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Deep Learning with Convolutional Neural Networks for Motor
Brain-Computer Interfaces based on

Stereo-electroencephalography (SEEG)
Xiaolong Wu, Shize Jiang, Guangye Li, Shengjie Liu, Benjamin Metcalfe, Liang Chen∗, Dingguo Zhang∗

Abstract—Objective: Deep learning based on convolutional neural
networks (CNN) has achieved success in brain-computer interfaces
(BCIs) using scalp electroencephalography (EEG). However, the
interpretation of the so-called ‘black box’ method and its application
in stereo-electroencephalography (SEEG)-based BCIs remain largely
unknown. Therefore, in this paper, an evaluation is performed on the
decoding performance of deep learning methods on SEEG signals.
Methods: Thirty epilepsy patients were recruited, and a paradigm
including five hand and forearm motion types was designed. Six
methods, including filter bank common spatial pattern (FBCSP)
and five deep learning methods (EEGNet, shallow and deep CNN,
ResNet, and a deep CNN variant named STSCNN), were used to
classify the SEEG data. Various experiments were conducted to
investigate the effect of windowing, model structure, and the decoding
process of ResNet and STSCNN. Results: The average classification
accuracy for EEGNet, FBCSP, shallow CNN, deep CNN, STSCNN,
and ResNet were 35 ± 6.1%, 38 ± 4.9%, 60 ± 3.9%, 60 ± 3.3%,
61 ± 3.2%, and 63 ± 3.1% respectively. Further analysis of the
proposed method demonstrated clear separability between different
classes in the spectral domain. Conclusion: ResNet and STSCNN
achieved the first- and second-highest decoding accuracy, respectively.
The STSCNN demonstrated that an extra spatial convolution layer
was beneficial, and the decoding process can be partially interpreted
from spatial and spectral perspectives. Significance: This study is the
first to investigate the performance of deep learning on SEEG signals.
In addition, this paper demonstrated that the so-called ‘black-box’
method can be partially interpreted.

Index Terms—stereo-electroencephalography (SEEG), brain-computer
interface (BCI), forearm and hand motion, deep learning, convolutional
neural networks (CNN)

I. INTRODUCTION

Brain-computer interfaces (BCIs) can be used to translate brain
signals into commands to control external devices. BCIs can be
broadly categorized by recording methodology into two classes: non-
invasive and invasive. For noninvasive methods, Electroencephalog-
raphy (EEG) [1], which records the signal from the surface of the
scalp, is the most popular method due to its low cost and ease of
acquisition. Invasive BCIs record signals using different methods,
such as electrocorticography (ECoG) [2], spiking activities [3] and
stereo-electroencephalography (SEEG) [4], [5]. Invasive methods can
provide a higher signal-to-noise ratio than on-invasive methods and
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so are of significant interest in the development of high-performance
BCIs BCIs using an invasive SEEG paradigm have recently been
demonstrated. For example, Murphy et al. showed that using a support
vector machine (SVM), signals from deep brain regions, including
the central sulcus and insular cortex, can be used to differentiate
grasp levels [6]. Tan et al. recorded SEEG from 9 individuals
with Parkinsonism performing a grasping task at different force
amplitudes for two seconds and demonstrated that the subthalamic
nucleus showed different spectral responses at different grasp levels
[7]. Two-dimensional cursor control and hand gesture classification
have also been demonstrated using SEEG [8]. The control of a
prosthetic hand using SEEG electrodes on epileptic subjects has
also been investigated, by decoding three different hand movements
and a resting state [9]. A recent study demonstrated that continuous
changing grasp force decoding can be achieved [10] and it is also
possible to decode perceived speech from SEEG electrodes located
within the auditory cortex [11].

The general processing pipeline of BCIs includes three steps:
1) signal pre-processing and filtering, 2) feature extraction, and 3)
classification. Pre-processing is largely dependent on the mode of data
acquisition but will include broad-band filtering, trend removal, and
potentially re-referencing. Feature engineering is performed to extract
useful information based on some template or statistical feature.
For example, a running average window was employed to extract
the local motor potential (LMP) [12]. Frequency representation is
another commonly used feature [13]. For example, the power of
the bands 1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz, and 60-195 Hz
was extracted and concatenated as input to an SVM classifier [14].
Other commonly used features are statistical features, such as mean,
median, standard deviation, etc. [15]. Dimensionality reduction is
also used commonly to reduce the computation time and avoid over-
fitting using principal component analysis (PCA) and independent
component analysis (ICA) [16]. Classification is achieved using
methods including support vector machines (SVM) (e.g. to classify
healthy and seizure EEG signals [17], linear discriminant analysis
(LDA) (to classify patients with dementia from a healthy control
group [18]), and filter bank common spatial filter (FBCSP) (which
in this application is often superior to the traditional CSP algorithm
[13]).

For all classifiers, feature engineering is a critical step to maximize
the overall decoding accuracy. However, the feature engineering and
subsequent classification steps all depend heavily on expert expe-
rience. Therefore, the optimal feature extraction and classification
model might not be guaranteed. In conclusion, this ‘traditional’
decoding method is sub-optimal in the general case.

Compared to these ‘traditional’ decoding methods, the equal and
often superior performance of deep learning methods, especially
convolutional neural networks (CNNs) has been demonstrated in
various EEG studies. For example, a CNN model called the TSception
network, which was composed of a temporal block and a spatial
block showed a superior result in an emotion decoding task [19].
In their design, multiple 1D convolution layers of different kernel
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shapes are used along the temporal dimension to extract information
in different frequencies. Then in the spatial layer, another set of
1D convolutional kernels of different lengths are used along the
channel/spatial dimension to simulate a spatial filter. The same
principle was used by the EEGNet to extract temporal and spatial
information [20]. ResNet is another widely used deep learning model
which has been proven to be superior in image processing, such as
image classification, annotation, and captioning. Recently, it has also
been tested on the scalp EEG single. [21]–[23].

