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Abstract— Spiking Neural Networks (SNNs), An alternative to 

sigmoidal neural networks, include time into their operations 

using discrete signals called spikes. Employing spikes enables 

SNNs to mimic any feedforward sigmoidal neural network with 

lower power consumption. Recently a new type of SNN has been 

introduced for classification problems, known as Degree of 

Belonging SNN (DoB-SNN). DoB-SNN is a two-layer spiking 

neural network that shows significant potential as an alternative 

SNN architecture and learning algorithm. This paper introduces 

a new variant of Spike-Timing Dependent Plasticity (STDP), 

which is based on the assembly of neurons and expands the DoB-

SNN's training algorithm for multilayer architectures. The new 

learning rule, known as assembly-based STDP, employs trained 

DoBs in each layer to train the next layer and build strong 

connections between neurons from the same assembly while 

creating inhibitory connections between neurons from different 

assemblies in two consecutive layers. The performance of the 

multilayer DoB-SNN is evaluated on five datasets from the UCI 

machine learning repository. Detailed comparisons on these 

datasets with other supervised learning algorithms show that the 

multilayer DoB-SNN can achieve better performance on 4/5 

datasets and comparable performance on 5th when compared to  

multilayer algorithms that employ considerably more trainable 

parameters. 

Keywords—STDP, assembly of neurons, DoB, degree of 

belonging, spiking neural network, SNN 

I. INTRODUCTION 

Spiking Neural Networks (SNNs) are an alternative to 
sigmoidal neural networks, which add the concept of time into 
their operations. This third class of artificial neural networks 
consists of neurons that transmit information employing 
discrete impulses known as spikes. It has been shown that 
SNNs can mimic any feedforward network of sigmoidal 
neurons with lower power requirements [1][2]. However, 
supervised gradient-based training algorithms for sigmoidal 
neural networks can not directly be employed for SNNs due 
to the discrete nature of spikes. 

One of the most popular training methods for SNNs is a 
biologically inspired rule known as Spike Timing Dependent 
Plasticity (STDP). STDP adjusts the synapse strength between 
two neurons based on the timing of each pair of consecutive 
presynaptic and postsynaptic spikes [3]. This learning rule 
consists of two opposite actions: 1) Long-term potentiation 
(LTP) strengthens the synapse when the postsynaptic neuron 
generates a spike shortly after a presynaptic spike. 2) Long 
term depression (LTD) weakens the synapse when a 
postsynaptic spike happens before a spike from the 

presynaptic neuron. Real-valued weights usually model 
synapses in SNNs, and accordingly, LTD and LTP are 
performed by decreasing and increasing the weights, 
respectively [4]. 

Several methods have used STDP to train spiking neural 
networks for classification problems. These approaches can be 
categorised into unsupervised, supervised and reinforcement 
learning. STDP has been used for unsupervised training of 
single layer SNNs [5][6][7]. Srinivasan et al. [7] integrated the 
firing frequency of post-synaptic neurons into STDP to 
improve the discrimination of samples from different classes 
with similar attributes. STDP is inherently meant for one layer 
of spiking neurons and can not be applied to multilayer 
architectures due to the absence of a mechanism to back-
propagate errors across layers. However, Kheradpisheh et al. 
[8] used unsupervised STDP to train a multilayer 
convolutional SNN in a layer-by-layer manner to tackle this 
issue. After training each layer, they freeze its synaptic 
weights and disable its inhibitory strategies/neurons to provide 
enough spikes (information) to train the next layer. The output 
of this network's last fully connected layer is fed as a feature 
vector to a support vector machine classifier. 

STDP is fundamentally an unsupervised procedure. 
However, it is the foundation of some supervised approaches 
such as SWAT [9], SEFRON [10], and ReSuMe [11] to train 
one-layer SNNs. Some methods used a combination of 
unsupervised and supervised STDP to train multilayer SNNs. 
Lee et al. [12] employed a layer-by-layer approach for a 
multilayer convolutional SNN. They trained the hidden 
convolutional layers with a layer-by-layer unsupervised 
STDP. However, a type of supervised STDP trains the last 
fully connected layer of this network, in which each neuron is 
associated with a class. According to this supervised rule, 
every training spike pattern is only employed to train the 
neuron allocated to the input pattern’s class. Thiele et al. 
[13][14] used a similar technique with an end-to-end manner. 
They proposed a new scheme for end-to-end training of a deep 
convolutional SNN using dual accumulator neurons and 
STDP. In this biologically implausible method, each spiking 
neuron has two integrators with different thresholds; the one 
with the higher threshold trains the synapses with STDP, 
while the other integrator provides enough spikes for training 
in the subsequent layers. 

