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Abstract 

The blood-oxygen label dependent (BOLD) signal obtained from functional magnetic resonance images (fMRI) varies significantly 

among populations. Yet, there is some agreement among researchers over the pace of the blood flow within several brain regions 

relative to the subject's age and cognitive ability. Our analysis further suggested that regional coherence among the BOLD fMRI 

voxels belonging to the individual region of the brain has some correlation with underlying pathology as well as cognitive 

performance, which can suggest potential biomarkers to the early onset of the disease. To capitalise on this we propose a method, 

called Regional Optimum Frequency Analysis (ROFA), which is based on finding the optimum synchrony frequency observed at 

each brain region for each of the resting-state BOLD frequency bands (Slow 5 (0.01-0.027Hz), Slow 4 (0.027-0.073Hz) and slow 

3 (0.073 to 0.198Hz)), and the whole frequency band (0.01-0.167Hz) respectively. The ROFA is carried out on fMRI data of total 

310 scans, i.e., 26, 175 and 109 scans from 21 young-healthy (YH), 69 elderly-healthy (EH) and 33 Alzheimer's disease (AD) 

patients respectively, where these scans include repeated scans from some subjects acquired at 3 to 6 months intervals. A 10-fold 

cross-validation procedure evaluated the performance of ROFA for classification between the YH vs EH, YH vs AD and EH vs 

AD subjects. Based on the confusion-matrix parameters; accuracy, precision, sensitivity and Matthew's correlation coefficient 

(MCC), the proposed ROFA classification outperformed the state-of-the-art Group-independent component analysis (Group-ICA), 

Functional-connectivity, Graph metrics, Eigen-vector centrality, Amplitude of low-frequency fluctuation (ALFF) and fractional 

amplitude of low-frequency fluctuations (fALFF) based methods with more than 94.99% precision and 95.67% sensitivity for 

different subject groups. The results demonstrate the effectiveness of the proposed ROFA parameters (frequencies) as adequate 

biomarkers of Alzheimer's disease. 
 

Keywords: functional-MRI (fMRI); resting-state fMRI; frequency-domain analysis, Regional optimum frequency analysis; clustering; Gaussian 

mixture model; Alzheimer's disease biomarkers. 

1 Introduction 

Age-related changes in brain and cognition functionality have been studied for many years [1]. It is an accepted fact that older 

adults have reduced memory performance in working memory, verbal ability, and information processing speed [1, 2]. However, 

some functions remain intact, including knowledge gathered during the lifetime and emotional responses. Before the advancement 

in computing machines and the invention of magnetic resonance imaging (MRI) and functional MRI (fMRI) devices, it has always 

been a challenge to understand the anatomical changes and the functional changes in the brain, and how these anatomical changes 

influence the function of the brain and vice-versa. [3–6].  
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Analysis of resting-state neuroimaging data in many studies has shown a change in the level of signal activation in those showing 

the signs of neurodegeneration compared to healthy ageing [1]. Here, the decrease in the activation has been defined as 

‘deactivation’ by many researchers. However, some brain regions, which showed a decline in brain activity during resting-state, 

were found to generate a significant hyperactivation at low-load state, which may be due to the compensatory steps. In contrast, 

decreased activation was observed for the high precision tasks, which can be a sign of give-up due to the neurodegenerative effects. 

By recruiting the otherwise undesignated neurons, the compensatory activities lead to ‘dedifferentiation’ effects in the resting-state 

brain patterns[1]. Previous studies [7–10] revealed that the most discriminative features for ageing-related motor and memory 

impairment are predominantly involved in several different resting-state networks  (RSNs). These RSNs are ventral and dorsal 

attention networks (VAN and DAN) and default mode network (DMN). According to the Automatic Anatomic Labelling (AAL) 

template, 12 brain regions among a total of 45 different regions at the left side of the brain were considered as crucial for resting-

state brain analysis (cf. Table 1). Similarly, for the right side of the brain, 12 out of a total of 45 brain regions were considered as 

crucial [7–9, 11]. These regions were showing significant but slow (< 0.25Hz) rhythmic blood oxygen level-dependent (BOLD) 

metabolic activity [12] when recorded using Positron Emission Tomography (PET) and functional MRI based neuroimaging 

techniques [13].  

Many studies suggested specific correlations in the brain regions during resting-state [1] as mentioned above. Most standard 

techniques for identifying such correlations involves calculating the correlation between signals obtained from various distant brain 

regions to develop some inference about the synchronisation and functional connectivity patterns among them [14]. An approach 

based on a connectivity network for regions of interest using an Independent Component Analysis (ICA) framework to observe 

the magnitude of co-activation was found useful to differentiate healthy controls from AD patients [15]. However, this method did 

not perform well for differentiating mild cognitive impairment (MCI) subjects from age-matched healthy controls. Studies have 

suggested that MCI subjects are more prone to advance in AD and can be considered as a precursor to AD [16, 17]. An approach 

applying Group-ICA on the resting-state fMRI data showed some promising connectivity patterns in DMNs [10], VAN and DAN 

[6, 18, 19], however, only a small dataset was used in these studies. As the computing efficiency has increased exponentially and 

the time domain analysis alone could not prove sufficiently reliable, the research focus moved to the frequency domain and 

multivariate time-frequency analyses [20–22]. The Amplitude of Low-Frequency Fluctuation (ALFF) method for frequency 

domain analysis was developed as a part of REST toolbox [13]. ALFF measures voxels' temporal similarity within a given cluster, 

in a voxel-wise fashion for the normalised power in the selected interval of frequency bands [23]. It verifies the concept that the 

brain areas with the highest ALFF are located within the default mode network observed in healthy subjects’ resting-state fMRI 

[13]. A state-of-the-art approach with a large number of classification features based on functional connectivity, functional 

dynamics, ALFF, and fractional-ALFF has been developed for resting-state fMRI data. Here for the identified features, each 

methods' performance and their combination were determined [24]. A study based on wavelet transforms [20] showed the causal 

connectivity patterns across several brain regions within the selected frequency bands. Their method considered a concept based 

on the variation in BOLD power over time and frequency axes for specific seed voxels and spherical region of interest around the 

seed voxel. Their study has reported that BOLD power changes in standard frequency bands (Slow-5 to Slow-2) can be related to 

the fibre connections modelled by Diffusion-Tensor Imaging (DTI) modality [6, 13, 20]. Recently, deep-learning neural network 

(DNN) based approaches for Alzheimer’s biomarkers also gained momentum in finding clinical biomarkers. Due to their proven 

efficacy in the supervised classification approach, the target objective was defined during training and tested on similar but 

unknown data [19, 25–27]. However, overfitting of the DNN for given training data makes these methods restricted to specific 

clinical settings and slight variation in the data features affects the classifier's performance.   

Although the methods mentioned above established correlations between BOLD activations in various brain regions, the 

resulting connectivity patterns were rather coarse and non-specific. Regardless of the classification performance, the all voxel-

based multiple-predictors method mentioned in [24] was found to be comprehensive. Notably, the population size considered in 

the Group-ICA approach was very small. Also, the comparison groups were the severely affected Alzheimer disease patients (AD 

= 16) with the mean mini-mental state exam (MMSE) score of 12 and the healthy elderly controls (EH = 15, mean MMSE = 29), 

which may have resulted in a significant classification accuracy [6, 18, 19]. While in [24] subjects number was higher, i.e., AD= 

33 with the MMSE score of ≈20.4 and EH = 69 with the MMSE score of ≈27.5. Similar to our study, both these studies evaluate 

their methods' classification performance for the subject’s pathology and use the resting-state fMRI dataset for AD and age-

matched healthy controls. Therefore, these studies' methods were compared with our proposed ROFA method and results are given 

in section 4.  

Other methods based on time-frequency analysis consider each band's overall power, regardless of which frequency is supported 

by the majority of the voxels in a particular region [13, 20–23]. The results suggest that finding the optimally synchronised 

frequency may help calibrate specific frequencies corresponding to each brain region. Thus, these results highlight systematic 

changes in the regional frequency in ageing and neurodegeneration. To this end, this paper looks at the changes in the synchrony 

of several voxels for different frequency values in each brain region and its consistency across several subject groups including 

young healthy (N=21), AD (N=33) and age-matched elderly control (N=69) subjects.  