Despite the recent applications of deep learning to EEG analysis,
the application of deep learning (CNNs in particular) in SEEG-
based BCI remains largely unknown. To evaluate CNNs on invasive
SEEG signals, this work will attempt to decode hand and forearm
motion using different methods, including a filter-bank common
spatial pattern (FBCSP) [13], EEGNet [20], shallow convolution
network (shallow CNN) [24], deep convolution network (deep CNN)
[24], ResNet [25], and a proposed novel Spatial-Temporal-Spatial
convolutional network (STSCNN). Then, the impact of parameters
such as the running window length, stride (window overlap), and
model depth, will be investigated. In addition, two more analyses will
be conducted to gain an understanding of the so-called ‘black-box’
methods. For example, Gradient-weighted Class Activation Mapping
(Grad-CAM) will be used on ResNet to interpret the contribution
of different SEEG electrodes to the decoding task. Then, the spectral
analysis will be applied to STSCNN to partially interpret the decoding
process.

The novelties of this work are four-fold. Firstly, this work will
demonstrate the feasibility of using deep learning on SEEG data.
Although the SEEG data was sparse, this work will demonstrate
that deep learning can be applied to the SEEG data using one data
augmentation method (sliding windows) and different network archi-
tectures. Secondly, the spatial-temporal-spatial convolutional layers
configuration will be shown to be superior to the temporal-spatial
configuration. Thirdly, this work will interpret the so-called ‘black-
box’ deep learning model from the spectral domain, which is useful
to reveal possible neuroscientific meanings, such as a bio-marker of
a specific frequency band. Finally, it will be shown that the decoding
accuracy variation was positively related to the spectral response in
both low and high-frequency ranges.

II. EXPERIMENT SETUP

A. Participants and Data Recording

A total of 30 human participants (participants 1, 2. . . 30) were
recruited in this study. The participants were patients with intractable
epilepsy implanted with SEEG electrodes for pre-surgical assessment
of seizure focus, and all were enrolled with written consent. To be
included in this study, participants must have normal cognitive ability
and normal arm movement. The clinical profile of the participants is
shown in Table I. All implantation parameters were solely determined
by clinical need as part of the pre-surgical assessment. SEEG signals
were acquired using a clinical recording system (EEG-1200C, Nihon
Kohden, Irvine, CA).

This study was reviewed and approved by the Ethical Committee of
the University of Bath (Ethical approval reference №: EP 20/21 050)
and the Ethics Committee of Huashan Hospital (Shanghai, China)
(Ethical approval reference №: KY2019518).

B. Experimental Protocol

The experimental paradigm is shown in Fig. 2, and is the same as
used in [26]. During the experiment, the participants were reclined
on the bed and visually cued to perform 5 types of hand or forearm
movements in random order. The movement was performed using

the hand contralateral to the hemisphere with the majority of the
implanted SEEG electrodes. There were three stages in each trial:
during the 4s rest stage the participant kept still while resting their
arm on the bed; in the cue stage, a cue (a cross) was shown on an LCD
screen for 1 second; in the task stage, a picture of a particular motion
appeared on the screen and the participant performed the indicated
movement (grasp, scissors gesture, elbow flexion, wrist supination,
thumb flexion) repetitively for 5s. The subject executed each of the 5
tasks 20 times, resulting in a total of 100 trials per participant (16.67
min total).

C. Electrode Localization

The participants had a total of 4057 electrodes (rounded mean
± std: 135 ± 42 per subject) implanted. Each electrode shaft was
0.8 mm in diameter and contained 8–16 contacts (contact length 2
mm) with centre-to-centre spacing of 3.5 mm. To locate electrodes
in brain space, we first segmented the individual brain of each
participant using the pre-surgical MRI using Freesurfer software [27].
Then, the anatomical location of each electrode contact was obtained
using an open-source toolbox, iEEGview [28]. Finally, the extracted
contacts from each subject were projected onto a standard brain
model (Montreal Neurological Institute, MNI). The location of the
contacts is illustrated in Fig. 1. Subplot figures 1, 2, 3, 4, 5 are
electrodes location for five example participants. Subplot 6 shows
the locations of electrodes from all participants projected into the
MNI standard brain model.

III. METHODS

In this paper, a participant-specific model will be trained for every
decoding method (within-participant decoding). To train the models,
the signals were first pre-processed, and then six decoding methods,
including the FBCSP algorithm and five deep learning models, were
trained to classify data into five movements.

After the initial decoding, investigations of the CNN-based models
were conducted from two perspectives. In the first investigation,
the effect of data cropping strategies and model depth on decoding
performance was studied. The second investigation, conducted using
ResNet and the proposed STSCNN, tried to interpret and visualize
the so-called ‘black-box’ deep learning algorithm. Finally, the rela-
tionship between decoding accuracy and frequency modulation was
examined.

A. Signal Pre-Processing

First, SEEG data were down-sampled to 500Hz using resample
in [29]. The signals were then band-pass filtered from 0.5 Hz to 200
Hz using a 4th order Butterworth filter, similar to previous SEEG
studies [9]. Then, a notch filter was used to eliminate 50 Hz power-
line interference. Next, channels with extensive 50 Hz interference
were identified and excluded in the following calculation using the
same procedure as in [10], and a total of 32 out of 4606 electrodes
were removed.

For FBCSP methods, an extra re-reference was applied using
the Laplacian re-reference method, which proved to be beneficial
and superior compared to other re-reference methods [26]. No re-
reference was applied for deep learning methods because deep
learning methods were proved to be able to learn a spatial filter after
the training [20].

B. FBCSP Algorithm

For the FBCSP method, the algorithm proposed in [13] was used.
In brief, multiple band-pass filters were used to extract signals in
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TABLE I
CLINICAL PROFILES OF PARTICIPANTS IN THE STUDY.