Conventional STDP is based on the relation between the 
spike-timing of neurons on two sides of a synaptic weight. 
This weight updating process does not guarantee high 



performance on a machine learning task. According to 
neuroscientific research [15], synapse adjustment in the 
human brain is also influenced by a third factor known as 
neuromodulation. Biological neuromodulators are released 
when a task is completed successfully (reward) or when an 
experience is unexpected (novelty). Neuromodulation 
inspired a more powerful method for training SNNs known as 
Neo-Hebbian STDP. Three-factor STDP states that if the pre-
synaptic neuron fires before or shortly after the post-synaptic 
neuron, a flag (eligibility trace) is set on the corresponding 
synapse, signalling that it is eligible for changes. However, the 
modification is only performed if a neuromodulator (third 
factor) arrives simultaneously or shortly after the flag [16]. 
The Neo-Hebbian rule has been utilised in several studies to 
train SNNs [17][18][19]. Mozafari et al. [17] introduced a 
variant of three-factor STDP called reward-modulated STDP 
to train a convolutional SNN, which can be considered a 
reinforcement learning algorithm. The final layer of their 
network contains one neuron that has been pre-assigned to 
each of the classes. The neuron with the earliest spike 
determines the network's decision in response to the input 
samples. Comparing this decision with the input pattern’s 
class, a reward/punishment signal is sent to the convolutional 
layers as a neuromodulator for STDP. A reward signal updates 
the weights with normal STDP, but the punishment 
neuromodulator adjusts the weights using a learning rule 
known as anti-STDP in which LTP and LTD are swapped. 

Neuroscientific researches suggest that the human brain 
allocates a neuronal assembly to each class in a real-life object 
classification task [15][20][21]. An assembly of neurons is a 
group of neurons assigned to a certain piece of cognitive data, 
such as a memory, a concept, or a phrase [20]. Recently 
Saranirad et al. [22] introduced a new type of spiking neural 
network inspired by biological assemblies, known as DoB-
SNN. All the above SNNs allocate each output neuron to a 
class before the training process. However, instead of a crisp 
pre-training allocation, DoB-SNN associates Degree of 
Belongings (DoBs) to each neuron, which estimates neurons’ 
spiking frequencies in response to the input patterns from each 
class. The training algorithm of DoB-SNN estimates the DoBs 
while adjusting the synaptic weights and forms an assembly 
of neurons for each class. These assemblies are trained to have 
relatively higher spiking activity for the input patterns from 
their class and lower activity for other classes. DoBs enable 
DoB-SNN to employ supervised STDP and anti-STDP to train 
the synaptic weights. DoB-SNN showed better or comparable 
performance than some state-of-the-art SNNs while using 
considerably fewer network parameters. However, this 
method is used to train only one layer of spiking neurons. 

In this paper, a new variant of STDP, entitled assembly-
based STDP, is introduced to extend the DoB-SNN algorithm 
to multilayer architectures with supervised training of all 
layers. Assembly-based STDP only performs STDP for the 
neurons from the same assembly and builds strong 
connections between the assemblies from the same class in 
different layers. Performance evaluation on multiple 
classification datasets indicates that adding another layer to 
DoB-SNN using assembly-based STDP improves the 
performance of the network. Furthermore, comparative results 
reveal that three-layer DoB-SNN can match or outperform 
other multilayer algorithms which exhibit significantly more 
trainable parameters. 

The remainder of the paper is organised as follows. The 
training algorithm and network architecture of a three-layer 
DoB SNN are first described in Section II. Next, in Section 
III, the performance of multilayer DoB-SNN is evaluated on 
multiple datasets and compared with some of the supervised 
SNNs. Finally, Section IV is allocated to discussion and 
conclusions. 

II. SPIKING NEURAL NETWORK WITH DEGREE OF BELONGING 

Figure (1) represents the three-layer architecture of DoB-
SNN. The network consists of an input layer for spike patterns �� from the class �� ∈ [1, … , 	
] where 	
 is the number of 
classes in the input dataset. The input layer is followed by a 
hidden and an output layer of fully connected LIF neurons. 
Neurons in the hidden and output layer are equipped with 
values in the range [0,1], known as Degree of Belonging 

(DoB). DoB of ��  neuron �ð�� �  is an estimation of the 

average spiking frequency of neuron � for the training inputs 
from class � . DoBs of neuron �  satisfy the following 
condition. 