In section 2, the characteristics of the generated simulated data and real data used in this analysis are discussed. Initially, in 

subsection 2.2, the data pre-processing steps, including nuisance regression and signal to noise ratio (SNR) improvement, are 
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outlined. Later in subsection 2.3, mathematical formulation of the ROFA approach is presented. The proposed ROFA approach is 

formulated to investigate better the resting-state functional data in the frequency domain based on the optimal number of 

synchronised voxels in each brain region while minimising the phase-matching errors caused in the time domain. In subsection 

2.4, the statistical procedures required to test and validate the proposed ROFA algorithms' efficacy are discussed. In Section 3, the 

results obtained from the application of ROFA on simulated data and real fMRI data are presented. For this purpose, the results 

are illustrated for three types of test procedures. Using the Mann–Whitney U test with continuity correction, the ROFA observed 

frequency values are used to find significantly different brain regions for each group of subjects. Second, these ROFA determined 

frequency values were further tested using k-fold cross-validation to identify if these findings can be used to detect the subject's 

pathological condition. Lastly, the mean frequencies from all the AAL brain regions from different subject groups were taken as 

reference biomarker frequencies and tested for their classification efficacy among the given subject groups. Section 4 is devoted 

to discussing the finding with those presented in the available literature, mainly focused on the advantages and limitations of the 

proposed ROFA approach. Finally, Section 5 presents a brief conclusion identifying the contributions of this paper and possible 

future work based on this understanding. 

 

2 Materials and Methods 

2.1 fMRI Datasets 

2.1.1 Simulated fMRI Datasets 

A simulated dataset is generated using a sine wave sequence of various frequencies correlated with different cubical blocks as 

placed in the brain phantom/mask [4, 28]. A set of 110 simulated datasets were generated with SNR values between -10dB and 

+10dB with a resolution of 2dB [4]. These specific SNRs were achieved by contaminating the generated brain phantom with an 

appropriate additive white Gaussian noise (AWGN). These datasets have been produced for 140 scans using simulated voxel time-

series blocks with repetition (TR) equal to 3,000ms. According to the Nyquist criterion, a frequency can only be recovered without 

distortion in a bandlimited signal if the sampling frequency is twice or more than the signal's maximum frequency content. Such 

as in the present case: the voxel time-series signal has been acquired at a repetition time TR of 3000ms or at a sampling frequency 

f𝑠  =  1/TR =  0.33Hz. According to the Nyquist sampling criterion, the maximum frequency component which can be recovered 

without aliasing can be half of the sampling frequency (f𝑠 ⁄ 2), i.e. 0.33Hz ⁄ (2) =  0.167Hz. Therefore, according to the Nyquist 

sampling criterion, the 0.167Hz is the upper limit of the frequency for the aliasing free recovery of the frequency components. 

Hence, available limit of 0.167Hz is simulated for 70 frequency values ranging from 2.4mHz to 0.167 Hz [13]. The generated 

frequency values were padded with the 1260 zero values to make the total data points 1400, and subsequently, from the Nyquist 

criterion, the possible frequency resolution of 700 points will become 0.24mHz. Here, 700 frequency windows were chosen, 

because, these are a multiple of the given number of scans which is 140. Here, selecting a frequency window as a multiple of the 

scans reduces the sudden drift in the values due to aliasing. However, there is a trade-off between the number of frequency windows 

and the speed of the algorithm. Therefore, a resolution of 0.24mHz was observed as a suitable choice. We have considered 10,000 

voxel blocks for each test frequency per phantom volume. Each of the cubical blocks consists of 10,000 voxels was modulated 

TABLE 1 

 NAME OF THE BRAIN REGIONS* DEFINED IN AAL TEMPLATE  [11] 
No. Regions Name No. Regions Name 

1.  Superior frontal gyrus, dorsolateral 25.  Inferior frontal gyrus, orbital part 
2.  Middle frontal gyrus 26.  Superior frontal gyrus, medial orbital (SFG_MO) 

3.  Inferior frontal gyrus, opercular part 27.  Gyrus rectus 

4.  Inferior frontal gyrus, triangular part 28.  Insula (INS) 

5.  Rolandic operculum 29.  Anterior cingulate and paracingulate gyri 

6.  Supplementary motor area 30.  Median cingulate and paracingulate gyri 

7.  Superior frontal gyrus, medial 31.  Posterior cingulate gyrus (PCG) 

8.  Cuneus 32.  Parahippocampal gyrus (PHG) 

9.  Lingual gyrus 33.  Temporal pole: superior temporal gyrus 

10.  Superior occipital gyrus 34.  Temporal pole: middle temporal gyrus 

11.  Middle occipital gyrus (MOG) 35.  Olfactory cortex 

12.  Inferior occipital gyrus (IOG) 36.  Hippocampus (HIP) 

13.  Fusiform gyrus (FFG) 37.  Amygdala (AMYG) 

14.  Superior parietal gyrus 38.  Caudate nucleus 

15.  Inferior parietal 39.  Lenticular nucleus, putamen 

16.  Supramarginal gyrus 40.  Lenticular nucleus, pallidum (LN_P) 

17.  Angular gyrus 41.  Thalamus 

18.  Precuneus 42.  Precentral gyrus  

19.  Paracentral lobule 43.  Calcarine fissure and surrounding cortex 

20.  Superior temporal gyrus 44.  Postcentral gyrus  

21.  Middle temporal gyrus 45.  Heschl gyrus (HESG) 

22.  Inferior temporal gyrus 46.  Cerebellum (classified differently than first 45 regions) 

         23. Superior frontal gyrus, orbital part (SFG_OP)          47. Vermis-cerebelli (classified differently than first 45 regions) 

         24. Middle frontal gyrus, orbital part   

*Abbreviations (in bold) are given to the 12 brain regions of higher importance in the current study.  
To denote left and right brain regions respective prefix ‘l’ and ’r’ will be attached to the abbreviations. 
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with sine waves of synchronising test frequency for 2% to 20% (200 to 2,000) voxels, while the remaining voxels were modulated 

randomly on other available frequencies. Later these 10,000 voxels were contaminated with the AWGN to vary the SNR between 

-10dB to +10dB. Altogether, there were 110 test cases for simulated data, i.e., ten gradual variations of the percentage of synced 

frequency voxels, with 11 gradual variations for SNR in each of the selected synced frequency voxels.  

2.1.2 Resting-state fMRI Datasets 

This analysis has been applied to a total of 310 fMRI scans were available from 123 subjects, i.e. 26, 175 and 109 scans from 21 

young healthy (YH), 69 elderly healthy (EH) and 33 Alzheimer’s disease (AD) patients respectively. For all the scans, the time of 

repetition (TR) and the time of echo (TE) were 3000ms and 30ms, respectively. A total of 140 whole-brain scans totalling to 420s 

(140 x TR) duration for each of the subjects were recorded. 

Here, the scans of 21 YH and 18 EH subjects were recorded with a Siemens Magnetom Trio TIM 3T MRI scanner in a total of 

46 sessions at Niinf at National Centre for Geriatrics & Gerontology (NCGG), Japan. There were ten young females aged between 

21-29 years with an average age of 23.17 years, eleven young males aged between 21-37 with an average age of 23.43 years, eight 

elderly females with an average age of 68.80 years, and ten elderly males with an average age of 67.00 years. Here one young 

female had three sessions, three young males and two elderly females had two sessions each, and all others had one session each 

totalling 46 sessions. These scans had 64x64x39 voxels of thickness 3x3x3.75 mm3.  

The remaining scans were obtained from the online data repository of Alzheimer’s disease Neuroimaging Initiative (ADNI). 