SID EZ DH EH Gender Age RH EL NC SR (Hz)
1 inferior frontal gyrus R R F 23 LH 10 121 1000
2 left occipital lobe R R M 33 LH 15 180 1000
3 right central region R L F 30 RH 7 60 1000
4 right temporal lobe R L M 26 RH 13 178 1000
5 right inferior frontal gyrus R L M 25 RH 10 143 1000
6 right temporal & insular lobe R L F 17 BI 10 169 1000
7 right frontal R L F 28 RH 9 114 1000
8 left temporal parietal lobe R R M 27 LH 16 208 2000
9 right temporal lobe R L M 15 BI 13 194 500
10 right superior parietal lobe R L M 31 RH 6 94 500
11 right superior parietal lobe R R M 31 RH 6 102 2000
12 right ACC R L M 19 BI 9 130 2000
13 left temporal & insular lobe R R F 30 BI 13 170 2000
14 left temporal lobe R R F 31 LH 10 144 2000
15 left occipital & parietal lobe R R M 27 BI 10 144 2000
16 None R R M 16 BI 13 137 2000
17 right temporal lobe R L M 24 RH 8 108 2000
18 left temporal lobe R R F 30 LH 9 118 2000
19 left temporal lobe R R F 33 LH 12 150 2000
20 None R R F 23 BI 15 198 2000
21 right temporal lobe R L F 23 RH 10 130 2000
22 left temporal lobe R R F 42 LH 10 137 2000
23 left temporal lobe R R M 33 BI 11 154 2000
24 left SMA R R M 15 LH 8 110 2000
25 right occipital R L M 25 BI 8 108 2000
26 None R R M 29 BI 5 72 2000
27 right temporal lobe R L M 22 BI 6 56 2000
28 right parietal lobe R L M 15 RH 7 102 2000
29 None R R M 26 LH 10 136 2000
30 left temporal lobe R R F 27 BI 10 117 2000
Abbreviations for this Table: SID: Subject ID; EZ, Epileptogenic Zone; RH, Recording Hemisphere; BI, bilateral; SR,
Sampling Rate; SMA, Supplementary Motor Area; ACC, anterior cingulate cortex; EL, Number of Electrode Shafts; NC:
Number of Contacts; DH, dominant hand; EH, experiment hand; None: epilepsy zone unknown.

0.5-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz, 60-75 Hz, 75-95 Hz, 105-125
Hz, and 125-150 Hz. Then spatial filtering was performed using the
CSP algorithm. Next, the mutual information-based feature selection
algorithm was used to select the discriminative CSP features. Finally,
an SVM classifier was used to classify the signal into 5 tasks [30].

C. Deep Learning Models

Five deep learning networks were implemented and compared
in this study, including EEGNet [20], deep convolutional network
(deep CNN) [31], shallow convolutional network (shallow CNN) [31],
ResNet [25], and STSCNN. Since detailed information on other deep
learning models can be found in their original papers, only details of
ResNet and STSCNN will be presented in this section.

1) ResNet Model: The ResNet architecture used in this work is
similar to other ResNet variants, the only difference was the number
of the convolution layers [25]. The schematic plot of the ResNet
model implemented in this paper is presented in Fig. 3. In the first
block, the 2-dimensional raw SEEG input, in the shape of (channel,
time points), was expanded to a 3D cube using a convolution
operation with multiple 1D kernels. The second block is a residual
block with an identity connection. The residual block is composed of
two 3×3 convolutional layers, Batch normalization, and ReLu non-
linearity. The third block is similar to the second one, except a 1×1

convolutional connection was used instead of the identity connection.
In blocks 2 and 3, the depth of the feature map increases, while the
width and height decrease. In the last block, the intermediate 3D cube
will be collapsed into a 1D vector using a pooling operation and then
transferred to a 1 × 5 vector using a linear layer. To complete the
classification, a softmax operation was applied to yield a probability
prediction.

2) STSCNN Model: The STSCNN was inspired by a deep CNN
model. In the original deep CNN, the raw data is first fed into a
temporal and then spatial convolutional layer. The temporal and spa-
tial layers serve as temporal and spatial filters, respectively. However,
SEEG electrodes penetrate through a wide range of brain areas and
only part of them contain information useful for decoding within the
proposed paradigm. Therefore, it is reasonable to hypothesize that it
would be beneficial to have an extra spatial layer before the temporal-
spatial layers. In the proposed model, a spatial layer was introduced
on top of the original deep CNN (taken from [31]) to attenuate the
noisy channels. The attenuation can be achieved by learning and
assigning low weights to channels. The major components of the
proposed STSCNN are presented in Fig. 3.
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(1) (2) (3)

(4) (5) (6)

Fig. 1. The 3D locations of the SEEG electrodes. Subplots 1,2,3,4 and 5 illustrate the electrodes’ location in the individual brain space for 5 example
participants. The lower right subplot represents the electrodes aggregated from all subjects, projected into the MNI standard brain model.

TIME (S)0 4 5 10

REST CUE TASK REST

A

B

Fig. 2. The experimental paradigm. (A) There are three stages in one trial:
rest, cue, and task. In the resting stage, the participant remains still for
4 seconds. Then a cross cue will appear, lasting for 1 second, to prepare
the subject for the upcoming task. In the task stage, a picture of one of
five motions will appear, and the participant will perform the corresponding
task repeatedly for 5 seconds before the screen turns dark again. (B) Each
participant performed five different types of forearm and hand motions (grasp,
scissor gesture, elbow flexion, wrist supination, thumb flexion). The pictures
were randomly presented while ensuring an equal number of appearances of
each gesture.

D. Training Procedure

A stratified five-fold cross-validation procedure was employed for
both the FBCSP and deep learning model training. However, the data
splitting procedure was different between these two methods. For
FBCSP, the entire data were split into training and testing datasets,
while for the deep learning method, an extra validation dataset was
needed for hyperparameter tuning and early stopping. In detail, for
FBCSP, data were split in an 80/20 manner in each fold, in which
the model was trained on an 80% training set and then tested on the
remaining 20% testing set. For the deep learning model, data were
first split in an 80/20 manner in each fold, and then the original
80% dataset was further split into an 80% training dataset for model
training and a 20% validation dataset for hyper-parameter tuning and
early stopping, while the original 20% data were used for model
testing. Therefore, the final training, validation, and testing dataset

contained 64%, 16%, and 20% of the entire dataset for each fold.
The training was carried out on a desktop computer with an Intel(R)
Xeon(R) Gold 5118 CPU, 64.0 GB RAM, and one NVIDIA Quadro
P5000 GPU card. During the validation, the mean decoding accuracy
averaged across all participants and all folds were reported.