 ∑ ð������� = 1 (1) 

which indicates that sum of all DoBs of each neuron for 
all classes is equal to 1. In this paper, an assembly of each class 
is defined as a group of neurons which are associated with that 
class based on their DoBs. Neurons are in the assembly of the 
class for which they have the highest DoB among all classes. 
Also, neurons that never were the most active for any of the 
classes and therefore have equal values of DoB for all classes 
are termed unassigned, meaning that they are not a member of 
any class’s assembly. 

 

 
Figure 1. The architecture of three-layer DoB-SNN 
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A. Training Algorithm 

Synapses between the input and hidden layer connect input 
neurons to spiking neurons, while weights between the hidden 
and output layer have presynaptic neurons with DoBs. 
Accordingly, the learning rules for training these two layers 
are different. The hidden layer is trained by conventional 
STDP; however, a new variant of STDP called assembly-
based STDP is introduced for the output layer. The following 
two sections describe the training algorithms for the hidden 
and output layers. 

1) Hidden Layer 
Synaptic weights in the hidden layer are initially set to 

random values from the interval [-1,1], and DoBs are 
initialised equally as given 

 ð�� = ���     ∀� ∈ [1, … , 	$], � ∈ [1, … , 	
] (2) 

after presenting an input pattern ��  from the class �� . The 

spiking frequency %�  of ��  neuron in the hidden layer in 

response to ��  is computed as the total number of spikes 
during simulation time. Based on the spiking frequency, the 
normalised spiking frequency of neuron � in this layer is given 
by 

 &� = '(∑ ')*+),-   (3) 

The learning algorithm for the hidden layer identifies three 
neurons for learning as follows: ./ : Neuron with the highest spiking frequency among all 
neurons in this layer, given by: 

 0� = argmax�  �&��    ∀� ∈ [1, … , 	$]  (4) 

.6: Neuron with the highest spiking frequency in the assembly 
of class ��, given by: 

 07 = argmax�  �&��   ∀�| �� = argmax�(ð�� ) (5) 

.; : Neuron with the highest spiking frequency among 
unassigned neurons, given by: 

 0< = argmax�  �&��   ∀�| ð�� = ���   ∀� ∈ [1, … , 	
] (6) 

Following each training pattern, only DoBs of neuron 0� 
are updated as follows. 

 ∆ð�>- = ⎩⎨
⎧ �Bð�CD-

�EFGH�BID-�    � = ��
− �B∆ð�CD-

��B�        � ≠ ��
               (7) 

Updating DoBs of neuron 0� with equation (7) increases its 
belonging to the assembly of class �� , while decreasing the 
DoBs for other classes in a way that satisfies the condition in 
equation (1). 

Without loss of generality, we assume that the network has 
been trained using several training patterns. In this situation, 
neurons based on their DoBs are either unassigned or 
associated with one of the class assemblies. After presenting a 

new sample �� from the class ��, two different scenarios may 
happen. The following sections explain how the synaptic 
weights will be updated in each situation. 

Scenario A: In this Scenario, Neuron 0� is unassigned or 
associated with the class ��. If 0� is unassigned, its DoBs will be 
updated by equation (7), and therefore, it will join the assembly 
of class ��, and if 0� is already associated with the class ��, its 
association is strengthened using equation (7). In both cases, 
the most active neuron for a training pattern from ��  is 
associated with ��, and accordingly, it is the desired scenario. 
In this case, the synaptic weights connecting 0�  to the input 
layer are updated using STDP, provided that %>- is less than L�. 

The amount of change in the synaptic weight ( ∆MN� ) 

connecting presynaptic neuron O  to postsynaptic neuron � 
using exponential STDP is given by 

 ∆MN� =  P+RSTUVSU(TW    VX(
−RSTUVSU(TW    VY(

 (8) 

where ZN  and Z�  depict the firing time of the neurons O and � 

respectively, and [  is the time constant for STDP. This 
modification in weights will increase the activity of 0�  for the 
spike patterns from ��, which is compatible with this neuron’s 
DoBs. L�  is a fixed threshold as the maximum allowed 
frequency for a neuron to be updated by STDP update and 
prohibits 0� from dominating the training process. Section III 
explains how this parameter is determined. 

