networks [19, 20].

6.4 Optimization approaches to the HP protein model

A protein can be represented as a sequence of aminoacids. The properties
of these aminoacids determine the way the sequence folds into a three-
dimensional structure. Hence, an important problem is to predict this struc-
ture from the sequence of aminoacids. In this section we illustrate, using a
simplified protein model, the way in which some of the search-based methods
presented in this chapter can be applied to this problem.

6.4.1 The hydrophobic-polar (HP) model

The HP protein model considers hydrophobic (H) residues and hydrophilic
or polar (P) residues. In the linear representation of the protein sequence,
hydrophobic residues are represented with the letter H and polar ones with
letter P. The structure in which the protein sequence folds is represented as
a possible configuration of the residues in a regular lattice. For the sake of
simplicity, we consider a square lattice. Given a pair of residues, they are con-
sidered neighbors if they are adjacent either in the protein chain (connected
neighbors) or in the lattice but not connected in the chain (topological neigh-
bors). Figure 6.1 shows the linear representation of an HP instance and one
of its possible configurations.

An energy function that measures the interaction between topological
neighbor residues is defined as ϵHH = −1 and ϵHP = ϵPP = 0. The HP
problem consists of finding a configuration of the sequence in the lattice that
is a self-avoided path and minimizes the total energy. The question is then,
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Fig. 6.1: One possible configuration of sequence HHHPHPPPPPH in the
HP model. Solid lines indicate a pair of residues neighbors in the sequence.
There is one HH (represented by a dotted line with wide spaces), one HP
(represented by a dashed line) and two PP (represented by dotted lines)
contacts.

how to represent a possible configuration (“solution”) of the HP protein se-
quence.

In order to encode a possible 2D configuration of a sequence, we use the
relative encoding [21] which specifies the way in which a walk in a lattice
is performed. To represent a walk by means of the relative encoding, an n-
dimensional vector (X1, X2, . . . , Xn) is used, where xi ∈ {0, 1, 2}. Creating a
path from a vector starts by locating the two first residues in two (usually
fixed) adjacent positions of the lattice. Therefore, although variables X1 and
X2 are part of the representation and correspond to the first two residues,
they are meaningless for creating the path.

We can assign an imaginary direction to the segment that joins the two
residues in the lattice, the direction goes from the position of the first residue
to the position of the second residue. Following this convention, the next
residue of the sequence could be located in three possible positions with
respect to this segment: in the position ahead of the segment (xi = 1), to the
left of this segment and connected to the last residue (xi = 0), or to the right
of the segment and connected to the last residue (xi = 2).

The solution encoding the configuration of the sequence shown in Fig-
ure 6.1 is x = (0, 0, 0, 2, 2, 0, 0, 2, 2, 1, 2). x1 and x2 are arbitrarily set to zero
since residues s1 and s2 are always in the same positions. Then, x3 = 0 indi-
cates that residue s3 will be located left to the initial segment formed by the
positions of residues s1 and s2, subsequently x4 = 2 indicates that residue s4
will be located right to the segment formed by the locations of residues s2
and s3, and so on.

The computation of the HP energy associated to a given solution x is not
straightforward. Firstly, the configuration has to be constructed simulating
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the set of movements encoded by the solution. The energy is computed using
the interactions that arise in this configuration. The objective function is
the opposite of the energy divided by the number of the sequence’s self-
intersections.

6.4.2 Model-based approaches to the HP model

The HP model is a focus of research in computational biology [22] and chem-
ical and statistical physics [23, 24]. It has been addressed using local search
optimizers [25] and different variants of evolutionary algorithms [26]. We show
here the different approaches that can be applied when considering model-
based optimizers, in particular, we focus on EDAs that apply two different
classes of models as introduced in [27].

Once the problem representation has been set, one of the first questions to
consider when addressing real-world optimization problems is whether there
exists problem information that could be added to the search. This is what
gray-box optimizers do.

For the HP model, we consider two types of information, one is related to
the way the 2D configuration is constructed. Since we use a relative represen-
tation, it is clear that there is a dependence between the position of residue
i and its previous two residues in the sequence. Furthermore, we can expect
some dependence to exist also on its previous k > 2 residues in the sequence.
The other information we know is that some small 2D configurations, where
H residues are packed in a small area contribute more to the energy of the
proteins.

A key question for model-based optimizer is how to select a model con-
sistent with the interactions of the problem. In the k-order Markov model,
the configuration of variable Xi depends on the configuration of the previous
k variables, where k ≥ 0 is a parameter of the model. The joint probability
distribution of such a model can be factorized as follows:

pMK(x) = p(x1, . . . , xk+1)

n∏
i=k+2

p(xi | xi−1, . . . , xi−k) (6.1)

where p represents the marginal and conditional probabilities of the variables.
This probabilistic model naturally captures the interaction that arises from

the relative encoding representation. Notice, that for a given k, the structure
of the interactions relevant for the model is known before the optimization is
conducted. However, this is not all the information required by an EDA. In
order to implement steps 5 and 6 of Algorithm 9, it is important to define how
the model is learned and sampled. For the k-order Markov model, learning
consists of computing the marginal and conditional probability tables for
the pre-specified interactions using as data the selected solutions. To sample
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a solution, first the unconditioned variables are sampled from the marginal
probabilities, and then each conditioned variable is sampled, following the
order of the sequence.

Another possible approach to the problem is to learn all information about
the relevant interactions among the variables directly from the data. A simple
model that does this is a tree, where each variable may depend on no more
than one variable that is called the parent. A probability distribution pTree(x)
that is conformal with a tree is defined as:

pTree(x) =

n∏
i=1

p(xi | pa(xi)) (6.2)

where Pa(Xi) is the parent of variable Xi in the tree, and p(xi | pa(xi)) =
p(xi) when Pa(Xi) = ∅, i.e. when Xi is the root of the tree.

An EDA that uses a tree model [28] could learn the structure of the model
from the analysis of the mutual information between every pair of variables.
The model uses the marginal and conditional probability tables determined
by the structure. For generating a new solution, first the variable correspond-
ing to the root of the tree is sampled, and then each variable is sampled
conditioned on the values of its parent in the tree.

6.5 Summary and discussion

In this chapter we have presented different classifications of search-based
algorithms that use multiple solutions. We have shown that the decision on
whether to apply black-box or gray-box optimization methods should depend
on the availability of previous information about the optimization problem
and the characteristics of this information. Using a-priori knowledge of the
problem as part of the search can make optimization more efficient. Similarly,
we have presented the main differences between model-less and model-based
evolutionary algorithms and illustrated these differences using the simple
GA and EDAs as two paradigmatic examples of each type of methods. At
the expense of a higher computational cost, model-based search methods
can automatically learn characteristics from the most promising solutions,
contributing to a more efficient optimization, and also potentially exploiting
and/or unveiling features of the optimization problem.
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13. P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana. A review on probabilistic

graphical models in evolutionary computation. Journal of Heuristics, 18(5):795–819,

2012.
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Early Artificial Intelligence (AI) studies tried and solved many problems that
were considered difficult for humans but relatively easy for computers [1].
These were problems that could be formally described using mathematical
rules. Over time, we began to realize that the difficulty did not necessarily
reside in these problems, but in those that are easily, even instinctively and
intuitively carried out by humans, such as recognizing familiar faces, under-
standing languages, etc. The point is that human beings, on a daily basis,
receive and process huge amounts of information and trying to make com-
puters perform these activities only with pre-defined rules described by us
was not viable. Many researchers started to develop techniques where the
computer itself, through algorithms, learns to abstract these rules and infor-
mation on its own by learning from data. This subfield of AI is called Machine
Learning. This part of the book is going to introduce several machine learning
algorithms.

Two main categories of machine learning algorithms are supervised and
unsupervised learning algorithms. In supervised learning, algorithms have
access to data in the form of input-output pairs. The task is to use such data
to learn how to predict the outputs given the inputs. For example, one may
be interested in predicting whether a patient has cancer (output variable)
based on variables describing symptoms that this patient may or may not be
displaying (input variables). Or, one may wish to predict the value of a given
stock market (output variable) based on its values over the past 5 days (input
variables). The function learned by the machine learning algorithm should
work well not only for predicting the outputs of previously available data, but
also for predicting the outputs of previously unseen inputs. In other words,
supervised learning algorithms aim to learn functions able to generalize to
unseen data. For instance, a function to predict whether patients do or do
not have cancer should work well not only for past patients (for which we
already know whether or not they have cancer), but also future patients (for
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which we do not yet know whether they do or do not have cancer). Similarly,
a function to predict the value of the stock market should work not only for
past days (for which the stock market value is already known), but also for
future days (for which the value of the stock is still unknown).

We can formalize supervised learning as follows: consider a set of examples

T = {(x(1),y(1)), (x(2),y(2)), · · · , (x(N),y(N))},

where (x(i),y(i)) ∈ X ×Y are examples drawn i.i.d. (independently and iden-
tically distributed) from a fixed albeit unknown joint probability distribution

p(x,y), (x
(i)
1 , x

(i)
2 , · · · , x(i)

d )T is the vector of input variables of example i, d is

the dimensionality of the inputs of the problem, y(i) = (y
(i)
1 , y

(i)
2 , · · · , y(i)d′ )T

is the output variable of example i, d′ is the dimensionality of the outputs
of the problem, and the symbol T indicates the transpose of a vector. Many
problems have a single output variable (i.e., d′ = 1), in which case we express
y(i) directly as a scalar y(i). When Y is the set of real values, the problem
is called a regression problem. When it is a set of categories, it is called a
classification problem.

Supervised learning aims at using T to learn a function f : X → Y able
to predict the output values y ∈ Y corresponding to any input x ∈ X . This
function can be referred to as a predictive model or hypothesis. When dealing
with classification problems, it is also common to refer to this function as a
classifier. As the data set T is used to learn this function, it is referred
to as the training set. Similarly, the examples in this set are referred to as
training examples. Typically, the learning of f assumes that new (previously
unseen) data also follows the joint probability distribution p(x,y), though
some advanced techniques also exist to deal with situations where this may
not be the case. When the learned function f is able to predict the outputs
of unseen examples very well, it is said that this function generalizes well to
unseen data.

When dealing with real world problems, it is usually inevitable that the
learned function f(x) will make some mistakes, i.e., it will not be able to
always correctly predict the output values y ∈ Y corresponding to any input
x ∈ X . Quite often, when the learning process attempts to create a function
f able to perfectly predict the outputs of the examples in the training set
T , this model becomes unable to generalize well to unseen examples. This is
because the training set T frequently contains examples with noise. These
are examples that contain some atypical values for their input or output
variables as a result of possible errors in the data collection. When a learning
algorithm attempts to predict the outputs of all training examples perfectly,
it may end up incorporating such noise, resulting in poor predictions on
unseen data. When this happens, it is said that f is overfitting the training
examples. Machine learning algorithms thus typically use strategies to avoid
overfitting, so that the learned functions f can make the fewest possible
mistakes on unseen data.
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It is worth noting that, sometimes, the input variables of all training ex-
amples are placed in a matrix X referred to as the design matrix:

X =


x
(1)
1 x

(1)
2 · · · x(1)

d

x
(2)
1 x

(2)
2 · · · x(2)

d
...

...
. . .

...

x
(N)
1 x

(N)
2 · · · x(N)

d

 (7.1)

Correspondingly, the output variables corresponding to each training ex-
ample can be placed in an output matrix. When the dimensionality of the
outputs of the problem is d′ = 1, a vector containing the outputs of all
training examples can be used instead:

y =


x(1)

x(2)

...
x(N)

 (7.2)

In unsupervised learning, however, the problem has no output, that is, all
examples come only with the input data. Therefore, one of the main tasks
assigned to these types of algorithms is clustering, where the algorithm learns
to find patterns in the input data to separate them into groups called clusters.

Part III-(A) of this book will explain supervised learning algorithms,
whereas Part III-(B) will explain unsupervised learning algorithms.
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Chapter 8

k-Nearest Neighbors

George G. Cabral

Among all supervised classifiers, the family of nearest neighbor (NN) based
classifiers are, perhaps, the simplest and most intuitive ones. In a nutshell,
given a set of examples T containing n examples, and considering that we
want to find the class of an unlabelled example z, the most basic form of NN
(i.e., 1NN) finds the closest example (x(i)) to z, among all n examples in T ,
and assigns the same class of x(i) (i.e., y(i)) to z.

In order to obtain the closest example, first it’s necessary to define a dis-
tance, or a similarity, function. The Euclidean distance (Eq. 8.1) stands as
the most widely used function. This metric consists in the distance between
two examples in an n-dimensional Euclidean space. In Eq. 8.1, the distance
between the examples x(i) and z, located in the jth dimensional space, is
being computed.

EuclidDist(x(i), z) =

√
(x

(i)
1 − z1)2 + (x

(i)
2 − z2)2 + · · ·+ (x

(i)
j − zj)2 (8.1)

In Figure 8.1, the norm of the orange line (i.e., the length/distance between
hypothetical examples x = [1,1] and z = [5,4]), obtained by using Eq. 8.1, is√
(1− 5)2 + (1− 4)2 resulting in 5 units.
Nevertheless, depending on the domain of the problem, the use of different

distance functions might be more adequate. However, these functions must
respect the following conditions:

• Non-negativity: d(x, y) ≥ 0
• Identity: d(x, y) = 0 if and only if x = y
• Symmetry: d(x, y) = d(y, x)
• Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)
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Fig. 8.1: Euclidean Distance illustration between examples located at coor-
dinates (1, 1) and (5, 4).

8.1 Other Distance Metrics

A number of different distances can be used according the domain of the
specific application. Some of them are presented in the sequel:

8.1.1 Manhattan Distance

The Manhattan distance [1] (also known as taxicab or cityblock distance)
between two examples in j-dimensional space is defined by the sum of the
distances in each dimension. Equation 8.2 computes this distance between
two examples in the j-dimensional space.

ManhDist(x, z) =

j∑
i=1

∥xi − zi∥ (8.2)

Figure 8.2 shows an example with two unit squares centered at coordinates
(1.5, 1.5) and (4.5, 3.5). For this example, the Manhattan distance is ∥1.5−
4.5∥+ ∥1.5− 3.5∥ resulting in 5 units.

8.1.2 Cosine Similarity

The metric cosine similarity [2] measures the angle between two vectors in
the j-dimensional space. The intuition is that the smaller the angle between
the two vectors is, more similar they are to each other.
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Fig. 8.2: Manhattan Distance illustration between examples defined by coor-
dinates (1.5, 1.5) and (4.5, 3.5).

This metric assumes the value 1 when two vectors are identical and the
value -1 when they are completely opposite to each other. These situations
take place when the angle between two vectors are 0 and 180 degrees (i.e., the
vectors are parallel and have the same direction and the vectors are parallel
but have opposite directions, respectively).

Equation 8.3 computes the cosine similarity. In Eq. 8.3, assuming that x
and z are both vectors, x · z = xt· z and ∥x∥ =

√
x1 × x2 · · · xn.

CosSim(x, z) =
x · z

∥x∥ × ∥z∥
(8.3)

Among the applications of the cosine similarity is the documents similar-
ity test. Documents can be represented by term-frequency vectors, i.e., each
vector position contains the number of occurrences of a given term.

8.1.3 Hamming Distance

The Hamming distance [3] measures the number of characters in disagreement
between two words, or two vectors, in general. In other words, the hamming
distance is the number of symbols we must change in order to make a vec-
tor turn into another. Example: the Hamming distance between the words
“deploys” and “employs” is two. Notice that this distance requires the two
words have the same length.

The Hamming distance can be viewed as a special case of the Levenshtein
distance where the words must have the same length. In contrast to Hamming
Distance, the Levenshtein distance computes the number of substitutions,
insertions or deletions necessary to turn one word into another.
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8.2 The kNN Algorithm Explained

In contrast to other common machine learning families of algorithms, such
as Neural Networks and Decision Trees, the kNN family of algorithms do not
possess a learning phase yielding an abstract model representing the problem,
instead, these algorithms only store the training examples. Given this fact,
kNN-like algorithms are also known as lazy algorithms. In the test phase,
once a new unlabelled example z arrives: (i) its distances (or similarities)
to all training examples are computed; (ii) the training examples are sorted
accordingly to their distances to z; (iii) the most frequent class among the
classes of the k z’s nearest neighbors is then returned (note that for regression
problems, the average of the target values from the k z’s nearest neighbors
is returned).

Algorithm 10 depicts the test procedure for the original kNN . In Alg. 10,
T is a set of training examples consisting of tuples (x,y), z is an unlabelled
test example and k is the number of neighbors to be considered. In line 1,
neighbors is an empty list that shall store tuples containing a distance d
(between a training example x(i) and a test example z) and the label y(i).
The loop from lines 2 to 4 fills the neighbors list and in line 6 this list is sorted
in ascending order according the stored distances d. The returned class label
(y

′
) will be the most frequent class considering the first k items of neighbors

(or the average of the k z’s neighbors target values for regression problems,
as aforementioned).

Algorithm 10 Simple k Nearest Neighbor
Parameters: T ,z,k

Output: y
′

1: neighbors← []

2: for x(i) ∈ T do

3: d ← distance(x(i),z)
4: neighbors[i] ← (d,y(i))

5: end for

6: sort(neighbors)

7: y
′ ← mode(neighbors[0 : k])

For the 1NN (k = 1), the Voronoi space for a set of two dimensional ex-
amples depicts the boundaries of the areas covered by each training example.
Figure 8.3 presents a Voronoi space defined by the depicted blue examples.
In this Figure, dashed lines represent infinite boundaries. Since each region
is defined by a training example, a new unlabelled example will receive the
label of the example that defined the region. By way of illustration, given
that the example p defines the class of the orange region, the same class of
p will be assigned to all unlabelled examples placed in this region.
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Fig. 8.3: Voronoi space delimiting the 1NN decision boundaries. Dashed lines
represent boundaries of infinite length.

Figure 8.4 presents the different decision regions generated by the kNN
using different k values applied to a two overlapping classes dataset (blue
and orange examples). Firstly, it is important to notice that some examples
close to the center of the plot seems to be placed in conflicted regions. These
examples, according to the domain of the problem, may be considered noisy or
not. Nevertheless, when using k = 1 (Figure 8.4.a)), potential noisy examples
will have the same importance in building the decision boundaries as any
other example (i.e., when k = 1 the kNN is completely adjusted to the
examples in the training set resulting in an overfitting of the data). In
Figure 8.4.b) a k = 3 was used and the effect of an isolated orange example
(placed inside the distribution of blue examples) in the decision process was
largely reduced. Also, it is noticeable that in Figures 8.4 c) and d) the decision
surface becomes smoother and the importance of noisy examples tends to
disappear; as expected for larger values of k.

8.3 Prototype Reduction Schemes

As aforementioned, the training phase of original the kNN consists solely of
storing the training examples. On the other hand, the test phase, as shown
in Alg. 10, requires the computation of the distance among each training
example and the test example to be classified. In addition, it requires the
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Fig. 8.4: Decision boundaries for different k odd values ranging from 1 to 7.

usage of a sorting algorithm. These two tasks may lead to an unacceptable
computational burden in the case of an exceedingly large training set.

With the aim of reducing the computational cost at the test phase, Pro-
totype Reduction Schemes (PRSs) have been used to reduce the size of the
training set while keeping, or causing an acceptable loss, in the predictive
performance. In sequel, two simple and popular PRSs will be presented: Con-
densed Nearest Neighbor (CNN) [4] and Nearest Neighbor with Structural
Risk Minimization (NNSRM) [5].

8.3.1 Condensed Nearest Neighbor - CNN

The Condensed Nearest Neighbor was initially proposed by P. Hart [4]. The
basic intuition behind CNN is to scan all training examples in order to find the
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incorrectly classified ones according to the 1NN and to store them in an array
S. By doing this, the method is capable of discarding redundant information
and, as consequence, keeping only the most representative examples of the
problem, i.e., the examples placed in conflict areas.

Algorithm 11 Condensed Nearest Neighbor
Parameters: T
Output: S

1: S ← ∅
2: add a random example from T to S

3: while S has changed do
4: for x(i) ∈ T do

5: if 1NN(S,x(i)) ̸= y(i) then

6: S ← S + (x(i), y(i))
7: break

8: end if

9: end for
10: end while

Algorithm 11 depicts the operation of the CNN method. The aim of the
algorithm is to choose the minimum number of training examples that leads to
a training error (or empirical risk) equal to zero. Initially, a random training
example is added to S (line 2). Notice that, at the end of the CNN procedure,
S will store only the most representative examples from T . While S has
changed (i.e., new training examples have been added to S) (line 3), all
training examples (x(i),y(i)) are classified by an 1NN classifier having S as
a reference set. If 1NN(S,x(i)) ̸= y(i), (x(i),y(i)) is then added to S. If for all
x(i) ∈ T , 1NN(S, xi) = yi, the CNN procedure finishes.

As an illustration of the CNN execution, Table 8.1 shows the coordinates
of a two class training set T comprised of twenty points. The box below
presents the execution of Algorithm 11 for the set T on Tab. 8.1.
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Table 8.1: Examples coordinates of a hypothetical two class training set T .

example index x1 x2 class

1 1.05 0.33 blue

2 1.00 0.50 orange

3 0.58 0.58 orange
4 1.87 0.37 blue

5 0.12 -0.03 orange

6 1.70 0.88 blue
7 0.59 0.20 orange

8 0.24 0.51 orange

9 1.40 0.61 blue
10 1.02 0.36 blue

11 0.70 0.37 blue

12 0.78 0.41 blue
13 0.78 0.04 orange

14 0.74 0.44 blue
15 0.51 0.50 orange

16 0.62 0.46 orange

17 -0.28 0.35 orange
18 0.44 0.74 orange

19 1.30 0.83 blue

20 1.01 0.22 blue

• Initially, S = ∅. Then it receives a random example, lets say x(1) (S =
{(x(1), y(1))}).

• By running the 1NN on T and having S = {(x(1), y(1))} as reference
set, example x(2) is misclassified. (x(2), y(2)) is then added to S. S =
{(x(1), y(1)), (x(2), y(2))}.

• Example x(5) is misclassified, then S =
{(x(1), y(1)), (x(2), y(2)), (x(5), y(5))}.

• Example x(6) is misclassified, then S = {(x(1), y(1)), (x(2), y(2)), (x(5), y(5)),
(x(6), y(6))}.

• Example x(7) is misclassified, then S = {(x(1), y(1)), (x(2), y(2)), (x(5), y(5)),
(x(6), y(6)), (x(7), y(7))}.

• Example x(9) is misclassified, then S = {(x(1), y(1)), (x(2), y(2)), (x(5), y(5)),
(x(6), y(6)), (x(7), y(7)), (x(9), y(9))}.

• Example x(11) is misclassified, then S =
{(x(1), y(1)), (x(2), y(2)), (x(5), y(5)),
(x(6), y(6)), (x(7), y(7)), (x(9), y(9)), (x(11), y(11))}.

• Finally, example x(15) is misclassified, then S = {(x(1), y(1)), (x(2), y(2)),
(x(5), y(5)), (x(6), y(6)), (x(7), y(7)), (x(9), y(9)), (x(11), y(11)), (x(15), y(15))}.

As result, CNN stores only the training examples with indexes {1, 2, 5, 6, 7,
9, 11, 15}. Figure 8.5 shows the complete original training set (left) and the
training set with the reference set S marked (right). Notice that example 2
seems to be a noise. Overall, the main aim of the CNN is to select examples
at the classification border, however, depending on the presentation order
of the examples in the training set it may select examples placed inside the
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class distribution, i.e., examples in non-conflict regions. Additionally, noisy
examples are very likely to be added to S since they tend to be misclassified
during the training phase.

Fig. 8.5: Examples locations of a hypothetical two class training set T pre-
sented in Table 8.1. On the right, the marked examples represent the chosen
examples to form the reference set S.

8.3.2 Nearest Neighbor Structural Risk Minimization

NNSRM [5], as CNN, also aims to select examples at the order of the classes,
however, NNSRM is not sensitive to the presentation order of the examples
in the training set.

NNSRM finds the most significant training examples such that, for all
x(i) ∈ T , 1NN(x(i)) = y(i), i.e., the Remp (empirical risk or training error) is
0. For a two class problem, let ρ(x(i),x(j)) be the distance between examples
x(i) and x(j) so that y(i) = −1 and y(j) = 1. Let dk be an ascendant ordered
list of distances computed between each two elements of opposite classes for
k = 1, 2, 3 ..#(y = 1) ∗#(y = −1).

Algorithm 12 depicts the operation of the NNSRM. While Remp > 0 the
pair of examples from opposite classes must be found and they must be added
to S in case they aren’t there. These examples must be found based on the
increasing order of distances in dk.
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Algorithm 12 Nearest Neighbor with Structural Risk Minimization
Parameters: T
Output: S

1: S ← ∅
2: k ← 1

{Remp consists in the training error}
3: while Remp > 0 do

4: find (xi,xj) such that ρ(xi, xj) = dk and yi ̸= yj
5: if xi /∈ S then
6: S ← S + (xi, yi)

7: end if

8: if xj /∈ S then
9: S ← S + (xj , yj)

10: end if
11: k = k + 1

12: end while

Figure 8.6 presents the result of the execution of the NNSRM for the
training set of Table 8.1. Based on the result, it is possible to notice that the
NNSRM, in contrast to CNN, is not sensitive to the presentation order of the
training examples. Nonetheless, the algorithm can still be affected by noisy
examples.

Fig. 8.6: Training examples locations of a hypothetical two class training set
T . The examples selected by the NNSRM are marked with a cross.
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8.4 Strengths, Weaknesses and Applications of kNN

Despite its simplicity, the canonical kNN has several advantages that make
it suitable for many domains. In contrast, some characteristics of the method
may represent weaknesses for some other domains.

Among the kNN strengths are:

• Simple and intuitive: the training phase consists solely in the storage
of the training set in the computer memory. The test phase, basically,
consists in computing the distance from each training example to the
test example;

• In the case of a proper training set, the kNN is comparable to other
state-of-art methods in terms of predictive performance;

• The method does not rely on any statistical assumption of the problem,
i.e., it is nonparametric; and

• Easy control of noise robustness via parameter k.

Among the kNN weaknesses are:

• Its computational cost for the test phase is acknowledged as one of main
disadvantages;

• Setting a proper value to k is not an intuitive task; and
• For large datasets, as well as the computational cost, the memory re-
quirements for storing the dataset may make prohibitive its use.

The kNN and its variations are general purpose methods and may, virtu-
ally, be applied to any problem domain suach as: road traffic prediction [6];
image recognition [7]; software defect prediction [8]; voice recognition [9]; etc.

8.5 Summary and Discussion

The kNN is one of the most well established and popular classifiers. These
features are, in part, consequence of its simplicity and its intuitive way to
handle the data. Therefore, this classifier is certainly a good starting point to
anyone interested in learning computational intelligence (or machine learning,
data science, artificial intelligence, etc.). Nevertheless, its popularity resulted
as well in a large number of different general or domain specific algorithm
versions. This chapter covered the intuition behind the canonical classifier as
well as two derived algorithms for data reduction.
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8.6 Exercises

All resources necessary for the exact reproduction of the experiments in
the exercises below (as well as the exercises’ answers) are provided in
a python notebook available at: https://colab.research.google.com/

drive/1vzQMXbRJAyrqE7T54G-r0o8TD1bQA1Cs?usp=sharing

Notice that a basic knowledge about Python language and libraries such
as Pandas and Matplotlib is essential.

Question 1: Given the training and testing datasets depicted in Figure 8.7,
implement and compute the overall accuracy for the canonical kNN for k ∈
{1, 3, 5, 7, 9}.

Fig. 8.7: Training (left) and test (right) examples for the exercises.

Question 2: Respecting the order of the training dataset already defined,
implement and perform the CNN algorithm and: (i) show the resulting S
subset and (ii) the accuracy for a kNN so that k ∈ {1, 3}.

Question 3: Considering the training dataset presented in Table 8.1, imple-
ment the two class NNSRM algorithm and plot the resulting subset.
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Chapter 9

Multilayer Perceptron

Lucas Costa, Márcio Guerreiro, Erickson Puchta, Yara de Souza Tadano,
Thiago Antonini Alves, Mauŕıcio Kaster, and Hugo Valadares Siqueira

Artificial Neural Networks (ANNs) are computationally intelligent systems
inspired by higher organisms’ nervous system behavior. They are based on
processing units called artificial neurons, capable of calculating mathematical
functions [1]. Through these neurons and their connections, ANNs can learn
to process information to produce the expected output [2]. ANNs can be seen
as general tools for solving different problems. Thus, they are often applied
in tasks such as pattern classification, data mining, regression/approxima-
tion of functions, and information processing, being useful in several areas of
knowledge [1]. This chapter will explain the MultiLayer Perceptron (MLP),
the best-known ANN architecture. For that, the concept of artificial neuron,
the primary processing structure of an MLP, will first be introduced.

9.1 Artificial Neuron

The artificial neuron is inspired by the biological neuron. In biological sys-
tems, neural impulses are received through dendrites and processed in the cell
body. Depending on the result of the integration of the received signals, if
they are higher than a critical threshold, the neuron may or may not produce
a new impulse (action potential), which will, in turn, be transmitted to other
neurons connected to its axon terminals [2]. The axon union with dendrites
is called a synapse, which works as a valve controlling the flow of information
(impulses) between neurons. The synapse is variable, hence, with the ability
to adapt and learn.

Figure 9.1 shows the generic artificial neuron scheme used in ANNs. This
device receives a set of x = [x1, x2, ..., xI ] inputs, which may come either from
other neurons or correspond to the input variables of the problem. When they
correspond to the input variables of the problem, I = d is the dimensionality
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of the problem. It then processes this information, and responds with a ŷj
signal, where j the current neuron. This response, which is a transformation
of the received inputs, is either propagated to other neurons or given as the
output of the ANN.

Fig. 9.1: Scheme of an artificial neuron.