They had 64x64x48 voxels of thickness 3x3x3.3mm3 These scans were acquired using a Philips Medical Systems Integra 3T MRI 

scanner. These include 83 scans from 30 EH females with an average age of 73.11 years, 72 scans from 21 EH males with an 

average age of 76.92 years, 54 scans from 18 AD females with an average age of 73.22 years, and 109 scans from 15 AD males 

with the average age of 76.23 years [29]. These scans include repeated scans from some subjects acquired at 3-6 months intervals 

[29]. 

The mini-mental state examination (MMSE) scores for AD subjects were 12 to 27 for an average of 20.91. All the subjects were 

instructed to remain in resting-state, but awake and not think anything specific during the data acquisition. Informed consent was 

taken from all the volunteers according to the protocol approved by the institutional review board. 

2.2 Pre-processing 

The fMRI data pre-processing is carried out using the Statistical Parametric Mapping (SPM) toolbox [14, 30]. These preparatory 

steps were very similar to our previous studies [28, 31, 32]. Normalisation was done following the Montreal Neurological Institute 

(MNI) template. This template is made by anatomically averaging 152 human brains, and then co-registered with the datasets. 

Normalisation is required to make the head shapes comparable and to verify the statistical significance of the differences between 

groups. The other steps include re-slicing and re-aligning. Each fMRI data was also normalised to the 91x109x91 voxels per scan 

with 2x2x2 mm3 voxel thickness. De-trending was carried out on time-series from all voxels to remove any linear trend caused by 

changes in the scanner characteristic due to thermal effects or any other reason [33]. As part of data pre-processing, Nuisance 

regression of fMRI time series data for cardiac and respiratory artefacts was also applied. For this purpose, a principal component 

analysis (PCA) based method is applied to subtract the whole brain's noise estimates from the noise at each brain region [34, 35]. 

 
2.3 Proposed Regional Optimum Frequency Analysis (ROFA) 

After pre-processing the given fMRI data, Gaussian Mixture Model (GMM) based clustering with Bayesian Information Criterion 

(BIC) was applied to reduce the noise effects from both datasets [5, 28, 31, 36]. In the pre-processed data, consider that 𝑥(𝑛) is a 

time-series, where  𝑛 =  1, 2, 3, … , 𝑁 corresponding to each voxel (v) from 𝑁 =  140 scans acquired at a sampling interval of 3 

second (𝑓𝑠 =  0.33𝐻𝑧). The windowing was applied to this time-series data using Hamming (‘bell-shaped’) window (WH) as per 

(Eq. 1) to enhance the dominating frequency components and reducing the strength of other less dominating frequencies[37]. The 

Hamming window is a ‘bell-shaped’ multiplicative function that tapers the sudden changes in the signal time-series and reduces 

the distorting spikes in the signal time series. The smoothing of edges by the recorded time series's windowing also compensates 

the fMRI device destabilisation and the brain data's discontinuity [37].  

𝑥𝑁𝑊𝐻
= 𝑥𝑊(𝑛) =  𝑊𝐻(𝑛). 𝑥(𝑛)           (1) 

The resultant time-series data was transformed into the frequency domain using a Fourier transform (Eq. 2). The magnitude values 

of the complex-valued Fourier transform were calculated and transformed back to the time domain to remove the phase information 

(Eq. 3). 

𝑋𝑁𝑊𝐻𝐾𝑓
= 𝑋𝑁𝑊𝐻

(𝑓𝑘) = ∑ 𝑥𝑊𝐻
(𝑛)𝑒

−
𝑗2𝜋𝑓𝑘𝑛

𝑓𝑠𝑛= 𝑁
𝑛= 1          (2) 

 

𝑥𝑁𝑊𝐻𝐾𝑓𝑀
 = 𝑥𝑁𝑊𝐻𝐾𝑓𝑀

(𝑛) = ∑ |𝑋𝑁𝑊𝐻
(𝑓𝑘)|𝑒

𝑗2𝜋𝑓𝑘𝑛/𝑓𝑠 𝑘=𝑁
𝑘=1   (3) 

 
Fig. 1. Calculation Steps of the proposed ROFA with GMM algorithm 
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This process was repeated for every voxel (𝑣 =  1, 2, … , 𝑉) belonging to each of the brain regions as defined by the selected 

AAL template, and the mean was calculated over V voxels in a particular brain region ( Eq. 4). 

 

𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉
= 𝑥𝑁𝑊𝐻𝐾𝑓𝑀

(𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑉
∑ 𝑥𝑁𝑊𝐻𝐾𝑓𝑀

(𝑣)𝑣=𝑉
𝑣=1       (4) 

Now, this time-series was padded with zeroes (Eq. 5). In the frequency domain, zero paddings improve the resolution between 

several different frequencies as observed. In our case, we had n = 140 time-points, and we chose to enhance the resolution by ten 

times, so a total of 1400 time-points were needed. These zeroes are padded to both sides of the signal 𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉
, 

𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉𝑍
 =  zeroes(4.5N) …𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉

…zeroes(4.5N)   (5) 

Then the power spectrum (𝑃(𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉𝑍
⏞        ) ( Eq. 6) was obtained for the whole frequency band from 0.24mHz to 0.167Hz [13, 

33, 38]. 

𝑃(𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉𝑍
)⏞          =

|𝑋𝑁𝑊𝐻𝐾𝑓𝑀𝑉𝑍
(𝑓𝑘)|

2

𝑓𝑠
           (6) 

Consequently, for the frequency range of 0.24mHz - 0.167Hz, a total of 700 frequency points with a resolution of 0.24mHz were 

estimated. The first 40 (<0.01Hz) frequency values were discarded, as the frequency values below 0.01Hz are considered to be 

contaminated with inconsistent human activity, and environmental factors. Hence only the remaining 660 frequency-power values 

(0.01Hz-0.167Hz) are considered. The power values for each frequency were arranged in ascending order for each interval of 

frequency bands obtained in each brain region. The optimally synchronised frequency is observed in the given Slow-5: 0.01-

0.027Hz, Slow-4: 0.027-0.073Hz, partial Slow-3: 0.073-0.167Hz and the full range of 0.01Hz-0.167Hz, from the available 660 

frequency-power components. 

𝑅𝑂𝐹𝐴𝑘 = max𝑘 ( 𝑃(𝑥𝑁𝑊𝐻𝐾𝑓𝑀𝑉𝑍
)⏞          )           (7) 

Here, max𝑘 (in Eq. 7) represent the maximum number of voxels collectively giving the optimally synchronized frequency.  

This method is based on the maximum number of phase neutralised voxels’ time-series showing synchronisation at a particular 

frequency in a specific region of the brain. Therefore, any drifts in the amplitude of a small proportion of the considered region’s 

voxels do not affect the method. The method's noise robustness has been tested on simulated data consisting of several cases of 

SNR as low as -10dB (see section 3 and our previous study for details about simulated data generation and noise removal in 

simulated and real data using GMM [28].  

2.4 Statistics  

In the simulated data, the original template was available for the optimally synchronised number of voxels for each of the 

considered frequencies. Therefore, this template was compared with the frequencies obtained after applying the ROFA algorithm 

in each of the 110 test cases made of 10000 synthetic voxels for 66 different sync frequencies. The obtained results were observed 

for the percentage of similarity with the template. This comparison, presented in the results section, aimed to validate the proposed 

ROFA algorithm's efficiency for several test cases. 

The real data contained 26 YH, 175 EH and 109 AD datasets from 21, 69 and 33 subjects. Therefore, to avoid any possibility of 

calculation bias, the repeated scans from the same subjects were handled using a randomising process to analyse only one dataset 

from each subject. Also, multiple iterations have been used to analyse several different combinations of datasets among those 

available.  

Three types of tests were designed to analyse the statistical significance of ROFA frequency values findings and to estimate 

their classification performance among healthy and AD subjects. Therefore, in the first test, a one-tailed non-parametric Mann–

Whitney U test was utilised to avoid the normality assumption for the data; whereas ROFA frequency values are discrete. 