Scenario B: In this scenario, 0� is associated with a class 
other than �� and therefore it is an undesired situation. Since 0� is the most active neuron for an input pattern from class ��, 
which is incompatible with its highest DoB, this neuron’s 
activity for �� is reduced using anti-STDP. According to anti-
STDP, when the presynaptic neuron generates a spike just 
before the postsynaptic spike, the weight of the synapse is 
reduced. Conversely, the weight is increased if a presynaptic 
spike happens quickly after the presynaptic neuron fires. Anti-
STDP can be formulated as 

 ∆MN� =  P−RSTUVSU(TW    VX(
+RSTUVSU(TW    VY(

 (9) 

In addition, neuron 07, the most active neuron in the assembly of �� , fired with a lower frequency than 0� . Accordingly, the 
synaptic weights of 07 are updated using STDP (equation (8)) to 
increase its activity for the input patterns from ��, provided that %>\ is more than ]�. The fixed frequency threshold ]� prevents 

the training algorithm from updating the weights of neurons 
with low frequencies using STDP. Therefore ]� protects the 
network from losing previously stored data. Furthermore, if 
no neuron is associated with the assembly of �� , the 
unassigned neuron 0<  gets an STDP update. This weight 
modification for 0<  increases its activity for the input patterns 
from ��  and increases the chance of this neuron of joining the 
assembly of �� , while presenting the subsequent training 
patterns to the network. 

After training the hidden layer, all unassigned neurons are 
removed from the network. These neurons are untrained and 
might undermine the network's overall performance. Then, all 
the weights and DoBs in this layer are frozen before training 



the output layer. The training algorithm for this layer is 
described in more detail in [22]. 

2) Output Layer 
The scenarios considered by the training algorithm for 

updating weights and DoBs in the output layer are the same as 
those described for updating the hidden layer but weights are 
updated using a different STDP rule. Since the training of the 
output layer starts after the hidden layer, neurons in the hidden 
layer have already been trained to spike compatible with their 
DoBs. The training algorithm for the hidden layer is designed 
to form assembly of neurons for each of the classes in the 
dataset. The training forces neurons to have relatively higher 
spiking activity for the patterns from their class and spike with 
lower frequencies for other classes. To expand these 
assemblies to the output layer, we use the estimated DoBs in 
the hidden layer for training the output layer. For this purpose, 
a new variant of STDP is introduced in this paper, entitled as 
Assembly-based STDP. 

As equation (8) implies, STDP updates the weights 
connected to all the presynaptic neurons only based on the 
times of the presynaptic and postsynaptic spikes. In 
Assembly-Based STDP, only presynaptic neurons from the 
assembly of input pattern’s class are updated using STDP. 
When an input pattern �� from the class �� is presented to the 
network, the weights corresponding to the presynaptic 
neurons are updated as follows. 

 ∆MN� =  
⎩⎪⎨
⎪⎧+RSTUVSU(TW                   (XV,   
C�_`ab_Gc(ðcV )

−RSTUVSU(TW                  (YV,   
C�_`ab_Gc(ðcV )0                           �� ≠ argmax�(ð�N )
 (10) 

Assembly-based STDP controls the plasticity and lets 
STDP only occur between the neurons from the same class. 
This learning rule builds strong connections between 
assemblies from the same class. Additionally, the anti-STDP 
form of assembly-based STDP is given by 

 ∆MN� =  
⎩⎪⎨
⎪⎧−RSTUVSU(TW                   (XV,   
C�_`ab_Gc(ðcV )

+RSTUVSU(TW                  (YV,   
C�_`ab_Gc(ðcV )0                           �� ≠ argmax�(ð�N )
 (11) 

As explained in the previous section, anti-STDP is 
employed when the neuron with the highest spiking frequency 
(0�) in the output layer is associated to a class other than ��. In 
this case, the anti-STDP rule in equation (11) reduces the 
weights between neuron 0� in the output layer and the assembly 
of �� in the hidden layer. This type of anti-STDP leads to weak 
or negative connections between the assemblies from two 
different classes in the hidden and output layer. 

As in the hidden layer, this layer considers two frequency 
thresholds Ld  and ]d  with different values from the 
thresholds in the hidden layer for updating weights. After 
training of the output layer all unassigned neurons are 
removed from this layer. Now, in the testing stage, when a 
sample �� from the class �� is presented to the network, the 
predicted class �̂�  depends on the DoBs of the most active 
neuron (0�) in the output layer as 

 �̂� = argmax�(ð�>-) (12) 