The processing performed by neuron j consists in weighting the input sig-
nals xi, i = 1, 2, ..., I and a fixed value bias signal x0 = +1 by the weights wji

of this neuron. Then, the sum of the weighted input signals uj (a.k.a. activa-
tion value) passes through an activation function f(·), generating the output
ŷj . The mathematical representation of this model is given by Equation 9.1:

ŷj = f(uj) = f

(
I∑

i=0

wjixi

)
. (9.1)

An activation function f(·) defines the output of a given neuron, given the
activation value u. Several functions have already been used or developed.
This section gives some examples of such functions.

The linear activation function is a simple function that can be described
by equation 9.2:

f(u) = αu, (9.2)

where α is a real number.
Another standard function is the signal, also known as Heaviside [1], which

can respond in a binary {0, 1} or bipolar {−1, 1} way. The former is the one
used in the McCulloch and Pitts neuron [4], as shown in Equation 9.3:
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f(u) =

{
0, u ≤ 0
1, u > 0 .

(9.3)

A group of functions most commonly used in the hidden layers of an MLP
are the sigmoid functions [1, 2]. Their plot has the peculiar shape of an
“S”. They represent a balance between linear and nonlinear behavior, which
can be obtained from several functions, such as the logistic function and the
hyperbolic tangent [5]. The logistic function is defined by Equation 9.4:

f(u) =
1

1 + e−u
. (9.4)

The hyperbolic tangent is defined by Equation 9.5:

f(u) =
eu − e−u

eu + eu
. (9.5)

The wide use of S-Shaped functions is also due to some key features [6]:

• This kind of function is continuous and differentiable at all points, allow-
ing learning with popular derivative-based learning algorithms such as
gradient descent;

• They have output saturation, which can prevent the output signal of each
neuron from diverging;

• It is possible to use them to create different mappings since these func-
tions have an almost linear character in the region around the origin,
while tt the same time, close to saturation, they are strongly nonlinear.

Recently, with the advancement of ANNs studies and, more specifically,
deep learning methods, new activation functions have been developed to solve
vanishing gradients or flat surfaces [7], which are problems that learning
algorithms such as gradient descent may face and that may prevent them
from being able to successfully learn the weights of the neurons.

One new activation function, the Rectified Linear Unit or ReLU [8], can
be expressed by Equation 9.6:

f(u) =

{
u, u > 0
0, u ≤ 0 .

(9.6)

If u is greater than zero, the output will equal the input. So, the ReLU
function is similar to the linear activation function (Equation 9.2) for values
greater than zero.

Another newly developed function is the Exponential Linear Unit or ELU
[9]. Its definition is expressed by Equation 9.6:

f(u) =

{
u, u > 0

α(eu − 1), u ≤ 0 ,
(9.7)

The definition for u lower than zero allows problems with negative values.
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9.2 MLP Architecture

One of the best-known ANN architectures is the MultiLayer Perceptron
(MLP), which structurally generalizes the artificial neuron called Rosenblatt
perceptron [10] – an artificial neuron that uses the Heaviside activation func-
tion. As demonstrated by [11], this ANN has universal approximation ca-
pability: an MLP can approximate any continuous, bounded, differentiable,
nonlinear function with defined inputs in a compact space with arbitrary
precision. This is possible by the additive composition of base functions,
which, for MLP, are ridge functions. However, this theorem does not specify
the amount of artificial neurons required, nor does it define any method for
adjusting the value of the weights so that the optimal configuration of the
network is guaranteed.

MLPs organize neurons in several layers chained together, where each layer
is the arrangement of parallel neurons. Neurons in a given layer do not com-
municate with each other, and only send their output signals forward, which
is known as a feedforward structure. MLPs contain an input layer, one or
more hidden layers and an output layer. Figure 9.2 shows an example of pos-
sible MLP structure with one hidden layer for a problem with d-dimensional
input variables and one output variable. As the neurons are organised in lay-
ers, we use superscript numbers in our notation to identify their layer. The
first layer (l = 0) is the input layer, whose neurons receive as inputs the input
variables of the problem. Each neuron in this layer is a special neuron that
simply feeds the value of a given input feature to the nodes in the hidden

layer, i.e., ŷ
(l=0)
j = xj , where j. Neurons in the hidden layers (0 < l < L)

and output layer (l = L) are standard artificial neurons that receive as in-
puts the outputs of the neurons from the previous layer. The last layer is the
output layer, whose neurons produce the values of the output variables of the
problem.

One or more hidden layers can be used. The hidden layers are responsible
for mapping the input signal in a nonlinear way into another space, according
to the demand of the problem. As the combination of linear functions is also
a linear function, the activation functions of the hidden nodes is usually not
a linear function.

When dealing with regression or binary classification problems, a single
output node is typically used. When dealing with multi-class classification
problems, one output node is used to correspond to each class. After the
training process of the MLP is complete, predictions are given by mapping
the numeric values given by the output nodes into classes when dealing with
classification problems. In particular, sigmoid logistic activations are typically
used in the output node for binary classification problems. If the output value
is larger than 0.5, a given class could be predicted. If the output value is
smaller than or equal to 0.5, the other class could be predicted.
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Fig. 9.2: Example of MLP.

9.3 Training

Several training algorithms are aimed at adjusting the weights of an MLP. For
that reason, the weights of the MLP are also referred to as “parameters” to
be learned by the training process. This chapter will focus on the traditional
gradient descent method with the famous backpropagation algorithm [12].

The training process of an MLP is typically supervised, relying on a train-
ing set containing labelled training examples with the values of the input
variables and the corresponding desired values of the output variables. When
using backpropagation, training consists of two steps: forward and backward.
In the forward step, the network weights do not change; they are fixed, and
the input data (from the training set) is propagated from the first to the
last layer to obtain the network output. Then, an error signal is produced by
comparing the obtained output with the desired one. After that, the gradient
vector of the error function is calculated. Based on it, the backward step ap-
plies the gradient descent optimization method from the last to the first layer,
such that the weights of the neurons are adjusted in the opposite direction
of the gradient, i.e., in the “steepest descent” direction that most decreases
the error function [1]. The forward and backward propagation of the whole
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training set are applied iteratively until some sopping criterion is reached
[2]. Each iteration through the whole training set is typically referred to as
an epoch. The most used error function for this task is the Mean Squared
Error (MSE). In Section 9.3.1, this procedure is presented in a mathematical
format.

It is worth noting that this procedure is nothing more than an optimization
algorithm being applied to an unconstrained nonlinear optimization problem.
Even though this chapter describes the use of gradient descent to optimize the
weights, any unconstrained nonlinear optimization method of 1st or 2nd or-
ders could be used, such as the gradient and Levenberg-Marquardt methods.
Note that such a premise is not based on biological inspiration.

There are different learning methods to handle the adjustment of network
weights based on gradient descent [1, 13]:

• Batch learning: weight adjustments occur after all training examples are
presented to the network, at the end of each epoch during the training;

• Online learning: weight adjustments occur after the presentation of each
training example, turning the search for optimal weights into a stochastic
search since the examples are presented in random order;

• Mini-batch learning: this an intermediate process between batch and on-
line learning, where weight updates are performed after fixed size batches
of examples from the training set are presented.

9.3.1 Backpropagation

This section follows the definitions of Simon Haykin [1] to formalize the back-
propagation algorithm. The online learning version of Backpropagation is
presented.

Before starting the learning process, the weights of the MLP are typically
initialized uniformly at random in the interval [−1,+1]. If there is some
previous knowledge about the mapping process being worked on, it is possible
to initialize the weights with pre-fixed values.

The first step in applying Backpropagation is the propagation of the input
signal passing through the input and hidden layers until reaching the output
layer (forward step). Consider a given training example (x(n),y(n)) being
introduced in a given iteration n, where x(n) are the input variables fed to
the ANN input layer, and y(n) is the desired output. The input layer simply
feeds the values of the input features to the hidden layer. From the hidden
layer to the output layer, the input values propagation is done by calculating

the u
(l)
j (n) induced by neuron j in layer l (Equation 9.8):

u
(l)
j (n) =

∑
i

w
(l)
ji (n)ŷ

(l−1)
i (n), (9.8)
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where the value w
(l)
ji (n) is the weight connecting neuron j of layer l to neuron

i from layer l−1, and ŷ
(l−1)
i (n) is an input of neuron j of layer l corresponding

to the output signal of neuron i of the previous layer l− 1 (or the bias value
+1, if i = 0).

The output of neuron j from layer l can be defined by Equation 9.9:

ŷ
(l)
j (n) = fj(u

(l)
j (n)), (9.9)

If the neuron j is in the first hidden layer (l = 1), then Equation 9.10 is
used:

ŷ
(0)
j (n) = xj(n), (9.10)

where xj(n) is the jth element of the input vector x(n).
The second step of the backpropagation (backward) is then performed to

propagate the error backward through the MLP, using it to adjust the weights
based on gradient descent. The error for each neuron in the output layer is
calculated according to Equation 9.11:

ej(n) = ŷ
(L)
j (n)− yj(n), (9.11)

where yj(n) is the jth output of the desired output vector y(n).
Afterwards, the local gradients δ of the network are calculated. The local

gradient of the output layer L is obtained by Equation 9.12:

δ
(L)
j (n) = ej(n)f

′
j(u

(L)
j (n)), (9.12)

and those of the other layers are following Equation 9.13:

δ
(l)
j (n) = f ′

j(u
(l)
j (n))

∑
k

δ
(l+1)
k (n)w

(l+1)
kj (n), (9.13)

where f ′
j(·) is the derivative of the activation with respect to the activation

value.
Finally, the adjustment of the weights of the layer l takes place according

to the generalized delta rule of Equation 9.14:

w
(l)
ji (n+ 1) = w

(l)
ji (n) + ηδ

(l)
j (n)ŷ

(l−1)
i (n). (9.14)

One way to improve the weight adjustment process and avoid instabilities
is to modify Equation 9.14 by adding a term called momentum, changing
Equation 9.14 to Equation 9.15:

w
(l)
ji (n+ 1) = w

(l)
ji (n) + α[∆w

(l)
ji (n− 1)] + ηδ

(l)
j (n)ŷ

(l−1)
i (n), (9.15)
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where α is a generally positive constant and ∆w
(l)
ji (n) = w

(l)
ji (n)−w

(l)
ji (n−1).

The momentum term can reduce instability in the weights by enabling the
previous change in the weight to influence the current change.

The forward and backward steps are repeated, presenting all training data
again until some stopping criterion is reached. Backpropagation with gradient
descent can be summarized in Algorithm 13.

Algorithm 13 Backpropagation.

Parameters: max it, η, α, T
Output: w

1: Initialize w(1)

2: n ← 1
3: epoch ← 1

4: while epoch < max it do
5: Shuffle the order of the training data in T
6: for each example in T do

7: Refer to this example as x(n),y(n)
8: for l from 1 to L do

9: for each neuron j in layer l do

10: for each input i of neuron j do

11: u
(l)
j (n) =

∑
i w

(l)
ji (n)ŷ

(l−1)
i (n) {Equation 9.8}

12: end for

13: end for

14: end for
15: for each neuron j of layer L do

16: ej(n)← ŷj(n)(L) − yj(n) {Equation 9.11}
17: end for

18: for l from L down to 1 do

19: for each neuron j in layer l do
20: if l = L then

21: δ
(L)
j (n)← ej(n)f ′

j(u
(L)
j (n)) {Equation 9.12}

22: else
23: δ

(l)
j (n)← 0

24: for each neuron k in layer l + 1 do

25: δ
(l)
j (n)← δ

(l)
j (n) + f ′

j(u
(l)
j (n))δ

(l+1)
k (n)w

(l+1)
kj (n) {Equation 9.13}

26: end for

27: end if

28: for each input i of neuron j do

29: w
(l)
ji (n + 1) = w

(l)
ji (n) + α[∆w

(l)
ji (n − 1)] + ηδ

(l)
j (n)ŷ

(l−1)
i (n) {Equation

9.15}
30: end for
31: end for
32: end for

33: n← n + 1

34: end for
35: epoch ← epoch + 1

36: end while
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The algorithm receives the learning rate η, the momentum constant α,
the training data stored in the set T , and a “max it” variable, which is the
stopping criterion of the algorithm. The training stops when it reaches the
defined number of iterations. The MLP’s weights are then returned. Another
common stopping criterion would be to calculate the error at the end of each
iteration and check if it is at an acceptable level: if so, the training is stopped.
Finally, note that it is necessary to define the number of artificial neurons in
the hidden layer a priori.

9.3.2 Pratical Aspects of the Backpropagation Application

The goal of training ANNs is to reach a level of generalization such that
it is possible to make correct inferences about data the system does not
know. However, the ANN may not perform well with new and unknown data
(test set), which were not used during the training phase, characterizing the
overfitting phenomenon.

Then, the network’s response quality needs to be evaluated during the
learning process. A standard procedure separates the available data into three
sets: training, validation, and test. As stated, the training set is used to adjust
ANN weights. After changing the weights at the end of each training period,
the network uses the validation set, which has data not used in training and
calculates the output error for this set, keeping the weights fixed. The valida-
tion error tends to decrease over the iterations and reach an inflection point
when it rises. Thus, an optimal weights array must be saved and overwritten
whenever the validation error is reduced during the iterations. When reaching
the stopping criterion, the final set of weights of the network will be those
saved in the optimal weights array.

The above process is known as cross-validation holdout. Variations can be
found in the literature, such as K-fold and leave-one-out [1, 2]. Furthermore,
varying the number of neurons (topology) in the hidden layers and comparing
the error achieved in the validation set is a strategy to define the number of
neurons [14].

A test set whose data were separated from the entire training and valida-
tion process is used to assess the final performance of the model. The test set
error is expected to be a percentage higher than the training error, although
it needs to be an acceptable value. It is a way to measure overfitting even
after cross-validating, which is desirable.

Note that the three sets must be meaningful, containing examples that
cover all subspaces that were covered in the original data set. There is no rule
for dividing the samples, but the literature frequently uses 70% for training,
15% for validation, and 15% for test. Another possibility is 50%, 25%, and
25%, respectively [1].
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It is known that the error-based cost function is multimodal (having mul-
tiple minima) for real problems and training algorithms are essentially local
optimizers. As mentioned, generating the network weights randomly, respect-
ing a uniform distribution in the interval [−1,+1], is the most common way to
initialise the neural network. In this way, initializing the weights to different
values leads to different weights being learned. As different learned weights
can lead to different training and validation errors, the procedure used to
evaluate an ANN approach usually runs it several times (typically at least 30
times), so that the dispersion of results can be evaluated [17].

Finally, normalizing the data so that they are in the range of the non-
linearity of the activation function is recommended. For example, the data
should be normalized over the interval [0,+1] when using the sigmoid func-
tion. Similarly, if a hyperbolic tangent option is used, the desired range is
[−1,+1]. If we deal with a nonlinear mapping or prediction problem, the
normalization needs to be reversed, changing the final results to the original
data magnitude.

9.4 Exercises

1. The truth table for the OR logic gate is shown below:

Inputs Outputs

x1 x2 yOR

0 0 0
1 0 1
0 1 1
1 1 1

For each gate, one could consider a system with desired inputs and out-
puts. Assume that the inputs are numeric, but treat the output values
0 and 1 as categorical values. Manually create an MLP, including the
values of its weights, that is able to perform the OR operation.

2. Haberman’s Survival Data Set contains cases from a study conducted at
the University of Chicago Billings Hospital between 1958 and 1970 on
the survival of patients undergoing surgery to treat breast cancer. The
attributes are:

a. Age of the patient when the procedure was performed;
b. Year the process took place;
c. Number of positive nodules detected;
d. Survivor status, where 1 means the patient survived for five years or

more, and 2 represents the patient died before completing five years
of surgery.
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This database is one of several available ones from the UCI Machine
Learning Repository [18]. Use the first three attributes as input data for
training and the last one as the desired output (surviving or not). Train
an MLP and discuss its performance. Vary the number of epochs, hidden
nodes, learning rate and momentum, and discuss the impact of that on the
results. You may use any existing software to run the MLP. For instance,
you may try WEKA: https://www.cs.waikato.ac.nz/ml/weka/.

9.5 Exercise Answers

1. There are many possible answers to this question. One could use an MLP
with a single hidden neuron using a sigmoid logistic activation function,
with weight of 2 for each of the inputs and weight of -1 for the bias.
Interestingly, as this problem is very simple, the hidden node would suffice
for providing predictions, without the need for any output node. However,
as an MLP should have both a hidden and output layer, we could have
a single output neuron using a linear activation function with a weight
of 0 for the bias, a weight of 1 for the output of the hidden node, and
α = 1. Such neuron would simply map the output of the hidden node to
the output of the MLP.

2. This is a very open question. Please try it out to see how well different
configurations of the MLP can perform!
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Chapter 10

Deep Learning

Amanda Cristina Fraga De Albuquerque, Brendon Erick Euzebio Rus
Peres, Erikson Freitas de Morais, Gilson Junior Soares, Jose Lohame
Capinga, and Marcella Scoczynski Ribeiro Martins

Deep Learning is part of machine learning methods based on artificial neural
networks. Part of the theoretical basis underlying Deep Learning initially
emerged as models for understanding the human learning process, that is,
how the brain works. Thus, these theories are related with Deep Learning that
has grown the most in recent years [1]. Deep learning methods have achieved
excellent performance over traditional machine learning methods, mainly due
to the development of the area, but also by the increase in computational
power and the amount of available data [2].

One of the most well known applications of Deep Learning are computer vi-
sion problems. Therefore, different from other chapters that discuss potential
applications at the end of the chapter, this whole chapter will focus mainly
on deep learning for computer vision problems. Computer vision is a field
that seeks to reproduce some of the human capabilities through autonomous
systems. The main aim of computer vision is to enable computers to per-
form functions similar to human vision, being able to receive visual data and
perform its processing. Examples of computer vision problems include face
recognition and object recognition. This field has been using Artificial Intel-
ligence (AI) extensively. The performance improvements in computer vision
are strongly related with the evolution of the field of machine learning.

Traditional computer vision techniques were almost entirely pipelined by
hand, where the features to be used as input variables were obtained through
manually designed methods. This made such techniques more difficult to
adapt to different tasks. With the emergence of deep learning, it became
possible to use neural networks to automatically learn features to be used.
This has helped Deep Learning to outperform other existing methods on
several problems such as computer vision problems.

Among the many deep learning architectures, the Convolutional Neural
Networks (CNN) is one of the most widely used as it is very similar to a
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conventional Multilayer Perceptron (MLP) introduced in a previous chapter
of this book.

10.1 Convolutional Neural Networks (CNN)

As with the MLPs, CNNs are also formed by neurons and connections be-
tween them to build a model. Backpropagation is also frequently used to learn
the weights of the connections (parameters). However, instead of connecting
all neurons of a given layer to all neurons of the previous layer like the MLPs,
CNNs has some layers connecting a neuron to a limited number of neurons
of the previous layer [3]. This helps to reduce the amount of memory and
computations required by the CNNs. Moreover, instead of using a separate
weight to each connection between neurons, some layers of the CNNs share
the same matrix of weights for the incoming connections of all neurons of the
same layer [3]. This also helps to reduce the amount of required memory to
store the model. Each of such matrices is referred to as a kernel or filter.

The next subsections explain the types of layer that are used to compose
the CNN, namely convolution, pooling and fully connected layers. There are
different possible architectures (ways to arrange layers) for CNNs, where
different numbers of each type of layer may be used. Typically, the first layer
is a convolution layer, which may be followed by other convolution layers or
by pooling layers. The last layers are typically fully connected layers, which
are similar to the MLP layers. An example of this is shown in Figure 10.1.
Different examples of CNN architectures are given in Section 10.1.5.

Fig. 10.1: Example of CNN architecture.
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10.1.1 Convolution Layers

The operation that gives name to this artificial neural network is the convo-
lution, which is performed in the convolution layers. This operation system-
atically applies the kernel to an input image to generate a processed output
image. Layers that perform the convolution operation are referred to as con-
volution layers. The processed image produced by a convolution layer can be
seen as summarising the presence of features automatically detected in the
input image [4] and is commonly referred to as a feature map.

In Deep Learning literature and libraries, it has become common to call
this operation as convolution [1], though mathematically this operation is
known as correlation. The convolution operation g(x, y) applied to a pixel
with coordinates (x, y) is defined in Equation 10.1:

g(x, y) =
a∑

s=−a

b∑
t=−b

Ws,tFx+s,y+t (10.1)

where W is a kernel, which is a matrix of numbers, usually with odd square
size 2a+1 by 2b+1 (to facilitate operations); a and b are pre-defined values
to define the size of the kernel and determine the possible values of its coor-
dinates; and F represents an image in matrix format. For convenience, the
first coordinate of the matrix F is set as (−a,−b).

Figure 10.2 presents an example of correlation step taking place. In this
figure, a = b = 1, and the indices of the elements of the matrices start with
-1 instead of starting with 1. For instance, the coordinate x of the matrix F
goes from -1 to 3. The convolution operation is being applied to pixel F0,0.
The operations performed in this convolution step are:

g(0, 0) =

2∑
s=1

2∑
t=1

Ws,tF0+s,0+t =

w(−1,−1)f(−1,−1) + w(−1, 0)f(−1, 0) + w(−1, 1)f(−1, 1)

+w(0,−1)f(0,−1) + w(0, 0)f(0, 0) + w(0, 1)f(0, 1)

+w(1,−1)f(1,−1) + w(1, 0)f(1, 0) + w(1, 1)f(1, 1)

= (−1) · 5 + (−2) · 7 + (−1) · 0
+0 · 6 + 0 · 0 + 0 · 1

+1 · 6 + 2 · 2 + 1 · 2 = −19− 0 + 12 = −7

(10.2)

In Figure 10.2, a single matrix F corresponding to an image is being used.
In a real world application, this would correspond to a grayscale image. How-
ever, most of the time images will be following the RGB (Red, Green Blue)
model, where three matrices will be present, each one representing a color
channel. These three matrices represent an image in colour. You may also
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Fig. 10.2: Convolution of a 5x5 sized image with a 3x3 sized kernel and its
result.

refer to these three 2-dimensional matrices together as a single 3-dimensional
matrix. When using RGB images, there will be one kernel for each channel.
You may refer to these three kernels together as a 3-dimensional filter. Using
this terminology, applying a 3-dimensional filter to a 3-dimensional image will
result in an image represented by a single matrix corresponding to the sum
of the three matrices obtained by applying each kernel to its corresponding
2-dimensional matrix. Figure 10.3 depicts an example of convolution for an
RGB image.

Fig. 10.3: Convolution of a 5x5x3 sized image with a 3x3x3 sized kernel and
its result.

In addition, one may wish to apply more than one filter to a given image.
This will result in multiple images being produced as output. An example
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of that is given in Figure 10.4, which depicts a representation of a convolu-
tion layer with three filters. For each filter, there is an output matrix and,
consequently, as a final result a dataset where the number of depth layers
(also known as feature map, illustrated by the three matrices in orange) will
correspond to the number of filters applied to the input. This output can
then be sent forward on the network, going through more convolutions and
having more features extracted.

Fig. 10.4: Convolution of a 5x5x3 sized image with three 3x3x3 sized kernel
and its result.

These examples also serve to show us one of the features of convolution that
makes it a good choice for working with images, what is called feature sparse
iterations (also known as sparse connectivity) [1]. This attribute highlights
the fact that each output unit, or pixel, is connected to only a fraction of the
input units. For example, in Figure 10.4, each output pixel is connected to
a region of the 75 input pixels, through a 3x3x3 kernel. This is very useful,
as our image can have millions of pixels, and by using smaller sized kernels,
we will be able to detect small features such as edges, corners, etc [1]. In the
convolution layers, the learning process consists in learning the filters. This
results in few parameters to learn and store. Conversely, in a simple neural
network, as we saw in the MLP chapter, an image at the input means that
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each pixel would be connected to each neuron in the next layer, thus resulting
in an excessively large network.

As mentioned earlier, another important feature of CNNs is the ability to
share the parameters to be learned, since the same filter is applied to different
regions of the image using the same values. This is unlike a neural network
without convolution layers, where we have a matrix with weights that are
used for only one connection. The sharing of parameters gives us another
feature, which is the invariance to translation, i.e., if we move the position
of an object in the input image, its representation will also be moved in the
resulting image [1].

10.1.1.1 Padding

In the convolution examples, Figures 10.2 to 10.4, we see that as we apply the
kernel to the input image, the size of the output image is reduced. In fact, by
convolving an image of size m×n with a kernel of size km × kn the resulting
image will have a height of m− km+1 and a length of n− kn+1 . This type
of convolution, where the resulting image is smaller, is often called “valid”. If
we want the output image to be the same size as the input image, we have to
add more rows and columns to our image, this is known as padding. In this
case, we use the formula m+2pm − km +1 and n+2pn − kn +1 to represent
the size of the new dimensions of the image. Here, pm represents the number
of rows to be added to the image, roughly half at the top and half at the
bottom of the image. Similarly, pn represents the number of columns to be
added to the image, roughly half at the left and half at the right size of the
image. For example, in the previous Figure 10.2, if the output has to be the
same size as the input, we would have to use a padding of pm = pn = 1. So,
padding would increase the dimensions of the input image from 5 by 5 to
6 + 2pm − 3 + 1 by 6 + 2pn − 3 + 1, i.e., 6 by 6. Typically, the value of the
new pixels added to the image is zero.

10.1.1.2 Stride

The convolution examples we saw earlier used unitary steps, i.e., the kernel
is applied by sliding through the pixels of the input image one by one. How-
ever, we can also use larger steps, as this reduces the computational cost of
performing these steps at intervals. Figure 10.5 depicts an example with the
steps of a convolution with stride=2 using a kernel of size 3 over an image of
size 5 x 5 and no padding. This clearly has an impact on the resulting out-
put, decreasing its resolution, but in cases where we do not need to extract
delicate features this becomes a good option [1].
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Fig. 10.5: Example using stride=2.

10.1.2 Pooling Layers

This is a very important layer, which aims to subsampling the image to
reduce its size, and, consequently, reduce the total memory, processing and
parameters needed, in addition to curbing the risk of overfitting [2, 5, 6].

As in convolution layers each output unit is connected to an input region,
we must also take into account the size of the kernel, stride and padding.
But, unlike the convolution, the “kernel”, or, in other words, the region that
will connect us to the input, will have no weights – it will perform only one
operation, the most common being the maximum or the average [2].

Figure 10.6 depicts an example of max pooling, illustrating how it works
(Figures 10.6(a-d)). This example uses a region of 2 x 2 , which is very
common [5], and stride=1.

Fig. 10.6: Example of max pooling application.
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Figure 10.7 depicts another example of max pooling, but this time per-
formed with a 3-channel input. We can see that the operation is performed
on each input channel of the object, and that its output contains the same
number of channels as the input, which is what is typically done in this type
of operation [2].

Fig. 10.7: Example of max pooling application in an image with more dimen-
sions.

Although pooling is a very popular technique, we can find scientific works
where their authors preferred not to use pooling to perform subsampling, but
to use convolution layers with higher stride and appropriate padding values
to achieve dimension reduction [6, 5]. This way of working was proposed
by Springenberg [7], where they demonstrated that even networks without
pooling layers can yield good results for some datasets.

10.1.3 Fully Connected Layers

CNNs usually have several convolution layers followed by activation functions,
which in turn are followed by pooling layers, and this process decreases the
dimensions m × n and increases the depth of the CNN model, that is, the
number of feature maps generated by it [6, 2]. These feature maps represent
the characteristics extracted from the input image, and we need to use this
information as features to be given as input to fully connected layers, which
are used to map these features to the desired outputs of the neural network.
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The fully connected layers are basically an MLP [6], where each neuron of a
given layer is fully connected to all neurons of the next layer.

Figure 10.8 illustrates fully connected layers. The input vector is composed
of the feature maps produced by the layer that immediately precedes the fully
connected layers. In this example, the feature map has a size of 7x7x64, that
is, we have 64 feature maps of size 7x7. To provide these features as input to
the fully connected layer, we have to flatten these feature maps to a vector of
dimensions 1x3136, that passes through the network and ends in the Softmax
layer, whose neurons have softmax activation functions (see chapter about
MLP for activation functions), resulting in the output vector.

Fig. 10.8: Example of fully connected layers application in an image with
more dimensions.

10.1.4 Why Use Convolutions?

So far we understand the building blocks of CNNs and the reasons they are
used. The convolution operation is not only used because it is more efficient
in image processing, but also because it is inspired by our own visual system.

Like many other neural network topologies, CNNs were bio-inspired by
studies on the visual cortex of the human brain that began to take place since
1980 [2], mainly from the work of David H. Hubel and Torsten Wiesel, where
experiments conducted on animals allowed them to deduce the functioning
of the structure of the visual cortex.
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In short, light signals received by the retina are transmitted to the brain
through the optic nerve, where they reach the primary visual cortex, which
is mainly formed by two types of cells [1]:

• Simple cells: these cells have behaviors that can be represented by linear
functions in an image with small area known as the receptive field [1, 2].
This type of cell inspired the simplest detector units on CNNs.

• Complex cells: they also respond to features of the image, such as
simple cells, but are invariant in position, that is, they do not make much
distinction from where the feature appears. This type of cell inspired the
pooling units [1].

Anatomically, the deeper we go into the layers of the brain, the more layers
analogous to convolution and pooling are used, and we find more specialized
cells that respond to specific patterns unaffected by input transformations.
Until reaching these deeper layers, a sequence of detections followed by pool-
ing layers is performed [1].

10.1.5 Classic CNNs

10.1.5.1 LeNet

After studying the main building blocks of a CNN – convolutional layers,
pooling layers and fully connected layers – it becomes easier to compare CNNs
architectures and we can realize that even with the differences they present
a pattern in the combination of layers. Typically, CNN architectures have an
interleaved sequence of convolution layer, followed by a pooling layer, which
repeats up to the edge of the network where there are some fully connected
layers with similar structure to MLP networks. An example of this basic
structure was shown in Figure 10.1.