Therefore, we have added continuity correction to the obtained statistics for p-value calculation [39]. Here, 

  

𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  Z𝑠𝑡𝑎𝑡𝑠 ±
0.5

√
(𝑚𝑛(𝑁+1))

12

          (8) 

where left tail uses +𝑣𝑒 sign and right tail uses – 𝑣𝑒 sign; m and n (𝑚 ≤ 𝑛) are the number of observed values in each of the 

subject groups and 𝑁 = 𝑚 + 𝑛. Z𝑠𝑡𝑎𝑡𝑠 is the equivalent z-statistic score on the Gaussian probability curve for the given tail. 

Furthermore, continuity corrected p-values were calculated in terms of the area under the standard Gaussian probability curve for 

the obtained  𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 . 

The continuity correction (Eq. 8) improves the decision making about the significance and avoids the false decision by penalising 

the p-values. The tail (left or right) was decided based on the mean value of both of the samples under consideration, such as a left 

tailed test would be selected if the mean of the first sample is less than the second sample and vice-versa. The significance of the 

alternative hypothesis for regional difference has been established for p < 0.05. Literature suggests that the Mann–Whitney U test's 

test statistics are valid for as small as six samples in each group [39]. A significant difference in ROFA frequency values was 

observed for each of the AAL regions, as mentioned as important in Table 1. The test was performed on three combinations of 
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subject pairs YH-EH, YH-AD and EH-AD. This region-wise significance among the given pairs was observed for not only the 

whole frequency range of 0.01Hz – 0.167Hz but also Slow 5 (0.01-0.027Hz), Slow 4 (0.027-0.073Hz) and partial Slow 3 (0.01-

0.167Hz). 

The second test is the classification accuracy cross-validation of linear discriminant analysis (LDA). The LDA classifier is 

selected because this classifier is considered the most suitable classifier than several others such as support vector machine (SVM) 

and Ensemble learning methods in recent fMRI based AD biomarkers studies [40–42]. The most significant advantage of LDA is 

that it is fast and robust due to its linear processing structure. Simultaneously, reproducibility is an issue with other complex non-

linear classifiers that converge for different solutions every additional time [43]. Another disadvantage of using complex classifiers 

is identifying the suitable parameters required as a priori information, which is not the case with LDA.  

For the LDA based classification, the obtained BOLD ROFA frequencies were first randomised from each subject group. Then 

different subsets of the data were used for training and testing the classification performance. This method gave the classification 

accuracy based on ROFA values and the loss coefficient for the subjects that failed to be classified accurately based on ROFA 

frequencies in the available band (0.01Hz-0.167Hz). The loss function was calculated for the data's 10-fold organisation, while the 

classification accuracy of the randomised sample was calculated for 90% of training and 10% test data. Both the loss function and 

classification accuracy results were presented as the mean of 100 iterations of each setup. Like the first test, this cross-validation 

test was also performed on each pair of classes: YH-EH, YH-AD and EH-AD.  

The third test was to find the mean of the ROFA frequencies corresponding to all of the AAL regions for each subject group and 

verify if those mean ROFA frequency values can be used as biomarkers to identify the subject with underlying pathological 

conditions. For this purpose, a confusion-matrix based approach was developed [28, 31]. The results include the following 

measures: Accuracy, Precision, Sensitivity and Matthews’s correlation coefficient (MCC). MCC coefficient is especially used to 

estimate the efficiency of the binary classification method [44][22]. These parameters are calculated as per the equations below, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+ 𝐹𝑁)
               (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                  (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                 (11) 

𝑀𝐶𝐶 =  
((𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁))

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
          (12) 

Here, TP, FP, TN and FN are ‘true positive’, ‘false positive’, ‘true negative’ and ‘false negative’, respectively. 

3 RESULTS  

3.1 Testing of ROFA on Simulated Data 

For this purpose, simulated fMRI datasets were generated, containing the given set of frequencies for gradually varying the 

percentage of synchronising voxels and the SNR for the signal as described previously in section 2 ‘Material and Methods’. The 

ROFA performance is tested concerning the known template of optimally syncing voxels. The test results from the ROFA algorithm 

on simulated data are shown in Fig. 2. 

 
The obtained ROFA results showed that the efficiency of identifying the optimally syncing frequency increases as the 

synchronised voxels increase. The ROFA efficiency also improves as the SNR increases. According to our analysis, if 20% of the 

voxels are contributing to one frequency, then the ROFA can identify the optimally syncing frequency with at least 58.18% 

accuracy for as low as -10dB SNR, while for SNR higher than -6dB the efficiency can be observed more than 98.40%. Similarly, 

 
Fig. 2. Percentage efficiency of the ROFA algorithm in detecting the optimally synchronized frequency among the available voxels based on 

varying SNR and percentage of the synchronized frequencies induced in simulated data.    
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suppose the reduction in the percentage of most synchronised voxels is considered. In that case, the ROFA can have an efficiency 

of 87.82% for 0dB SNR with as low as 4% optimally synchronised voxels. Thus, the algorithm's observed efficiency was more 

than 74.56% between 8%-20% syncing among voxels for the high noise case of -6dB-10dB. The proposed ROFA algorithm 

showed even 100% efficiency with an increasing number of synchronising voxels and higher SNR. 

 
3.2 ROFA for Real Data 

3.2.1 Statistical testing for significantly different brain regions across the groups 
We have used the AAL templates available with the MRIcron tool [11, 45]. The AAL template containing 116 regions is selected 

to analyse the statistical significance of the hypothesis. The hypothesis is that ROFA frequencies of the considered region of the 

brain belonging to one class of subjects such as EH are significantly different (p<0.05) from the same region of the brain belonging 

to other classes such as AD. However, the concentration was more on the observations from 24 important brain regions (see Fig. 

3.) which were suggested as more relevant for investigating differences in the activities of age-related and AD-related brains’ 

activity [7–9, 15, 22]. However, the significant regions among other AAL regions were also estimated. A pairwise analysis strategy 

was followed to test the statistical significance of the results obtained. For this purpose, the data have been arranged in three groups: 

26 Young Healthy/Control (YH), 175 Elderly Healthy/Control (EH) and 109 AD Patients. Here, age-matched male and female 

subjects are grouped in each of YH, EH and AD groups. Hence the three pairs were formed as YH-EH, YH-AD and EH-AD.  

A Mann–Whitney U test with continuity correction [39] was incorporated to penalise the p-value for the discreteness of frequency 

values and improve the decision making about the significance of the regional difference for standard p (p< 0.05). Some of the 

regions from the selected 24 regions (Fig. 3) from the AAL mentioned in Table 2 were significantly different across the populations 

[7–9]. We have arranged those regions in the ascending order of their p-values. The significant regions (p < 0.05) are presented in 

boldface. The resting-state fMRI data's regional statistical significance was observed in the slow frequency range of about 0.01Hz 

– 0.167Hz. This frequency band was further divided in three sub-bands Slow-5 (0.01Hz-0.027Hz), Slow 4 (0.027Hz-0.073Hz) and 

partial Slow-3 (0.073Hz-0.167Hz) as discussed in section 2.4 “Statistics” [13]. The difference in the mean frequency (FD) is also 

provided. Table 2 illustrates FD for the Slow-5, Slow-4 and partial Slow-3 bands, while Table 3 shows the same for the whole 

available band (0.01Hz- 0.167Hz). The FD values (Table 2 & Table 3) were given for all the 24 regions under consideration in a 

sorted order according to the significance levels' statistical significance. Brain maps in Fig. 4 and Fig. 5 illustrate those brain 

regions which were found to differ significantly for (p < 0.05) among all the available 116 AAL brain regions. Slow 5, slow 4 and 

slow 3 frequency bands are plotted in Fig. 4(a), (b) & (c), respectively, while Fig. 5 illustrates the significant regions in the whole 

of the available band. In the given figures (Fig. 4 and Fig. 5) a yellow colour value denotes an increment in the frequency values, 

while blue colour reduces.  