In addition, since there are only 20 trials for each task, a data
augmentation procedure (cropped training) was implemented after
data splitting. Cropped training is a common strategy for data
augmentation for deep learning, and it has been proven to be effective
to enhance the decoding performance of object recognition in image
recognition [25] and EEG decoding tasks [31]. In detail, for each trial
in the original data, a sliding rectangle window of 500 ms was used
to slide along the time dimension with a 200 ms step size (stride).
This windowing process will partition the original trials (10 s long)
into multiple shorter trials (500 ms long). In the end, there were
1900 trials for each subject, organized in the shape of (1900, N,
500) where N represented the channel number. Using the partitioning
schema presented in the previous content, there were 1216 (1900
× 64%), 304 (1900 × 16%) and 380 (1900 × 20%) trials in the
training, validation and testing set, respectively. To train all five deep
learning models, the loss was calculated as the cross entropy loss
and the Adam optimizer [32] was used to update model parameters
at a learning rate of 0.001. The maximum training epochs were set
to 500 and the training process will be stopped if the validation loss
stopped decreasing for 20 epochs (early stopping).

After the initial decoding, investigations of the CNN-based models
were conducted from two perspectives. In the first investigation,
the effect of data cropping strategies and model depth on decoding
performance was studied. The second investigation, conducted on the
ResNet and the proposed STSCNN, tried to interpret and visualize
the so-called ‘black-box’ deep learning algorithm.

E. Analysis 1: Cropped Training and Model Depth

After the initial classification, two extra experiments were con-
ducted on the best model to explore the effect of cropping strategy
and model depth on decoding accuracy.

1) Cropped Training Process: In the initial cropped training, each
data set was augmented using a window of 500 ms and a step size
of 200 ms. The best combination of these two parameters will be
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Residual Block with Identity
Connection

Residual Block with 1X1
Convolution

Block 4

1X5

1 X 2048

1 X 5

2048 X 7 X 15

Block 1
Block 2 Block 3

Block 4

Batch Norm

3 X 3 Conv

ReLu

Batch Norm

3 X 3 Conv

Block 2

Batch Norm

3 X 3 Conv

ReLu

Batch Norm

3 X 3 Conv

1 X 1 Conv

Block 3

x 4

A

B

Fig. 3. ResNet model architecture. It consists of 4 blocks, as shown in upper part A. The first block uses multiple 1D kernels to expand the 2D data to a 3D
cube. The second block is a residual block with an identity connection. The third block is a concatenation of three residual blocks with a 1×1 convolution
connection. In the last block, the 3D cube was converted into a 1D vector using a pooling operation. In lower part B, the detailed structures of blocks 2, 3,
and 4 were presented.

Raw signal:(1,N,500) (1,N,500) (512,N,481) (512,1,481)

(512,1,462)(512,1,443)(512,1,424)(128,)(5,)

Conv2d 
(N,1)

Conv2d 
(1,20)

Conv2d 
(N,1)

Conv2d 
(1,20)

Conv2d 
(1,20)

Conv2d 
(1,20)

AvgPool 
(1,424)

Linear 
(128,5)

Conv spatial 1 Conv spatial 2Conv temporal

Fig. 4. The proposed STSCNN model architecture. Input and features were represented as black rectangles with shapes indicated below. Kernels and their
products are denoted as green and blue rectangles while the kernel sizes were indicated in the middle yellow box. ReLU was used as the non-linear function.
Two spatial filters and one temporal filter were denoted as Conv spatial 1, Conv spatial 2, and Conv temporal in the plot. AvgPool: average pooling layer;
Conv2d: 2-D convolutional layer;

investigated further in this section. Since the number of possible
combinations is large, an alternating searching strategy was used.
The decoding accuracy was first evaluated using window sizes from
200 ms to 1200 ms in 200 ms increments, while the step size was
fixed at 200 ms. Then the optimal window size was identified which
corresponded to the highest decoding accuracy. Next, step sizes of
20 ms, 50 ms, 100 ms, 200 ms, 300 ms, 400 ms, and 500 ms were
tested using the best window size identified in the previous step. The
best step size is the one that achieved the highest decoding accuracy.
The best combination of window size and step size will be used for
subsequent analysis.

2) ResNet With Various Depths: After the optimal cropping win-
dow size and stride size were determined, the effect of model depth
on the decoding performance was evaluated. While more layers
provide better representation ability, over-fitting is a major problem.

Therefore, a balance must be achieved between model complexity
and generalization. In this section, various depths were evaluated and
compared using the ResNet model. As shown in Fig. 3, the original
ResNet has 4 stacked residual blocks. The performance of ResNet
using 3,4,5,6,7,8 stacked residual blocks will be further investigated.

F. Analysis 2: Visualization of The Decoding Process of ResNet and
STSCNN

Both ResNet and STSCNN were re-trained using the previously
obtained optimal cropping and depth hyper-parameters. Then, differ-
ent methods were explored to visualize the so-called black box deep
learning model.

For STSCNN, the first three layers were designed to mimic the spa-
tial and temporal filter using 1-dimension convolution kernels along
channel and time axes. Therefore, STSCNN will be interpreted from
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both spatial and spectral perspectives. However, for ResNet, the 2D
convolution kernels cannot be viewed as spatial or spectral filtering.
Therefore, a common technology to visualize the decoding process of
deep learning, Gradient-weighted Class Activation Mapping (Grad-
CAM), was used to interpret the ResNet model [33].

1) Visualization of Decoding Process of STSCNN: For STSCNN,
Conv spatial 1/Conv spatial 2 and Conv temporal are designed to
mimic spatial and temporal filtering operations, respectively. Three
approaches were taken to examine the decoding process of STSCNN.
First, the correlation between SEEG data of different tasks was
examined before and after the Conv spatial 1 layer to check if
this layer mimics a spatial filter to maximize the distinguishability.
Second, the correlation between different sub-band power traces of
raw data and the output (feature map) of the Conv spatial 2 layer
was calculated to test if the network extracted band-specific features
like a filter, similar to the EEG study [31]. Third, the spectral content
was analyzed on the feature map of Conv temporal to evaluate the
separability in the spectral domain among different classes.