Figure 10.9 illustrates a LeNet CNN. As the operations are carried out
along this network, it is noticed that the feature maps are getting smaller and
that the layers deeper, that is, the number of maps in the same layer increases.
As the output layer usually presents itself as a vector of probabilities for each
class, there is a transition from the representation of the data in maps to
a vector, starting from the flattening process, which occurs before the first
fully connected layer.

The LeNet network was one of the first CNNs that showed potential ap-
plication in computer vision. The network was created by Yann LeCun in
1998 for the purpose of handwriting number recognition. LeNet was later
adapted to recognize digits for ATM machine deposits, and there are still
ATMs that run the code developed by Yann and his colleague Leon Bottou
[8]. The network was also widely used for digit recognition of the MNIST
dataset [2].
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Fig. 10.9: LeNet Convolutional Network - The input is an image of a hand-
written number and the output a vector with the probability for each of the
ten digits from 0 to 9 [8].

In Figure 10.9, we take as input a standard MNIST grayscale image, of size
28 x 28 pixels. In the general scheme of the LeNet network (Figure 10.10), we
have a clearer view of the combination of layers, where after the input layer
there are two convolutional layers, each followed by a pooling layer, and at
the end there are three fully connected layers.

Fig. 10.10: General diagram of layers in the LeNet network - Schematic of the
LeNet network with the sequence of convolutional layers (“Conv”), pooling
(“AvrgPool”) and fully connected layers [8].

Each convolution layer uses a filter 5×5 and a sigmoid activation function
(see the chapter about MLPs for a definition of activation functions). The
first convolution layer has 6 channels or maps, while the second one has 16.
The pooling operation involves a filter 2 × 2 that calculates the average, so
it is identified as “AvrgPool”, and uses stride str = 2, so that each map
from the previous layer is reduced in a half along the width and height,
eliminating 75% of the activations. The size of the three fully connected
layers are respectively 120, 84, and 10. The last layer, “Fully connected(10)”,
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corresponds to the possible number of classes, in this case 10 (digits from 0
to 10). The activation function in the last layer is a Gaussian function.

To understand the effects of each layer on the dataset, we present in Table
10.1 the dimensions of the outputs of each layer. Table 10.1 shows that from
one convolution block to the other there is an increase in the number of
channels (C) from 6 to 16, between the pooling layers these values are not
changed, as the process only reduces the width (W) and height (H ) of the
channels. In fully connected layers, the dimensions are reduced until the size
of the number of classes is obtained.

Layer
Channel

(C)
Size

(H,W)
Filter
(K)

Memory
(kB)

Parameters

Inputs 1 28

Convolutional 1 6 28 5 18 156

Avrg Pooling 1 6 14 2 5 0

Convolutional 2 16 10 5 6 2416

Avrg Pooling 2 16 5 2 2 0

Flatten 400 1.6 0

Fully Connected 1 120 0.5 48120

Fully Connected 2 84 0.3 10164

Fully Connected 3 10 0.04 859

Total 33 61706

Table 10.1: LeNet Layer Settings, Parameters and Information - Summary
of LeNet’s main layer settings such as number of channels and filter size.
Display an estimate of the number of parameters and the amount of memory
to train the network.

It is common in CNN’s networks that the number of channels practically
doubles after a pooling layer since there is a reduction by half in the dimen-
sions of the maps. Thus, it is possible to increase the number of maps, making
it more sensitive to identify low-level features such as borders and textures,
without drastically increasing the number of parameters and computational
resources [8]. As the first convolution layer applies padding = 2, the maps
maintain the same dimension in the output as the original image (28 × 28),
however the second layer does not have padding, which reduces the width
and height of the maps by 4 pixels.

Over the years, variations of this model have emerged and the most evident
difference between the networks is the number of layers, which has increased
over the years, making the networks deeper. When increasing the number of
layers it was noticed that the performance of the networks tended to improve,
however some limitations emerged. The greater the amount of data, the more
computational memory is required, and this capacity depends on hardware
requirements.



10.1 Convolutional Neural Networks (CNN) 129

To assess the amount of memory used in training the LeNet network, we
will use an approximate calculation based on the amount of output elements
in each layer. The number of elements is multiplied by the number of bytes
needed to store each element [9]. Considering that floating point data occupy
32 bits, therefore 4 bytes per element, to facilitate the visualization of the re-
sults, the measure kilobyte (kB) is used, and for this reason they were divided
by the factor 1024 since 1 kB = 1024 B . In Equation 10.3, we exemplify the
calculation of the amount of memory for the first convolution layer of the
LeNet network:

Amount of memory = CxHxW

= 6× 28× 28

= 4704 output elements

= 4704× 4 bytes = 18816 bytes

= 18.38 kilobytes

(10.3)

The C parameter identifies the number of channels or maps of the layer and
the term H and W, the height and width of the layers output element, respec-
tively. As shown in Equation 10.3 and Table 10.1, the approximate amount
of memory for the first layer is 18 kB, and in total for the network 33 kB.
The first layers tend to need more memory due to the larger dimensions (W
and H) of the channels [9].

Increasing the number of layers also requires that more parameters be
learned, which affects both the training time and its performance, because
if there is not an adequate optimization of the parameters, the probability
of overfitting can be higher [6]. To approximately determine the number of
parameters related to each layer, the weights related to the filters of each
map were considered, calculated as the product between the filter dimen-
sions (K x K), the number of input element channels and the number of out-
put channels of the layer [9]. The biases associated to each output channel
were also considered as parameters. On fully connected layers, the number
of parameters is determined as the product of the number of input elements
and the number of output elements of the layer plus the number of biases.
Equation 10.4 exemplifies the calculations for the first convolution layer:
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Weights = Coutput × Cinput ×K×K

= 6× 1× 5× 5

= 150

Bias = 6

Parameters = Weights + Bias

= 150 + 6

= 156

(10.4)

Considering that the filter in the first layer is of size 5× 5, that the input
has only 1 channel and that there are 6 channels in the convolution layer,
the first convolution layer considers approximately 156 parameters. In Table
10.1, there is also the number of parameters related to each layer and the
approximate total of parameters for the LeNet network is 61706. As the
number of channels in the convolution layer increases, more parameters are
needed. In general, most parameters are due to fully connected layers due to
the greater number of connections [9].

10.1.5.2 AlexNet

Currently there are several CNNs network architectures used for applications
in computer vision. The evolution of these networks can be seen in the results
of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) com-
petition. The main objective of the competition was to evaluate algorithms
for object detection and image classification. The first edition of the compe-
tition, in 2010, involved 1.2 million images for training, being 1000 categories
of objects. In the first two years of competition, CNNs networks weren’t yet
in 1st place, however, from on 2012 CNNs models started to lead the com-
petition [10]. The progress of the networks can be evaluated based on the
error rate of the models, which in seven years dropped from approximately
26%, in the second year of the competition, to 2.3% in the last edition of the
competition in 2017 [9], as shown in the graph in Figure 10.11.

To learn a little about the different architectures of CNNs networks and no-
tice some differences, and structures that performed well and are still adopted
by recent architectures, we will highlight below three additional architectures
that become well known and had prominence in the competition. The AlexNet
network was the first CNN to win the ImageNet competition in 2012 with
an error rate of 16.4%. The VGG network did not lead the competition in
2014, but it is one of the models with great popularity. In 2014, the CNN
GoogLeNet won the competition and served as inspiration for the Inceptions
networks.
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Fig. 10.11: Error rate of the best performing models in the ImageNet compe-
tition - The performance of the models in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) competition was mainly evaluated by the
error rate. The graph shows the models that won in each edition of the compe-
tition, which ran from 2010 to 2017, and also networks that became popular
such as VGG [9].

The AlexNet network was developed by Alex Krizhevsky, Ilya Sutskever,
and Geoffrey Hinton [2]. This network is very similar to LeNet, but has more
layers. Because it is a deeper network, requiring more memory, the original
network had to be physically distributed between two 3GB GPUs [11]. In
this way, the network was drawn as in Figure 10.12, with a dual data stream
structure so that each GPU would receive half of the model.

As depicted in Figure 10.13, AlexNet has 5 convolution layers, with the
first three followed by pooling layers. The most aparent difference between
the AlexNet and LeNet architectures are the three additional convolution
layers in the AlexNet network, which are followed one after the other with no
layer pooling between them. As the input images are bigger than the MNIST
dataset approached in the example LeNet network, the input convolution
filters are bigger (11×11) and stride str = 4 is used. In the second convolution
layer, the filters have size 5 × 5, and in the other convolution layers filters
3× 3 are used.

With the discovery that ReLU’s activation functions in the convolution lay-
ers and that maxpooling improve the performance of networks, most models
were built using these functions [8]. Maxpooling filters of size 3×3 and stride
str = 2 scale down channels based on the largest value of the receive field.
With the exception of the first layer, all other convolution layers are padded
so that the dimension of the channels is not changed after the convolutions.

The last three layers are fully connected and have sizes 4096, 4096 and
1000, respectively. The output layer has dimension 1000 due to the number
of possible classes of ImageNet competition and the activation function is
Softmax.
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Fig. 10.13: Comparison of AlexNet and LeNet networks. (a) LeNet Network
and (b) AlexNet Network. These general layer schemes show that the main
difference of networks is that AlexNet is deeper, with three more convolution
layers than LeNet [8].

The same pattern for the dimensions of the layer output elements seen
in LeNet is seen in Table 10.2 for the AlexNet network. While the size of
the channels decreases from one convolution layer to another, the number of
channels increases, with 96 in the first, followed by 256, 384, 384 and 256.
After the flatten process, the dimension of the layers is reduced until it is
established the size of the prediction classes vector.

By comparing the amount of memory and the approximate number of
parameters as described in the subsection 10.1.5.1 it is observed that the
amount of memory required increases and the number of parameters also
increases. Approximate calculations indicate that while the memory required
for training the LeNet network would be approximately 33 kB, for AlexNet
it would be approximately 3 GB. The number of parameters calculated for
LeNet was 62 thousand and for AlexNet 62 million. Generally in both models,
the first layers require more memory, while the fully connected layers need
more parameters.
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Layer
Channel

(C)

Size

(H,W)

Filter

(K)

Memory

(kB)
Parameters

Inputs 3 227

Convolutional 1 96 55 11 1134 35

Max Pooling 1 96 27 3 273 0

Convolutional 2 256 27 5 729 615

Max Pooling 2 256 13 3 169 0

Convolutional 3 384 13 3 254 885

Convolutional 4 384 13 3 254 1327

Convolutional 5 256 13 3 169 885

Max Pooling 3 256 6 3 36 0

Flatten 9216 36 0

Fully Connected 1 4096 16 37753

Fully Connected 2 4096 16 16781

Fully Connected 3 1000 4 4097

Total 3090 62378

Table 10.2: AlexNet Layer Settings, Parameters, and Information - Summary
of settings for the main AlexNet layers, such as number of channels and size
of filters. Display an estimate of the number of parameters and the amount
of memory to train the network.

10.1.5.3 VGG

The VGG network was conceived by the members of the Visual Geometry
Group (VGG) at Oxford University by researchers Karen Simonyan and An-
drew Zisserman [8]. Compared to the two previous architectures LeNet and
AlexNet, VGG adopts principles to establish the structure of the network,
which allowed the construction of deeper models [8]. Another characteristic of
VGG is the block structure in the part of the network with the convolutional
layers, in which each block presents convolutional layers in sequence and at
the end a pooling layer. While the AlexNet model, in Figure 10.14, presents
5 convolutional layers, the VGG presents 5 blocks with a variable number
of convolution layers, but in general the first blocks have fewer layers. Like
AlexNet, at the edge of the network there are three fully connected layers,
with equal dimensions on both models, and a Softmax activation function at
the output.

In Figure 10.14, there is a representation of the VGG architecture with 16
layers, in which the first two blocks have two convolutional layers and the last
three blocks have three convolutional layers. The convolution layers double
in size with each block, with each layer in the first block having 64 channels,
128 channels in the next, and so on up to 512 in the last block. The use of
the ReLu activation function in the convolution layer and maximum value
pooling are strategies that performed well in AlexNet and continued in other
models, such as in VGG.
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Fig. 10.14: Comparison of VGG and AlexNet networks - Comparison of VGG
and AlexNet networks based on the general structure of the layers. While the
final part of the networks is similar in relation to the fully connected layers,
the VGG differs in that it is deeper and presents a pattern of convolutional
layers organized in blocks [9].

In LeNet and AlexNet networks, it is usually necessary to individually
select several hyperparameters1. For example, in the convolution layers, the
number of channels, size of filters, padding and stride are adjustable. In the
pooling layer, the hyperparameters are the filter and stride size. In general,

1 Hyperparameters are parameters that need to be pre-defined, as opposed to learned by
the model.
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these two networks do not provide a general guide on how to select the
parameters. VGG’s core design principles state that all convolution filters are
3×3 with stride str = 1 and padding pad = 1, and that maxpooling filters are
2× 2 with str = 2. After each pooling layer, the number of channels doubles
in the convolution layer. The idea of fixing the size of convolutional filters
came from the perception that the combination of two filters 3 × 3 presents
a receptive field equivalent to one filter 5 × 5, and that three filters 3 × 3
perform similar to one of 7 × 7 [6]. Fixing the size of filters and their stride
str = 1 and pad = 1 establishes that the dimension of the channels does not
change between the convolutional layers, so the only hyperparameter that
needs to be optimized is the number of layers in each block.

By using filters 3×3, which are smaller, but in greater quantity than those
used in AlexNet (11 × 11 and 5 × 5), more nonlinearity is included, allow-
ing the network to learn more low-level features [6]. Increasing the depth of
the network with more layers of convolution adds more non-linear activation
functions. Even being deeper networks, this strategy of using smaller filters
reduces the number of parameters. Considering that two layers in sequence
have C channels each, when using two filters 3 × 3, the total number of pa-
rameters is 2× 3× 3×C2 = 18C2, which is smaller number when compared
to the scenario of a single filter 5× 5 with 25C2 parameters [9].

Of course, doubling the number of channels between blocks should make
the number of parameters grow quickly, and that’s why maxpooling filters
have been standardized to reduce the dimensions of the channels by half. By
controlling the number of activations that pass to the next layers, it is pos-
sible to keep the number of operations approximately constant. Superficially
evaluating that the number of operations is given as the total amount of
multiplications and additions, we can calculate for each layer as the product
of four parameters in Equation 10.5 [9]: filter size(K x K), input channel di-
mensions (H x W), quantity of input channels (Cinput) and output channels
(Coutput).

Number of operations = Number of output elements x Operations by output element

= (Coutput x H x W)× (Cinput x K x K)

= (2C x HW)× (2C x 3 x 3)

= 36HWC2

(10.5)

In the case of two convolution layers with filters 3× 3 and separated by a
pooling, reducing by half the size of the channels (2H x 2W → H x W) and
doubling the number of channels (C → 2C), the number of weights increases
from 9C2 to 36C2, but the number of operations remains at 36HWC2.
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10.1.5.4 GoogLenet and Inception

By following the evolution of CNNs, we can see that the main strategy to
increase the performance in the classification of images was to increase the
number of layers that keep the weights of the networks. AlexNet and VGG-16
networks were developed with 8 and 16 layers, respectively. As the networks
get deeper, the dilemma of how to make the algorithms more efficient arose,
since more layers meant more parameters and operations, requiring more
computational resources. Comparing the networks in Figure 10.15, it is pos-
sible to verify the accuracy of the networks, the number of parameters and
the number of operations. It appears that for the VGG-16 network to achieve
better results than the AlexNet network, it was necessary to more than twice
the number of parameters, from approximately 65 million on AlexNet to just
over 130 million on VGG-16.

In the 2014 ImageNet competition, a Google research group led by Chris-
tian Szegedy proposed the GoogLeNet architecture that should both ensure
good performance and be more efficient than existing models [2]. The model
not only won the competition but also met their requirements, as even be-
ing a network with 22 layers, more than the VGG-16, it used 12 times less
parameters than VGG, 13 million instead of 138 million [6].

Fig. 10.15: CNN’s neural networks evolution graph - Network performance
is evaluated by accuracy versus the number of operations required for a sin-
gle forward step. The radius of the circles is proportional to the number of
parameters, with the legend in the lower right corner indicating a reference
from 5× 106 to 155× 106 [12].
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To understand the GoogLenet network we can divide it into three parts
(Figure 10.16), in the first part, the input layers are similar to the AlexNet
and VGG networks, in the second part, there are the inception blocks charac-
teristic of this network, and the last part refers to the classification structure.
The first part contains two blocks with a sequence of convolutional layers fol-
lowed by pooling 3 × 3. In the first block, there is only a convolution layer
7 × 7, with stride str = 2 and padding pad = 3, and a pooling layer with
str = 2. At the end of these two layers, the element has 64 channels and was
reduced by 4 in its dimension (H and W). In the second block, there are two
convolution layers, the first with a filter 1×1 and 64 channels and the second
3 × 3 with 192 channels, and only the pooling 3 × 3 at the end of the block
changes the dimensions of the channels in half.

The main role of these two blocks is to reduce considerably the dimensions
of the image, since most of the memory required is due to the first layers [9].
Whereas, at this stage, there is an 8-fold reduction in image dimensions, an
entry 224× 224 when reducing to approximately 28× 28 use approximately
7.5 MB memory while the same reduction in VGG-16 needs 42.9 MB, almost
6 times more than GoogLenet [9]. Also, when passing a smaller image to the
next layers, the number of operations and the number of parameters to train
the network are also reduced.

Another technique to make the network more efficient was to include a
global AvrgPool layer before the classification layer [2]. In previous CNN
models it was common to include flattening to convert the data into a vector,
losing the spatial information, to be compatible with the fully connected
layers that made the classification. These last layers end up being responsible
for most of the parameters. In the VGG-16 model, for example, the 3 fully
connected layers generate approximately 123.6 millions of parameters, almost
90% of the total parameters [9].

Instead of adopting flattening, GoogLenet uses an averaging filter of the
same dimension as the input element, returning the average of the maps for
each position of the vector. As the output vector is already reduced in size, it
is necessary to include only one layer fully connected with 1000 classes. Since
the global averaging layer does not need parameters, and since it returns
a vector 1024, approximately 1 million parameters are needed in the fully
connected layer, 100 times less than in the VGG [9]. In the last layer, as in
the VGG, a Softmax activation is associated, while in the convolution layers
it is a ReLu.

The first and last parts of the GoogLenet network have been explained
above. The intermediate section that we will study now includes the Incep-
tions modules that have become characteristic elements of the most modern
networks. Each module is similar to VGG blocks, in that some convolutional
layers are present in sequence and at the end a pooling layer. In the case of
the VGG, it was seen that to reduce the number of hyperparameters, the size
of the filters was set to 3 × 3, and the variable parameter was the number
of convolutional layers. The idea of Inceptions (Figure 10.17) is not to worry
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Fig. 10.16: The general structure of the GoogLenet network can be divided
into three parts: Part A - Similar to AlexNet and LeNet, contains a sequence
of convolutional layers and pooling to reduce image dimensions; Part B -
Inceptions modules separated by pooling layers; Part C - Global pooling
layer and a Fully Connected for classification [6].

about the size of the filters or the number of layers in the module, as each
module consists of a combination of filters with different sizes arranged in a
fixed way [6].

From the input of the inception module, copies of the input element go
along four paths at the same time. At the end of these paths, the image size
does not change, but the number of channels is changed in different ways, with
the choice of the number of channels for each layer being a hyperparameter.
At the output of the module there is a concatenation of all these channels,
forming a single element with the same dimension as at the input and with
a number of channels that is the sum of all that resulted from each path.

The first path has only one convolution 1 × 1, known as the bottleneck,
whose main function is to preserve the dimensions (height and width) but
reduce the number of channels, which reduces the computational cost and the
number of parameters [6]. As this convolution includes more nonlinearity at a
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Fig. 10.17: Inception module of the GoogLenet network - The middle part
of the GoogLenet network is formed by a sequence of Inceptions modules
separated by pooling layers (Figure 10.16). Each module has four paths to
the same input data, and on output, where the results are concatenated [8].

low cost, a convolution 1×1 is also included in the input layers, contributing to
an optimization in the first part of the network [2]. This same layer has been
added at the beginning of each of paths 2 and 3 to reduce model complexity.
After reducing the number of layers, larger filters are included, making it
possible to process information at different scales, with the filters being in
the second way 3× 3 and in the fourth way 5× 5 [8].

All paths, even the fourth that includes a MaxPool layer, feature padding
to keep the same dimension of the channels as in the entrance. As MaxPool
does not change the number of channels, a convolution 1 × 1 is included at
the end of the fourth path, reducing the volume.

By concatenating all the channels of each path at the end, the inception
module follows the hypothesis that visual information can be processed at
various scales and that the aggregated results allow the next level to extract
several features from different scales at the same time [6]. In the GoogLenet
network in Figure 10.16, we see three groups of inception modules inter-
spersed by Maxpooling 3× 3, totalling 9 modules.

The previous GoogLenet diagram (Figure 10.16) is one of the more simpli-
fied representations of the model, because as seen in Figure 10.18, the original
architecture includes two classifiers that run in parallel with the other blocks
described above, one that starts after the third inception module and the
other after the sixth module [2]. Each classifier works similarly to the final
part of the network, where classification takes place [9]. The classifiers are
formed by an AvrgPooling layer, followed by a convolution layer, two fully
connected layers and at the output a Softmax activation function.

There is a peculiarity when training deeper networks, because, in the back-
propagation of errors, the rates reduce to values very close to zero, making
it difficult for the algorithm to converge. One of the techniques adopted by
GoogLenet to help convergence was to include the calculation of the error
gradient of these intermediate classifications in the error backpropagation [2].
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Fig. 10.18: GoogLenet network architecture with intermediate classifiers - The
GoogLenet network with two classifiers, one in the third inception module
and the other in the sixth module. These intermediate classifiers reduce the
fading effect of error gradients [13].

10.2 Transfer learning

Training a neural network from scratch is a complex task, as it requires
an enormous amount of data and computational power [6]. In many cases
we may not have enough of either, but that doesn’t stop us from creating
our models. For this we have a technique known as transference learning,
which basically consists of benefiting from already trained models to solve



142 Amanda Cristina Fraga De Albuquerque et al.

new problems. In this case we assume that there is a relationship between
the old and new problems, such that knowledge learnt from the old problem
may help learning the new problem. We are able to use this technique for
computer vision problems because even models trained for different computer
vision problems end up learning to identify similar features of the image in
the earlier layers, and then learning greater details in the deeper layers.

Transfer learning in the context of deep learning typically reuses some
components of existing neural networks that have already been trained on
previous problems using very large datasets, inserting such components into
a new neural network that is being built for a new problem. A detailed
explanation of how to perform transfer learning is out of the scope of this
book chapter, but we refer the interested reader to [6] for further information
on that.

10.3 Summary and Discussion

This chapter has introduced one of the most popular types of deep learning
approaches – the CNNs. Such approaches have achieved excellent results in
the field of computer vision. Many different CNNs architectures exist, and this
chapter has introduced four of them. When studying the different models of
CNN we realize that the main factor to improve the accuracy of the networks
has been the increase in the number of layers, making the networks deeper. It
is noteworthy that the construction of deeper models was only possible due to
the availability of large datasets and the evolution of hardware performance,
especially memory and processing units, and the development of more specific
software, known as frameworks for Deep Learning [8].
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10.4 Exercises

1. Considering the focus on convolutional neural networks, we can highlight
convolution as a basic operator. For a basic understanding of the applica-

tion and effect of convolution, manually convolute the kernel
[
0 2 3
0 1 0
3 0 2

]
onto

the image matrix
[
1 2 0
3 0 0
4 1 0

]
. Use padding with pm = pn = 1 and stride=1.

Use the value of zero for the pixels added through padding.
2. In the context of applications with images, each convolution layer can

identify a level of detail in the image. For example, in the initial layers
typically identify more general elements of the images, such as lines, edges
and corners. Some pre-determined filters, or convolutions, that have the
edge detection property are Sobel and Prewitt. Each of these operators
is composed of to kernels as shown below:

• Prewitt Operators.

Gx =
[−1 0 1
−1 0 1
−1 0 1

]
Gy =

[−1 −1 −1
0 0 0
1 1 1

]
• Sobel Operators.

Gx =
[−1 0 1
−2 0 2
−1 0 1

]
Gy =

[−1 −2 −1
0 0 0
1 2 1

]
By applying each of the two Prewitt kernels on the image and summing
the modulus of the two resulting matrices to get a single output matrix,
it is possible to determine the edges in the image. A similar procedure
can be used with the Sobel operators, which also result in detection of
edges. Apply the Prewitt and Sobel operators in the image represented
by the matrix below, using no padding and stride=1:

1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1


3. One of the techniques used in image applications using convolutional

neural networks is to reduce the size of inputs across layers, which can
reduce computational costs. To perform this reduction we can use strides
in the application of convolution. Perform the convolution between kernel[
0 2 3
0 1 0
3 0 2

]
and matrix

[
1 2 0 3 0
3 0 0 1 0
4 1 0 2 1

]
, first using stride 1 and then with stride 2

to assess the effect of this technique. Use no padding.
4. During image processing in convolutional neural networks, there are steps

in which the inputs and outputs of the convolution layers need to keep
the same size, and one way to have this control is to use padding in the
application of the convolution. With the same kernel and matrix as in the
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previous exercise, determine a padding to ensure that the result remains
the same size as the original matrix, and then apply the convolution using
this padding.
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10.5 Exercise Answers

1.

Padding will result in the following new input matrix:

[
0 0 0 0 0
0 1 2 0 0
0 3 0 0 0
0 4 1 0 0
0 0 0 0 0

]
.

The output matrix will then be:[
1 11 0
13 16 3
10 1 0

]
.

2.

Prewitt result Sobel result
0 0 3 3 0 0 0 0
0 0 3 3 0 0 0 0
0 0 3 3 0 0 0 0
0 0 3 3 0 0 0 0
0 0 3 4 3 3 3 3
0 0 2 3 3 3 3 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




0 0 4 4 0 0 0 0
0 0 4 4 0 0 0 0
0 0 4 4 0 0 0 0
0 0 4 4 0 0 0 0
0 0 4 6 4 4 4 4
0 0 2 4 4 4 4 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



3.
Using stride = 1: [ 16 16 9 ].
Using stride = 2: [ 16 9 ].
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Chapter 11

Naive Bayes

Leandro L. Minku

The process of learning predictive models from data typically involves uncer-
tainty. For instance, different models could potentially be created to describe
the same data, and different predictions could be given to future data. The
decision of which model to adopt and which prediction to make thus in-
volves uncertainty [1]. This chapter will introduce you to probabilistic learn-
ing, which captures uncertainty through probability theory. In particular, we
will cover a machine learning approach called Näıve Bayes. Despite being
a relatively simple technique, Näıve Bayes often outperforms more complex
approaches [2], being a good place to start learning the topic of probabilistic
learning.

This chapter assumes that you are relatively familiar with probability con-
cepts such as random variables; probability distributions; probability mass
functions; probability density functions; prior, marginal or unconditional
probabilities; conditional or posterior probabilities; and joint probability dis-
tributions. If you are unfamiliar with these terms, we suggest you to read
Section 13.2.1 and 13.2.2 of [3] or Chapter 6 of [4] for a deeper understanding
of this chapter.

Section 11.1 introduces the Bayes theorem upon which Näıve Bayes is
based and the relationship that this theorem has with classification. Section
11.2 introduces the Näıve Bayes approach for categorical input variables.
Section 11.3 introduces Näıve Bayes for numeric input variables.
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11.1 The Bayes Theorem and Its Relationship With
Classification

Consider a machine learning problem with input variables x and output vari-
able y, where x = (x1, x2, · · · , xd) is a d-dimensional vector, x ∈ X , y ∈ Y,
X is the input space and Y is the output space of the problem. In regression
problems, Y = R, whereas in classification problems Y is a set of categories.
In this chapter, we will focus on classification problems.

In probabilistic learning, we consider that (x, y) are random variables
drawn from a fixed, albeit unknown joint probability distribution p(x, y) 1. In
particular, in supervised learning, we assume that a training set of examples
is available, consisting of N samples2 drawn from p(x, y):

T = {(a(1), c(1)), (a(2), c(2)), · · · , (a(N), c(N))}, (11.1)

where a(i), c(i) represent the values of the input and output variables3. A
given assignment of values a to the input variables x is also referred to as an
event [3] in probabilistic learning. Supervised learning is then considered to
be the problem of using the training set T to learn a model f : X → Y able
to generalise to unseen examples from p(x, y).

Based on the product rule from probability theory, the joint probability
distribution p(x, y) can be written as:

p(x, y) = p(y|x)p(x) = p(x|y)p(y),

where p(y|x) is the conditional distribution of y, p(x) is the unconditional
or marginal distribution of x, p(x|y) is the conditional distribution of x and
p(y) is the prior probability of y. From this, we have that

p(y|x) = p(y)p(x|y)
p(x)

.

Therefore, given an example with known value of x = a, one can calculate
the probability of it belonging to a given class y = c as

p(y = c|x = a) =
p(y = c)p(x = a|y = c)

p(x = a)
. (11.2)

1 There are also machine learning problems where p(x, y) is not fixed. However, we will
not cover them in this book. For more information on those problems, we recommend [5].
2 In some machine learning problems, the training set may not be fully available before-
hand. Instead, training examples may arrive over time.
3 In this chapter, we will use letters such as a(i), c(i) to represent the values of the input

and output variables instead of using their corresponding indexed variable names x(i), y(i)

in sample i. This will enable us to distinguish more explicitly between the variables and
their values, which can be useful when discussing Näıve Bayes.
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This is known as the Bayes Theorem. To simplify the writing, whenever it is
not ambiguous, we will write this as

p(c|a) = p(c)(a|c)
p(a)

.

Such probabilities can be used to make inferences, i.e., to predict the class
c given the observed input values a. In particular, one can compute p(c|a)
for every possible class c, and predict the class associated to the highest
probability p(c|a). This means that these probabilities can work as our model
f : X → Y. But how to compute these probabilities? For that, in supervised
learning, we can rely on the fact that we have access to a training set T . This
training set can be used to create frequency tables that enable us to compute
these probabilities.