III. PERFORMANCE EVALUATION 

The proposed three-layer DoB-SNN with assembly based-
STDP is applied on five numerical datasets from the UCI 
machine learning repository [23], including breast cancer, Iris, 
Ionosphere, Pima diabetes, and liver disorders. The training 
algorithm for three-layer DoB-SNN includes four 
hyperparameters L� , ]� , Ld , and ]d . Nested Cross-
Validation(nCV) [24] is employed to optimise these 
frequency thresholds. Figure (2) represents an example of a 
5×5 nCV diagram used in this paper, which consists of two 
nested loops. The outer loop is a typical CV to evaluate model 
performance. The inner loop splits the outer training data into 
several folds and computes the network's accuracy for every 
hyperparameter range. The best set of parameters is the one 
with maximum mean accuracy across all inner folds. Finally, 
the network is trained with outer training data using the best 
parameters resulting from the inner loop and is tested on the 
outer test data, producing the final CV results for the model. 
Table I describes the details of datasets and the size of nCV 
used for each dataset. 

 

TABLE I.  DESCRIPTION OF DATASETS AND THE SIZE OF NCV USED 

FOR EACH DATASET 
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Iris 3 150 4 5 5 

Breast Cancer 2 683 9 10 10 

Pima diabetes 2 768 9 10 10 

Ionosphere 2 351 34 5 5 

Liver disorders 2 345 6 5 5 

 

Three-layer DoB-SNN is compared with two-layer DoB-
SNN as well as three other SNNs, including SWAT [9], 
SRESN [25], and SpikeProp [26] (Table II). The results of 
two-layer DoB-SNN, SWAT, SRESN, and SpikeProp have 
been reproduced from [22]. Also, the simulation parameters 
of three-layer DoB-SNN have been set as in [22]. Three-layer 
DoB-SNN was implemented in Python 3.7 utilising 
computing resources provided by the Northern Ireland High-
Performance Computing (NI-HPC) facility. 

The metrics used for comparison are the number of 
network parameters and the classification accuracy for the test 
dataset. The number of trainable parameters is equal to (	f ×	h)  and (	f × 	$+	$ × 	h)  for two- and three-layer 
architectures, respectively. SpikeProp uses 16 synapses 
between every pre- and postsynaptic neurons, and therefore its 
number of trainable parameters is 16 × (	f × 	$+	$ ×	h). It should be noted that DoB-SNN uses rate coding while 
other methods employ population coding, and as a result, they 
have more input neurons. The classification accuracy is given 
by 

 j��klm�n =  Number of correctly classified samplesTotal number of samples  (17) 



 

Figure 2. An example diagram of 5×5 nested cross-validation used in this paper: θ represents a hyperparameter vector 

Results are reported as average and standard deviation of 
accuracies across all outer folds. Additionally, one-way 
ANOVA [27] is used to determine whether the classification 
accuracy of different training methods were significantly 
different. After proving statistical significance in each case, 
pairwise comparisons are performed using Fisher's Least 
Significant Difference (LSD) approach [28]. 

For the Iris dataset, three-layer DoB-SNN slightly 
improved the performance of two-layer DoB-SNN and 
outperformed all other methods. One-way ANOVA indicates 
that at least one approach performs significantly different 
from others (� � 1 × 10B�). Fisher’s pairwise analysis shows 
that the three-layer DoB-SNN has significantly better 
performance than SpikeProp (� � 0.05) and SWAT (� �5 × 10B� ). Additionally, the two DoB-SNN architectures 
used for the Iris dataset employ fewer training parameters than 
others. 

Regarding breast cancer, adding another layer to DoB-
SNN improved its accuracy by 0.6%. The three-layer DoB-
SNN has reached the best accuracy while using considerably 
fewer trainable parameters. ANOVA showed a significant 
difference among the methods ( � � 5 × 10B� ). Pairwise 
comparison indicated that three-layer DoB-SNN only 
outperforms SWAT significantly (� � 5 × 10B�).  

For the Pima diabetes dataset, SpikeProp performs better 
than others, and one-way ANOVA analysis indicates that not 
all the approaches have equal performance (� � 5 × 10B��). 
However, pairwise statistical analysis confirmed that 
SpikeProp did not significantly outperform two-layer (� �0.1) and three-layer DoB-SNN (� � 0.2). 