 

 

 
Fig. 3. The 12 regions (counting to 24 regions in left and right brain) selected from the AAL atlas shown above are: Superior frontal gyrus, medial orbital (SFG_MO), 

Insula (INS), Posterior cingulate gyrus (PCG), Parahippocampal gyrus (PHG), Middle occipital gyrus (MOG), Inferior occipital gyrus (IOG), Fusiform gyrus (FFG), 
Hippocampus (HIP), Amygdala (AMYG), Lenticular nucleus, pallidum (LN_P), Heschl gyrus (HESG), Superior frontal gyrus, orbital part (SFG_OP). 

 

lHIP rHIP

lPHG rPHG

lSFG_OP rSFG_OP

lAMYG rAMYG

lFFG rFFG

lSFG_MO lSFG_MO

lLN_P rLN_P

lIOG rIOG

lHESG rHESG

lINS rINS

lPCG rPCG

lMOG rMOG

      
    (a)                        (b)                        (c) 

Fig. 4. Regions observed with significant difference in ROFA activity out of 116 regions in different frequency bands. 

YH-EH freq 0.01Hz to 0.027Hz

YH-AD freq 0.01Hz to 0.027Hz

EH-AD freq 0.01Hz to 0.027Hz

YH-EH freq 0.27Hz to 0.073Hz

YH-AD freq 0.27Hz to 0.073Hz

EH-AD freq 0.27Hz to 0.073Hz

YH-AD freq 0.73Hz to 0.167Hz

EH-AD freq 0.73Hz to 0.167Hz

YH-EH freq 0.73Hz to 0.167Hz
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.  
Fig. 5. Regions observed with significant difference in ROFA activity out of 116 regions in whole of the available band. Here yellow colour values denote an 

increment in the frequency values 

 

YH-EH freq 0.01Hz to 0.167Hz

YH-AD freq 0.01Hz to 0.167Hz

EH-AD freq 0.01Hz to 0.167Hz

TABLE 2 
AAL REGIONS* FOR HEALTHY AND AD AFFECTED SUBJECTS 

 
Significance test for 24 AAL regions using Mann–Whitney U for p < 0.05 (Bold faced) 

Young (YH) vs Elderly Control (EH) Young (YH) vs AD Subjects (AD) Elderly (EH) vs AD Subjects (AD) 
Region FD(mHz)* p Region FD(mHz)* p Region FD(mHz)* p 

Slow 5 
(0.01↓0.027Hz) 

or  
(10-27mHz) 

rAMYG ↑3.3 0.0030 rLN_P ↑3.5 0.0010 rHESG ↑1.6 0.0053 
lLN_P ↑3.0 0.0102 rPHG ↑3.6 0.0014 lIOG ↑1.2 0.0152 
rPHG ↑2.4 0.0172 rAMYG ↑3.1 0.0055 rLN_P ↑1.6 0.0159 
rSFG_OP ↓2.2 0.0344 lIOG ↑3.1 0.0056 rINS ↑1.1 0.0324 
rLN_P ↑1.9 0.0395 rHESG ↑2.7 0.0058 rPCG ↑0.8 0.0430 
lFFG ↑1.8 0.0431 lFFG ↑2.6 0.0085 rPHG ↑1.1 0.0540 
lINS ↑2.1 0.0458 rSFG_OP ↓2.1 0.0131 lAMYG ↑1.0 0.0774 
lMOG ↑2.1 0.0469 lINS ↑2.6 0.0159 lFFG ↑0.8 0.1205 
lIOG ↑2.0 0.0615 lLN_P ↑2.9 0.0165 lINS ↑0.5 0.1919 
lHIP ↑1.1 0.1113 rINS ↑1.6 0.0356 lSFG_MO ↓0.1 0.2268 
lPHG ↑1.0 0.1134 lAMYG ↑1.5 0.0362 lPCG ↑0.2 0.2443 
lSFG_OP ↓1.2 0.1370 lMOG ↑2.1 0.0544 rHIP ↑0.5 0.2540 
rHESG ↑1.1 0.1630 lPCG ↑0.7 0.1006 rFFG ↓0.1 0.3181 
rPCG ↓0.5 0.1832 lHIP ↑1.0 0.1260 lSFG_OP ↑0.6 0.3213 
lAMYG ↑0.5 0.1892 lPHG ↑1.0 0.1544 lPHG ↑0.0 0.3308 
lPCG ↑0.5 0.2219 lSFG_OP ↓0.5 0.1618 rMOG ↑0.6 0.3354 
rFFG ↑0.8 0.2285 lHESG ↑0.7 0.2556 rIOG ↑0.3 0.3462 
rINS ↑0.5 0.2471 rHIP ↑1.3 0.2611 rSFG_MO ↓0.1 0.3667 
lSFG_MO ↑0.3 0.2504 rFFG ↑0.7 0.2806 lHESG ↑0.4 0.3712 
lHESG ↑0.2 0.3772 rSFG_MO ↓0.8 0.3027 rAMYG ↓0.2 0.4198 
rSFG_MO ↓0.7 0.3861 lSFG_MO ↑0.2 0.3963 lLN_P ↓0.1 0.4283 
rHIP ↑0.8 0.3917 rMOG ↑0.3 0.4037 lMOG ↑0.0 0.4393 
rMOG ↓0.3 0.5080 rPCG ↑0.2 0.4821 lHIP ↓0.2 0.4582 
rIOG ↑0.1 0.5938 rIOG ↑0.4 0.4911 rSFG_OP ↑0.1 0.6283 

Slow 4 
(0.027↓0.073Hz) 

or 
(27-73mHz) 

rIOG ↓7.8 0.0061 rIOG ↓8.3 0.0016 rLN_P ↑5.9 0.0006 
lHIP ↑3.8 0.0312 lPHG ↑7.7 0.0019 rPHG ↑4.9 0.0014 
rSFG_OP ↓6.5 0.0397 rSFG_OP ↓8.0 0.0033 lAMYG ↑3.3 0.0065 
lPHG ↑4.1 0.0442 lAMYG ↑4.3 0.0167 lLN_P ↑4.0 0.0081 
rHIP ↑2.8 0.0541 rPHG ↑8.1 0.0267 lPHG ↑3.6 0.0277 
lIOG ↓4.1 0.0586 lIOG ↓5.5 0.0338 lSFG_OP ↓2.5 0.0558 
rPCG ↓3.1 0.0773 rLN_P ↑4.8 0.0423 rSFG_OP ↓1.5 0.0972 
rSFG_MO ↑1.0 0.1808 lHIP ↑3.5 0.0478 lMOG ↓1.9 0.1033 
lAMYG ↑1.0 0.2112 lMOG ↓4.3 0.0631 lFFG ↑2.6 0.1064 
lMOG ↓2.4 0.2117 rHIP ↑3.4 0.0806 rAMYG ↑2.4 0.1272 
lFFG ↓2.9 0.2288 lLN_P ↑3.6 0.1327 rINS ↑2.1 0.1687 
rHESG ↓2.1 0.2349 rAMYG ↑4.6 0.1451 lIOG ↓1.5 0.2075 
lSFG_MO ↓2.2 0.2450 lSFG_MO ↓2.7 0.1451 rFFG ↑1.6 0.2077 
rPHG ↑3.1 0.2689 lHESG ↑1.7 0.1671 rPCG ↑0.5 0.2776 
lPCG ↓2.6 0.2877 rPCG ↓2.6 0.1793 rSFG_MO ↓0.7 0.2814 
lHESG ↑0.7 0.2964 rFFG ↑1.7 0.2173 lHESG ↑1.0 0.2869 
rAMYG ↑2.2 0.3008 rINS ↑0.5 0.2264 rIOG ↓0.4 0.3343 
lSFG_OP ↑0.3 0.3128 rHESG ↓1.8 0.2298 lSFG_MO ↓0.5 0.3640 
lINS ↓0.8 0.3435 rSFG_MO ↑0.3 0.2799 rMOG ↓0.5 0.3784 
rFFG ↑0.1 0.3904 lSFG_OP ↓2.2 0.2951 lINS ↑0.6 0.4683 
lLN_P ↓0.4 0.4290 lINS ↓0.1 0.3998 rHESG ↑0.3 0.5056 
rMOG ↑0.5 0.4311 lPCG ↓2.7 0.4412 lHIP ↓0.3 0.5705 
rLN_P ↓1.1 0.4326 lFFG ↓0.3 0.4655 rHIP ↑0.6 0.6454 
rINS ↓1.6 0.4626 rMOG ↑0.0 0.4922 lPCG ↓0.1 0.6686 

*FD = Regional difference of mean frequency in mHz, ↓ = reduction and ↑ = increment in frequency of group1 with respect to group2. 
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Slow 5 bands: In YH vs EH and YH vs AD, the rAMYG and rPHG were commonly found significant (Table 2), which suggests 

that functional activities at the rPHG and rAMYG have some relation with the age progression, but it does not confirm the 

significance for any disease related inference. The difference in rPHG was found to be more significant between the YH and AD 

group than the EH vs AD group, where the frequency was increased more for EH subjects than AD which may infer the age-related 

increase of BOLD activity in EH subjects. Fig 4(a), depicts that among the other regions the right Insula and frontal inferior 

triangular gyrus have a significant reduction in the ROFA observed frequency for the AD group. Also, differences in the left 

Pallidum are more substantial and active in YH than EH and AD. 