Let’s have a look at a simplified problem to illustrate how this works.
Consider a problem where we have a single input variable x1 representing
whether a person eats healthy foods and a output variable y corresponding to
whether that person is developing cancer. The problem is to predict whether
the person is developing cancer based on whether they eat healthy foods.
In this problem, we will refer to x1 as “healthyFood” and y as “cancer”, to
facilitate reading.

Assume we have access to the training set corresponding to six people
shown in Table 11.1. We can compute the number of times that each differ-
ent value of the input and output variables occur together as shown in the
frequency table given in Table 11.2. Then, let’s say that we have received a
new test instance corresponding to a person who does not eat healthy foods
(i.e., healthyFood = no) and wish to predict whether this person is developing
cancer by applying the Bayes Theorem4.

Table 11.1: An Illustrative Dataset With A Single Input Variable

x1 (healthyFood) y (cancer)

no yes
no yes

yes yes

yes no
yes no

no no

From Eq. 11.2, we have that

4 We could potentially compute p(cancer = yes|healthyFood = no) and p(cancer =
no|healthyFood = no) directly from the frequency tables without having to apply the
Bayes Theorem. However, the intention of this example is to show that we can compute

them by applying the Bayes Theorem, which will be useful to learn Näıve Bayes in the

next section.
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Table 11.2: An Illustrative Frequency Table For The Single Input Variable
Dataset From Table 11.1

cancer = no cancer= yes total

healthyFood = no 1 2 3

healthyFood = yes 2 1 3

total 3 3 6

p(cancer = yes|healthyFood = no) =
p(cancer = yes)p(healthyFood = no|cancer = yes)

p(healthyFood = no)

and

p(cancer = no|healthyFood = no) =
p(cancer = no)p(healthyFood = no|cancer = no)

p(healthyFood = no)
.

Based on the frequency table given in Table 11.2, we have that

• p(cancer = yes) = 3/6, as 3 in 6 people had cancer;
• p(healthyFood = no|cancer = yes) = 2/3, as 2 in 3 of the people with
cancer did not eat healthy foods;

• p(cancer = no) = 3/6, as 3 in 6 people did not have cancer;
• p(healthyFood = no|cancer = no) = 1/3, as 1 in 3 of the people with
cancer ate healthy foods;

• p(healthyFood = no) = 3/6, as 3 in 6 people did not eat healthy foods.

Therefore,

p(cancer = yes|healthyFood = no) =
3/6× 2/3

3/6
≈ 0.67.

p(cancer = no|healthyFood = no) =
3/6× 1/3

3/6
≈ 0.33.

As p(cancer = yes|healthyFood = no) > p(cancer = no|healthyFood =
no), it would be reasonable to predict that the class is cancer = yes.

It is worth noting that the denominator p(a) of the Bayes Theorem
(p(healthyFood = no) in the example above) works as a normalisation factor
to ensure that the probabilities of the test instance to belong to each different
possible class sums to one, i.e.:
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c∈Y

p(c|a) = 1

We could replace p(a) by the factor β shown below and achieve the same
normalisation effect:

β =
∑
c∈Y

p(c)p(a|c).

If we set α = 1/β, then the Bayes Theorem becomes:

p(c|a) = αp(c)p(a|c). (11.3)

In the next section, it will be useful to explicitly use α instead of p(a),
as the assumptions made by Näıve Bayes will cause p(a) not to work as a
normalising factor anymore, potentially resulting in probabilities that would
not sum to 1 (i.e., in values that are not really probabilities).

11.2 Näıve Bayes for Categorical Input Variables

The Bayes Theorem can be written as follows for d input variables:

p(c|a) = αp(c)p(a|c) = αp(c)p(a1, a2, · · · , ad|c).

As the probability p(a1, a2, · · · , ad|c) corresponds to the probability of
a given combination of values (event) a1, a2, · · · , ad for the input variables
being observed together given a class c, each row of our frequency table
would correspond to a different combination of values for the input variables.
For example, consider a problem with two input variables, where the first
input variable x1 represents whether the person eats healthy foods and the
second input variable x2 represents whether this person is suffering from
pain. Assume that we would like to predict whether a person is developing
cancer (output variable y) based on these input variables. For a problem with
the dataset shown in Table 11.3, we could have the frequency table shown
in Table 11.4. For problems with large numbers of input variables and many
possible values for such variables, the number of rows in this kind of frequency
table would quickly become intractable.

Näıve Bayes is a machine learning approach that deals with this issue by
making the assumption that the input variables are conditionally indepen-
dent of each other given the output variable. A variable x1 is conditionally
independent of x2 given the output variable y if the following condition is
satisfied:

p(x1|x2, y) = p(x1|y).
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Table 11.3: An Illustrative Dataset With Two Input Variables

x1 (healthyFood) x2 (pain) y (cancer)

no yes yes

no yes yes
yes yes yes

yes no no
yes no no
no no no

Table 11.4: An Illustrative Frequency Table For The Two Input Variable
Dataset From Table 11.3

cancer = no cancer= yes total

healthyFood = no and pain = no 1 0 1

healthyFood = no and pain = yes 0 2 2

healthyFood = yes and pain = no 2 0 2

healthyFood = yes and pain = yes 0 1 1

total 3 3 6

This means that, if we know the value of y, we do not need to know the value
of x2 to determine the value of x1. By making this assumption, we can say
that:

P (a1, a2, · · · , ad|c) =
d∏

i=1

p(ai|c).

By replacing this in the Bayes Theorem (Equation 11.3), we get:

p(c|a) = αp(c)

d∏
i=1

p(ai|c), (11.4)

where

α =
1∑

c∈Y

(
p(c)

∏d
i=1 p(ai|c)

) .
Näıve Bayes uses Eq. 11.4 to calculate p(c|a) in order to predict the class

associated to a given example whose input variables have value a. This means
that a separate frequency table can be created for each input variable, leading
to a total number of rows that grows linearly with the number of values that
the input variables can assume.

For example, let’s consider again our problem of predicting whether a
person is developing cancer based on whether they eat healthy foods and are
experiencing pain. The training set for this problem is shown in Table 11.3.
The frequency tables corresponding to this training set would be the ones
shown in Table 11.5.
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Table 11.5: An Illustrative Frequency Table For The Two Input Variable
Dataset From Table 11.3

(a) Frequency Table For x1 (healthyFood)

cancer = no cancer= yes total

healthyFood = no 1 2 3

healthyFood = yes 2 1 3

total 3 3 6

(b) Frequency Table For x2 (Pain)

cancer = no cancer= yes total

pain = no 3 0 3

pain = yes 0 3 3

total 3 3 6

Let’s assume that we wish to predict whether a person who eats healthy
foods (healthyFood = yes) and is experiencing pain (pain = yes) is developing
cancer. We would need to compute the following:

p(cancer = yes|healthyFood = yes,pain = yes) =

αp(cancer = yes)×p(healthyFood = yes|cancer = yes)×p(pain = yes|cancer = yes) =

α× 3/6× 1/3× 3/3 = α× 1/6

p(cancer = no|healthyFood = yes,pain = yes) =

αp(cancer = no)×p(healthyFood = yes|cancer = no)×p(pain = yes|cancer = no) =

α× 3/6× 2/3× 0/3 = 0

where

α =
1

3/6× 1/3× 3/3 + 3/6× 2/3× 0/3
= 6.

As p(cancer = yes|healthyFood = yes,pain = yes) > p(cancer =
no|healthyFood = yes,pain = yes), Näıve Bayes predicts that the person
is developing cancer.

Note that in the calculations above, the whole probability of the person
not developing cancer became zero, because p(pain = yes|cancer = no) = 0.
In fact, even if there had been many other input variables in this problem,
all with values suggesting that this person was not developing cancer, the
whole probability of the person not developing cancer would still become
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zero, just because p(pain = yes|cancer = no) = 0. This would lead to several
inaccuracies on Näıve Bayes’ predictions.

One way to avoid this problem is to adopt Laplace Smoothing. This con-
sists in summing a small value ϵ > 0 to every frequency value in the frequency
table, and adjusting the total cells accordingly. And example for ϵ = 1 is
shown in Table 11.6.

Table 11.6: An Illustrative Frequency Table With Laplace Smoothing For
The Two Input Variable Dataset From Table 11.3

(a) Frequency Table For x1 (healthyFood)

cancer = no cancer= yes total

healthyFood = no 1+1=2 2+1=3 5

healthyFood = yes 2+1=3 1+1=2 5

total 5 5 10

(b) Frequency Table For x2 (Pain)

cancer = no cancer= yes total

pain = no 3+1=4 0+1=1 5

pain = yes 0+1=1 3+1=4 5

total 5 5 10

When computing the probabilities for Eq. 11.4, the values of p(ai|c) should
be computed based on the updated tables, whereas p(c) is still calculated
based on the original tables (without Laplace Smoothing) 5. For instance,
the calculations to predict whether a person who eats healthy foods and is
experiencing pain would be as follows:

p(cancer = yes|healthyFood = yes,pain = yes) =

αp(cancer = yes)×p(healthyFood = yes|cancer = yes)×p(pain = yes|cancer = yes) =

α× 3/6× 2/5× 4/5 = α× 8/50

p(cancer = no|healthyFood = yes,pain = yes) =

αp(cancer = no)×p(healthyFood = yes|cancer = no)×p(pain = yes|cancer = no) =

α× 3/6× 3/5× 1/5 = 3/50

where

α =
1

3/6× 2/5× 4/5 + 3/6× 3/5× 1/5
= 50/11.

5 Try out Exercise 4 to understand why.
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As p(cancer = yes|healthyFood = yes,pain = yes) > p(cancer =
no|healthyFood = yes,pain = yes), Näıve Bayes still predicts that the per-
son is developing cancer in this example. However, in other examples the
predicted class could potentially change when adopting Laplace Smoothing.

11.3 Näıve Bayes for Numeric Input Variables

The Näıve Bayes frequency tables explained in the previous section contain
one row for each possible value of the input variables. When dealing with
numeric input variables, it is infeasible to have one row for each possible
numeric value. How can Näıve Bayes deal with numeric input variables?

To gain some insight into that, it is worth observing that, when we are
collecting frequency values for the frequency tables and transforming them
into probabilities, we are actually learning probability mass functions. These
are functions that give the probability of observing each possible value of a
discrete random variable [3, 4], e.g., of a categorical value in our machine
learning problems. For instance, the figure below shows an example of prob-
ability mass function for p(healthyFood|cancer = yes), obtained through the
frequency table given in Table 11.6a.

Fig. 11.1: Probability Mass Function Obtained Through The Frequency Table
Given in Table 11.6a

For numeric input variables, we can learn probability density functions,
instead of probability mass functions. Probability density functions represent
the relative likelihood of observing different values of a given continuous
random variable. Different from probability mass functions, the values of the
relative likelihoods do not sum to one. Instead, the area under the curve
formed by the function is equal to one [4].
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To be able to adopt probability density functions in Näıve Bayes, one must
choose what kind of probability density function to adopt. In most cases, a
univariate Gaussian probability density function is used for each numeric
input variable. This function can be written as follows for a given numeric
input variable xi:

p(xi|µ, σ2) =
1√
2σ2π

e
−(xi−µ)2

2σ2

where µ is a parameter corresponding to the mean of the distribution, σ2 is
a parameter corresponding to its variance, π ≈ 3.14159 and e ≈ 2.71828.

Learning then corresponds to setting appropriate values for the parameters
µ and σ2. In classification problems, every numeric input variable xi needs to
be associated to a probability density function p(xi|c) for each of the possible
values c ∈ Y. In order to learn the parameters of these probability density
functions, the training examples can be used. In particular, for a Gaussian
probability density function associated to the input variable xi and the class
value c, the mean µ is set as the mean of the x values values of all training
examples whose class value is c. The variance σ2 is set as the variance of
these values. Considering the training set defined in Eq. 11.1 with N training
examples, the mean and variance of a variable xi is calculated as follows,
respectively:

µ =
1

N

∑
(a(j),c(j))∈T and c(j)=c

a
(j)
i ,

and

σ2 =
1

N − 1

∑
(a(j),c(j))∈T and c(j)=c

(a
(j)
i − µ(xi))

2.

Let’s have a look at an example of how to calculate this. Assume that we
need to predict whether a person is developing cancer (output variable y)
based on whether they eat healthy foods (categorical input variable x1) and
on the amount of alcohol in units that they consume per month (numeric
input variable x2). The training set is shown in Table 11.7.

Table 11.7: An Illustrative Dataset With A Categorical and A Numeric Input
Variable

x1 (healthyFood) x2 (alcohol) y (cancer)

no 40 yes

no 35 yes
yes 60 yes

yes 20 no
yes 30 no
no 17 no



11.3 Näıve Bayes for Numeric Input Variables 157

Consider that we decide to use Gaussian probability density functions for
the numeric input variable alcohol (x2). As this is a binary classification
problem (where Y = {yes,no} is a set of size 2), this means that we need to
learn two Gaussian conditional probability density functions for alcohol: one
for cancer = yes and one for cancer = no.

For cancer = yes, we calculate the mean and variance of the alcohol values
of all training examples where cancer = yes:

µ =
40 + 35 + 60

3
= 45,

σ2 =
1

3− 1
[(40− 45)2 + (35− 45)2 + (60− 45)2] = 175.

For cancer = no, we calculate the mean and variance of the alcohol values
of all training examples where cancer = no:

µ =
20 + 30 + 17

3
≈ 22.33,

σ2 =
1

3− 1
[(20− 22.33)2 + (30− 22.33)2 + (17− 22.33)2] ≈ 46.34.

Therefore, one of the Gaussian conditional probability density functions is
p(alcohol|µ = 45, σ2 = 175) and the other is p(alcohol|µ = 22.33, σ2 = 46.34).
Note that we are omitting cancer = yes and cancer = no when we write
p(alcohol|µ = 45, σ2 = 175) and p(alcohol|µ = 22.33, σ2 = 46.34) because
the µ and σ2 values already capture cancer = yes and cancer = no. However,
we could also write cancer = yes and cancer = no explicitly if we wanted.
These two functions are plotted in Figure 11.2.

Fig. 11.2: Conditional Probability Density Functions For The Alcohol Vari-
able Illustrative Dataset From Table 11.7. P (alcohol|cancer = no) is shown
in green and P (alcohol|cancer = yes) is shown in red.
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Once the parameters of the probability density functions are set, the values
of p(ai|c) used in Equation 11.4 can be taken from these functions. It is
worth noting, though, that these values are relative likelihood instead of
probabilities. However, the resulting p(c|ai) will still be probabilities due to
the use of the normalising factor α.

An example of prediction for this problem would be as follows. Consider
that we wish to predict whether a person who does not eat healthy foods
(healthyFood = no) and consumes 20 units of alcohol per month (alcohol =
20) is developing cancer. The frequency tables for x1 (healthyFood) with
Laplace smoothing, the total number of training examples for cancer = yes
and cancer = no and the parameters of the conditional probability density
functions for x2 (alcohol) computed based on the training set are shown in
Tables 11.6a, 11.8 and 11.9, respectively.

Table 11.8: Number of Training Examples From Each Class In The Training
Set From Table 11.7

cancer = no cancer = yes total

3 3 6

Table 11.9: Parameters Of The Gaussian Conditional Probability Density
Functions For The Training Set From Table 11.7

cancer = no cancer= yes

µ 22.33 45

σ2 46.34 175

The probabilities p(cancer = yes|healthyFood = no, alcohol = 20) and
p(cancer = no|healthyFood = no, alcohol = 20) are shown below:

p(cancer = yes|healthyFood = no, alcohol = 20) =

αp(cancer = yes)p(healthyFood = no|cancer = yes)p(alcohol = 20|cancer = yes) =

α× 3/6× 3/5× 0.0051 = α× 0.00153 = 12.15%

p(cancer = no|healthyFood = no, alcohol = 20) =

αp(cancer = no)p(healthyFood = no|cancer = no)p(alcohol = 20|cancer = no) =

α× 3/6× 2/5× 0.0553 = α× 0.01106 = 87.85%
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where α = 1/(0.00153 + 0.01106) ≈ 79.43.

11.4 Strengths, Weaknesses and Applications of Näıve
Bayes

Näıve Bayes has several strengths and has been successfully applied in many
different domains. Strengths include:

• Training is fast, as it requires only one pass through the data.
• The relative probabilities computed by Näıve Bayes have achieved good
results for making predictions for many applications, such as text cate-
gorisation (e.g., spam detection [6]), medical diagnosis [7], software defect
prediction [8], among others.

Näıve Bayes’ weaknesses include:

• It assumes conditional independence, which may be violated in many real
world problems.

• Requires the choice of a probability density function for numeric input
variables, which may not correspond to the true probability density func-
tion underlying the data.

• Despite being frequently good for prediction purposes, the probability
values themselves outputted by Näıve Bayes may not be good estimates
of the actual probabilities.

11.5 Summary and Discussion

Näıve Bayes is a simple probabilistic learning approach that has demon-
strated success in many applications. Its learning process involves creating
frequency tables that correspond to probability mass functions for categori-
cal input variables given the values of the output variable, or parameters of
probability density functions corresponding to numeric input variables given
the values of the output variable. Laplace smoothing is typically adopted to
avoid misclassifications resulting from frequencies of zero associated to cer-
tain input and output values in the training set. Based on these functions, on
the Bayes Theorem and on the conditional independence assumption, Näıve
Bayes can then compute the probabilities of examples to belong to each given
class, given the observed values of their input variables. These probabilities
can then be used to decide which class to predict for these examples.
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11.6 Exercises

1. Consider the illustrative training set below, which was inspired by the
real Heart Disease dataset from the UCI Machine Learning Repository6.

x1 (gender) x2 (smoker) x3 (painType) y (heartDisease)

female smokes angina yes

male smokes angina yes

male doesnt angina no

male smokes nonangina no

male doesnt nopain no

female doesnt nopain no

female doesnt angina yes

Create the frequency tables that compose the Näıve Bayes classifier for
this training set using Laplace Smoothing with ϵ = 1.

2. Draw a plot for the probability mass function p(painType|heartDisease =
no) represented by the frequency table for the input variable painType
created in Exercise 1.

3. Determine the prediction that Näıve Bayes would give to the instance
(gender = female, smoker = smokes, painType = nonangina, heartDis-
ease=?) using Laplace Smoothing with ϵ = 1, given the training set from
Exercise 1.

4. Compute the probability p(heartDisease = yes) based on the three dif-
ferent smoothed frequency tables that you have obtained in Exercise 3,
rather than based on the original frequency values of each class. Reflect
about the results.

11.7 Exercise Answers

1.
heartDisease=yes heartDisease=no total

gender=female 3 2 5

gender=male 2 4 6

total 5 6 11

heartDisease=yes heartDisease=no total

smoker=smokes 3 2 5

smoker=doesnt 2 4 6

total 5 6 11

6 https://archive.ics.uci.edu/ml/datasets/heart+disease
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heartDisease=yes heartDisease=no total

painType=angina 4 2 6

painType=nonangina 1 2 3

painType=nopain 1 3 4

total 6 7 13

2. The probability mass function is given below:

3. In order to predict whether the person does or does not have disease, we
need to compute p(yes|female, smokes, nonangina) and p(no|female,
smokes, nonangina). Then, we give a prediction corresponding to the
higher probability.
For compute these probabilities, we need to instanciate Eq. 11.4:

p(yes|female, smokes, nonangina) =

= αP (yes)P (female|yes)P (smokes|yes)P (nonangina|yes)

= α ∗ 3/7 ∗ 3/5 ∗ 3/5 ∗ 1/6

≈ α ∗ 0.0257 = 1/(0.0257 + 0.01814) ∗ 0.0257 ≈ 0.59

P (no|female, smokes, nonangina) =

= α ∗ P (no)P (female|no)P (smokes|no)P (nonangina|no)

= α ∗ 4/7 ∗ 2/6 ∗ 2/6 ∗ 2/7

≈ α ∗ 0.01814 = 1/(0.0257 + 0.01814) ∗ 0.01814 ≈ 0.41

The p(a|c) probabilities above are computed based on the frequency val-
ues from Exercise 1’s answer. For example, P (female|yes) = 3/5 because,
according to the first column of the first table, 3 in 5 people who had dis-
ease were female. The probabilities p(c) are still calculated based on the
original frequencies (without Laplace smoothing).
As p(yes|female, smokes, nonangina) > p(no|female, smokes, nonangina),
Näıve Bayes would predict yes, the person has the disease. However, as
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p(yes|female, smokes, nonangina) is very close to p(no|female, smokes,
nonangina), we can consider that Nav̈e Bayes is not very certain on the
class being yes.

4. We have three input variables. Two of them (gender and smoker) can
assume two possible values (female/male and smokers/doesnt). How-
ever, the other input variable (painType) can assume three possible val-
ues (angina/nonangina/nopain). If we compute p(heartDisease = yes)
based on the first two smoothed tables, we get the value of 5/11 ≈ 0.4545.
However, if we compute p(heartDisease = yes) based on the third
smoothed table, we get the value 6/13 ≈ 0.4615. As we can see, these
values are not the same, hindering the calculation of p(yes).
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Chapter 12

Evaluation of Supervised Learning
Models

George G. Cabral and Leandro L. Minku

As explained in the introduction to Part III of this book, supervised learning
aims at creating functions (models) able to predict output variables given the
values of the input variables. Such functions should be able to generalize to
new examples that are unseen at training time. If a predictive model works
well on the training data, this does not mean that it works well for unseen
data. But how to evaluate how well a given predictive model is likely to
perform on unseen data? This chapter will explain a number of performance
metrics (Section 12.1) and evaluation procedures (Section 12.2) that can be
used for this purpose.

12.1 Evaluation Metrics

This section explains some evaluation metrics that can be computed over a
set of examples to show how well a given predictive model performs on this
set of examples. In other words, they can be used to compute the predictive
performance of a given model on a set of examples. Section 12.1.1 presents
evaluation metrics for classification problems, whose output variables are
categories. Section 12.1.2 presents evaluation metrics for regression problems,
whose output variables are numeric.

12.1.1 Classification Problems

Consider a set of examples with known output values

G. Cabral is with the Department of Computing, Federal Rural University of Pernambuco,
BR. L. Minku is with the School of Computer Science, University of Birmingham, UK.
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E = {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))},

where x(i) ∈ X are the input variables coming from any input domain X ,
y(i) ∈ Y is the output variable coming from the categorical domain Y, 1 ≤
i ≤ M , and M is the number of examples. Consider also the predictions
{ŷ(1), ŷ(2), · · · , ŷ(M)} given by a function f : X → Y to these examples. Each
prediction ŷ(i) can be either correct or incorrect. It is correct when ŷ(i) = y(i)

and incorrect when ŷ(i) ̸= y(i).
When we are dealing with binary classification problems (i.e., problems

where Y is a set containing two categories), it is common to refer to one of
the categories as the “positive” category and the other one as the “negative”
category. A matrix called confusion matrix can be used to count the number
of positive and negative examples from E that are correctly and incorrectly
classified by the function f being evaluated as follows:

Confusion Matrix:
Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

The true positive (TP) is the number of examples that are predicted as
positive and are actually positive. The false positive (FP) is the number of
examples that are predicted as negative but are actually positive. The True
Negative (TN) is the number of examples that are predicted as negative and
are actually negative. The False Negative (FN) is the number of examples
that are predicted as negative but are actually positive.

The confusion matrix can give an idea of how well the function f is predict-
ing examples in E . However, it is typically easier to interpret the predictive
performance of a function when we represent the values above in the form
of ratios, or when we aggregate these values into single metric values. We
explain below some examples of evaluation metrics that can be computed
based on the confusion matrix.

Accuracy is the proportion of examples that are correctly classified. It
can be calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
.

This metric has values in [0, 1], with 0 being the worst possible value and
1 being the best possible value. However, this metric is only suitable when
the number of positive and negative examples in E is similar. When that is
not the case (i.e., when the data are class imbalanced), this metric focuses
on the predictions given for examples of the majority class. Therefore, a
function f that is able to predict the majority class very well, but fails to
correctly identify examples of the minority class, gets a misleadingly high
value for the accuracy metric. For example, consider a problem where E
contains 100 examples – 10 belonging to the positive class and 90 belonging
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to the negative class. Consider that f always predicts negative, no matter
the values of the input variables of the examples. The accuracy of f would
be (90 + 0)/100 = 90%, which appears to be a very good value. However, f
is not a reasonable predictive model, as it always predicts the same category
regardless of the example being predicted.

Classification Error is the opposite of Accuracy:

Classification Error = 1−Accuracy.

This metric has values in [0, 1], with 1 being the worst possible value and 0
being the best possible value.

Precision is the proportion of positive predictions that are correct pre-
dictions. It can be calculated as follows:

Precision =
TP

TP + FP
.

This metric has values in [0, 1], with 0 being the worst possible value and 1
being the best possible value. This metric has also been discouraged for class
imbalanced problems, as it is a biased metric [1].

Recall (a.k.a., True Positive Rate (TPR) or Sensitivity) is the
proportion of positive examples that are successfully predicted as positive. It
can be calculated as follows:

TPR =
TP

TP + FN
= 1− FNR,

where FNR is the False Negative Rate:

FNR =
FN

TP + FN
.

Recall has values in [0, 1], with 0 being the worst possible value and 1 being
the best possible value, whereas FNR has values in [0, 1], with 1 being the
worst possible value and 0 being the best possible value. Recall and FNR
are suitable metrics to be used no matter if the data are class imbalanced
or not. However, they only represent how well f performs on the positive
category. Therefore, they should never be reported in isolation. Other metrics
to also capture performance on the negative category, such as the specificity
explained below, should be reported to complement them.

Specificity (a.k.a., True Negative Rate) is the proportion of negative
examples that is successfully predicted as negative. It can be calculated as
follows:

TNR =
TN

TN + FP
= 1− FPR,

where FPR is the False Positive Rate (a.k.a., false alarm rate):
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FPR =
FP

TN + FP
.

Specificity has values in [0, 1], with 0 being the worst possible value and 1
being the best possible value, whereas FPR has values in [0, 1], with 1 being
the worst possible value and 0 being the best possible value. Similar to recall
and FNR, Specificity and FPR are suitable metrics to be used no matter if
the data are class imbalanced or not, but should be complemented by the
report of other metrics to also capture performance on the positive category.

F1-Score is the harmonic mean between precision and recall:

F1-Score = 2 · Precision · Recall
Precision + Recall

.

It has values in [0, 1], with 0 being the worst possible value and 1 being the
best possible value. F1-Score is a useful metric when one needs to aggregate
precision and recall into a single value. However, similar to Precision, F1-
Score is also a biased metric that has been discouraged for class imbalanced
data [1].

G-Mean is the geometric mean between recall and specificity:

G-Mean =
√
TPR · TNR.

It has values in [0, 1], with 0 being the worst possible value and 1 being the
best possible value. Similar to Recall and Specificity, G-Mean is suitable for
both class balanced and imbalanced data. It is a useful metric when one needs
to aggregate the performance on the positive and negative categories into a
single unbiased metric.

When dealing with multi-class classification problems (i.e., problems where
Y is a set containing more than two categories), the confusion matrix
can be generalized as follows, where ci, represents a given category in Y,
i ∈ {1, 2, · · · , n}, n is the number of categories, and Cj,k is the number of
examples of category cj that were predicted by f as being of category ck,
∀j, k ∈ Y:

Predicted c1 Predicted c2 · · · Predicted cn
Actual c1 C1,1 C1,2 · · · C1,n

Actual c2 C2,1 C2,2 · · · C2,n

...
. . . · · ·

...

Actual cn Cn,1 Cn,2 · · · Cn,n

Metrics for binary classification problems can also be generalized to multi-
class problems.

The following correspond to the overall accuracy, and to the precision,
recall and specificity for a given category ci:

Accuracy =

∑n
i=1 Ci,i∑n

j,k=1 Cj,k
,
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Precisionci =
Ci,i∑n
j=1 Cj,i

,

Recallci =
Ci,i∑n
j=1 Ci,j

,

Specificityci =

∑
j ̸=i Cj,j∑

j ̸=i,k Cj,k
.

Based on these, the F1-Score for a given category ci and the overall G-
Mean for all categories can be computed as follows:

F1-Scoreci = 2 · Precisionci · Recallci
Precisionci +Recallci

,

G-Mean = n

√√√√ n∏
i=1

Ci,i.

12.1.2 Regression Problems

Consider a set of examples with known output values

E = {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))},

where x(i) ∈ X are the input variables coming from any input domain X ,
y(i) ∈ R is a real-valued output variable, 1 ≤ i ≤ M , and M is the number
of examples. Consider also the predictions {y′(1), y′(2), · · · , y′(M)} given by a
function f : X → R to these examples. Different from classification problems,
instead of considering predictions as “correct” or “incorrect”, it is common
practice to check how different the predicted value is from the actual one,
i.e., how large the error of the predictions is. We show below some evaluation
metrics that can be used to evaluate f based on E .

Mean Absolute Error (MAE) is the average absolute value of the
difference between the predicted and actual outputs:

MAE =
1

M

M∑
i=1

|y(i) − ŷ(i)|.

This metric has positive or zero values, where the smaller the value the better.
Mean Squared Error (MSE) is the average squared value of the dif-

ference between the predicted and actual outputs:
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MSE =
1

M

M∑
i=1

(y(i) − ŷ(i))2.

This metric has positive or zero values, where the smaller the value the better.
The squared function has the effect of emphasizing larger differences between
the actual and predicted output values. However, the use of the squared
function makes the values of this metric more difficult to interpret, as their
unit of measurement is different from the unit of the output variable. The
metric presented next overcomes this problem.

Root Mean Squared Error (RMSE) is the squared root of the MSE:

RMSE =

√√√√ 1

M

M∑
i=1

(y(i) − ŷ(i))2.

This metric has positive or zero values, where the smaller the value the better.
The metrics above are measured in the unit of the output variable (or the

square unit, in the case of MSE), which may not be very easy to interpret
depending on the problem. The metrics explained below may be helpful to
improve interpretability.