In the first investigation, we hypothesize that an extra spatial
layer may enhance the distinguishability (quantified by correlations
coefficient) among different task data in the temporal domain. The
2D (time * channel) raw data was denoted as bold xi, while the 2D
feature map of Conv spatial 1 was denoted as x̂i, where i represent
the class. The correlation coefficient between all possible pairs of
classes before and after Conv spatial 1 were calculated using the
following equations, separately.

corrij = corr(xi,xj), i, j = 1, 2, 3, 4, 5 (1)

ˆcorrij = corr(x̂i, x̂j), i, j = 1, 2, 3, 4, 5 (2)

If the model has learned a spatial filter, it is expected that there will
be a decreased R between classes.

In the second analysis, to investigate the filtering behaviour of the
model, the correlation between the sub-band power trace of input
data and the feature map of Conv spatial 2 was calculated for each
channel separately. Firstly, the temporal-spectral representation t̂s

t,f
c ,

in which t,f,c represents time stamp, frequency range, and channel, of
each channel was calculated in the (0,200) Hz range. The frequency
resolution was set to 4 Hz, which results in 200/4=50 frequency
intervals. This 2D time-frequency representation was calculated using
the FFT-based tfr morlet in the MNE package [34]. Then, sub-band
power was obtained by squaring the above representation. Next, to
obtain the power trace tst,fc , a moving-average window was used
to slide along the temporal axis. The window length is set to be
the same as the receptive field of a single value (unit) in the output
feature map fmaptk (t and k correspond to feature map width and
height, respectively) of Conv spatial 2. The procedure was in line
with the previous EEG study [31]. For example, in STSCNN, the
receptive field of one unit in the Conv spatial 2 feature map is 20
points in the raw SEEG data (Spatial convolution will not change the
receptive field along the temporal dimension.). Therefore, the window
length was set as 20 to slide along the power trace and calculate the
mean value in each window. Next, a scalar correlation coefficient
Rf,k

c was obtained between the power trace tst,fc , and a particular
row k in the feature map fmapt,k. This calculation was repeated for
50 frequency ranges and 512 rows to produce a 2D map Rc for a
particular channel.

In the last analysis, the hypothesis is that the STSCNN learned to
extract signals in specific frequency ranges to facilitate classification.
To verify this, the frequency content was analyzed for each row of
the 2D feature map (output) fmapt,k of Conv spatial 2 layer using
the FFT method.

2) Visualization of Decoding Process of ResNet: The Grad-CAM
[33] method was used to visualize the decoding process of the ResNet
model. Grad-CAM is commonly used in image recognition, and it
produces a coarse localized heat map highlighting the key regions for
decoding. However, the interpretability of the deep learning model
using Grad-CAM depends on the model structure. For example, in an
image classification task, the gradient heat map should be of a similar
size as the raw input image. Then, the final Grad-CAM activation map
can be produced by first rescaling the gradient map and overlapping
it on top of the raw image. For the ResNet implemented in this
work, the width and height of the feature map were halved at every
residual block, which meant the shape of the gradient map was more
and more different from that of the raw SEEG data. For example, for
one SEEG data in the shape of (208, 500), the shapes of the feature
map (omit the batch dimension) of block 1, block 2 and block 3 are
(64, 208, 449), (128,108,225), (2048,7,15), respectively. When the
Grad-CAM was applied on block 3, the weighted gradient of shape
(7, 15) will be re-scaled to (208, 500) and overlapped on top. The
meaningful interpretation of the Grad-CAM was lost because of this
large re-scaling factor. Therefore, in this work, the visualization was
conducted on the second block, in which the (108,225) gradient was
re-scaled and then overlapped on top of the (208, 500) input.
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Fig. 5. Time-frequency representation (upper subplot) and its corresponding
ERS/ERD plot (lower subplot) for task 1, generated from an example electrode
of subject 30. Other task responses exhibit a similar response. The upper half
is normalized amplitude values obtained against the baseline period (before the
first dashed vertical line). The lower half contains amplitude of high frequency
(60 to 150 Hz) and low frequency (10 to 30 Hz), and the thick lines are average
amplitude. Two dashed vertical lines represent the beginning and the ending
of the task, respectively.

G. Relationship Between Decoding Performance and Channel Reac-
tivity

In the previous analysis, it is evident that STSCNN performs classi-
fication by extracting information in frequency bands. Therefore, the
hypothesis is that subjects with high decoding accuracy have more
electrodes that are reactive (responsive) to the movement task in the
spectral domain. One of the methods to quantify task reactivity is
the correlation coefficient between frequency power and task state
(idle or moving). Event-related synchronization (ERS) and event-
related desynchronization (ERD) are well-known power modulations
found in brain signals. Therefore, the power of frequencies showing
ERS/ERD was used to compute the correlation. To find the frequency
range exhibiting ERS/ERD, the temporal-spectral representation of
the SEEG signals was obtained by performing time-frequency de-
composition using the public MNE toolbox [34] and normalized
to the baseline (the resting stage), same as in another SEEG-based
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BCI study [10]. From the temporal-spectral representation, a high-
frequency range between (60 to 150 Hz) and a low-frequency range
between (10 to 30 Hz) were identified which showed obvious ERS
and ERD, respectively, as shown in Fig. 5. For a certain channel
c, the normalized power traces of high and low-frequency ranges
were obtained by averaging along the frequency axis and denoted
as HFPc and LFPc, respectively. In addition, two number series,
labelHFP = [−1, ... − 1, 1, ...1] (-1 and 1 represent idle and task
state, respectively) and labelLFP = [1, ..1,−1, .. − 1] (1 and -1
represent idle and task state, respectively) were defined. Finally, cor-
relation coefficients, corrcHFP and corrcLFP , for a certain channel c,
can be obtained using Eq. 3 and Eq. 4, respectively. In additional, the
mean correlation coefficient corrc, between corrcHFP and corrcLFP ,
was also obtained using Eq. 5.

corrcHFP = corr(labelHFP , HFPc) (3)

corrcLFP = corr(labelerd, LFPc) (4)

corrc = mean(corrcHFP , corr
c
LFP ) (5)

Next, the participant-specific reactivity indicator calculated from
the high-frequency band, denoted as reacHFP

sid (sid is the subject
ID), was obtained by averaging corrcHFP across all channels for
that participant. The same procedure was used to obtain reacLFP

sid

and reacsid, which represents the low-frequency band indicator and
the mean indicator, respectively.