Slow 4 band: The rPHG, rLN_P and lAMYG (Table 2) and similarly, rLN_P, right olfactory and left anterior Cingulate gyrus in 

the AD patients (Fig. 4(b)) were found to have significantly lower ROFA values than for the other groups which may relate to 

disease onset. Other significant regions include lPHG, left Thalamus, left superior temporal lobule (Fig. 4(b)), where the YH group 

was found to have higher ROFA than both EH and AD patients, which may be an effect of ageing. 

TABLE 2 
AAL REGIONS* FOR HEALTHY AND AD AFFECTED SUBJECTS 

 
Significance test for 24 AAL regions using Mann–Whitney U for p < 0.05 (Bold faced) 

Young (YH) vs Elderly Control (EH) Young (YH) vs AD Subjects (AD) Elderly (EH) vs AD Subjects (AD) 
Region FD(mHz)* p Region FD(mHz)* p Region FD(mHz)* p 

Partial Slow 3 
(0.073↓0.167Hz) 

or 
(73-167mHz) 

lMOG ↓21.5 0.0001 lMOG ↓16.1 0.0040 rAMYG ↑7.3 0.0273 
rHESG ↓15.3 0.0053 rMOG ↓11.4 0.0344 rHESG ↑6.4 0.0293 
rLN_P ↓11.9 0.0221 rSFG_OP ↓11.6 0.0591 rFFG ↑5.9 0.0316 
rMOG ↓11.8 0.0231 lHESG ↓9.1 0.0670 lMOG ↑5.4 0.0418 
lIOG ↓11.0 0.0370 rHIP ↑6.2 0.0953 lFFG ↑6.5 0.0515 
lSFG_MO ↓10.8 0.0425 rHESG ↓8.9 0.0962 rPHG ↑5.6 0.0583 
rAMYG ↓11.0 0.0484 lAMYG ↓11.2 0.1006 lHIP ↑5.1 0.0616 
rSFG_OP ↓12.1 0.0504 rLN_P ↓6.4 0.1021 lIOG ↑5.1 0.0783 
lFFG ↓9.5 0.0555 lSFG_MO ↓8.0 0.1087 rHIP ↑3.8 0.0955 
lPHG ↓11.1 0.0636 rPCG ↓10.0 0.1098 rLN_P ↑5.5 0.0993 
rIOG ↓9.1 0.0767 lSFG_OP ↓8.9 0.1240 lPHG ↑3.7 0.1617 
lHESG ↓6.5 0.1380 rIOG ↓8.1 0.1269 lPCG ↑3.3 0.1682 
lHIP ↓8.5 0.1481 lPHG ↓7.4 0.1438 lAMYG ↓3.4 0.1889 
lAMYG ↓7.8 0.1623 lIOG ↓5.9 0.1523 lLN_P ↑4.5 0.1923 
rFFG ↓5.7 0.1714 rINS ↓3.8 0.1881 rPCG ↓3.8 0.2075 
lINS ↓5.9 0.1812 lLN_P ↑3.5 0.2248 lHESG ↓2.6 0.2144 
lPCG ↓8.5 0.1822 lFFG ↓3.0 0.2256 lSFG_MO ↑2.9 0.2179 
lSFG_OP ↓7.2 0.1885 rSFG_MO ↓3.9 0.2462 lSFG_OP ↓1.7 0.2971 
rPCG ↓6.2 0.1994 lINS ↓5.8 0.2551 rSFG_MO ↓0.1 0.3392 
rHIP ↑2.4 0.2803 rAMYG ↓3.6 0.3146 lINS ↑0.2 0.3778 
rINS ↓3.6 0.2895 rPHG ↑4.0 0.3337 rINS ↓0.3 0.3815 
rPHG ↓1.6 0.3911 rFFG ↑0.2 0.4578 rIOG ↑1.0 0.4278 
rSFG_MO ↓3.8 0.4241 lHIP ↓3.4 0.4911 rMOG ↑0.5 0.4310 
lLN_P ↓1.1 0.5525 lPCG ↓5.3 0.4922 rSFG_OP ↑0.5 0.4751 

*FD = Regional difference of mean frequency in mHz, ↓ = reduction and ↑ = increment in frequency of group1 with respect to group2. 
 

TABLE 3 
AAL REGIONS* FOR HEALTHY AND AD AFFECTED SUBJECTS 

 
Significance test for 24 AAL regions using Mann–Whitney U for p < 0.05 (Bold faced) 

Young (YH) vs Elderly Control (EH) Young (YH) vs AD Subjects (AD) Elderly (EH) vs AD Subjects (AD) 
Region FD(mHz)* p Region FD(mHz)* p Region FD(mHz)* p 

Whole band 
(0.01-0.167Hz) 

or  
(10-167mHz) 

rSFG_OP ↓22.7 0.0034 rHESG ↑11.0 0.0000 rHESG ↑15.8 0.0000 
lSFG_OP ↓19.6 0.0305 rAMYG ↑11.3 0.0006 rPCG ↑10.0 0.0005 
lHIP ↑2.0 0.0662 rSFG_OP ↓18.6 0.0010 rINS ↑13.9 0.0011 
lAMYG ↑2.4 0.0839 rINS ↑16.5 0.0020 rLN_P ↑12.1 0.0080 
rPCG ↓7.6 0.1008 lAMYG ↑5.8 0.0203 lPCG ↑6.1 0.0100 
rSFG_MO ↓9.5 0.1443 lHIP ↑8.5 0.0206 lHESG ↑9.2 0.0119 
rINS ↑2.7 0.1658 lINS ↑8.7 0.0263 rAMYG ↑12.2 0.0121 
lHESG ↓9.4 0.2288 lFFG ↑3.8 0.0269 lINS ↑12.1 0.0131 
rFFG ↓15.3 0.2489 lLN_P ↑3.1 0.0318 rPHG ↑9.0 0.0133 
rMOG ↓8.8 0.2575 lPCG ↑4.3 0.0348 rHIP ↑13.0 0.0144 
lMOG ↓11.7 0.3414 rHIP ↑8.1 0.0392 lFFG ↑10.2 0.0188 
rIOG ↓6.1 0.3711 lPHG ↑1.0 0.1337 lMOG ↑11.2 0.0207 
lSFG_MO ↓9.7 0.4297 lSFG_OP ↓8.8 0.1777 lIOG ↑7.6 0.0224 
rLN_P ↓13.1 0.5389 rSFG_MO ↓0.9 0.2622 rFFG ↑9.9 0.0238 
lIOG ↓8.6 0.5936 rPCG ↑2.4 0.3044 lSFG_OP ↑10.8 0.0391 
rHIP ↓4.8 0.6207 rMOG ↓4.7 0.4301 rIOG ↑5.1 0.0804 
lPCG ↓1.8 0.6462 lSFG_MO ↓4.4 0.4522 lAMYG ↑3.4 0.0890 
lINS ↓3.3 0.6821 rIOG ↓1.0 0.7108 lLN_P ↑4.9 0.1586 
rPHG ↓10.1 0.7050 rFFG ↓5.4 0.7521 rSFG_MO ↑8.5 0.1871 
lFFG ↓6.4 0.7074 lHESG ↓0.1 0.7772 rMOG ↑4.1 0.2151 
lPHG ↓1.9 0.8716 lMOG ↓0.5 0.8083 lHIP ↑6.4 0.2229 
lLN_P ↓1.8 0.8991 lIOG ↓1.0 0.9009 lSFG_MO ↑5.3 0.4143 
rHESG ↓4.9 0.9344 rLN_P ↓1.0 0.9698 rSFG_OP ↑4.1 0.5641 
rAMYG ↓0.8 0.9408 rPHG ↓1.1 0.9844 lPHG ↑2.9 0.5926 