Mean Absolute Percentage Error (MAPE) is the absolute value of
the difference between the actual and predicted output values as a proportion
of the actual value:

MAPE =
1

M

M∑
i=1

∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣ .
This metric has positive or zero values. Values smaller/larger than one corre-
spond to prediction errors that are in general smaller/larger than the actual
output values. The smallest the value of this metric, the better. However,
this metric may place less emphasis on errors performed on examples whose
output values are larger. This is because larger output values will result in a
larger denominator, and as a result a smaller relative error.

Relative Absolute Error (RAE) is a measure of the error relative to
a simple model that would predict the average of the actual output values of
the examples in E :

RAE =

∑M
i=1 |y(i) − ŷ(i)|∑M
i=1 |y(i) − ȳ|

,

where ȳ is the average of the actual outputs:

ȳ =
1

M

M∑
i=1

y(i).



12.2 Evaluation Procedures 169

This metric has values that are positive or zero. RAE’s numerator represents
the MAE of the function f being evaluated, whereas RAE’s denominator
represents the MAE of the simple model. Therefore, values smaller/larger
than 1 mean that the predictions are in general better/worse than those
provided by the simple model.

Root Relative Squared Error (RRSE) is also a measure of the error
relative to a simple model that would predict ȳ. However, similar to RMSE,
it further emphasizes larger errors by squaring the differences between the
actual and predicted output values:

RRSE =

√√√√∑M
i=1(y

(i) − ŷ(i))2∑M
i=1(y

(i) − ȳ)2
.

This metric also has values that are positive or zero, where smaller values are
better values. Values that are smaller/larger than 1 mean that the predictions
are in general better/worse than those provided by the simple model.

12.2 Evaluation Procedures

During the modeling phase of a problem, i.e., when training the predictive
model, practitioners have access to a limited amount of training data (i.e., a
subset of examples of the problem) and the aim is to create a predictive
model that behaves well when deployed (i.e., that can generalize well to
unseen data). In an unreal scenario, practitioners would have all possible
data available during the modeling (training) phase. In such unreal scenario,
theoretically, one could learn a classifier able to produce the best achievable
predictive performance (e.g., accuracy of 100% or MSE of 0). However, in real
world problems, the data shortage for modeling the problem is often an issue
that must be seriously taken into account. Moreover, data typically includes
noisy examples, whose input or output values have been potentially collected
with some mistakes. Learning algorithms should try to make the most of the
available data while avoiding the negative effect of noise.

Figure 12.1 presents a bi-dimensional two-class dataset where each of the
classes contains 20 examples to illustrate this. Assume that these data are
used as the training set to learn a classifier. By taking a visual analysis of this
dataset we can see some particularities that, intuitively, would be beneficial
if incorporated or not incorporated into the classifier:

• Example 20 of the orange class may be interpreted as a noise. It may be
desirable for the classifier not to incorporate it into its learned function.

• Examples 14, 8 and 15 of the orange class are placed in a conflict area.
It may be desirable for the classifier to be capable of separating these
examples from those of the blue class.
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Fig. 12.1: Hypothetical 2-class dataset containing 20 examples for each class.

As this is a two dimensional problem (with only two input variables), one
could attempt to plot the decision boundary learned by the predictive model
to get an idea of how well it may generalize to unseen data. The decision
boundary are lines learned by a predictive model to separate examples of
different classes in a classification problem. As we can see from Figure 12.1,
classifier A was able to make the most of the data while preventing the nega-
tive effect of example 20. This classifier is likely to generalize well. However,
classifier B learned the noise of example 20. This classifier may not generalize
well. Similarly, predictive models for regression problems can also be affected
by noise.

In contrast to the dataset presented in Figure 12.1, most real world prob-
lems are composed of several input variables. For these problems we cannot
visually assess how good the learned model is. Instead, we need to compute
the predictive performance based on a set of examples using evaluation met-
rics such as the ones presented in Section 12.1. However, if we compute the
evaluation metrics on the training set, we would be considering a predictive
model to be good when it learns noise. For instance, classifier B makes no
mistakes on any training example and would get the best possible predictive
performance on the training set. In contrast, classifier A misclassifies example
20 and would get worse predictive performance on the training set. Never-
theless, classifier A should be considered as better than classifier B in terms
of its generalization capability.
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Evaluation procedures can be used to train predictive models and evaluate
their generalization capabilities by splitting the available data into different
sets for training and evaluation (testing) purposes. Different evaluation pro-
cedures create such splits in different ways. Sections 12.2.1, 12.2.2 and 12.2.3
present three popular evaluation procedures.

12.2.1 Stratified k-fold Cross-Validation

As explained above, when building a classifier, it is imperative that the
data used to train the classifier is not used to assess its performance.
If a classifier learns a supervised problem represented by a training set
τ = {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M)), examples contained in τ may
be well learned, but examples not present in τ may still be misclassified.
Therefore, it is important to separate the available data into distinct datasets
called training and test datasets. The idea is to train a classifier on the train-
ing dataset and validate its predictive performance on the test dataset. How-
ever, depending on the split of the data used to create the training and test
sets, a different predictive model and a different estimation of the generaliza-
tion capability may be obtained.

For example, let’s consider the dataset in Figure 12.1 and suppose that
the examples (orange class: 20, 14, 8, 15, 13, and 6) were used for testing a
classifier f whereas the remainder of the orange examples were used to train f .
In such case, some key examples were left behind in the learning phase and the
decision surface may be negatively affected. Had example 14 been included
in the training set, a better model could have been obtained. Similarly, the
predictive performance calculated on the test set may also be influenced by
the examples included in this set. The estimate of the generalization of the
predictive model may assume a larger or smaller value depending on which
examples are included in the test set.

The idea of k−fold cross-validation is to systematically create several dif-
ferent splits of the data into training and test sets, such that each example is
used once for testing. By ensuring that each example is used once for testing
and by using a large enough value for k so that models can be trained on more
examples, a less biased estimate of generalization ability may be obtained.
To apply this procedure, the order of the whole available data is randomized.
Then, the data are divided into k subsets called folds. The classifier can then
be trained on k − 1 folds and tested on the remaining fold. This process is
iterated k times, where each iteration selects a different fold for testing. In a
10-fold cross validation procedure, for example, the available data is divided
into ten folds. Then 10 classifiers are learned (based on 9 folds each time)
and tested in the fold not used for training, as depicted in Figure 12.2. The
estimation of the performance of a classifier that would be trained on the full
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dataset is then computed as the average test performance of the classifiers
trained on each of the k iterations, as depicted in Equation 12.1.

TEST FOLD TRAINING FOLDS

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

Fig. 12.2: 10-fold cross validation scheme. The test fold is shown in green,
whereas the training folds are shown in (lighter or darker) orange.

Perf =
1

k′

k∑
k′=1

Perf(k′) (12.1)

where Perf(k′) represents any performance metric that is suitable for the
problem in hands, computed on the test fold k′, using the classifier trained
on folds k′′ ∈ {1, 2, · · · , k}\k′.

Note that k-fold Cross Validation does not guarantee that the best training
examples will be chosen to build the classifier, however, it can be repeated as
many times as necessary to reduce the chances of picking examples that do
not represent well the problem. It is also common to create the splits such
that each fold preserves the same proportion of examples of each class as the
proportion presented by the full data set. This process is called stratification
and may help to improve the estimation of generalization.
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12.2.2 Leave-one-out cross-validation (LOOCV)

Leave-one-out Cross Validation (LOOCV) can be defined as a particular case
of the k-fold Cross Validation (Section 12.2.1) where the value of k is set to
n, i.e., the total number of available labeled examples. For large datasets,
using the LOOCV procedure means to create a large number of classifiers,
which may be very time consuming. For small datasets, this procedure may
have a feasible computational cost while enabling the models to be trained
on larger training sets than when k < n.

Table 12.1 shows an example of dataset containing 12 different tonalities of
the colors red, green and blue. Considering this data, creating a classifier that
properly generalizes this problem may be a challenging task and the k-fold
cross validation using typical values for the k may be unsuitable. Conversely,
for this problem, the LOOCV will build twelve classifiers (f) such that each
of these will be trained using 11 training examples and will be tested on
the remaining one. The estimate of the generalization can then be calculated
based on Eq. 12.1 with k = 12.

Table 12.1: Dataset containing different tonalities for the RGB color pattern.

R G B Class

134 10 20 Red

210 31 5 Red

198 15 2 Red

189 8 21 Red

11 214 3 Green

7 193 20 Green

20 207 4 Green

13 221 20 Green

3 17 179 Blue

21 10 200 Blue

12 18 215 Blue

15 4 196 Blue

12.2.3 Repeated Hold-out Validation

The Hold-out Validation procedure simply consists in randomly selecting
a given number of examples for training and using the remaining ones for
testing. The training examples are used to train a predictive model f , whereas
the test examples are used to estimate its generalization capability. However,
unless the dataset is very large, using a single split of the data into training
and test sets would mean that the estimate of the generalization is likely
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biased. By chance, the split may have been a “lucky” one that results in a
good value for the generalization estimate, when in reality the performance
on other unseen examples would not be so good. Conversely, the split may
have been an “unlucky” one that results in a poor value for the generalization
estimate, when in reality the performance on other unseen examples would
not be so poor.

In an attempt to overcome this issue, the Hold-out Validation procedure
is typically repeated multiple times with different random splits of the data
into training and test sets. The estimate of the generalization of a model
trained on the full dataset is then set as the average of the test performances
obtained on all repetitions. A disadvantage of this procedure compared to
k−fold Cross Validation is that it does not ensure that every example is
used for testing once. Some examples may be used multiple times for testing,
whereas others may not be used at all. This could potentially lead to a more
biased estimate of generalization when the dataset is not very large.

12.3 Summary and Discussion

This chapter presented evaluation procedures that can be used to evaluate
the generalization ability of a predictive model f learned by a given machine
learning algorithm with a fixed and pre-defined set of hyperparameter values
(when applicable) 1. Several different performance metrics that can be used
with these evaluation procedures have also been presented, where each met-
ric captures and/or focuses on different performance aspects. Several other
performance metrics exist. As future reading, you may wish to learn about
the Area Under the Receiver Operating Characteristic Curve (AUC) [2].

The evaluation procedures presented in this chapter are for estimating
generalization. One may think of using the average test performance met-
rics reported by these procedures for model selection, i.e., to choose among
different models created by different machine learning algorithms and/or hy-
perparameter values. This is possible. However, it is important to note that
once the average performance metric values computed based on certain test
data are used to select a model, they do not work as measures of the gener-
alization capability of this model on unseen data anymore. This is because
the model was chosen so as to optimize the value of predictive performance
computed on the given test data, i.e., we chose the model (among a set of
models) that does best on those test data. Therefore, such average test per-
formance can become biased towards this chosen model [3]. Another separate
test set that was used neither for training nor for model selection would thus

1 Hyperparameters are parameters that have to be set before running the learning algo-
rithm. For example, the learning rate used by backpropagation for multilayer perceptrons

is a hyperparameter.
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be necessary to further evaluate the generalization capabilities of the selected
model.

12.4 Exercises

1. Consider the following data set:

E = {([1, 2, 3],positive), ([1, 1, 1],negative), ([3, 3, 3],positive)}.

Consider also a classifier function f that gives the following predictions
to these examples:

{negative,positive,positive}.

Calculate all the performance metrics presented in Section 12.1.1 of this
chapter. Reflect about the differences in the results obtained when using
different metrics.

2. Consider the following data set:

E = {([1, 2, 3], 1), ([1, 1, 1], 0.1), ([3, 3, 3], 7)}.

Consider also a classifier function f that gives the following predictions
to these examples:

{2, 4.1, 8}.

Calculate all the performance metrics presented in Section 12.1.2 of this
chapter. Reflect about the differences in the results obtained when using
different metrics.

3. Given the widely known dataset Iris, a kNN classifier with k = 3, and
the accuracy evaluation metric, perform: (i) 10-fold cross validation, (ii)
Leave-one-out cross validation and (iii) repeated hold-out validation with
30 repetitions. Analyze the results for each procedure in terms of predic-
tive performance and training time. You may use WEKA as a machine
learning tool: https://www.cs.waikato.ac.nz/ml/weka/.

12.5 Answers

1. The performance values are as follows:

Accuracy =
1

1 + 1 + 0 + 1
≈ 0.33

Classification Error ≈ 1− 0.33 = 0.67
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Precision =
1

1 + 1
= 0.5

TPR =
1

1 + 1
= 0.5

FNR =
1

1 + 1
= 0.5

TNR =
0

0 + 1
= 0

FPR =
1

0 + 1
= 1

F1-Score = 2 · 0.5 · 0.5
0.5 + 0.5

= 0.5

G-Mean =
√
0.5 · 0 = 0

Note that there are twice more positive than negative examples in E ,
i.e., there is class imbalance. As most examples were misclassified, the
accuracy and classification errors are poor. However, we can see that the
performance on the negative class (TNR) is much worse than that on the
positive class (TPR). In particular, no example of the negative class was
correctly classified, leading to very low TNR. Correspondingly, the FPR
was also very high. The performance on the positive class (TPR) was also
poor, but not so poor (TPR = 0.5, FNR = 0.5). As the performance on
the negative class was so poor, this had a dramatic impact on the value
of the G-Mean (G-Mean = 0), though the impact on the F1-Score was
not so large.

2. The performance values are as follows:

MAE =
1

3
[|1− 2|+ |0.1− 4.1|+ |7− 8|] = 2

MSE =
1

3
[(1− 2)2 + (0.1− 4.1)2 + (7− 8)2] = 6

RMSE =
√
6 ≈ 2.45

MAPE =
1

3

[∣∣∣∣1− 2

1

∣∣∣∣+ ∣∣∣∣0.1− 4.1

0.1

∣∣∣∣+ ∣∣∣∣7− 8

7

∣∣∣∣] = 14

RAE =
|1− 2|+ |0.1− 4.1|+ |7− 8|

|1− 2.7|+ |0.1− 2.7|+ |7− 2.7|
≈ 0.70

RRSE =

√
(1− 2)2 + (0.1− 4.1)2 + (7− 8)2

(1− 2.7)2 + (0.1− 2.7)2 + (7− 2.7)2
≈ 0.79

Note how the large error on the second example was magnified by the
RMSE and RRSE compared to the MAE and RAE metrics. Note also
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how the relative error on the first example (|(1 − 2)/1| = 1) was much
larger than the relative error on the third example (|(7 − 8)/7| = 0.14)
when calculating MAPE, despite the absolute errors (differences between
the actual and predicted values) being the same for these two examples.
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Chapter 13

k-Means

Harish Tayyar Madabushi

The k-means clustering algorithm (k-means for short) provides a method of
finding structure in input examples. It is also called the Lloyd–Forgy algo-
rithm as it was independently introduced by both Stuart Lloyd [1] and Ed-
ward Forgy [2]. k-means, like other algorithms you will study in this part of
the book, is an unsupervised learning algorithm and, as such, does not require
labels associated with input examples. Recall that unsupervised learning al-
gorithms provide a way of discovering some inherent structure in the input
examples. This is in contrast with supervised learning algorithms, which re-
quire input examples and associated labels so as to fit a hypothesis function
that maps input examples to one or more output variables.

While there are different structures that can be extracted from input exam-
ples the most intuitive is a cluster. Very simply, a cluster is a set of examples
that are grouped together, often as a consequence of those examples sharing
some similarities. The k-means algorithm is one method of finding clusters
in input examples. It is important to note that k-means requires as input
the number of clusters (k) and the method of selecting this number is not
always obvious. While there are methods of estimating a ‘good’ k, some of
which we will discuss later in Section 13.5, this might not always be feasible
and, in such instances, one might use algorithms which do not require se-
lecting a value of k. You will study some of these other algorithms, such as
DBScan, in subsequent chapters of this book. Although clustering provides
us with methods of grouping input examples, it does not provide information
on the relationship between these resulting groups. For those cases where
we might require such relations, one might use algorithms that can extract
what is called connectivity information such as “Hierarchical Clustering”, yet
another unsupervised learning algorithm that is also detailed in subsequent
chapters.

This chapter begins by exploring some applications of clustering algo-
rithms, of which k-means is by far the most favored because it is simple,
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intuitive and also effective. The chapter then provides an intuitive overview
of the algorithm, before stepping into the details of its implementation in-
cluding its optimization objective and computational complexity. Finally, we
explore some methods of picking k, the number of clusters, before then ex-
ploring possible extensions of this algorithm. At the end of this chapter you
will

(a) know what k-means is and when to use it,
(b) know how to implement k-means, and
(c) know how to interpret the results.

13.1 Motivation and Applications

Why might one want to cluster input examples together and where might
such clustering come in handy? Consider the scenario wherein a manufac-
turer of sweaters is attempting to come up with some fixed sizes. Garment
manufacturers must come up with a fixed (and feasible) number of sizes
in which to offer their products to ensure that the manufacturing process is
tractable. One method of doing this might be to sample the height and weight
of potential customers and group them by those who can wear the same size.
Notice how, in this example, the height and weight are the input variables
and clusters of input examples will provide an estimate of the heights and
weights of people who might fit into the same size.

The applications of extracting structure from data are wide ranging: online
retailers, for example, might want to cluster customers into groups who are
shown the same offers, computer files that are often required together might
be clustered so they can be loaded together, thus reducing load time. Sim-
ilarly, students might be clustered based on performance so certain groups
can be provided additional support.

Clustering is also used to analyze and group DNA sequences extracted
from fragments of biological material [3] to allow biologists to both identify
species and also find relationships between species’ and where a species fits
in the overall taxonomy of biological organisms. Notice that in this case, we
require methods that additionally provide information regarding the connec-
tions between clusters, such as hierarchical-clustering. As such, it is important
to choose an algorithm based on the nature of the problem at hand.

13.2 An Intuitive Overview of k-means

Consider a set of input examples each consisting of two input variables as
illustrated by Figure 13.1a. Be mindful of the fact that both the axes of
the figure represent input variables (neither of them are output variables in
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contrast with supervised learning). The goal is to cluster these examples into
k clusters (i.e., k = 3). Take note of the input examples illustrated in the
figure below. Think about what the resultant clusters might look like and if
3 is a reasonable value for k.

(a) Input examples (b) with cluster centroids added.

Fig. 13.1: A visualization of examples in two input variables x1 and x2

The k-means algorithm takes as input k, the number of clusters, and the
input examples. It starts by randomly initializing what we call cluster cen-
troids, which will eventually be the centroids of our final clusters. Figure 13.1b
represents a visualization of these centroids alongside the input examples. No-
tice that each of these randomly initialized centroids has an associated color
which we use to represent different clusters.

k-means then performs two steps iteratively: the first is what is called
the cluster assignment step, wherein each input example is assigned to the
cluster centroid that it is “closest” to (while we define ‘close’ formally later
on, for now, think close in two and three dimensions), and the second is the
move centroid step wherein each cluster centroid is moved to the centroid of
the input examples that were assigned to it in step 1. Figure 13.2 illustrates
three iterations over these steps. At the end of each iteration the centroid
that an example is associated with (its color) can switch based on how the
centroids themselves moved.

Notice how, on the third iteration, there is very little movement of the
centroids (Figure 13.2f) and how any subsequent iterations will result in no
change at all. When this occurs, k-means terminates and clusters associated
with each cluster centroid are returned. Note that in practice, k-means is run
for a fixed number of iterations (e.g. 15 – 20) as the clusters change only
minimally after this point (also see Section 13.3.2).

It is important to remember that k-means is sensitive to both the initial-
ization of the cluster centroids [4] and the value of k. What this implies is
that the output clusters will change (sometimes dramatically) based on either
of these. So far, we’ve gained a high level understanding of k-means. In the
next section, we will formalize this intuition and, additionally, discuss the
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(a) Iter. 1: Cluster assignment (b) Iter. 1: Move centroid.

(c) Iter. 2: Cluster assignment (d) Iter. 2: Move centroid.

(e) Iter. 3: Cluster assignment. (f) Iter. 3: Move centroid.

Fig. 13.2: A visualization of k-means performing cluster assignment andmove
centroid over 3 iterations. Notice the negligible movement of centroids in
iteration 3.

optimization objective for k-means, which provides a way of evaluating each
of the different cluster assignments associated with different initializations
and values of k. As a result, we can pick the “best” cluster assignment from
amongst several different ones.
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13.3 k-means: The internals

Now that we have an intuitive overview of the k-means algorithm, let us
explore the algorithm more formally. To begin with, let us revisit the ter-
minology we will be using: The n input examples are denoted as T =
{x(1),x(2), ...x(n)} each consisting of m input variables (each person’s de-
tails in the sweater example above consists of height and weight which
are the input variables), and {µ1,µ2, ...µk} denote the k cluster centroids.
{C(1), C(2), ..., C(k)} denote the sets consisting of the indexes of input exam-
ples assigned to the corresponding cluster centroid. Specifically, C(1) is a set
that contains the indexes of input examples assigned to the cluster centroid
µ1 and so on – for example, C(1) might be {1, 4}, which would imply that the
input examples x(1) and x(4) are assigned to the cluster centroid µ1.

Algorithm 14 k-means algorithm

Parameters: Input examples x(1), x(2), . . . , x(n) and the number of clusters, k.

Output: k clusters ({C(1), C(2), ..., C(k)}).
1: Initialize (randomly) k cluster centroids {µ1,µ2, ...µk} ∈ Rm

2: repeat
3: for i = 1 to k do

4: C(i) := indexes of input examples whose “closest” cluster centroid is µi

5: end for
6: for i = 1 to k do

7: µi := center of input examples assigned to C(i)
8: end for
9: until No change to clusters ({C(1), C(2), ..., C(k)}) between iterations.

Consider the k-means clustering algorithm presented above (Algorithm
14). The algorithm takes as input the number of required clusters k and
the input examples (x(1), x(2), . . . , x(n) ), and returns the k clusters
({C(1), C(2), ..., C(k)}) consisting of indexes associated with input examples.
Notice that the first for loop (lines 3 – 5) performs cluster assignment and
second (lines 6 – 8) performs the move centroid step. It should be noted that
some implementations of k-means use an array of length n to keep track of
the index of the closest centroid to each input example instead of, as we have
done, k sets to keep track of the indexes of input examples closest to each
centroid. Note that these are equivalent.

The cluster assignment step requires us to find input examples that are
closer to a given cluster centroid than any of the other cluster centroids. We
do this by finding the Euclidean distance between each input example and all
of the cluster centroids and picking the one that is closest. The combination of
cluster assignment and move centroid allow k-means to generate clusters with
minimal within-cluster variance. It is possible to use other distance measures
(e.g. cosine, cityblock or squared Euclidean distance) in place of Euclidean
distances and some implementations of k-means do provide these options.
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However, these other measures do not result in clusters with minimal within-
cluster variance and the reasoning for convergence of the algorithm that we
provide in Section 13.3.3 relies on the use of Euclidean distance. As such,
these other measures might result in the algorithm not converging. In the
next section, we will discuss the optimization objective associated with k-
means and use it to understand how the two steps of the algorithm translate
to minimizing within-cluster variance.

13.3.1 Optimization Objective

Let’s define µ(x(i)) to represent the cluster centroid that input example x(i)

is assigned to. Recall that C(i) is a set that contains the indexes of input
examples assigned to the cluster centroid µi. Therefore, µ(x

(i)) can be written
as µ(x(i)) = µj ⇐⇒ i ∈ C(j), which expresses the fact that µ(x(i)) will be
equal to µj (a given cluster centroid j) if and only if i is an element of C(j).
Notice that i being an element of C(j) would in turn imply that the input
example x(i) is assigned to µj .

Notice that if a centroid is a good representation of a set of input examples
in a cluster, then it would be “close” to each of them. As such, a good mea-
sure of this is the sum of the squared distance between the cluster centroid
of a cluster and each of the constituent input examples associated with that
cluster. This measure is called the residual sum of squares (RSS) and is ex-
pressed with respect to the cluster centroids ({µ1,µ2, ...µk}) and the cluster
assignments ({C(1), C(2), ..., C(k)}) by Equation 13.1 below.

RSS(C(1), C(2), ..., C(k),µ1,µ2, ...,µk) =

n∑
i=1

(x(i) − µ(x(i)))2 (13.1)

Since the RSS represents how well our cluster assignment is doing, we can
use it to build an optimization objective where we aim to minimize the RSS
with respect to the centroids and the cluster assignments. We normalize the
RSS by the number of input examples so as to make this value comparable
across different sets of inputs. The resultant optimization objective is given
by Equation 13.2.

min
C(1),C(2),...,C(k)

µ1,µ2,...,µk

1

n
RSS(C(1), C(2), ..., C(k),µ1,µ2, ...,µk) (13.2)

In fact, the k-means algorithm presented in Algorithm 14 does exactly
what is required by Equation 13.2, that is, it minimizes the RSS. This is
because the first step – the cluster assignment step – minimizes the RSS
with respect to the cluster assignment (C(1), C(2), ..., C(k)), while holding the
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cluster centroids constant, and the second step – the move centroid step –
minimizes the RSS with respect to the centroids (µ1,µ2, ...,µk), while holding
the cluster assignment constant. Also, notice that, for a given cluster, the
right hand side of Equation 13.1 is the within-cluster variance that k-means
is implicitly minimizing.

13.3.2 Time Complexity

Let us now consider the time complexity of the k-means algorithm. The
algorithm relies heavily on computing vector distances and adding vectors (to
calculate the centroids), both of which have a time complexity ofO(m), where
m is the number of input variables. The cluster assignment step requires the
calculation of distances between k centroids and n input examples, and so
has an overall complexity of O(mkn). The move centroid step requires that
we perform a total of n additions (across different clusters), each a vector of
length m resulting in a complexity of O(nm). Therefore, the complexity of
each iteration is O(mkn) and the overall complexity of the algorithm over i
iterations is O(mkni).

Notice that the time complexity we’ve defined is reliant of the number of
iterations i, which is relatively difficult to calculate. In the worst case, the
complexity of k-means, when run until convergence, is superpolynomial [5].
However, in practice, cluster assignments change very little after a relatively
small number of iterations and so k-means is usually run for a fixed number
of iterations [6, Chapter 16].

13.3.3 Convergence

Does k-means always reach a “stable” state wherein further iterations do not
lead to changes to either the cluster centroids or the cluster assignments? Is
it possible that the cluster centroids continue to move around indefinitely,
thus leading to a scenario wherein k-means does not terminate? It turns out
that this is not the case and that k-means does always converge (as long as
we use Euclidean distance). We can show that k-means converges by showing
that the RSS monotonically decreases (or remains the same) as a result of
the combination of cluster assignment and move centroid. Remember that,
in practice, k-means is not run until convergence, but for a fixed number of
iterations (see also Section 13.3.1).

Observe that if the cluster assignment step changes the centroid that an
input example is assigned to, then the distance between the input example
and that new centroid it is now assigned to (which contributes to the RSS)
will necessarily decrease. If the new distance was going to be larger, the cluster
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assignment step would not have performed this assignment. With regard to
the move centroid step, intuitively, it should be clear that the point from
which the sum of the distance to all points in a cluster is minimal is its
center and so such a move will never increase the RSS. For a more formal
analysis, see [6, Chapter 16].

Given the monotonic decrease of the RSS and the fact that there are only
a finite number of possible clusterings, k-means is guaranteed to converge to
a local minimum and terminate as long as input examples that are equidistant
from multiple cluster centroids are allocated to one in a consistent manner.
This is important as not doing so could result in k-means not terminating as
such examples oscillate between centroids. Now that we have established that
k-means does in fact terminate and that it does so at some local minimum,
the next section discusses methods of attempting to find the solution that is
globally optimal (or as close to it as is practical).

13.4 Random Initialization

As mentioned earlier, k-means is highly sensitive to random initialization
of the cluster centroids – different initialization can result in very different
clusters. Each clustering represents one possible local minimum of the RSS as
described in Section 13.3.1 above. Finding a globally optimal solution requires
running the algorithm multiple times using different random initialization and
picking the one with the least RSS. Notice that this method is not guaranteed
to provide a global optimum – it only increases the likelihood of finding one,
and this likelihood continues to increase as the number of attempts increases.
In practice, k-means, like most machine learning algorithms, is run 10 times,
and we pick the clustering with the least RSS.

There are methods of randomly initializing the centroids that can some-
times speed up convergence. One such method is to randomly partition the
input examples into k sets and to use the centroids of these sets as initial clus-
ter centroids. Another method is to similarly partition some input examples
into k sets each containing a relatively small number of examples (e.g. 10) and
then use their centroids as the initial cluster centroids. For more initialization
methods and a formal analysis of their characteristics, see [4, 7].

13.5 Optimal Number of Clusters

Given that the k-means algorithm requires the number of clusters as input,
we must be able to (roughly) determine this number independently. Notice
that we cannot rely solely on “minimizing RSS” as we did when selecting the
best initialization. This is because the value of the RSS will reduce with the
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increase in the value of k (up to some point). Therefore, the standard method
of establishing the optimal number of clusters is by using the Elbow Method.
This requires one to plot the RSS against a varying number of clusters as
in Figure 13.3 and to pick a k at a point where the curve bends the most
(the elbow), as highlighted in the plot. Notice that this allows us to pick a
k beyond which the ‘gains’ obtained by adding a cluster are not worth the
‘cost’. Importantly, for each k, the k-means algorithm must be run multiple
times (about 10) using different initialization and the best clustering for that
k is chosen to be the run with the minimal RSS.

Fig. 13.3: Plot of how RSS varies with change in the number of cluster cen-
troids. Notice how k = 4 provides an “Elbow”.

The other way of establishing the number of clusters is based on what
these clusters are going to be used for in a downstream task. For example, if
we are clustering customers (by a combination of their heights and weights)
so as to come up with a fixed number of sweater sizes (e.g. XS, S, M, L, XL),
then we could use the number of sizes we intend to create (in this case 5) as
our k.