IV. RESULTS
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Fig. 6. Decoding accuracy of all participants using all models. The X-axis
is the subject ID, and the Y-axis is decoding accuracy. Different decoding
methods were represented in different colours.

A. Decoding Result

The decoding result of 30 participants is presented in Fig. 6 using
a 500 ms window and step size of 200 ms. The mean decoding
accuracy of EEGNet, FBCSP, shallow CNN, deep CNN, STSCNN,
and ResNet are 27 ± 6.5%, 37 ± 5.2%, 39 ± 4.1%, 42 ± 4.0%, 44 ±
3.3%, and 51 ± 3.2%, respectively, averaged across all 30 subjects.
This overall decoding accuracy is low compared to other invasive
studies. This is because the SEEG electrodes were placed strictly
according to the clinical needs of epilepsy treatment. In many cases,

shallow CNN deep CNN

20%

STSCNN ResNetEEGNet FBCSP

Fig. 7. Violin plot of the decoding accuracy obtained from the selected
subjects using all models. A Violin plot can show the decoding accuracy
distribution. The top, bottom, and middle bars represent the min, max,
and mean accuracy, respectively. The dashed line indicates the chance level
accuracy.

the electrodes were placed in regions that are not related to movement
activity, this likely leads to poor decoding performance. Since there is
evidence that signals from the sensorimotor area of the cortex contain
motor control information, participants that do not have electrodes in
these areas were excluded. Thus, five participants (9, 21, 22, 25, 29)
were identified and excluded from the subsequent content. For the
remaining subjects, the average decoding accuracy was 35 ± 6.1%,
38 ± 4.9%, 60 ± 3.9%, 60 ± 3.3%, 61 ± 3.2%, and 63 ± 3.1%
for EEGNet, FBCSP, shallow CNN, deep CNN, STSCNN, ResNet,
as shown in Fig. 7. ResNet obtained the highest mean decoding
accuracy, while EEGNet was the worst. The decoding accuracy of
shallow CNN, deep CNN, STSCNN, and ResNet were significantly
higher than that of EEGNet and FBCSP (Wilcoxon signed-rank test,
p=0.000015). However, no significant difference was found between
EEGNet and FBCSP, and among shallow CNN, deep CNN, STSCNN,
and ResNet.

B. Analysis 1: Cropped Training and Model Depth

In the above decoding task, the ResNet model was initially con-
structed with 3 stacked residual blocks and trained using an arbitrary
500 ms window and 200 ms step length. In the subsequent section,
the effect of residual block number, window size, and step size on
decoding accuracy will be analyzed.

1) Cropped Training: In the previous result, two cropping param-
eters, window size, and step size were set to 500 ms and 200 ms
arbitrarily. To find the optimal cropping strategy, these two parameters
were searched in turn, as presented in the Method section: III-E1.

The decoding accuracy averaged across the selected participants,
using different window sizes and step sizes are presented in Fig. 8.
The blue dots are decoding accuracy obtained with different window
sizes, as indexed by the lower axis. The highest decoding accuracy
was obtained with a window size of 400 ms. The red dots, indexed
by the upper axis, represent the decoding accuracy obtained with
different step sizes while the window size was fixed at 400 ms.
The highest decoding accuracy was obtained with a step size equal
to 100 ms using a window size of 400 ms. Therefore, the optimal
combination is a 400 ms window size and a 100 ms step size. The
same combination will be used in the subsequent analysis.

2) Accuracy Varied With Depth: After the optimal window size
and step size hyper-parameters were determined, the effect of depth
(number of residual blocks) on decoding accuracy was explored.
Using the remaining participants, the average performance of ResNet
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Fig. 8. Decoding accuracy using different window sizes and step sizes on the
ResNet model. The blue dots were decoding accuracy obtained with different
window sizes, as indicated in the lower axis. The highest decoding accuracy
was obtained using a window size of 400 ms. The red dots represented
decoding accuracy obtained with different step sizes, indexed by the upper
axis, while the window size was fixed at 400 ms. The highest decoding
accuracy was obtained with a step size equal to 100 ms.

was evaluated using 3,4,5,6,7,8 residual blocks. The result is pre-
sented in Fig. 9. It shows that ResNet performance increased with
depth and plateaued at 5 layers. Another point worth noting was that
the decoding performance did not decline with more layers. This point
is in line with other image recognition studies, which demonstrated
that over-fitting was mitigated in a deeper residual network [25].
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Fig. 9. Violin plot of the decoding accuracy of the selected subjects using
ResNet with various depths. Decoding accuracy plateaued at five residual
blocks.

C. Analysis 2: Visualization of The Decoding Process of ResNet and
STSCNN

The subsequent two subsections will present the visualization of
the decoding process of ResNet and STSCNN, respectively. Both
models were re-trained using the previously obtained cropping and
depth hyper-parameters.

1) Visualization of Decoding Process of ResNet: An Grad-CAM
heat map, generated from an example trial of participant 11, is
presented in Fig. 10. The heat map shows a clear stratified distribution
of high gradient amplitude along the channel axis. To better visualize
the different weights assigned by ResNet, the mean gradient was
calculated along the channel axis and plotted to the right side. It
is clear that ResNet has assigned different importance to channels:

high values denote the informative channels for the decoding task,
as illustrated in the right subplot.
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Fig. 10. Grad-CAM heat map generated from the second residual block of
ResNet using an example trail from movement task 1 of participant 11, which
has 208 electrodes. X and Y axes are the time points (ms) and channel index,
respectively. The right subplot is the mean activation strength averaged along
the channel axis.

2) Visualization of Decoding Process of STSCNN: Three
approaches were used in this section to interpret the decoding
process of STSCNN. The analysis of these three approaches was
conducted on the fully trained network with window and step sizes
of 400 ms and 100 ms.

In the first approach, the hypothesis that an extra spatial layer
may enhance the distinctiveness of data from different classes was
examined. The correlation coefficient R was used to qualitatively
measure the distinctiveness between data from the two classes. The
resulting R matrix, calculated using the method described in section
III-F1 for subject 11, was presented in Fig. 11. It is obvious from
these two subplots that the correlation between two different classes
decreased after the first spatial layer. This enhancement brought
by the spatial layer was similar to that obtained by a spatial filter
(Laplacian reference) methods [14], [26].
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0.2

0.3
A B

coefficient r
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Task 2

Task 1

Task 5

Task 4

Task 3

Task 2

Task 1 Task 5Task 4Task 3Task 2 Task 1 Task 5Task 4Task 3Task 2

Fig. 11. Matrix of correlation coefficient (r) of all possible pairs of the
task data. Subplots A and B represent r before and after the spatial layer,
respectively. This plot was obtained from an example participant 11. Other
subjects exhibited a similar result.