*FD = Regional difference of mean frequency in mHz, ↓ = reduction and ↑ = increment in frequency of group1 with respect to group2. 
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Partial Slow 3 band: This band was found to show very different ROFA values than other bands, where almost all of the brain 

regions were found to have significantly higher BOLD ROFA frequencies than the YH group (Table 2). Interestingly, there was 

no significant difference between EH and AD except at left and right Postcentral, inferior parietal and Supramarginal gyrus and 

left Caudate, right Lingual and Calcarine sulcus where EH was observed to have higher ROFA than both YH and AD groups (Fig. 

4(c)). These consistently high BOLD ROFA frequencies in the slow 3 band may have some implications to age-related 

neurodegeneration or age-related increase of BOLD metabolism rate [46][47].    

Whole 0.01Hz-0.167Hz band: This band shows considerably more different than other sub-bands because the complete span of 

the available BOLD ROFA frequency values is analysed in this band. Hence, ROFA values obtained from this band can be 

considered as an overall ROFA value of the available voxels in a particular brain region. It can be observed from Table 3 that 

Young brains are resting at relatively lower frequencies than both EH and AD groups. However, a few regions which include right-

left Thalamus and Caudate nucleus (Fig. 5.) are found to have a significantly higher ROFA frequency than EH and AD groups. It 

can also be hypothesised that ROFA frequency for Elderly brain is generally higher than both Alzheimer’s patients and young, 

healthy subjects, which is in coherence with the large study depicting the age-related increase of the cerebral metabolic rate of 

oxygen consumption (𝐶𝑀𝑅𝑂2) [46].  

 

 
 

 
3.2.2 Cross-validation of ROFA generated frequencies to test their affinity with their group 

We have used the data in a linear discriminant analysis (LDA) based classifier with the loss function test for the10 folds cross-

validation. Each of the loss function results was randomised and averaged from 100 iterations each. The loss function assesses the 

efficiency of the suggested features, which in our case are the BOLD ROFA frequencies for the whole band (0.01Hz-0.167Hz) as 

observed for 116 AAL brain regions in all 123 subjects. Here we randomly selected only one dataset from each subject (for those 

subjects with multiple datasets) to remove any possibility of bias due to longitudinal data from the same subject. This randomisation 

was also done for 100 observations. Table 4 illustrates the observed results for the loss-function coefficients, which can have a 

Table 4  

Loss function for k-fold cross-validation among different subject groups for k  = 10 

Subject group YH-EH YH-AD EH-AD 

Loss coefficient 0.19 0.33 0.29 

 
Table 5  

Cross validation accuracy among different subject groups for several different combinations of 90% of the training and 10% test data. 

Subject group YH-EH YH-AD EH-AD 

Prediction accuracy 76.10% 67.55 68.09% 
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value between 0 and 1. This value suggests the ratio of the data which failed to classify well by the classifier. As can be seen from 

Fig.6, the loss was low < 0.19 for the YH-EH comparison, while for YH-AD and EH-AD groups the loss coefficient was about 

0.33 and 0.29, respectively, across all the different data-fold combinations for training and testing.  

As described in Section 2.4, these features were further tested for the classification accuracy in the same LDA-based classifier 

with a slightly different setup for training and testing data. Here, data from each of the subject groups were divided using a 

randomisation algorithm and fed to the classifier in equal proportion from each YH, EH and AD groups. The classification results 

for this cross-validation approach are also significant (Table 7.) and adhere to the findings of the loss function. Here the 

predictability accuracy was 76.10% for YH-EH, while for YH-AD and EH-AD the accuracy was up to 67.55% and 68.09%, 

respectively.  

 
3.3 ROFA frequencies as biomarkers for ageing and pathological changes in the brain 

The mean ROFA frequencies have been calculated for each of the 116 brain regions across the subject groups for all of the 

discussed frequency bands (see Fig. 6.). Then, the similarities in the mean frequency values of different subject groups were 

observed. Though between-subject variability may be high, the pattern should be similar in each population group. Therefore, a 

non-parametric Kendall’s rank correlation was considered appropriate because the Kendall rank correlation is considered more 

sensitive to pattern differences in the given data samples [39]. Interestingly, frequency correlations given in Table 6 can also 

validate the difference between AD and YH subjects in all four frequency bands. The correlation (see Table 6) between YH and 

EH subjects was observed as 𝑟 = 0.2414, 0.0051, 0.1499 𝑎𝑛𝑑 0.1439. It is undoubtedly better than that in YH-AD where 𝑟 =
0.1058, 0.0081, 0.1352 𝑎𝑛𝑑 0.1199. It also makes sense that the correlation for EH-AD (𝑟 =  
0.2690, 0.3343, 0.1421 𝑎𝑛𝑑  0.5478) have highest similarity in the ROFA patterns for each frequency band, as both EH & AD 

groups have similar age profile. Moreover, these results are thoroughly coherent with several frequency bands under consideration.  

The mean frequency values (Fig. 6.) were further tested to infer the subject groups and underlying pathological conditions. The 

distance or affinity to these mean frequency values was observed. All of the 123 subjects and findings were arranged in the 

confusion-matrix based test statistics. For this purpose, Accuracy, Precision, Sensitivity and Matthew’s Coefficient of correlation 

(MCC) were calculated as explained in Section 2.4 and (1) to (4), respectively. The results presented in Table 7 are organised such 

as for the first row ‘YH-EH’, YH has been considered True Positive (TP) group and EH as True Negative (TN) group and similarly 

for remaining 5 rows. Table 8 has been derived from Table 7, which provides the mean results for both groups after swapping 

between TP and TN. For example, the first row is the mean of YH-EH and EH-YH observations. All of the results are scaled to an 

equal number of subjects from each group and projected to contain 1,000 subjects in each group totalling to 3,000 subjects for YH, 

EH, and AD to remove any possibility of bias.  

 

 
This can be inferred from Table 8 that there is up to 95.71% accuracy of detection for Young Healthy subjects. At the same 

time, for Elderly and Alzheimer’s (EH-AD & AD-EH), the ROFA frequencies were able to identify 94.99% of subjects correctly 

for their groups. It is even more interesting to observe the sensitivity values, suggesting having separated all 100% of the Young 

Healthy subjects from both Elderly and Alzheimer’s group. It is conceptually true as young brains are unlikely to have 

Table 6 

Kendall’s rank correlation coefficients 𝒓 among mean ROFA values along with their p-values 

 YH-EH YH-AD EH-AD 
 r p_val r p_val r p_val 

Slow 5 band 0.2414 0.0344 0.1058 0.0813 0.2690 0.0159 

Slow 4 band 0.0051 0.3121 0.0081 0.1673 0.3343 0.0651 

Slow 3 band 0.1499 0.0231 0.1352 0.0344 0.1421 0.0316 

Whole band 0.1439 0.0305 0.1199 0.0206 0.5478 0.0121 

 

Table 7 

Observations made from the Confusion-Matrix results  
Accuracy Precision Sensitivity MCC 

YH-EH 95.71% 92.47% 100% 95.97% 
YH-AD 100% 100% 100% 100% 
EH-AD 94.99% 100% 89.98% 95.32% 
EH-YH 95.71% 100% 91.42% 95.97% 
AD-YH 100% 100% 100% 100% 
AD-EH 94.99% 91.33% 100% 95.32% 

 

Table 8 

Mean of the Confusion-Matrix results of the Table VIII   
Accuracy Precision Sensitivity MCC 

YH-EH 95.71% 96.24% 95.71% 95.97% 

YH-AD 100% 100% 100% 100% 

EH-AD 94.99% 95.67% 94.99% 95.32% 
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neurodegenerative effects observed from ageing and Alzheimer’s disease. However, a very small number of Elderly (8.58%) 

subjects were found to have similar responses as YH subjects. These results prove obvious that EH brains are healthier than AD. 