13.5.1 Empty assignments

As the number of clusters increases, the cluster assignment step of k-means
might result in one or more cluster centroids being assigned no input ex-
amples. As a result, the move centroid step will lead to errors because the
centroid of zero input examples does not exist. There are a couple of ways to
handle this: a) to ignore such centroids in all future steps of k-means, thus
resulting in less than k clusters or, b) keeping such centroids in their prior
positions and continuing with the algorithm. What you choose to do will
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depend on the requirements of your problem, but not handling this case will
result in your algorithm failing.

13.6 Summary and Discussion

In this chapter, we discussed the need for methods of discovering both stan-
dalone and connected clusters in input examples. Given this motivation, we
studied the k-means algorithm, which is only one, albeit the most popular
algorithm for finding clusters amongst input examples. We discussed the algo-
rithm both intuitively and more formally with a particular emphasis on those
aspects of the algorithm that are important to be aware of so as to effectively
implement and use k-means. Remember that k-means requires the definition
of k, which is its biggest handicap. Additionally, notice that k-means can
only capture clusters that are hyperspherical (i.e. circle in two dimensions,
sphere in three, . . . ) and so might not always be appropriate in certain sit-
uations. However, k-means is an intuitive algorithm, which, when run for a
fixed number of iterations as is generally the practice, is also efficient.

13.7 Exercises

1. The k-means algorithm is run with k set to 2. During a particular it-
eration, the cluster centroids of the two clusters are A: (15, 3) and B:
(12, 18). Which of the two centroids will the following input examples be
assigned to and why: (1, 2) and (8, 9)

2. This exercise is for those who are familiar with time complexity analysis
of algorithms.
Assume that a special chip, designed to optimize vector manipulation,
is able to calculate the distance between vectors and to add vectors in
constant time. What would the time complexity of the k-means algorithm
be, assuming we always run it for a fixed number of iterations (say 15)?

3. Implement the k-means algorithm and additionally ensure that, for a
given input, your implementation:

a. Executes k-means for a varying number of clusters (e.g. between 2
and 10).

b. Executes k-means multiple times (e.g. 10) using different initializa-
tions for each k and picks the best based on the value of RSS.

c. Plots RSS vs k so as to identify the “Elbow” and so the most suitable
k.

d. Optionally plot the final clusters.
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You might find the following functions helpful (although you are not
required to use them):

• euclidean distances from sklearn.metrics.pairwise
• argmin from numpy
• mean from numpy
• seed from random
• You might also like to maintain your data as numpy arrays so you
can splice data more easily.

• Try to use matrix operations where possible, instead of loops over
individual elements – this will keep your code compact and make it
easier to implement.

Finally, your algorithm must cluster the input examples (X) generated
by the following code snippet:

from sk l ea rn . da ta s e t s import make blobs
X, = make blobs ( n samples=30, c en t e r s =3,

c l u s t e r s t d =0.7 , random state=2)

13.7.1 Solutions

1. The Euclidean distance between two points (X1, Y1) and (X2, Y2) is given
by:

√
(X2 −X1)2 + (Y2 − Y1)2

The distance between:

a. A (15, 3) and (1, 2) is 14.04
b. A (15, 3) and (8, 9) is 9.22
c. B (12, 18) and (1, 2) is 19.42
d. B (12, 18) and (8, 9) is 9.85

Since both points are closer to A, they will both be assigned to the cluster
centroid A.

2. The cluster assignment step requires the calculation of distances between
k centroids and n input examples, and so has an overall complexity of
O(kn). The move centroid step requires that we perform a total of n
additions (across different clusters) resulting in a complexity of O(n).
Therefore, the complexity of each iteration is O(kn). Since we run the
algorithm for a fixed number of iterations, this is also the complexity of
the algorithm itself.

3. Before you take a look at the solution, you are strongly encouraged to
attempt the exercise yourself. The solution is available on Google Colab-
oratory at:
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• https://colab.research.google.com/drive/1QNoSZpySciaBmik4eMKf3IaqTiRadWH0?

usp=sharing

or

• https://github.com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1/tree/main/

Part%203%20-%20Learning%20Systems/Unsupervised%20Learning/k-Means/code.

The notebook also contains a step-by-step run through of the k-means
algorithm which should be very helpful in understanding it. Feel free to
make a copy of the notebook and play around with it.
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Chapter 14

Hierarchical Clustering

Shuo Wang

Hierarchical clustering is a type of unsupervised methods that partitions data
examples into clusters without asking for the number of clusters before train-
ing starts. Unlike K-means, hierarchical clustering instead requires specifying
a dissimilarity measure between groups of examples, and produces a hierar-
chical representation (a dendrogram) of examples showing which two groups
of examples are closer at each level of the hierarchy. Strategies for hierarchi-
cal clustering divide into two types: agglomerative (bottom-up) and divisive
(top-down). Agglomerative clustering starts at the bottom treating each sin-
gle example as a cluster, and recursively merges the closest pair of clusters into
a single cluster. Divisive clustering acts in the opposite direction. It starts
at the top with one big cluster and recursively splits into two new groups
with the largest between-group dissimilarity. Divisive clustering is less popu-
lar than agglomerative clustering due to its complexity of looking for the best
split at each round, but it can be made faster. Most agglomerative clustering
methods have time complexity O(N3), while the fastest divisive clustering
takes only O(N) time. In addition, divisive clustering makes splitting deci-
sions in view of all the data examples, while the agglomerative clustering
makes myopic merge decisions [1].

14.1 Agglomerative Clustering

Agglomerative clustering begins with every data example representing a sin-
gleton cluster. For a dataset with N examples, the closest two clusters are
merged into one cluster at each step, which repeats N − 1 steps in total.
When the training process ends, there is one single cluster containing all the
examples. To decide the closeness of two clusters, two parameters are re-
quired: 1) a distance measure indicating how far one example is from another
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in a dataset; 2) a dissimilarity measure indicating the distance between two
clusters. The calculation of the dissimilarity measure for clusters needs the
distance measure for examples. More details about these two parameters are
given in Section 14.1.1. The pseudocode of agglomerative clustering is given
below:

Algorithm 15 Agglomerative clustering

Parameters: dissimilarity measure d for clusters and distance measure d′ for examples

Output: a hierarchical data representation.

1: Initialize N clusters C1, C2, . . . , Ci, . . . , CN , where each cluster contains only one ex-

ample.

2: repeat
3: Find two closest clusters Cj and Ck with smallest d to merge based on d′.
4: Create a new cluster Cl ← Cj ∪ Ck.
5: Remove Cj and Ck from the cluster set.

6: Add Cl into the cluster set.

7: until no more clusters are available for merging.

14.1.1 Dissimilarity Measures Between Clusters

To find the closest (i.e. least dissimilar) clusters at each step, a dissimilarity
measure between two clusters must be defined. Different measures can give
quite different results. The 3 most commonly used measures are single linkage
(SL), complete linkage (CL) and group average (GA). Others exist, such as
the centroid method and the Ward’s method [2].

For any pair of clusters Cj and Ck, the single linkage measure dSL, also
called nearest neighbour, is defined as the distance between the two closest
examples of each cluster (see Fig. 14.1):

dSL (Cj , Ck) = min
x(t)∈Cj ,x(

t′)∈Ck

{dt,t′}

where dt,t′ can be any distance measure between two examples x(t) and x(t
′),

such as Euclidean, Manhattan and Minkowski distances. Euclidean distance
is the most commonly used one. It is defined as the length of the line be-
tween two points, and can be calculated using the Pythagorean theorem from
the Cartesian coordinates of the points. The single linkage measure simply
chooses the nearest examples and does not take in any account the internal
cohesion of the clusters. If a small cluster is initially formed, it can lead to the
progressive merging of adding one example at a time to this cluster, which
is called a chain effect [3]. In fact, two clusters to be merged based on single
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linkage do not have to be “compact”. Compactness here means that all the
examples within a group are similar to each other.

Fig. 14.1: Single linkage

The complete linkage measure dCL, also called furthest neighbour tech-
nique, is defined as the distance between the two most distant examples of
each cluster (see Fig. 14.2):

dCL (Cj , Ck) = max
x(t)∈Cj ,x

(t′)∈Ck

{dt,t′}

Fig. 14.2: Complete linkage

Complete linkage works the opposite to single linkage. Two clusters with
the smallest “furthest example distance” will be merged together at each iter-
ation. It means that the examples from these two clusters are more compact
and relatively similar.

The group average measure (or average linkage), uses the average distance
between all pairs of examples from the two clusters (see Fig. 14.3):

dGA (Cj , Ck) =
1

NjNk

∑
x(t)∈Cj

∑
x(t

′)∈Ck

{dt,t′}

where Nj and Nk are the number of examples in clusters Cj and Ck re-
spectively. The group average is a measure in between single and complete
linkage. It tends to produce more compact clusters than single linkage and
further apart clusters than complete linkage.
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Fig. 14.3: Group average

14.2 Divisive Clustering

Divisive clustering begins with the whole dataset as a single cluster, and then
recursively splits each existing cluster into two children clusters, which have
the largest between-group dissimilarity, in a top-down fashion. The pseu-
docode of divisive clustering is given below for a dataset with N examples:

Algorithm 16 Divisive clustering
Parameters: cluster choosing scheme m, cluster splitting scheme s

Output: a hierarchical data representation.

1: All the examples x(i) (i = 1, 2, . . . , N) form one cluster.

2: repeat
3: Pick one existing cluster Ci according to m.

4: Find two furthest sub-clusters Cj and Ck according to s.

5: Create two new clusters Cj and Ck, where Cj ∪ Ck = Ci.
6: Remove Ci from the cluster set.

7: Add Cj and Ck into the cluster set.

8: until the desired number of clusters is obtained.

There are various ways to choose which cluster to be split at step 3, such
as the cluster with most examples or the one with the least overall similarity
among its examples. The existing research has shown that the differences
between the choosing schemes were very small [4].

The splitting scheme can be any of the combinatorial methods, such as K-
means with K = 2. This clustering procedure combining divisive clustering
and K-means is called the bisecting K-means algorithm [4]. However, such
schemes would depend on the algorithm initialization specified at each step.
In addition, they do not necessarily hold the monotonicity property required
for dendrogram representation [5]. A method called dissimilarity analysis
proposed by Macnaughton-Smith et al. avoids these problems [6]. Instead of
considering all divisions, it starts with a single cluster Cj containing all the
data examples, then measures the average dissimilarity of each example x(t)

to all the other examples in Cj . The example that has the largest average
dissimilarity is then moved to a second cluster Ck. The above is repeated,



14.3 Interpreting a Dendrogram 195

i.e. moving examples from Cj to Ck, until the example in Cj with the largest
average dissimilarity to the examples in Cj has a smaller average dissimilarity
than its average dissimilarity to the examples in Ck. That is, there is no
more examples in Cj that are on average closer to Ck. This process results
in two children clusters. Each successive hierarchical level is produced by
applying this process to each of the clusters at the previous level. Based on
the dissimilarity analysis method, Kaufman and Rousseeuw proposed DIANA
(Divisive ANAlysis). It splits a cluster by moving examples from a larger sub-
cluster to a smaller one. The move occurs when the average dissimilarity of
an example x(t) in the larger sub-cluster to the remaining examples in that
sub-cluster is larger than the average dissimilarity of x(t) to the examples in
the smaller sub-cluster [7]. A comparison between agglomerative and divisive
clustering can be found here [8].

14.3 Interpreting a Dendrogram

The binary tree produced by hierarchical clustering is called a dendrogram.
It is a graphical display of how examples are grouped at each hierarchy level.
A dendrogram is highly interpretable, which is one of the main reasons for
the popularity of hierarchical clustering.

Let’s begin with a simple example. It is a simulated data set with 5 two-
dimensional examples, as shown in Fig. 14.4.

Fig. 14.4: Two-dimensional data examples

If we apply agglomerative clustering with single linkage, the clustering
happens in the following order:
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1. Examples A and D are grouped with distance 1.
2. Examples B and E are grouped with distance 2.
3. Cluster (A, D) and Cluster (B, E) are grouped with distance

√
5.

4. Example C is merged to Cluster (A, D, B, E) with 2
√
2.

The resulting dendrogram is shown in Fig. 14.5. The horizontal axis indi-
cates the examples in the dataset. The links between the examples represent
which examples are merged into one cluster. The vertical axis represents the
height of two merging clusters. Height is referred to as the distance/dissim-
ilarity between the clusters. In this case, the distance between A and D is
1; thus, their connecting line is at 1 along the vertical axis. Similarly, B and
E are connected at the height of 2. This height is monotonically increasing
with the level of the dendrogram. In other words, the examples that merge
at the very bottom of the tree are quite similar, whereas the examples that
merge close to the top of the tree tend to be very different.

Fig. 14.5: Resulting dendrogram

Dendrograms should be read with caution. First, different hierarchical
methods and dissimilarity measures can lead to quite different dendrograms.
Second, when reading a dendrogram, we cannot conclude about the similarity
of two examples based on how far they are along the horizontal axis [9]. For
example, example C in Fig. 14.5 locates next to example E, but it does not
mean C closer to E. All the other examples are in fact closer to C. Third, hi-
erarchical clustering does not tell you the “right” number of clusters. Instead,
it creates a hierarchical representation of data, even if data has absolutely
no hierarchical meanings. By cutting off a dendrogram at various heights,
different numbers of clusters are obtained. In practice, people often look at
the dendrogram and select by eye a sensible number of clusters, based on
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the heights of merging clusters and the desired number of clusters [9]. Al-
ternatively, other approaches have to be used, such as Bayesian hierarchical
clustering [10].

14.4 Example: Yeast Gene Data

Agglomerative clustering is popular in bioinformatics, because it provides
visualization of clusters as dendrogram and gives explainability to the task.
Here, we use a yeast gene expression dataset [11] and aim to cluster similar
yeast samples together. It contains 92 samples described by over 6000 genes.

Fig. 14.6 shows the dendrograms resulting from agglomerative clustering
with single linkage, complete linkage and group average respectively. Depend-
ing on which dissimilarity measure we use, the results are quite different. The
generated binary trees are more balanced in the complete linkage and group
average cases than in the single linkage case. In practice, the choice of dis-
similarity measure should take into consideration the type of data and the
learning task at hand [9]. The vertical axis in each dendrogram shows the
height of two clusters when they are merged.

14.5 Summary and Discussion

The core concepts of hierarchical clustering have been introduced. There are
two types of hierarchical clustering – agglomerative and divisive, differing in
the direction of forming clusters. Agglomerative clustering starts at the bot-
tom treating each single example in the dataset as a cluster, and recursively
merges the closest pair of clusters into a single cluster. Divisive clustering
starts at the top with one big cluster and recursively splits into two new
groups with the largest between-group dissimilarity. Agglomerative cluster-
ing is more widely used due to its easier implementation. Same as the other
clustering algorithms, hierarchical clustering requires a distance measure to
decide how far an example is from another. In addition, agglomerative clus-
tering needs to choose a dissimilarity measure to decide the distance between
two clusters. Three commonly used dissimilarity measures have been dis-
cussed and compared through a yeast gene data example, which are single
linkage, complete linkage and group average. The resulting clusters from hier-
archical clustering are represented by a dendrogram. It is highly interpretable
by showing how examples are grouped at each hierarchy level and the height
of two clusters when being merged. This is also the main reason for the pop-
ularity of hierarchical clustering in the field of bioinformatics. With good
explainability, it will be interesting to see how hierarchical clustering con-
tributes to many other fields, for the readers to explore. Some inspirations
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(a) single linkage

(b) complete linkage

(c) group average

Fig. 14.6: Agglomerative clustering of yeast gene expressions data with (a)
single linkage, (b) complete linkage and (c) group average. Figures are gen-
erated by Python.
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may be found here [12]. If you are familiar with Python and would like to
implement different versions of hierarchical clustering and use them on some
datasets, here are some useful resources [13] [14].

Exercise

1. Is agglomerative hierarchical clustering a deterministic or non-deterministic
clustering algorithm? A deterministic algorithm always gives the same re-
sults regardless of the starting states of the algorithm.

2. You are using agglomerative clustering to cluster an 1-dimensional data
set. At some point, you obtain 2 clusters: cluster 1 with numbers [7, 11]
and cluster 2 with numbers [12, 16, 20]. What is the distance between
these 2 clusters using single linkage? And what about using complete
linkage and group average?

3. Use single and complete link agglomerative clustering to group the data
described by the following distance matrix. Draw the dendrograms.

A B C D

A 0 5 2 3

B 0 1 6

C 0 4

D 0

4. As hierarchical clustering does not explicitly tell you the number of clus-
ters of data in results, how would you decide the most appropriate number
of clusters?

Exercise Answers

1. Agglomerative clustering is a deterministic algorithm, as the result does
not change with the starting states of the algorithm.

2. The distance will be 1 when using the single linkage, because 11 from clus-
ter 1 and 12 from cluster 2 are the nearest examples from the 2 clusters,
and the distance between these 2 examples will be the distance of these
2 clusters. Similarly, when using complete linkage, the distance between
the 2 clusters will be 13, which is the distance between examples 7 and
20. When using group average, we calculate the average distance between
all pairs of examples from the two clusters, so the cluster distance will be
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7.

3. When using the single linkage, the dendrogram is:

Fig. 14.7: Resulting dendrogram from the single linkage

When using the complete linkage, the dendrogram is:

Fig. 14.8: Resulting dendrogram from the complete linkage

4. The best choice is always the pre-knowledge, if you know the number of
clusters in advance. If not, a common way specific to hierarchical cluster-
ing is to observe the dendrogram you obtain. See and compare the height
of every two merging clusters at each hierarchy level. Find two adjacent
heights that give the largest distance increase, and draw a horizontal line
between these two hierarchy levels. The best choice can be the number
of vertical lines intersect by the horizontal line. Other general methods
include Silhouette coefficient [15], Elbow method [16], Calinski-Harabasz
Index [16], Davies-Bouldin Index [17], etc.
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Chapter 15

DBScan

Lina Yao

The Density Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm was first proposed in 1996 by [1]. It has been proven to have promis-
ing performance in various applications, and it received the SIGKDD test-
of-time award in 2014. DBSCAN is a unsupervised machine learning and
density-based clustering method. It aims for identifying high-density regions
in data space and treating them as clusters, separated by regions of low point
density. Let’s starting by an illustrative example for better understanding the
density. Taking a look at Figure 15.1, there 3 sets of sample points (the figures
from left to right). Intuitively, we can identify these clusters of points and
unclustered outliers straightforwardly, no matter how those sample points
are distributed or in what shapes. By instinct, we naturally observe and rec-
ognize the density differences within those areas and consider each cluster
of points have higher denseness. While the rest points of considerably lower
densities are regarded as noise and belong to no cluster [1]. Based on a set
of points in this example, DBSCAN groups together points that are close to
each other based on an arbitrary distance measurement in different appli-
cation domains (e.g., Euclidean distance) and a minimum number of points
that is a threshold to distinguish the outliers in the lower density regions.

15.1 The Algorithm

Suppose we have a set of data points

X = {x(1),x(2), · · · ,x(N)}

where x(i) ∈ X are drawn i.i.d. (independently and identically distributed).
The core idea of DBSCAN is to estimate the density for each data point x(i) as
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Fig. 15.1: Samples for density illustration. Different colors represent different
clusters of points

a minimal number of MinPts of points that lie inside a radius ϵ around x(i).
Points with distances to each other no greater than a pre-defined threshold
ϵ can be deemed connected and within the same cluster. As such, DBSCAN
has two key parameters.

• ϵ is a positive real value. It is defined using a distance function and
specifies the neighborhoods. Two points are considered to be neighbors
if the distance between them are less than or equal to ϵ, i.e., dist(x(i) −
x(j)) ≤ ϵ. The data points within a radius of ϵ from a given point x(i),
form its ϵ-Neighborhood denoted as Nϵ(x

(i)) : {x(i)|dist(x(i),x(j )) ≤ ϵ}.
• MinPts is a small positive constant integer, that specifies the minimum
number of data points to define a cluster.

If the neighborhood Nϵ(x
(i)) contains a number of points equal to or more

than MinPts, it’s called high density, otherwise it is low density. For exam-
ple, if we set MinPts = 4 in Figure 15.2, ϵ-Neighborhood of point A is a
high density area since it has 5 points including A itself in its surrounding
neighbourhood, which is more than MinPts = 4, while ϵ-Neighborhood of
point C is low density area since its only has 2 points including C itself.
Up to this point, we have defined two key parameters, MinPts indicates the
density and ϵ indicates the radius of ϵ-Neighbourhood, and gained the basic
understandings of measuring the density. The points in a given dataset are
then classified into the following categories.

• Core point. A core point has a ϵ-neighbourhood with more than MinPts
data points (including the given point itself);

• Border point. A border point locates in the neighborhood of certain core
point, but itself has a number of points less than MinPts within its
ϵ-Neighbourhood;

• Outlier. A point that is neither a core point nor a border point.

As recalled, the intuition of DBSCAN is to find the regions in a data space
which have higher density, separated by regions of lower density. In other
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Fig. 15.2: In this example, the minPts parameter is 4, and the ϵ radius is
indicated by the circles. Red point is a outlier point, which is not density
reachable. Green points are a core point, and pale blue points are border
points. Double arrows indicate direct density reachability, which is symmetric.
Arrows connecting the border points B and C indicate density connected,
while both are density reachable from the A. The density connectivity is
asymetric. N is not connected indicating not density reachable, and thus
considered to be a outlier point/noise. Figure adapted from Schubert et al.
[2]

words, to group each data point in a cluster which contains at least MinPts
number of points in the ϵ-neighbourhood of this point. If this point is a core
point, and then it forms a cluster along with all data points including core
points and border points that are reachable from it. The ϵ-neighbourhood
of a certain border point usually has fewer points than the ϵ-neighbourhood
of points located within its cluster. A very small MinPts is necessary to be
set to group all the points belonging to a same cluster. However, this could
also cause a problem in distinguishing points from the data noise/outlier. To
tackle this issue, DBSCAN requires that every point x(i) is in a cluster where
there is a point x(j) so that x(i) is within ϵ-neighbourhood of x(j) and its
neighbourhood has more than MinPts number of points. To achieve this,
the different levels of density reachability are defined [1]

• Directly density-reachable. Point x(i) is directly density-reachable from a
point x(j) wrt. ϵ andMinPts if x(j) ∈ Nϵ(x

(i)) : {x(i)|dist(x(i),x(j )) ≤ ϵ}
and |Nϵ(x

(j))| ≥ MinPts. Obviously, directly density-reachable is sym-
metric for core point pairs. For instance, core points A, A’ and A” are
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directly reachable in Figure 15.2. Such symmetric relationship cannot be
established for a core point and a border point.

• Density-reachable. A point x(i) is density reachable from a point x(j) wrt.
ϵ and MinPts if there is a chain of points x(i),x(i+1), ...,x(j) where from
i to j, all points satisfy that x(i+1) is directly density-reachable from
x(i). For instance, point B is density-reachable from A, while A is not
density-reachable from B in Figure 15.2. Density-reachability is a canoni-
cal extension of direct density-reachability. This relation is transitive, yet
not symmetric. Two border points within the same cluster may be not
density reachable from each other because the core point condition might
not hold for both of them. However, there must be a core point in a clus-
ter from which both border points of this cluster are density-reachable.
Therefore, the following notion of density-connectivity is introduced to
cover this relation of border points.

• Density-connectivity. A point x(i) is density connected to a point x(j)

wrt. ϵ and MinPts if there is a point x(k) such that both, x(i) and x(j)

are density-reachable from x(k) wrt. ϵ and MinPts. Density-connectivity
is a symmetric relation. For instance, border points B and C become
density-connected in Figure 15.2 via core points A, A’ or other green
core points.

Algorithm 17 DBSCAN
Parameters:
X = {x(1),x(2), · · · ,x(N)} ∈ Rd

ϵ: radius distance of neighbour

MinPts: minimal size of a cluster

1: C ← 0

2: for all unvisited point x in X do
3: mark x as V isited

4: Nϵ(x) ← regionQuery(x, ϵ) {finding initial neighbourpoints of x}
5: if |Nϵ(x)| <MinPts {size of neighbourpoints of x} then
6: mark x as NOISE

7: else

8: C ← C + 1 {start a new cluster}
9: expandCluster(x, NeighborPoints, C, ϵ, MinPts) {See Algorithm 18.}

10: end if
11: end for

Now, we have a formal notion of density. A cluster C is defined to be a
set of density-connected points wrt ϵ and MinPts, which is non-empty and
satisfying the following two properties (i) Maximality: for any data point
x(i) ∈ C and x(j) that is density-reachable from it wrt ϵ and MinPts, then
x(j) ∈ C; (ii) any of two points in this cluster are density-connected. A
toy example in Figure 15.2 explains the how it progresses. All neighbors
within the ϵ-neighbourhood of a core point A are considered to be part of
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Algorithm 18 expandCluster
Parameters:

x: current points

x′ ∈ Nϵ(x): neighbour points of current points x
C: current cluster

ϵ

MinPts: minimal size of a cluster

1: add x to cluster C

2: for all point x′ in Nϵ(x) do
3: if x′ is not visited then

4: mark x′ as visited

5: Nϵ(x′) ← regionQuery(x′ , ϵ) {See Algorithm 19.}
6: end if

7: if |Nϵ(x′)| ≥ MinPts then
8: Nϵ(x) = Nϵ(x) ∪ Nϵ(x′)
9: end if

10: end for

Algorithm 19 regionQuery
Parameters:

x: current point

ϵ: represent min distance of neighbour

1: Return all points within ϵ distance of x

the same cluster due to they are direct density reachable to A. If any of these
points in its ϵ-neighbourhood is again a core point like A′ and A′′, and their
neighborhoods are transitively included (called density reachable) into the
same cluster. The border points (like point B) in the same set are density
connected. As the progress continues, point B will be maximally density
connected with another border point C via a chain. Relatively, points which
are not density reachable from any core point are considered noise and do
not belong to any cluster like the red point N . The cluster is complete as it
becomes surrounded by border points and there are no more points within
ϵ-neighbourhoods. A new random point will be selected and repeat the same
process to identify the next cluster.

The pseudocode of DBSCAN is shown in Algorithm 17. It is noted that
the RegionQuery(·) function is called for each point, which most significantly
contributes to the runtime complexity of DBSCAN. The overall runtime com-
plexity is O(n ·RegionQuery(·)). If this function is implemented in the most
naive way, the runtime complexity of DBSCAN would be O(n2), which is the
worst case. Many advanced techniques are proposed to speed up the region
query, such as R-tree, KD-tree etc [2]. It is commonly recognized that the
average runtime complexity of DBSCAN is O(n · log n).
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15.2 An Example of DBSCAN

Clustering has been widely used in a variety of real-world applications like
market analysis, social network analysis, segmentation and object detection.
In this chapter, we demonstrate how DBSCAN can be used for object seg-
mentation task on a RGB+Depth scene dataset, SUN RGB-D, which is a
RGB-D scene understanding benchmark suite. Object segmentation is con-
cerned with partitioning an image into different objects. It can be formulated
as an clustering problem whose main objective is to separate pixels into homo-
geneous clusters (i.e., objects) that hold on maximum similarity within the
clusters while reaching the minimum dissimilarity cross the clusters. Each
cluster then corresponds to a different object.

The SUN RGB-D dataset contains 10,000 RGB-D images. It is densely
annotated and includes 146,617 2D polygons and 58,657 3D bounding boxes
with accurate object orientations. A 3D room layout where the images are
captured and scenario categories for the images are provided is also available.
The detailed description and download information can be found from here 1.
We use the scikit-learn 2 to implement. Figure 15.3 shows the results. We can
clearly observe that DBSCAN can accurately segment the different shapes of
furniture.

15.3 Determine ϵ and MinPts

DBSCAN has 2 key parameters ϵ and MinPts, which can be critical to its
performance. It requires joint tuning these two parameters to find the optimal
combination to ensure the clustering performance. In general, there is no
common practice to determine MinPts. It depends on domain knowledge
and understanding of the given datasets. A low MinPts means it will build
more clusters from noise. In many cases, the domain knowledge is generally
unknown especially considering that data is usually normalized before further
processing. Ester et. al [1] propose to use the sorted k-distance graph to
assist with deciding MinPts. The k-dist graph plots the average distance
between each point and its k-nearest neighbours in ascending order, where
k = MinPts. In their case, experiments indicate that with a k > 4, k-dist
graphs introduce substantially more computational costs while contributing
no significantly better results than the 4-dist graph. Therefore, MinPts = 4
was recommended for their 2-dimensional data. It is noted that this setting
may not be applicable to other datasets.

1 http://rgbd.cs.princeton.edu/
2 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.

html
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Fig. 15.3: Object detection using DBSCAN. The first row shows the origi-
nal images, the second row shows the corresponding depth images, and the
last row shows the detection results using DBSCAN, where different colors
represent different clusters.

More heuristics forMinPts are proposed, for example,MinPts can also be

set as MinPts =
1

n

∑n
i=1 |Nϵ(x

(i))|, where |Nϵ(x
(i))| is the number of points

in ϵ-neighbourhood of given data point x(i) and n is the total number of data
points in the dataset [3]. Another way for choosing MinPts is to derive it
from the number of dimensions d of data set by taking MinPts = 2 ∗ d − 1
[4].

In general, ϵ should be chosen as small as possible. However, if ϵ is too
small, many points may be considered as outliers because a considerable
amount of points may be discarded as outliers due to the very small neigh-
borhoods, which results in many points not becoming core points or border
points. While, a large value for ϵ may produce rather huge clusters with
too many points inside. In the original DBSCAN paper [1], an interactive
approach is offered to detemine the optimal ϵ. The basic process is to first
calculate the average of the distances of every point to its k nearest neighbors,
where k = MinPts, and the computed k-distances are plotted in a descend-
ing order. The knee point formed by the plot indicates a threshold where a
sharp change occurs along this k-distance curve. The value of knee point is
treated as the optimal ϵ. The Figure 15.4 shows an example of determining
the ϵ using k-distance plot.
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Fig. 15.4: An illustrative example is finding optimal ϵ given k = 4; the knee
point corresponds to ϵ = 13.0. The clustering result shows the good perfor-
mance with these two parameters.