Next, to find out if the network extracted band-specific features
like a filter, the testing data set was fed into the trained network
to obtain the intermediate feature map of Conv spatial 2. Then, a
scalar value was obtained by correlating the sub-band power trace
and rows of the feature map. For the 512 rows and 50 frequencies,
this correlation was repeated 512×50 times to obtain a 2D map, as
shown in Fig. 12 for subject 11.

For improved visualization, the horizontal axis has been sorted by
the average correlation coefficient within 60-200 Hz. After calculating
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the same 2D correlation map for all channels, it is clear that there
were around 47% of total channels that showed a strong correlation
similar to Fig. 12. The right subplot shows the mean trace (blue
dashed line) of the absolute value averaged along the x-axis. To
avoid the possibility that the strong correlation resulted from network
random initialization, the same correlation map was calculated using
a randomly initialized model, then the mean trace was plotted in the
right subplot as the green dashed line. The red dashed line represents
the difference between the blue and green lines. As shown in the plot,
there is an obvious difference between correlations calculated using
feature maps on the trained and untrained models, demonstrating that
STSCNN has learned frequency-specific features after training.

0

20

40

60

80

100

120

140

160

180

200

Trained
Untrained
Difference

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.30 512
Kernel   Correlation coefficient

 
 

FR
E

Q
U

E
N

C
Y

 / 
H

z

sorted by

Fig. 12. Correlation map obtained from an example subject 30. The left
subplot is the correlation coefficient map between the input sub-band power
trace and the Conv spatial 2 feature map. Each row of the feature map
corresponds to a convolutional kernel. The kernels were sorted by the mean
correlation in the range of 60 and 200 Hz. The right subplot shows the mean
correlation obtained from the trained (blue dashed line) and untrained model
(green dashed line). The red dashed line indicates the difference between the
blue and green lines.

In the last analysis, the hypothesis that the model was trained to
perform classification in the spectral domain was examined by per-
forming a frequency analysis of the feature map of Conv spatial 2.
Similar to the previous procedure, data from different tasks were fed
into the trained model separately, and the frequency analysis was
performed using scipy.fft on each row of the feature map of
Conv spatial 2. The result from the FFT analysis was plotted with
different colours for different tasks. The mean frequency amplitude
was denoted as solid lines, and the region within one standard
deviation was denoted as the shaded area. Results from four example
rows were presented in Fig. 13 for subject 11. As can be seen from the
plot, there is a clear separation among tasks, as indicated by different
colours. To quantify the separation, the number of distinguishable
class pairs was calculated using the Wilcoxon rank-sum test (critical
p-value was 0.05) at each frequency value.

To highlight the frequencies that exhibit the most significant
difference between classes, the number of distinguishable class pairs
was raised to Euler’s number e (exp() transformed). For a better
visualization of kernel 35 which exhibits separability in a very narrow
sub-band, the frequency axis was log-transformed and plotted in the
upper-right corner.

In addition, the subplots demonstrate that frequency ranges which
exhibit obvious separation are different for different rows in the
feature map. This heterogeneous filtering can further enhance the
decoding performance, similar to the ensemble methods, which use
multiple learning algorithms to obtain better predictive performance
than could be obtained from any of the constituent learning algo-
rithms alone [35].

D. Relationship Between Decoding Performance and Frequency Re-
sponse

Since the STSCNN was shown to perform classification in the
spectral domain, this section will further investigate the relationship
between decoding accuracy and the spectral response.

In a preliminary analysis, the electrode distribution according to the
reactivity measured by corrc, from four example subjects was plotted
in Fig. 14. By comparing the distribution between two columns, it is
clear that subjects 11 and 30, who have higher decoding accuracy,
tend to have more electrodes with high reactivity. While subjects
4 and 5, who achieved chance level decoding accuracy, have more
electrodes distributed in the low reactivity range.

To have a clearer view of the relationship between decoding
accuracy and electrode reactivity, a scatter plot was used to show
reacHFP

sid , reacLFP
sid , and reacsid against decoding accuracy for all

participants, as shown in Fig. 15. The scatter plots were fitted using
linear and 2nd order polynomial curves as shown in the blue and
the red lines, respectively. As can be observed in the plot, there is a
positive relationship between the spectral response in both low and
high-frequency bands and the decoding accuracy. Visual inspection
indicates that polynomial curves have a better fitting.

V. DISCUSSION

A. Extra Spatial Filter is Beneficial

This work demonstrated that the STSCNN performs better than
the original deep CNN model by adding an extra spatial filter layer.
This enhancement may come from eliminating irrelevant channels by
projecting the raw SEEG data into another space (much like LDA). A
further question is what is the best dimension in the projection space.
In this work, the raw data were projected into a space with the same
dimensions as the channel number (the dimension number remained
the same). This strategy may be sub-optimal when considering the
fact that SEEG electrodes were arranged along a shaft and a strong
correlation might exist between adjacent electrodes, which means
only a subset of channels is required for the decoding. Therefore,
further study is required to understand the optimal projection space
dimension.

B. Application of ResNet on Time Series Data

Neural networks are a universal approximation method, and when
given sufficient capacity, a feed-forward network with a single hidden
layer is able to approximate any function. However, such a complex
layer is prone to over-fitting, and a common workaround is to add
more layers (make a deeper network). While AlexNet has only 5
convolutional layers, VGG net [36] and GoogleNet [37] have 19 and
22 layers, respectively. However, increasing depth simply by stacking
more layers may cause the notorious vanishing gradient problem. As
a result, as the network gets deeper, the overall performance saturates
or even begins to degrade. To solve the gradient vanishing problem,
gated shortcut connections were introduced as a ‘highway’, hence the
Highway Network in which parameterized gates were introduced to
control information flow through the shortcut [38]. This gated flow
of information can also be found in the Long Term Short Memory
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Fig. 13. Frequency representation of four example rows taken from the feature map of Conv spatial 2 using testing data obtained from an example subject
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Fig. 14. Electrodes distribution according to the reactivity measured by
corrc. Subjects 4 and 5 on the left column achieved lower decoding accuracy
compared to subject 11 and 30 on the right column. It shows that subjects
tend to have more reactive electrodes if the subject achieves higher decoding
accuracy.