 

TABLE II 

COMPARISON OF DOB-SNN WITH SRESN, SPIKEPROP, AND SWAT ON FIVE UCI BENCHMARK CLASSIFICATION DATASETS  

Data Set Algorithm Architecture # Trainable Parameters Testing Accuracy (%) 

Iris 

3L-DoBSNN 5-(5-8)-(8-10) 65-120 97.79(0.62) 

2L-DoBSNN 5-(5-8) 25-40 97.75(0.92) 

SWAT 24-312-3 936 93.88(1.80) 

SRESN 24-(5-11) 120-264 97.01(0.73) 

SpikeProp 25-10-3 4480 96.13(0.83) 

Breast Cancer 

3L-DoBSNN 10-(6-9)-(6-7) 96-153 97.95(1.48) 

2L-DoB-SNN 10-(6-9) (60-90) 97.35(1.66) 

SWAT 54-702-2 1404 95.66 (0.08) 

SRESN 54-(9-13) 486-702 97.10(0.20) 

SpikeProp 55-15-2 13680 97.04 (0.53) 

Pima diabetes 

3L-DoBSNN 10-(16-19)-10 320-380 76.63(1.07) 

2L-DoBSNN 10-(16-19) 160-190 76.57(1.17) 

SWAT 54-702-2 1404 72.11(1.38) 

SRESN 54-(10-13) 540-702 70.06 (1.82) 

SpikeProp 55-20-2 16640 77.38(1.03) 

Ionosphere 

3L-DoBSNN 35-(17-19)-(8-11) 731-874 91.10(1.22) 

2L-DoBSNN 35-(17-19) 595-665 89.78(1.26) 

SWAT 204-2652-2 5304 90.04(1.87) 

SRESN 204-(15-21) 3060-4284 88.52(1.07) 

SpikeProp 205-25-2 82800 86.89(2.00) 

Liver disorders 

3L-DoBSNN 7-(18-20)-(9-10) 288-340 74.20(2.50) 

2L-DoBSNN 7-(18-20) 126-140 70.33(4.65) 

SWAT 36-468-2 936 60.43(2.72) 

SRESN 36-(7-10) 252-360 60.17(1.78) 

SpikeProp 37-15-2 9360 64.23(3.92) 



Considering Ionosphere, three-layer DoB-SNN 
outperforms all the methods. One-way ANOVA represents 
that at least one SNN has performed significantly different 
from others (� � 0.005). LSD indicates that three-layer DoB-
SNN significantly outperformed SRESN ( � � 0.05 ) and 
SpikeProp (� � 5 × 10B� ) while using considerably fewer 
network parameters. 

Finally, the comparative results for Liver disorders 
demonstrate that adding another layer to DoB-SNN using 
assembly-based STDP increases its testing accuracy by 3.87% 
for this dataset. One-way ANOVA indicates that at least one 
method performs significantly different from others ( � �5 × 10B�). The LSD pairwise analysis shows that three-layer 
DoB-SNN significantly outperforms SWAT (� � 5 × 10B�), 
SRESN (� � 5 × 10B�), and SpikeProp (� � 5 × 10B�). 

IV. DISCUSSION AND CONCLUSION 

In this paper, a new variant of STDP, known as assembly-
based STDP, has been proposed to extend the training 
algorithm to multilayer architectures. The new learning rule 
lets STDP happen only between the neurons from the same 
class and builds strong connections between the assemblies 
from the same class in consecutive layers. Assembly-based 
STDP has been employed to train a three-layer DoB-SNN. 
Performance evaluation on five UCI datasets indicated that 
adding another layer to DoB-SNN has improved its 
performance. The new three-layer network outperformed or 
achieved comparable accuracies with other approaches in the 
comparison while having considerably fewer network 
parameters. 

Both DoBs and truth values in the fuzzy logic range 
between 0 and 1 and use values of partial truth. These two 
concepts may seem similar at first, but fuzzy logic assigns a 
value to a set based on the membership functions, while DoBs 
are adjusted incrementally depending on their spiking activity 
in response to the samples from different classes without any 
membership functions or fuzzy rules. There are some methods 
which combine the concept of fuzzy logic with spiking neural 
networks [29][30][31][32][33]. These approaches employ the 
idea of fuzzy logic to create frequency-based receptive fields 
for neurons [29][30], encode the input data into spike patterns 
[31][32], or cluster the input patterns [33]. However, none of 
those above algorithms used fuzzy logic to categorise neurons 
into different class assemblies, and therefore they are not 
similar to DoB-SNN. 

Assembly-based STDP has been employed to add one 
layer to the DoB-SNN. Using this new variant of STDP, more 
layers can be added to the network and build multilayer fully 
connected or convolutional architectures. Future work will 
involve implementing multilayer DoB-SNN for more 
challenging datasets. Additionally, the proposed training 
algorithm for DoB-SNN is layerwise. In a future work, we will 
be introducing an end-to-end training algorithm for DoB-
SNN. 
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