Therefore few of the EH subjects may have similar BOLD ROFA responses as the YH subjects, while the AD patients are not 

similar to YH brains. On comparing the difference between detectability of AD among the elderly population, 10.02% of elderly 

healthy subjects were found to fall in the AD category. Studies by Koch et al., 2012 and Prvulovic et al., 2011 [15, 22] suggest that 

logically these fallout cases are appropriate because Elderly healthy and AD patients belong to similar age group. They may have 

more similarities than differences, and therefore a few Elderly subjects have been suggested to have Alzheimer’s disease. This 

fallout of EH subjects as AD might be an initial indicator of AD or other similar neurodegenerative diseases in these subjects. 

Hence, such cases may also be opinionated to keep monitoring their cognitive, memory and emotional performance.  

 

4  Discussion 

 Though anatomical relevance is useful in understanding neurodegenerative diseases, especially Alzheimer’s disease, and may 

have a definite impact on the pathological calibration of diseases [1, 2, 48], the focus of this study remained on the BOLD 

spontaneity of brain regions [4, 13, 23, 28, 31]. Therefore, anatomical relevance has been considered up to normalisation with MNI 

templates [30]. Thus, this study's anatomical accuracy relies on the efficiency of the existing pre-processing algorithms as provided 

by the SPM toolbox for MATLAB [30]. 

 The proposed ROFA methods have found several regions showing significant differences (p < 0.05) in optimum frequency using 

non-parametric Mann–Whitney U test [39]. The detailed exploration of these outcomes' biological significance is out of the scope 

of this work. However, the results demonstrate that some regions have shown a reduction in frequency for elderly controls and AD 

patients, which may be due to the slowing of the ageing brain, reduction in oxygenated blood supply or reduced network 

connections. Also, there was some increase in frequency in a few brain regions that may be considered a consequence of the 

scaffolding or the compensation mechanism for the regions with deteriorated functionality due to ageing and/or AD-related 

pathological changes [1, 46]. A comparison of the proposed ROFA with promising Group-ICA based method is given in Table 9. 

Group-ICA achieved 100% classification sensitivity for connectivity pattern in the dorsal attention network (DAN). Still, the 

MMSE-Score for the selected AD subjects suggest, the AD patients were severely affected. At the same time, our study considered 

several different AD patients from mild (MMSE ≈ 26) to severe (MMSE ≈ 12) conditions. The classification robustness of these 

ROFA algorithms was tested on simulated and Real fMRI datasets in the present study and GMM from our previous study [28, 

31] has been used for SNR improvement. We have found GMM along with ROFA approach as suitable to deploy for both resting-

state and stimulus-dependent fMRI data analysis with the following limitations, 1) the outcome of the ROFA would remain prone 

to motion and normalisation artefacts [4] which depends on the accuracy of pre-processing tools such as SPM [30] in our case, 2) 

GMM is based on an expectation-maximisation algorithm which needs relatively more computing power as well as time, 3) ROFA 

algorithms suppress the amplitude information from the fMRI data and so the significance is limited to the functional spontaneity 

or the pace of the BOLD fluctuations only.  

 The main advantages of using these algorithms are: 1) noise robustness due to Bayesian information criterion [5] based 

clustering, 2) the ROFA algorithm works in the frequency domain and therefore drift caused due to phase differences in chaotic 

time-series signals get minimised, 3) the ROFA algorithm being based on a huge number of optimally synced voxels can deal 

better with significantly random nature of the brain signals and 4) the ROFA algorithm counts on the relative differences in the 

group of voxels syncing for a frequency of the subject’s brain. Therefore, it is relatively independent to the device environment 

artefacts. 

Table 9 

Comparison of proposed ROFA method with Group-ICA method and a method based on the combination of Functional connectivity, Graph 

Metrics, Eigen Vector Centrality, ALFF and fALFF methods. 

Method used 
(groups) 

Regions selected 
No. of Subjects 

(Average MMSE) 
Efficiency 

Sens./Prec.% 

Group-ICA [6, 18, 19, 27] 

EH vs. AD 
DMN Regions 
DAN Regions 
VAN Regions 

EH = 16 (≈29) 
AD = 15 (≈12) 

73.3–86.7/NA 
85.7–100/NA 
<70–73.3/NA 

Classification using Functional connectivity, Graph Metrics, Eigen Vector Centrality, ALFF and fALFF methods [24].  

EH vs. AD 
Individual Methods 
 
Combined 

EH = 69 (≈20.4) 
AD = 33 (≈27.5) 

46-84/50-76 
 
 
86/75 

Proposed Regional Optimum Frequency Analysis (ROFA) 

YH vs. EH 
YH vs. AD 
EH vs. AD 

Whole Brain  
(AAL) [11] 

YH = 21 (NA*) 
EH = 69 (>27) 
AD = 33 (≈21) 

95.71/96.24 
100/100 
94.99/95.67 

*MMSE test for young healthy subjects was not done. 
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This method may potentially establish reliable biomarkers for normal healthy ageing and neurodegenerative disorders. Thanks 

to their noise robustness, accuracy and reproducibility of the outcomes. The results obtained from ROFA are considerably different 

than many other methods which consider BOLD power in the suggested bands of frequencies. The ROFA considers the optimal 

number of voxels synced to a particular BOLD frequency regardless of the strength or power in other bands for relatively fewer 

synced voxels. Here, a group analysis strategy was opted to determine the difference between healthy age groups and AD patients. 

The proposed algorithm has identified differences between healthy, elderly and AD brains. The most adherent frequency for each 

brain region among the given young, elderly and AD groups can be depicted from the findings. Earlier findings based on frequency 

analysis have also established that fMRI BOLD responses can be used to differentiate between the healthy and diseased brain. In 

contrast, the proposed ROFA algorithm has been tested to find the ageing-related changes and the disease, which proves the 

algorithm's legitimacy per the available literature[23, 49–54].  

5 Conclusion and future work 

 This paper has presented a novel approach based on the optimally synchronised frequency response of the recorded BOLD fMRI 

voxels belonging to a particular region of the brain, namely ROFA. This algorithm was successfully applied to the resting-state 

data from young and elderly healthy control subjects and Alzheimer’s disease patients and tested for statistical significance in a 

group analysis model. Some regions have shown BOLD variability in the form of optimum resting frequency using ROFA for 

several brain regions as classified by AAL brain atlas template obtained from the MRIcron software [45]. Our method's efficacy 

was tabulated for 24 essential regions of the brain, as suggested in the literature, although results were analysed for other brain 

regions. The ROFA frequencies for Young healthy subjects showed a higher correlation with AD subjects in lower frequency (< 

027Hz) band while Elderly healthy found to have higher correlation is relatively higher frequency (>0.27Hz) bands. Further, the 

ROFA frequencies were tested for their candidature as biomarkers to observe the brain's pathological state. A confusion-matrix 

based statistics was incorporated for this purpose, and the results were validated on the Accuracy, Precision, Sensitivity and 

Matthews Coefficient of Correlation (MCC) parameters. Here, the ROFA values were able to identify young, healthy subjects with 

100% Accuracy and Precision both, while Elderly healthy and AD subjects were also separated with more than 96% precision and 

nearly 95% accuracy. With these values, ROFA outperformed the Group-ICA[18, 19] and recent multi-classifier based functional 

connectivity, graph metrics, Eigen-vector centrality, ALFF and fALFF based methods[24]. This proves the superiority of the ROFA 

method in differentiating into healthy ageing individuals and AD subjects. 
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