(LSTM) cell [39]. In this sense, ResNet can be seen as a special case
of a Highway Network that uses an identity shortcut connection to
bypass layers. Because of the residual connection, many independent
effective paths are available. One counter-intuitive result from these
multiple paths is that ResNet can achieve comparable performance

reac(HFP) reac(LFP) reac(MEAN)

Fig. 15. Relationship between subject electrode reactivity and decoding
accuracy. Three subplots denote the scatter plot using reacHFP

sid , reacLFP
sid ,

and reacsid, respectively. The blue and red lines represent the linear fitting
and polynomial fitting, respectively.

even if some layers of a trained network were dropped [40]. However,
its usage in BCI is rare, a possible reason is that ResNet requires a
3D cube as input while EEG is 2D time series. A common practice
in these few EEG studies is to apply an extra feature engineering step
before the ResNet model. For example, the direct Directed Transfer
Function (dDTF) method was used to represent EEG as images before
the ResNet model [23]. In another EEG study, short-time Fourier
transform (STFT) was applied to EEG data first to yield the 3D
input for the ResNet model. In this paper, a full decoding pipeline
was proposed by first expanding the 2D SEEG data into 3D data using
multiple 1D convolutional kernels. The resulting 3D data will be used
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in the following ResNet model, similar to the image classification
task.

In addition, this work introduces the first application of grad-CAM
in BCI decoding tasks. The grad-CAM technique is commonly used
in image recognition tasks, in which regions with high contribution
can be identified with high gradient values. For time-series data
(SEEG data in this work), the heat map exhibited a clear stratified
distribution of high value along the channel dimension (Fig. 10). This
implies the different contributions of channels to the decoding task,
and therefore it could be a potential method for channel selection.

C. Filtering Effect of CNN

In the analysis of STSCNN, the feature map of Conv spatial 2
demonstrated high separability among different motion types in cer-
tain frequency ranges. More interesting is that the common 1/f power
law does not apply to the feature map anymore, as demonstrated in
Fig. 13. This means that the STSCNN was trained to amplify certain
frequencies while suppressing others. In addition, the frequency
ranges that have been amplified or suppressed are different for
different kernels, which imply that STSCNN might has learned a set
of heterogeneous filters. These heterogeneous filters were beneficial
to the classification task. For example, in the four subplots of Fig. 13,
the discriminative frequency was around 5 Hz, 70 Hz, 80 Hz, and 120
Hz respectively. Therefore, higher decoding accuracy can be obtained
by aggregating decoding results from the above different frequency
ranges, similar to the idea in the ensemble learning. However, not
every channel exhibits such spectral separation as in Fig. 13, and
visual inspection found around 10% of total channels behaved in this
way. This means the spectral information was only part of the whole
information used for the classification. Therefore, this approach only
provides a partial explanation of the decoding process of the ‘black-
box’ model.

D. Limitation and Future Work

The vast array of deep learning models and their variants prohibits
a thorough evaluation of deep learning methods in BCI applications.
For example, many variants of ResNet exist, such as ResNet-50,
ResNet-110, and ResNet-152. In addition, even though many of these
models have been proven to be effective in some applications, a
satisfactory result can not be guaranteed in others. For example, while
a superior result can be obtained using ResNet, a contrary conclusion
from another BCI study showed worse performance compared to
deep CNN [31]. As a result, the applicability of a model in a
particular task needs to be evaluated on a case-by-case basis. To
further complicate the issue, there are many possible options in
every aspect of the deep learning model, including, for example, the
kernel shape of the convolutional layer, the non-linearity function, the
pooling operation, etc. The enormous range of models and possible
design options mentioned above prohibit a thorough analysis of the
deep learning method for SEEG signal decoding. Therefore, this
paper only presents a subset of possible deep learning architectures,
and as a consequence, the optimal model can not be guaranteed. In
this work, the goal was the gain an insight into the impact of different
network structures on decoding performance, rather than to find the
optimal solution. The STSCNN was studied for two reasons. Firstly,
it showed that an additional spatial filter is beneficial as it helps to
separate different classes (Fig.11). Secondly, it demonstrated that the
CNN-based deep learning models can be partially understood from
the spectral perspective (Fig.13).

Another limitation is the interpretation of STSCNN conducted
in this paper. In the spectral analysis of the feature map of
Conv spatial 2, it was demonstrated that the classification was

possibly conducted in the spectral domain. However, it only can
be confirmed if the next convolution layer, which consumes the
feature map, indeed mimics a filter that band passes the differentiating
frequency ranges identified in the previous step. Without knowing the
filter property of the learned kernel coefficient, it is still unknown if
ResNet performs classification in the spectral domain exclusively, or
looks at other aspects. While this analysis only provides a possible
explanation of the decoding process, further investigation is needed
to gain a full understanding.

VI. CONCLUSION

In this paper, a comparative study of CNN-based deep learning
methods was conducted on SEEG signals for the first time. Five
types of movements were classified, using both machine learning
and deep learning methods, based on SEEG recordings from 30
participants with intractable epilepsy. This work demonstrated the
feasibility of using deep learning on SEEG data. Compared with
other methods, ResNet achieved the best decoding accuracy, while the
STSCNN demonstrated that the spatial-temporal-spatial convolutional
layers configuration is better than the temporal-spatial configuration.
Further, various experiments were conducted to better understand this
so-called ‘black box’ method from the spectral domain, which might
be useful to reveal possible neuroscientific meanings, such as a bio-
marker of a specific frequency band. Finally, it is demonstrated that
the decoding accuracy variation was positively related to the spectral
response in both low and high-frequency ranges. In conclusion, this
paper showed that deep learning methods have a high potential for
SEEG signal decoding and the decoding process can be partially
understood from spatial and spectral perspectives.
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