15.4 Summary and Discussion

DBSCAN can work on discovery of clusters with arbitrary shape of datasets
and the number of clusters that does not need to be predefined. It has good
noise resistance and can handle noisy dataset well. The desirable range of
data noise ratio for DBSCAN to tolerate well is between 1% to 30% [2].

However, DBSCANmay not be scalable to large datasets or high-dimensional
dataset as it requires more memory and computing power. Recently, there is
some debate on the runtime complexity of orginal DBSCAN in the research
community. The running time of DBSCAN depends on how many times the
function RangeQuery(·) is called. The original DBSCAN paper claims the
average runtime complexity is O(n log n). Gan et al. [5] argued that the al-
gorithm actually requires O(n2). However, their conclusion was questioned
by other researchers. For example, Schubert et al. [2] pointed out some in-
accuracies in the way DBSCAN was represented by Gan et al. [5] instead of
the algorithm itself, especially on the assumption about the performance of
spatial index structures used to support the RegionQuery() method such as
R-trees. Therefore, O(n2) is the worst case. Interested readers can dig more
details by referrring to these research papers.

Furthermore, for efficiency reasons, DBSCAN does not perform density
estimation between all points. All neighbors within the ϵ radius of a core
point are considered to be part of the same cluster as per defined direct
density reachable. If any of these neighbors is again a core point, transitively
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Fig. 15.5: An illustrative example is DBSCAN dealing with varying density
dataset. The colorful dots indicate the clusters identified by DBSCAN, while
the dash lines indicate the groundtruth clusters.

their density reachable neighbors are included. Non-core points in this set, or,
border points, are included as well as per density connectivity. Points which
are not density reachable from any core point are considered noise and do
not belong to any cluster. However, if the density of the sample set is not
uniform, DBSCAN performs poorly as illustrated in Figure 15.5.

15.5 Excercises

1. Compared with K-means, give the advantages and disadvantages of DB-
SCAN.

2. Run the code provided by varying MinPts and ϵ of the example given
in this chapter to observe the impact of performance.

3. Apply k-distance plot to find optimal ϵ. You can use the SUN RGB-D
dataset listed in the example given in this chapter.

15.6 Answers

1. The advantages of DBSCAN are (1) it doesn’t need hyperparameter like
predefining the number of clusters k as k-means; (2) it can work well
to form the artitary shapes of clusters; (3) it is robust to outliers. The
disadvantages of DBSCAN are (1) it may work properly on the varying
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density datasets; (2) it requires the prior knowledge for distance function,
minPts and ϵ

2. Keeping one parameter fixed and varying another one to observe how
changing parameters can impact on the performance. As per exten-
sive research studies, with increased MinPts, the performance might
be observed improved espeically over large, high dimensional datasets or
datasets containing lots of duplicates. The ϵ is a bit tricky. Its value may
heavily rely on domain knowledge (e.g., distance function in different ap-
plication domains in terms of clustering location clusters measured in
km, or clustering in medical imaging measure in cm). You may observe
significantly different situations over different datasets.

3. The code of solution can be found at
https://github.com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1/

blob/main/Part%203%20-%20Learning%20Systems/Unsupervised%20Learning/

DBScan/code/find_eps.py

or
https://gist.github.com/LinaYao/00f3b2cf65600f7b03df020c81cc5de9.
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Chapter 16

Expectation Maximization

Bruno Almeida Pimentel

Expectation Maximization (EM) is one of the most frequently used algo-
rithms for clustering in Machine Learning [1, 2]. Its popularity comes from
the underlying simplicity of the algorithm. EM can be used in a number
of applications, such as Data Mining, Clustering, Natural Language Pro-
cessing, Signal Processing, Medical Image Reconstruction amongst others
[3, 4, 5, 6, 7]. This chapter is aimed at providing the reader with knowledge
for understanding and using the EM method. Furthermore, readers can ex-
ercise their knowledge by implementing the method based on the provided
definitions.

16.1 Intuition Behind the EM clustering algorithm

This section is aimed at providing the reader with the basic underlying idea
of the EM method operation. Two practical experiments are discussed in
order to expose the main steps of the method.

16.1.1 A coin-flipping experiment

With the aim of explaining the mathematical intuition as well as the Ex-
pectation Maximization algorithm operation, this section focuses on a simple
coin-flipping experiment. So, suppose that we want to estimate the bias of
two coins. Also, consider that these coins can be fair or not (i.e., they can be
more heavily weighted on their heads face, for example). This experiment is
based on steps where each one consists of two main actions:
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• Randomly choose a coin;
• Flip the chosen coin 10 times.

After carrying out these steps 6 times, we may achieve the result presented
in the table below (where H means heads and T means tails):

Steps Coin Trial # coin A heads # coin B heads

1 A HTTTHHTHTH 5 0

2 B HHHHTHHHHH 0 9

3 B HTHHHHHTHH 0 8

4 B HTHTTTHHTT 0 4

5 A THHHTHHHTH 7 0

6 B HTTHTHHHHH 0 7

To independently estimate each coin’s bias, we must consider the total of
heads and the total of flips. For coin A, the total of flips is 20 (2 flips trials
of 10 flips each one). Thus, the bias of coin A would be 12/20. Similarly, for
coin B the bias is 28/40. Therefore, when we know which coin was flipped,
the problem of estimating the coin’s bias can be solved as above. However,
what about if we do not know which coin was flipped?

When we do not know which coin was flipped, our table can be rewritten
as follows:

Steps Coin Trial # coin A heads # coin B heads

1 ? HTTTHHTHTH ? ?

2 ? HHHHTHHHHH ? ?

3 ? HTHHHHHTHH ? ?
4 ? HTHTTTHHTT ? ?

5 ? THHHTHHHTH ? ?

6 ? HTTHTHHHHH ? ?

This means that we do not know about the target variable (coin A or
B). In this context, the EM algorithm can be used to estimate the bias of
each coin and, therefore, to identify the coins based on their biased trials.
For the expectation step (E-step), assume that the initial biases are sA = 0.3
and sB = 0.8, when the trial HTTTHHTHTH (or event E) is presented.
Considering the initial biases, the probability of these flips to come from coin
A given the event E can be computed by:

P (A|E) = P (A|HTTTHHTHTH) =
10!

5!5!
0.35(1− 0.3)5 (16.1)

The probability of these flips to come from coin B can be found by:

P (B|E) = P (B|HTTTHHTHTH) =
10!

5!5!
0.85(1− 0.8)5 (16.2)
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It is also possible to apply the Bayes theorem:

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|B)P (B)
(16.3)

and

P (B|E) =
P (E|B)P (B)

P (E|B)P (B) + P (E|A)P (A)
(16.4)

More generally, for an event E where the number of heads is h and the
number of tails is t = 10− h:

P (A|E) =
sA(1− sA)

t

sA(1− sA)t + sB(1− sB)t
(16.5)

P (B|E) =
sB(1− sB)

t

sB(1− sB)t + sA(1− sA)t
(16.6)

We can then obtain estimates (i.e., the probability to belong to a specific
coin) for each trial (event) on the table above and check whether it is more
likely being a result of repeatedly tossing the coin A or B. Thus we assign a
coin to each event (E-step) and update the parameters sA and sB (M-step) so
that sA will now consist in the mean of the proportions of tails given all trials
assigned to coin A. sB can be similarly computed. These steps are repeated
until the algorithm convergence is achieved.

16.1.2 A 1-dimensional numeric dataset experiment

The previous subsection presented a discrete problem where the Bayes the-
ory fits very well the characteristics of the problem. Figure 16.1 shows a
1-dimensional numeric dataset consisting of two classes. In the case of Fig.
16.1 (a), the labels (or the target variable z) are present whereas in 16.1 (b)
they are not. Given the scenario of Fig. 16.1 (a), it would be easy to create
a model to represent the problem by building two Gaussian models (one for
each class) based on the mean (µ) and variance (σ2) of the examples of each
class. Nevertheless, the scenario of Fig. 16.1 (b), where the classes’ labels are
missing, is a typical unsupervised problem where the EM algorithm can be
applied.

Taking Fig. 16.1 (b) as example, initially the EM algorithm instantiates
two Gaussian functions based on random parameters (µo, σ

2
o) and (µb, σ

2
b )

for clusters orange and blue, respectively. After that, the probabilities of each
example to belong to each cluster are computed. The first step is to compute
the probability of each example to come from each Gaussian model (cluster)
according to Equation 16.7 (where the probability of the example x(i) belong
to the cluster blue is computed):



216 Bruno Almeida Pimentel

(a) Labeled dataset. (b) Unlabeled dataset

Fig. 16.1: 1-dimensional dataset.

P (x(i)|b) = 1√
2πσ2

b

exp

(
− (x(i) − µb)

2

2σ2
b

)
(16.7)

Then, the Bayesian posterior probability of the same example being from
the class blue can be computed according to Equation 16.8:

bi = P (b|x(i)) =
P (x(i)|b)P (b)

P (x(i)|b)P (b) + P (x(i)|o)P (o)
(16.8)

notice that in the first step of the EM, the priors P (b) and P (o) are equal
and both can be 0.5, for example. For computing the posterior probability
for the orange class we can use the already computed posteriors of the blue
class as depicted in Equation 16.9:

oi = P (o|x(i)) = 1− bi (16.9)

After that, the posterior probabilities for each class and examples will be
computed and the Gaussian models will be shifted towards the examples that
are better represented by them. For example, the blue cluster will have its
parameters (mean and variance) adjusted based on the following equations,
respectively:

µb =
b1x

(1) + b2x
(2) + . . .+ bnx

(n)

b1 + b2 + . . .+ bn
(16.10)

σ2
b =

b1(x
(1) − µb)

2 + . . .+ bn(x
(n) − µb)

2

b1 + b2 + . . .+ bn
(16.11)

After that, the priors P (o) and P (b) can already be more precisely esti-
mated and the process continues until a stop criterion is reached.

Therefore, considering the example of Figure 16.1b whereX = {0.1, 0.3, 0.5,
0.6, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15}, the two Gaussian functions, blue and or-
ange, have parameters (µb = 0.1, σ2

b = 0.01) and (µo = 0.3, σ2
o = 0.01). In

order to obtain the outcomes from the pdf functions between 0 and 1, the
highest peak between both Gaussian functions was found and each P (x(i)|c)
(where c stands for the class) was normalized/divided by this peak. The re-
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sult of the first step of the EM is depicted in Figure 16.2. The left plot shows
the initial state of the Gaussian models while the right plot shows the state
of the Gaussian functions after the first M-step.

Fig. 16.2: First step of the EM for an 1-dimensional artificial dataset.

It is noticeable that the EM algorithm works similarly to the k-means algo-
rithm, but instead of creating hard margins (i.e., no overlap among clusters)
the EM creates soft margins (i.e., the probabilities of an example (x(i)) to be-
long to different clusters are not 0). In addition, the example exposed in this
section considered a 1-dimensional dataset. For problems in the n-dimensional
hyperspace (i.e., n ≥ 2) it is necessary to use a covariance matrix instead of
the simple variance.

16.2 A Gentle Introduction to Expectation
Maximization

As seen in the examples in the previous sections, the EM algorithm represents
the examples from each class by using a probabilistic model for each class
distribution. To represent these distributions in the same hyperspace is a
problem known as mixture models that employs a systematic way (i.e.,
Maximum Likelihood Estimation - MLE) to find the parameters for each
probabilistic model that better fit its respective group of examples (cluster).
A mixture model can be roughly represented by the following two equations:

p(x) =

k∑
i=1

πipi(x) (16.12)



218 Bruno Almeida Pimentel

k∑
i=1

πi = 1 (16.13)

In Equations 16.12 and 16.13 k represents the number of statistical mod-
els in the mixture and p(x) stands for the probabilistic function regarding
any statistical distribution (e.g., Bernoulli, Gaussian (Normal), etc.) and πi

represents the weight of the ith probabilistic model.
The Gaussian statistical models stand as the most adopted models for

the EM algorithm. Therefore, Gaussian Mixture Models (GMMs) [8] can be
seen as a special case of the EM algorithm. The GMMs use a combination
of Gaussian (or Normal N(µ,Σ)) models such that the parameters to be
optimized are the mean (µ) and covariance matrix (Σ) from each Gaussian
model. Thus, the posterior probability p can be rewritten as follows:

p(x|µ1,µ2, . . . ,µk,Σ1,Σ2, . . . ,Σk) =

k∑
i=1

πiN(x|µk,Σk). (16.14)

For simplicity, the set of parameters {µ1,µ2, . . . ,µk,Σ1,Σ2, . . . ,Σk} will
now be denoted by θ.

The aim of a GMM, ruled by the set of parameters θ, is to precisely fit a
dataset X. For this it is necessary to estimate θ by maximizing the following
likelihood function:

logf(X|θ) =
N∑
i=1

log

k∑
j=1

πjN(x(i)|µj , Σj) (16.15)

At this point, our challenge is to optimize the parameters from Equation
16.15. However, given the complex relationship among the parameters of the
different Gaussian models it is not possible to use a mathematical framework
such as gradient descent, for example. The aim of the EM algorithm is, then,
to iteratively solve this problem.

As expected, each Gaussian model must represent a subset of examples in
X. The individual influence of a particular Gaussian model (indexed by k)
over an example x can be computed as follows:

zk(x) =
πkN(x|µk,Σk)∑K
i=1 N(x|µi,Σi)

. (16.16)

So, zk(x) can be seen as the probability of the example x being represented
by the kth Gaussian model. As aforementioned, there is not a formal method
for estimating the set of parameters θ, however, these parameters can be
updated as follows:
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µnew
k =

1

Nk

Nk∑
i=1

zk(x
(i))x(i) (16.17)

Σnew
k =

1

Nk

Nk∑
i=1

zk(x
(i))(x(i) − µnew

k )(x(i) − µnew
k )T (16.18)

πnew
k =

Nk

N
(16.19)

In Equations 16.17, 16.18 and 16.19, Nk =
∑N

i=1 zk(x
(i)). In addition, they

are not supposed to directly maximize Equation 16.15. In fact, they seek for
the optimal parameters of the following similar Equation:

f̂(X|θ) =
N∑
i=1

k∑
j=1

zj(x
(i))log

πjN(x(i)|µj , Σj)

zj(x(i))
(16.20)

Figure 16.3 shows an example of a Gaussian Mixture Model (GMM) using
three Gaussian models. The mean parameter of the Gaussian models are,
respectively, 5, 10 and 17; they share the same variance, i.e., 2. Dotted lines
indicate the Gaussian models and the continuous line shows the resulting
GMM. Each Gaussian model has πk = 1

3 .

Fig. 16.3: Example of Gaussian mixture. Adapted from [9].
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16.2.1 The role of the Covariance Matrix (Σ)

The covariance matrix Σ provides the algorithm with the ability to identify
clusters of different shapes and sizes. The diagonal values of the matrix con-
tains the variances of the respective features of the problem: the bigger these
values, the more spread out the cluster is. Values that outsize the matrix
diagonal quantifies the covariance between pairs of problem features. From
covariance values the correlation between problem features can be computed.

In order to illustrate the importance of covariance matrix Σ, Figure 16.4
shows an example of a simple data set and resulting partitions after applying
the well known K-Means algorithm and the EM algorithm for the spacial
case when Σ is a diagonal matrix.

Fig. 16.4: Example of partitions found by K-Means and EM clustering algo-
rithms. Adapted from [10].

The original data set contains three classes with different spherical sizes.
After applying K-Means clustering algorithm, the resulting partition is dif-
ferent from original one since this algorithm divides the space into clusters
of equal dispersion. In other words, K-Means finds spherical clusters of equal
sizes. On the other hand, after applying EM algorithm, the resulting parti-
tion is similar to original one. This is because EM algorithm is able to create
a model that identifies different distributions, which allows to find a resulting
partition with clusters of different sizes and shapes.

16.3 The EM Algorithm

The EM algorithm can be characterized by two main steps: Expectation (E-
step) and Maximization (M-step). In the E-step, the algorithm computes
the expected value of a dataset example using the current estimate of the
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parameter. In the M-step, the algorithm uses information from previous step
to define a maximum-likelihood estimate of the parameters. Figure 16.5 shows
an overall flow chart for the EM algorithm.

Fig. 16.5: Flow chart for EM algorithm.

Algorithm 20 presents the pseudo-code for the EM method. The E-step
and M-step are executed until one or more convergence criterion are satisfied.
Examples of convergence criteria are presented in Algorithm 20.

16.4 Applications

Due to the importance of the EM algorithm for the Machine Learning field,
several researchers have applied it to a wide variety of real problems. These
problems are concerned about Natural Language Processing, Signal Process-
ing, medical image reconstruction and so on. This section briefly present some
studies that applied EM algorithm as tool for solving real problems.

Ramme et al. (2009) [11] used the EM algorithm to segment the hand
phalanx bones. The goal of this work is to analyze whether a semi-automated
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Algorithm 20 EM algorithm
Parameters: Dataset X, number of clusters k.

Output: Final partition.

1: Choose initial parameters. Set time t = 0. Set ϵ.

2: repeat
3: E-step: find the values πk (for k = 1, 2, . . . , k) using the Equation 16.19

4: M-step: update the parameters µk and Σk (for k = 1, 2, . . . , k) using equations
16.17 and 16.18, respectively

5: until one of the following criteria is satisfied:

• the maximum number of iterations is reached;

• there is no more difference between the current and previous partitions; or

• the difference between the likelihood function values at iteration t and t − 1 is
smaller than a predefined threshold ϵ.

technique will improve the efficiency while providing similar definitions as
compared to a human rater.

Kujawinska et al. (2016) [12] applied the EM algorithm to support pur-
chasing decisions in the welding industry. Authors analyzed the EM for the
selection of material (212 combinations of flux and wire melt) for the SAW
(Submerged Arc Welding) method process. The work showed that each of
the 212 records can be assigned with a probability of affiliation to all the
four clusters used in the experiments. These probabilities allow the user to
make a better decision, since cases with ambiguous assignment can be better
analyzed.

Subudhi et al. (2020) [13] used the Expectation Maximization method and
the Random Forest classifier for automated segmentation and classification
of brain stroke. The part of the brain affected by the stroke was segmented
using the EM algorithm and Magnetic Resonance Imaging (MRI) of brains.

Lakshminarayanan et al. (2020) [14] recovered the high-resolution image
of a corresponding low-resolution image. For this, the authors proposed a
new integrated approach based on the iterative super-resolution algorithm
and the EM method for face hallucination (the process of improving a low
resolution – LR – image to a high resolution – HR – image without altering
the originality of the image).

16.5 Exercises

1. Based on the experiment presented in Section 16.1.1, use EM algorithm
to estimate the bias of each coin after 100 iterations.

2. Use 300 samples of Gaussian Mixture with mixing probability equal to
1/3 as follow:

X1 ∼ N

([
1
1

]
,

[
1 4
4 1

])
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X2 ∼ N

([
5
5

]
,

[
4 2
2 6

])
and implements the EM algorithm to estimate its parameters.

3. Show a scatter plot of the above dataset for different values of mixing
probability: 1/2, 1/3, 1/4 and 1/5. What can you observe from the re-
sults?

4. Changing the dataset to:

X1 ∼ N

([
1
1

]
,

[
1 4
4 1

])

X2 ∼ N

([
5
5

]
,

[
4 2
2 6

])

X3 ∼ N

([
3
3

]
,

[
1 1
1 1

])
repeat the question 3. What can you observe from the new results?
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Chapter 17

Self Organizing Maps

George G. Cabral

Self Organizing Maps (SOM) were initially introduced by Teuvo Kohonen
[1, 2] in the early 1980s inspired by the way the cerebral cortex handles
sensory information, such as visual, olfactory and auditory information. The
auditory cortex in the auditory system, for example, can be roughly repre-
sented as a surface (or map) so that different regions process different sound
frequencies. In addition, nearby regions are responsible for processing simi-
lar frequencies. These concepts were successfully adapted from neuroscience
to computer Artificial Neural Networks (ANNs) through the SOM networks.
Among all types of ANNs, perhaps, the ANN architecture is the one which
better resembles the human brain functioning. This chapter provides an in-
troduction to SOM.

17.1 An Overview of SOM’s Mechanisms

For practical purposes, a SOM network model uses as topological maps 2d
or 3d grids such that each grid cell represents a neuron. Nevertheless, these
maps can have different topological organizations. Figure 17.1 shows maps
using two different topologies, squares and hexagons. In these maps, each unit
(square or hexagon) represents an output neuron. Most of real world problems
lie in a high dimensional space. The map can be seen as a lower dimensional
representation of the space. Finding a SOM model which maps the original
space to a low dimensional space may result in, among the benefits, less data
storage requirements, for example.

Given a set of training examples T = {x(1),x(2),x(3), · · · ,x(N)}, where
each training example x(n) is a d-dimensional vector, a training epoch con-
sists in the presentation of the n training examples to the classifier for learning
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Fig. 17.1: Examples of 2d maps. (left) squared map and (right) hexagonal
map.

purposes. Nevertheless, the whole training procedure takes several epochs, of-
ten, hundreds or more, i.e., the n training examples are presented multiple
times. The learning phase of a self organization involves 3 major concepts
from neuroscience.

Competition As a training example x(n) is presented to the network, each
neuron competes against the others in such a manner that the winner neuron
is the neuron with its weights closer to x(n)’s features. Notice that each
neuron, therefore, has a set of d weights associated to it (provided that d is
the number of problem features). The measure of how close a neuron is to
a training example can be computed by the Euclidean distance between two
examples (Equation 17.1).

EuclidDist(x(i), z) =

√
(x

(i)
1 − z1)2 + (x

(i)
2 − z2)2 + · · ·+ (x

(i)
j − zj)2

(17.1)

Cooperation In the cerebral cortex, each received sensory stimulation re-
sults in a specific region which achieves a higher activation value - the winner
neuron in the competition phase. Nevertheless, locations close to the winner
region (the neighbourhood) are also activated by a smaller magnitude. This
magnitude decreases and tends to zero as the regions get far from the winner
neuron. In a SOM ANN, this concept is adapted by computing a neighbour-
hood to each neuron. Figure 17.2 shows an example where the winner neuron
(red) has its weights reinforced by a factor of 1, its closest neighbours (orange)
have their weights reinforced by a factor of 0.5 and its indirect neighbours
(yellow) have their weights reinforced by a factor of 0.25.

A popular way to find the topological factor for weights update of the
neighbour neurons is given by the use of a Gaussian function [3]. In order
to rule the winner neuron neighbourhood, a function must possess two im-
portant properties: (1) to provide symmetric values from the winner neuron
and (2) decrease monotonically as the distance from the winner neuron gets
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Fig. 17.2: Example of neighbourhood and factors values of weight update
according to the distance a of the neurons to a winner neuron.

larger. The Gaussian function, presented in Equation 17.2 has both proper-
ties. In Eq. 17.2, (i) da,b consists in the distance between the winner neuron a
and its neighbour neuron b and (ii) σt is a decay factor at epoch t that rules
the coverage of the neighbourhood.

Fa,b(t) = exp(−d2a,b/2σ
2
t ) (17.2)

Ideally, as the time passes, σ decreases, eventually, resulting in a neigh-
bourhood comprising only the winner neuron. This happens because, initially,
the SOM is coarsely learning the problem. As the time passes, the algorithm
starts to refine the learning process to learn the problem’s details. A common
method to decrease σ is given in Equation 17.3. In Eq. 17.3, τ1 is a constant
and σ0 is the first value assigned to σ.

σt = σ0exp(−t/τ1) t = 0, 1, 2, 3, ... (17.3)

For the multivariate case, a positive-definite covariance matrix must be
defined. Similarly to the univariate case, shrinking the values in this matrix
exponentially decreases the width of the neighbourhood function.

Notice that the map topology may slightly influence the clusters’ orga-
nizations. For example, in a square topology (Figure 17.1 (left)), a neuron
may have up to eight direct neighbors that supposedly should be at the same
distance to the winner neuron, however, the four neurons in the corner are
more distant than the other four. In this case, choosing a small map (a map
with few neurons) may lead to unsmooth separations between clusters. On
the other hand, in the hexagon map (Figure 17.1 (right) and Figure 17.2),
a winner neuron may have up to six closest neighbors all of them with the
same distance to it. In this case, the topology allows a smother interaction
among the winner neuron and its neighbors.

Adaptation The adaptation (or learning) process takes place as the outputs
neurons learn the problem making the topological map organized such that
the clusters can be identified as the algorithm converges to a solution. As
seen in the cooperation phase, not only the winner neuron moves toward a
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training example. Instead, the entire neighbourhood moves toward it. Once
the winner neuron is found, its weights are updated according Equation 17.4.
The learning rate η(t), as well as the neighbourhood size, also exponentially
shrinks as the time passes. Therefore, one plausible way to shrink the learning
rate is given by η(t) = η0(−t/τ2), where τ2 is a constant and η0 is the first
value assigned to the learning rate.

∆wj,i(t) = η(t)× Fj,i(t)× (xi − wj,i) (17.4)

In short and recapping, in practice, (i) during the competition phase
a winner neuron (c) is found, (ii) in the cooperation phase a set of c’s
neighbors in the topological map is defined and (iii) in the adaptation phase
the weights of the winner neuron and its neighbors are adjusted.

17.2 The Self Organizing Map Algorithm

The vast majority of the works define the SOM topology as containing only
the input and output layers. The input layer, as most of the ANNs, acts as
sensors so that the number of neurons is the same as the number of features
of the problem. Therefore, the domain of the input layer is Rd, where d is the
number of features of the problem. The output layer (or the Kohonen layer)
is usually a 2-dimensional map (Figure 17.3) where each cell represents a
different neuron. The input layer is connected to each output neuron such
that the number of connections is given by d × j, where j is the number of
output neurons. Figure 17.3 depicts an example of SOM architecture where
j = 88. The input layer, is formed by d neurons fully connected to each output
neuron and each connection between input neuron i and output neuron j has

an associated weight w
(j)
i . In Figure 17.3, the connections between the input

layer and the output neuron 1 (one) are highlighted in red.
Algorithm 21 depicts the operation sequence of a SOM neural network for

a problem containing d features and j output neurons. Initially (line 1), all
the weights for the connections among the input neurons and output neurons
are randomly set. In line 4, a training example x(i) is presented and the
closest neuron to it in the map (c) is chosen as winner. The weights of c then
“move toward” x(i) considering the learning rate η(t) (lines 6 and 7). The
same adjustment happens to the weights of the neighbors of c in the map,
however, in this case the adjustment is ruled by an additional distance factor
computed by the neighborhood function Fx,y(t) so that neighbors closer to
c have their weights strongly updated (lines 11 and 12). Lines 16 and 17 are
responsible for the update of parameters that affect the fine convergence of
the algorithm in later epochs.

At the end of the training phase, it is expected that output neurons in a
same topological region represent a cluster (or class). In particular, examples
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x1 x2 xd
w1
(1)

w2
(1) wd

(1)

Fig. 17.3: Partial example of SOM architecture. The connections between the
input layer and the output neuron 1 are highlighted in red.

that are similar to each other are mapped to the same or nearby regions of
the topological map.

17.2.1 Example of the Algorithm Execution

In order to provide a comprehensive understanding of the canonical SOM
algorithm, Figure 17.4 presents a 3-dimensional dataset containing 16 colors
in the RGB format which will be learned so that the main stpdf of the
algorithm can be shown. Notice that the clustering algorithms assume that
there is redundant information in the training set, therefore, we inserted
variations of the dominant colors blue, green, black and brown in the dataset.

Initially, the topological map must be defined. For this example a (20,
20) matrix where each neuron is 1 unit distant from its nearest neighbor in
the same row (or column) was used. In the sequel, for each neuron b, each

connection’s weight w
(b)
k (where k varies from 0 to 2) is randomly assigned

between 0 and 1. In other words, for this problem we can say that, initially,
each output neuron will be associated to a random RGB color (Figure 17.5
a)).

The algorithm parameters were as follows:

• η0 = 0.5 (initial learning rate)
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Algorithm 21 Self Organizing Map
Parameters: output map containing j neurons and d×j connections with respective weights

(w
(j)
d ) between input and output layers, neighborhood function F , τ1, τ2, η0, n epochs,

training set T , θ

Output: SOM model with proper weights between input and output layers

1: Set a random value for each of the j× d weights at each connection between the input

and output layers. These values must be in the same interval of the feature values in

T .
2: for t ∈ {1 · · ·n epochs} do
3: for x(i) ∈ T do

4: Given x(i), find the winner neuron c
5: for k ∈ {1 · · · d} do
6: ∆w

(c)
k (t) = η(t)× EuclidDist(x

(i)
k , w

(c)
k )

7: w
(c)
k = w

(c)
k + ∆w

(c)
k (t)

8: end for
9: for each neighbor neigh of c do

10: for k ∈ {1 · · · d} do
11: ∆w

(neigh)
k (t) = η(t)× Fc,neigh(t)× EuclidDist(x

(i)
k , w

(neigh)
k )

12: w
(neigh)
k = w

(neigh)
k + ∆w

(neigh)
k (t)

13: end for
14: end for

15: end for
{σt is used in the neighborhood function Fx,y(t)}

16: σt+1 = σtexp(−t/τ1)

17: η(t + 1) = ηt(−t/τ2)
18: end for

• θ = 0.05 (threshold for which the neighborhood function is considered)
•
∑

= [1.5, 0.0; 0.0, 1.5] (covariance matrix for defining the Gaussian neigh-
borhood function)

• For this example, τ1 and τ2 weren’t used since the learning rate and
neighbourhood size weren’t decreased.

Notice that some of these parameters values are unlikely to be used in
practice (as the initial learning rate value of 0.5, for example), but in this
case, they were chosen for illustration purposes.

The very first step of the algorithm searches for the nearest neighbor (lets
call it b) in the map of the training example of index [0] in Figure 17.4
(lets call it a), i.e., (0.49, 0.10, 0.54). The nearest neighbor output neuron
in the map is the neuron with closest weights, in this case (0.46 0.31 0.59).
Therefore, the new weights of b are computed as follows:

Wb,0(t) = Wb,0(t−1)+η(t)×Fa,b(t)×(x
(a)
0 −w

(b)
0 ) = 0.46+0.5∗1∗(0.49−0.46)

Wb,1(t) = Wb,1(t−1)+η(t)×Fa,b(t)×(x
(a)
1 −w

(b)
1 ) = 0.46+0.5∗1∗(0.10−0.31)

Wb,2(t) = Wb,2(t−1)+η(t)×Fa,b(t)×(x
(a)
2 −w

(b)
2 ) = 0.46+0.5∗1∗(0.54−0.59)
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Fig. 17.4: Training set containing 16 RGB colors where each color component
is normalized between 0 and 1 and the presentation order of the examples is
indexed in square brackets.

In the sequel, all neighbours neurons, i.e., the neurons whose the scaled
neighbourhood function yields a larger value than θ have theirs weights ad-
justed accordingly this value.

This procedure is repeated for each training example in order to complete
a training epoch. The total number of epochs is defined by the practitioner.

Figure 17.5 depicts part of the evolution of the algorithm computation
above presented in terms of the topological map. Figure 17.5 a) shows the
initial state of the topological map where each neuron represents a random
RGB color. In Figure 17.5 b), the winner neuron of the 1st epoch and 1st
training iteration (b) with weights (0.46 0.31 0.59), has its neighbourhood
defined (crosses points) so that for each neighbour z Fb,z(t) > θ. Notice
that the winner neuron is computed according the neuron weights and the
neighbourhood is defined based on the topological distance in the map to the
winner neuron. Figure 17.5 c) and d) also refer to the first epoch shows the
computation for the winner neurons for the training set examples positioned
at indexes 4 and 11. Figure 17.5 e) presents an example of computation for
the 6th epoch. In this stage is already possible to notice some clusters. Figure
17.5 f) represents the topological map at 20th epoch. At this stage, the map is
close to the convergence due to the small number of examples in the training
set.

Implementation Issues
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a) b)

c) d)

e) f)

Fig. 17.5: a) Original random topological map; b) Epoch 0 - training example
[0] neighbourhood after their weights’ updates; c) Epoch 0 - training example
at position 4’s neighbourhood after their weights’ updates; d) Epoch 0 - train-
ing example at position 11’s neighbourhood after their weights’ updates; e)
Epoch 5 - training example at position 4’s neighbourhood after their weights’
updates; f) Map status at epoch 20.



17.3 Growing Self Organizing Map (GSOM) - A Dynamic version of SOM 233

The PDF defined by the vector b and
∑

is comprised in the interval (0,
r), where 0 is located at the infinite and r is the largest value located at the
mean b. For the current implementation, r was scaled between 0 and 1. This
explains the value 1 for the neighbourhood function in the previous weights
adjustments.

Particularly for this illustration example, the small number of examples
in the training set combined to the small variation in these examples caused,
from a specific epoch, the winner neurons converge to the same neurons again
and again. This explains some untouched areas in the map, such as the last
row.

17.3 Growing Self Organizing Map (GSOM) - A
Dynamic version of SOM

The GSOM was initially developed by Alahakoon and Srinivasan [4] who
claimed that their method had significant advantages for knowledge discovery
over the original one. The main difference between both methods consists in
a growing topological map introduced in the GSOM. Furthermore, given the
growing feature of the GSOM, its spreading factor enables the practitioner
to track hierarchical aspect of the clusters, i.e., one can find the path from a
finer cluster to a higher level cluster.

The following high level stpdf depicts the GSOM algorithm:

1. Initialization Phase

a. Randomly assign weights to, usually, 4 neurons connected in a 2d
grid.

b. Compute the Growth Threshold (GT) based on pre-defined parame-
ters.

2. Growing Phase

a. Present a training example to the network.
b. Find the winner neuron, similar to the original SOM.
c. Update weights values of the winner neuron and its neighbors as well

as in the original SOM method
d. The difference between the weights and the training example will be

used as an error to be accumulated in the winner neuron as its total
error (TE)

e. If TE > GT and the winner neuron is a boundary neuron, grow
it (i.e., place new neurons in free positions in the neighbourhood
of the current neuron. For example, above or at right.). Otherwise,
distribute its weights to the neighbors of the current neuron.

f. Initialize the new nodes weights to match the current neighbourhood
g. Reset the learning rate to its starting value
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h. Repeat stpdf a. to g.

3. Smoothing phase

a. Decrease the learning rate and fix a small neighbourhood.
b. Repeat weights adaptation as in the growing phase.

Amongst the advantages of the GSOM over the SOM are its capability
to represent more complex topological maps and the possibility to discover
hierarchical relationships, as previously mentioned.

This is a high level description of the GSOM. Many details, such as new
nodes growth situations, new node weights assignment and neighborhood
definition, were uncovered since this is not the aim of this text. For more
details, the introductory paper [4] as well as available implementations on
the web can be helpful.

17.4 Applications

Virtually, SOM networks can be applied to any knowledge area. Nevertheless,
some of them have been particularly benefited from its potential.

17.4.1 Dimensionality Reduction

Dimensionality reduction consists in transforming a problem from a high
dimensional space to a low dimensional space. Among other, this enable us
to: (i) better visualize relationships among the categories of the problem;
(ii) reduce the noise effect on the data; (iii) identify clusters; and (iv) create
models which serve as filters to reduce the data storage.

Dimensionality reduction is a natural application of Self Organizing Maps
given that transforming a n-dimensional problem to a 2d or 3d map explicitly
reduces the original problem data dimension. The popularity of SOMs net-
works amongst different science fields caused them to be subject of studies
for the feature reduction for a number of different problems [5][6][7][8].

17.4.2 Surface Reconstruction

Reconstructing the surface of an object based on a set of examples struc-
tured or not is a common problem in many fields such as medicine [9],
Arts [10] and manufacturing [11]. The idea is to reproduce the original
shape based on a partial set of examples, i.e., these examples may not
be able to represent missing parts of the shape. SOMs can generate a
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map that is close to the original shape given a training set provided with
the spatial coordinates of the points [12]. Commonly, reconstruction pro-
cess of methods based on self organizing maps use randomly sampled 3d
points as training data for the learning algorithm where the mesh vertices
correspond to the output nodes of the map [12]. Some examples of im-
ages reconstructed from 3d points can be found at: https://github.com/
alecjacobson/common-3d-test-models. Some examples of works that use
SOMs or its variations for surface reconstruction are: [13], [14] and [12]

17.4.3 Image Segmentation

Image segmentation consists in identifying the boundaries (lines, curves, etc.)
of the objects present in an image. Some goals behind this are to reduce the
amount of information in order to better track video objects, identify areas
of interest, etc.. As an example, in a image containing a group of persons,
imagine that you want to identify faces so that from these faces you can
eventually find some specific person. With this aim, we may need to separate
the image in many regions such that pixels in the same region share similar
characteristics, as color values, and there are no abrupt changes in these
characteristics inside the same region. For this task, SOMs can act as an
intermediary step [15][16][17][18]. Figure 17.6 depicts an example that can be
used to segment images captured by an autonomous car sensor, for example.

Fig. 17.6: Segmentation for object identification in a traffic image. Source:
Cityscapes Dataset [19] https://www.cityscapes-dataset.com/.

17.4.4 Text Mining

Clustering documents is one of the most important text mining research areas
[20][21][22]. Even though some details are lost in this simplification, other
information arise and, thus, we can observe the data from a macro point of
view [23]. Liu et al. [23] also pointed out that text clustering can also act as
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a pre-processing step for some natural language processing applications, e.g.,
automatic summarization, user preference mining, or be used to improve text
classification results.

17.4.5 Speech Recognition

Speech recognition is an area that can vastly be benefited by self organiz-
ing maps, particularly by dynamic SOMs [24][25][26]. For example, customer
services of big companies rely on automatic speech recognition to actuate
on call centers in order to understand yes or no questions and diminish the
need of human interaction. In addition, a number of electronic devices also
use voice recognition tasks to translate voice commands to machine entries.
These type of applications can employ Self Organizing Maps for the end of the
application, e.g., for classify a voice signal as yes or no, or as an intermediary
procedure, e.g., for pre-processing voice signals in categories.

17.5 Strengths and Weaknesses of SOM networks

One the main advantages of SOM networks it’s that it can easily represent
similarities in the data without the need of a complex fine tuning of the
classifier’s parameters (i.e., finding the output neurons’ topology and the
learning rate is not a complex task). The simplicity of the algorithm may be
also seen as an advantage since knowing how the method behaves provides
the practitioner with ability to customize it to domain specific problems.

Among the disadvantages of SOM networks it is the necessity of a large
amount of data to operate. Sufficient data is a necessary condition for most
of the unsupervised learning algorithms to perform well, nevertheless, for
SOM networks, depending on the training parameters and as the number
of training epochs increase a small cluster may be forgotten in the case of
a class imbalanced problem, for example. Another issue is the fact that it
may converge to a map containing two similar clusters distant from each
other according to the number of trained epochs and learning rate values. In
addition, it may not perform well for categorical data as well. Still, a large
number of SOM variations are available to address the original SOM’s issues.

17.6 Summary

The Self Organizing Map ANN, also called Kohonen map, is a simple, yet,
effective clustering algorithm. Different from other neural networks SOM net-
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works use competitive learning instead of error correction for training pur-
poses. In comparison to other clustering algorithms, it does not require much
apriori knowledge of the data, such as the number of clusters or the cluster’s
density, to operate.

Given the arrangement presented in the topological map it is intuitive the
use of SOM networks, in addition to clustering, also for dimensionality re-
duction in the data. Therefore, many of the applications of SOM networks
involve data representation. This chapter has shown some popular SOM ap-
plications, however, as the number of SOM variants grow, the number of
problems tackled by this family of algorithms multiplies.

17.7 Exercises

All resources necessary for the exact reproduction of the experiments in the
exercises below are provided in a python notebook available at: https://
colab.research.google.com/drive/1_1ukwihWCfgK7288sX2FH9zLAot_s-ft?

usp=sharing. Alternatively, you can also access them at the code folder
within the folder of this chapter of the book in its git repo: https://github.
com/ieee-cis/IEEE-CIS-Open-Access-Book-Volume-1.

1. Given the dataset of Figure 17.4, instantiate a (2,2) topological map
and execute one training epoch without considering the neighborhood
function.

2. For the training set of Figure 17.4 and a (10,10) topological map compute:

a. The neighborhood function for each neighbor of the winner neuron
of the first training example given the covariance matrix provided in
Section 17.2.1.

b. Change the values of the covariance matrix and compute again the
neighborhood function for each neighbor of the winner neuron of the
first training example.

c. Plot the bidimensional Gaussian function generated by each exam-
ined covariance matrix.

3. Change the provided code for the example in Section 17.2.1 to handle a
dataset containing 1000 examples of different shades of colors red, green
and blue. Change also the map to a 50 x 50 map. Introduce the use of
parameters τ1 and τ2 by changing the parameter of the neighborhood
function and the number of epochs such that the algorithm perform a
refinement at later eopchs.

4. Explain the main differences between the clustering algorithms k-means
and SOM.
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Chapter 18

Clustering Evaluation

Valmir Macario

The evaluation of unsupervised algorithms, such as clustering methods, is
aimed at validating the data structures (in the feature space) found by these
algorithms. If the purpose is to validate newly developed algorithms, i.e.,
comparing them with others in the state of the art, it can be useful to compare
the obtained results against previously known structures, and, then, assessing
the capacity of these algorithms to find a structure close to the one already
known [1]. However, in some cases a previously known structure may not
be available. So it is necessary to validate whether the found structure met
the expected criteria for optimal clustering structures. Some aspects that are
inherent of an optimal scheme are the two proposed criteria for clustering
evaluation and selection [2]:

• Compactness: the members of the same cluster should be as close to each
other as possible. A common measure of compactness is the variance,
which must be minimized.

• Separation: different clusters must be be widely spaced. There are three
common approaches measuring the distance between two different clus-
ters [3]:

– Single linkage: it measures the distance between the closest members
of the clusters.

– Complete linkage: it measures the distance between the most distant
members.

– Comparison of centroids: it measures the distance among the centers
of the clusters.

These peculiarities make the clustering validation a complex task, once
there is no a known solution to compare the results obtained by the algo-
rithms, and often there is no a single solution.

Federal Rural University of Pernambuco, Brazil
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The validation of a clustering performance is, in general, based on statisti-
cal measures, which evaluate in a quantitative and objective perspectives the
found structures [4]. The index that is used to validate structures is called
validation criterion. Cluster evaluation criteria strategies are usually divided
in three types:

• Relative criteria: evaluate clusters based on a criterion that assesses
whether the performance yields good clustering partitions according to
some assumptions. They can be used to compare multiple clustering al-
gorithms or to determine the most appropriate value for one or more
parameters of an algorithm, such as the number of clusters.

• Internal criteria: only use descriptive characteristics of the original data
to validate the quality of a cluster.

• External criteria: evaluate the quality of a clustering performance accord-
ing to previously known structures. These structures are usually labeled
datasets, which are used to assess the juxtaposition among the clusters
generated by the algorithm and the previously labeled structure.

These validation criteria can be used to evaluate several types of cluster-
ing structures such as hierarchies, partitions (hard or fuzzy) and individual
clusters.

Usually a relative criterion is used to compare multiple clustering perfor-
mances. The best option is determined by the maximum or minimum values
for a specific index, because for some validation criteria a higher value de-
notes a best clustering performance, while for other validation criteria the
minimum value is related to the best clustering performance.

The external and internal validation criteria are based on statistical tests
and have a high computational cost. [3]. The basic idea is to test whether the
examples of a dataset are randomly structured or not. This analysis is based
on the Null Hypothesis, H0, expressed as a statement of random structure of
a dataset. To test this hypothesis, the Monte Carlo techniques are often used
as a solution [5]. However, it is very difficult to set thresholds for deciding
whether the index value is large or small enough to consider the resulting
clusters potentially useful or valid [1]. So, a number of validity indices have
been defined and proposed in the literature for each of above approaches
[4, 6, 7, 5]. In the next section some classic relative, external and internal
criteria index are presented.

18.1 Relative Criteria

The relative criteria evaluate the partitions π according to a scheme of a set
of defined schemes according to a pre-specified criterion. The best clustering
is selected based on the capability of a relative measure, like compactness
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and separation of the partitions, to mirror the behavior of the external index
and properly distinguish among better and worse partitions [8].

18.1.1 Mathematical Notation

Let T = {x(1),x(2), . . . ,x(i), . . . ,x(n)} be the dataset which consists of n

observed examples of the form x(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)
p } where p stands as

the number of features of the problem. Be πe = {c(1), c(2), . . . , c(k)} (e.g., the
set of resulting clusters’ representations) the clustering algorithm partition
result, and πr = {C1, C2, . . . , Ck} the ground truth on the clustering structure
(i.e., Ci comprises all examples in the cluster i). The cluster representation,
that can be a centroid (i.e., the mean of the examples in a cluster) or a
medoid (i.e., the example in T nearest to the centroid) of cluster k is c(k).
In addition, it is also necessary to define a similarity or dissimilarity measure
between two examples x(i) and x(j), i.e., d(x(i),x(j)). Typically the similarity
measure used for most methods is the Euclidean distance (Equation 18.1):

d(x(i),x(j)) =

√
(x

(i)
1 − x

(j)
1 )2 + (x

(i)
2 − x

(j)
2 )2 + · · ·+ (x

(i)
p − x

(j)
p )2 (18.1)

18.1.2 Intracluster Variance

The intracluster variance is given by Equation (18.2), where c(k) is the cen-
troid of the cluster Ck [9]. This measure assesses the quality of the clusters
based on the compression among them. The output values are in the range
[0,∞] so that the smaller the value of var, the better the partition.

var(π) =

√√√√ 1

n

∑
c(k)∈πe

∑
x(i)∈Ck

d(x(i), c(k)) (18.2)

18.1.3 Connectivity

Connectivity reflects the degree to which neighboring examples are placed
in the same cluster. Connectivity is given by Equation 18.3, where v is the
number of closest neighbors that contribute to connectivity and nnij is the
j(th) closest neighbor to the example x(i). The smaller the con index value,
the better the partition. The values of this index vary from [0,∞].
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con(π) =
∑

x(i)∈T

v∑
j=1

f(x(i), nnij) (18.3)

f(x(i), nnij) =

{
1
j if x(i) ∈ c(k), nnij /∈ c(k)

0 if not
(18.4)

18.1.4 Dunn Index

The Dunn’s index [7] goal is to identify compact and separate clusters. Thus,
in the best scenario, the distance between two clusters is large and their
diameters are small. It is a function of the distance between the clusters Ca

and Cb so that d(Ca) measures the internal distance dispersion of cluster Ca.

D(π) = min
a=1,...,k

{
min

b=a+1,...,k

{
d(Ca, Cb)

maxl=1,...,k d(Cl)

}}
(18.5)

d(Ca, Cb) = min
x(i)∈Ca,x(j)∈Cb

d(x(i),x(j)) (18.6)

d(Ca) = max
x(i),x(j)∈Ca

d(x(i),x(j)) (18.7)

The Dunn’s index is not influenced by the number of clusters. By evalu-
ating the number of clusters from x ≥ 2, the highest value of Dunn’s index
can indicate the optimal number of clusters, i.e., the number of clusters that
better represents the data.

The problem with the Dunn’s index is twofold: (i) its complexity and (ii)
its sensitivity to noise examples which can cause an increase in the diameter
of the clusters. To tackle its sensitivity to noise there are some variations of
the index that mainly change the distances calculated in Equations 18.6 and
18.7 [10].

18.1.5 Silhouette

The silhouette value [11] was pointed out in [12] as the most suitable relative
index according to their experiments. Higher values of the silhouette indicates
compact and separated clusters.

sil(x(i)) =


1− a(x(i),Ci)

b(x(i))
,

0,
b(x(i))

a(x(i),Ci)−1

(18.8)
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a(x(i), Ci) =
1

|Ck|
∑

x(i),x(j)∈Ck,x(i) ̸=x(j)

d(x(i),x(j)) (18.9)

b(x(i)) = min
x(i)∈Ci,Ci ̸=Cj

a(x(i), Cj) (18.10)

in which a(x(i), Ck) is the average distance between x(i) ∈ Ck and the remain-
ing examples in Ck and b(x(i)) is the minimum of the average distances be-
tween x(i) and examples belonging to different clusters. The value of sil(x(i))
ranges from −1 to +1. If the value is close to −1, the example x(i) is closer,
on average, to a cluster Cj such that x(i) /∈ Cj . If the value is close to +1,
then it means that average distance of example x(i) to the cluster it belongs
to is smaller than to any different cluster.

Besides the silhouette of each example, the silhouette of each cluster can
be computed according to Equation 18.11. One way to choose the best value
of k is to select the value that yields the greatest value of sil(π).

sil(Ck) =
1

|Ck|
∑

x(i)∈Ck

sil(x(i)) (18.11)

sil(π) =
1

n

n∑
i=1

sil(x(i)) (18.12)

The Silhouette Coefficient (SC), is the maximum sil(π) for π generated
with k = 2, 3, . . . , (n − 1). SC is a measure that quantifies the structure
discovered by a clustering algorithm. A value close to 0 means that no sub-
stantial structure was found. Less than 0.5 indicates that the structure is
weak, between 0.5 and 0.7 indicates a reasonable structure and greater than
0.7 indicates a strong structure [1].

It is worth to notice the existence of another type of clustering algorithms
that create fuzzy partitions of the dataset. The fuzzy clustering algorithms
yields a pertinence degree uik of each example to each cluster, rather than
being associated with just one cluster as in a hard partition. There are several
indexes used for fuzzy clustering algorithms: partition coefficient (PC) [13]
, partition entropy (PE) [13], Xie-Beni index (XB) [13] extended Xie-Beni
index [13], Fukuyama-Sugeno (FS) [13] and others [13, 14].

18.2 Internal Criteria

Internal criteria indexes measure the match of a cluster obtained by the algo-
rithm to the clustering structure without having access to external informa-
tion about the ground truth on the clustering structure (see next Subsection
18.3). In general, these criteria are used to select the best number of clus-
ters k. Normally, two types of internal validation metrics can be combined:
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cohesion and separation measures. Cohesion is an intra-cluster measure that
evaluates how closely the examples of the same cluster are to each other,
while separation is an inter-cluster measure that quantifies the level of sep-
aration between clusters [15]. Cohesion can be computed by Equation 18.13
and separation by Equation 18.14.

Cohesion(Ck) =
∑

x(i)∈Ck

∑
x(j)∈Ck

d(x(i),x(j)) (18.13)

Separation(Ck, Cl) =
∑

c(i)∈Ck

∑
c(j)∈Cl

d(c(i), c(j)) (18.14)

These metrics can also be defined for prototype-based clustering tech-
niques, where the similarities from data examples to cluster centroids or
medoids are measured. When the similarity function is the squared Euclidean
distance, the cohesion metric defined above is equivalent to the cluster SSE
(Sum of Squared Errors); also known as SSW (Sum of Squared Errors Within
Cluster) [15].

SSE =
∑

x(i)∈Ck

d(x(i), c(k))2 =
1

2mi

∑
x(i)∈Ck

∑
x(j)∈Ck

d(x(i),x(j))2 (18.15)

There are some difficulties when using these measures, like the SSE that
presents lower values for data that actually have clusters than for random,
unstructured data. Another difficulty is the dependence of these indexes on
the values used for data characteristics, such as number of objects, number of
dimensions, number of clusters and scattering [4]. To alleviate some of these
limitations, the relative indexes presented in Section 18.1 also can be used
as internal criteria. Besides the relative indexes, you can use some others
indexes, like the Gap Statitical [16] and Clest proceeding [17] to compute
internal criteria.

18.3 External Index

External validation metrics compare the resulting partitions (πe) achieved
by a clustering method and independent partitions created based on prior
knowledge about the real data structure (πr), usually performed on labeled
data. Since unsupervised learning techniques are primarily used when class
labels are not available, external validation methods can’t be applied on most
of the clustering problems. However, they can still be applied when external
information is available (e.g., for synthetic data)[15].

An external index for partitions suitability evaluates the degree to which
two partitions of n examples match. In order to carry out this analysis, a
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contingency matrix must be built to evaluate the clusters found by the al-
gorithm. Given a pair of examples (x(i),x(j)), the contingency matrix can
depict four possible situations:

• True Positive (TP): they belong to the same cluster, both in πe and in
πr.

• False Positive (FP): they belong to the same cluster in πe but belong to
different clusters in πr.

• False Negative (FN): they belong to different clusters in πe but belong
to the same cluster in πr.

• True Negative (TN): they belong to different clusters, both in πe and πr.

From these four situations, we can easily obtain:

• The number of pairs belonging to the same cluster in πe: m1 = TP +FP.
• The number of pairs belonging to the same cluster in πr: m2 = TP+FN.
• The total number of pairs of examples: M = TP + FP + FN + TN =

n(n−1)
2

These values can then be used to compute a number of external indexes,
such as Hubbert, Jaccard, Rand and Corrected Rand [4] that will be described
in next subsections.

18.3.1 Rand Index

The Rand index, computed by Equation 18.16, measures the probability of
two examples to belong to same cluster or to belong to different clusters on
both partitions πe and πr.

Rand =
TP + TN

M
(18.16)

18.3.2 Jaccard Index

The Jaccard index computes the probability of two examples that belong to
same cluster on one of the partitions also belong to the same cluster on the
other partition. The Jaccard index is defined by Equation 18.3.2.

J =
TP

(TP + FP + FN)
(18.17)
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18.3.3 Folkes and Mallows Index

The Folkes and Mallows index computes the similarity among the clusters
found by the algorithm with respect to the a ground-truth. This index ranges
between 0 and 1 and larger values indicate more similarity between two par-
titions. This index is computed by Equation 18.18.

FM =

√
TP

(TP + FP )
× TP

(TP + FN)
(18.18)

18.3.4 Normalized Hubert Index

The Normalized Hubert Index measures the linear correspondence between
two partitions. The values are in the range [-1,1] with bigger values indicating
that the two partitions have bigger correspondence. Equation 18.3.4 defines
the Normalized Hubert Index.

Γ =
(M × TP )− (m1m2)√

m1m2(M −m1)(M −m2)
(18.19)

18.3.5 Corrected Rand Index

A common characteristic for most of external indexes is their high sensitivity
to the number of classes in partitions or to the spatial distribution of exam-
ples in clusters. For example, some indexes tend to output higher values for
partitions with more classes (Hubbert and Rand), others for partitions with
fewer classes (Jaccard) [18]. The Corrected Rand Index (CR) has its outputs
corrected according to correct answers in the comparisons of the partitions,
so it does not have any of these undesirable characteristics [19]. This index
can be obtained from the contingency table and built from the two partitions
shown in Table 18.1. The CR can be defined by Equation 18.20:

Table 18.1: Contingency table of two partitions

C1 C2 . . . CK

Q1 n11 n12 ... n1K n1.

Q2 n21 n22 ... n2K n2.

... ... ... ...
QH nH1 nH2 ... nHK nR.

n.1 n.2 n.K n.. = n
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CR =

∑H
h

∑K
k

(
nhk

2

)
−
(
n
2

)−1∑H
h

(
nh·
2

)∑K
k

(
n·k
2

)
1
2

[∑H
h

(
nh·
2

)
+
∑K

k

(
n·k
2

)]
−
(
n
2

)−1∑H
h

(
nh·
2

)∑K
k

(
n·k
2

) (18.20)

where
(
n
2

)
= n(n−1)

2 and nhk is the number of examples belonging to the same
cluster for both partitions πe

k and πr
h. The term n·k depicts the number of

examples in cluster Ck and nh· is the number of examples at class Qh, and
n is the total number of examples.

This index varies in the range [-1, 1], where 1 indicates perfect cohesion
between the partitions and -1 indicates that there is no cohesion between the
partitions. Milligan and Cooper’s work [19] indicates that values below 0.05
are randomly generated partitions.

18.3.6 Information Variation Index

The information variation (VI) [1] is computed according to Equation 18.23.
It measures the amount of information lost or gained to move from the πe

partition to the πr partition. In this equation, EN(πa) computes the entropy
of the partition πa using Equation 18.22 and the mutual information shared
between two partitions is given by the Equation 18.21. The probability of
an object share both partitions πe and πr is given by p(k, h) = nhk

n and the
probability of an object belong to cluster Ck is p(k) = n·k

n . This index has
zero as the best value, indicating that the two partitions are identical and
have no upper limit.

I(πa, πb) =

K∑
k=1

H∑
h=1

p(k, h) log

(
p(k, h)

p(k)p(h)

)
(18.21)

EN(πa) = −
K∑

k=1

p(k) log p(k) (18.22)

V I(πe, πr) = EN(πe) + EN(πr)− 2I(πr, πr) (18.23)

18.3.7 Normalized Mutual Information Index

The external mutual information index (I) originates from the principles of
information theory and the notion of entropy [20]. When entropy is applied
to the clustering process, it is a metric that measures the uncertainty that an
element x(i) will be associated with a certain cluster Ck. For the case that an
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element is associated with a cluster by chance, the entropy will be 0. The no-
tion of entropy can be extended to mutual information, which measures how
much we can, on average, reduce the uncertainty about the random choice
that an element x(i) is associated with a Ck cluster, taking into account that
its cluster is known from another previous clustering. The mutual information
is calculated using the Equation (18.21).

The mutual information I is a metric about the space of all clusters. How-
ever, it is not limited by a constant value, which makes it difficult to interpret.
In the work by Strehl and Ghosh [21], a normalization by geometric mean
was proposed. To this end, they determine the cluster that has the maxi-
mum average of the normalized mutual information of all the clusters under
consideration, where the normalized mutual information (NMI) between two
clusters is defined as follows by the Equation 18.24.

NMI(πe, πr) =
I(πr, πe)√

EN(πr)EN(πe)
(18.24)

where I(πr, πe) is the mutual information between πr and πe. EN(πr) and
EN(πe) are entropies of πr e πr respectively computer with Equation 18.22.
NMI has its values between [0, 1], being 1 the best clustering match.

18.3.8 Accuracy Rate

The accuracy (ACC) looks for a decision rule that minimizes the probability
of error [22]. The maximum value of a ACC indicates the best performance
of the clustering algorithm.

ACC =

(∑K
k=1 max1≤h≤H nhk

n

)
(18.25)

where nhk is as described.

18.4 Summary and Discussion

In this chapter, strategies and evaluation criteria for clustering algorithms
analysis were disclosed. Briefly, the three types of existing criteria for eval-
uation were detailed: relative, internal and external criteria. The relative
criterion is useful to compare several clustering strategies with respect to
some aspect and to decide the ideal number of clusters. The internal criteria,
evaluate the quality of a cluster according to some property existing in the
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original data. The relative and internal criteria evaluate cluster quality when
there is no previous information about the original data. Yet, the external
criteria allows the confrontation of the clustering obtained by an algorithm
with a previously known data structure. In addition, several indices that can
be applied with each criterion were discussed, different ways in which these
indices can be used, as well as several recent approaches that consider aspects
such as stability of generated partitions.

18.5 Exercises

1. What is the difference between an external and relative criteria index?
2. Compare Dunn’s and Silhouette’s indices. Which clustering criteria do

they benefit?
3. An expert is analyzing the result of a clustering algorithm on a dataset

A. He knows that this set of data has a known structure πr. In the
experiments were obtained the following values: TP = 92, FP = 8,
FN = 12 and TN = 88. Compute the external indices:

a. Rand Index
b. Jaccard Index
c. Folkes and Mallows Index
d. Normalized Hubert Index.

4. A comparison with 2 clustering algorithms has obtained the best parti-
tions of each algorithm (π1, π2), respectively. Computing the corrected
rand index for each partition were obtained the following values: CR(π1, πr) =
0, 9 and CR(π2, πr) = 0, 2. What you can say about each of partitions?
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