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Summary

Age-period-cohort (APC) models are frequently used in a variety of health and
demographic related outcomes. Fitting and interpreting APC models to data in equal
intervals (equal age and period widths) is non-trivial due to the structural link
between the three temporal effects (given two, the third can always be found) causing
the well-known identification problem. The usual method for resolving the structural
link identification problem is to base a model on identifiable quantities. It is common
to find health and demographic data in unequal intervals, this creates further identifi-
cation problems on top of the structural link. We highlight the new issues by showing
that curvatures which were identifiable for equal intervals are no longer identifiable
for unequal data. Furthermore, through extensive simulation studies, we show how
previous methods for unequal APC models are not always appropriate due to their
sensitivity to the choice of functions used to approximate the true temporal functions.
We propose a new method for modelling unequal APC data using penalised smooth-
ing splines. Our proposal effectively resolves the curvature identification issue that
arises and is robust to the choice of the approximating function. To demonstrate the
effectiveness of our proposal, we conclude with an application to UK all-cause mor-
tality data from the Human mortality database (HMD).
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1 INTRODUCTION

Age-period-cohort (APC) models are used to interpret the effects of the most influential temporal trends on incidence and
mortality rates for a multitude of diseases. Age effects are a measure of attrition on one’s body as they get older, period (time
of the event) effects reflect short term exposures (e.g., new treatments) and a (commonly birth) cohort effect is a long-term
exposure (e.g., smoking views). We use obesity as an example of how all three temporal effects relate to a major health concern.
Obesity is a measure of an individual’s body mass index (BMI) with those greater than or equal to 30 being classified as obese.
The most recent health survey from the UKs National Health Service (NHS) found 68% and 60% of adult men and women are
classified as obese, respectfully.1 Weight of an individual increases with age, and in recent years there has been an increasing
trend of obesity. These together make for a cohort effect where those born in more recent cohorts have an increased risk to being
obese and getting there at an earlier age.

APC models are affected by an identifiability problem due to the linear dependence between the three temporal terms. For
example, a birth cohort can always be found by subtracting the age of the individual from the year the response was taken. The
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result of this linear dependence is that the three linear trends are impossible to disentangle from one another without the use of
additional information. We will call this problem the “structural link identification problem” (or structural link for short).

Commonly, APC models are considered when data comes tabulated in equal widths (equal intervals). Appropriate solutions to
the structural link are based on reparameterising the APC modelling into estimable quantities. When time is considered discrete
(most common), each temporal term is modelled as a factor with levels for each time interval; Holford pioneered a solution
based on estimable curvatures2 (terms that are orthogonal to a linear term) for each temporal effect, whilst Kuang, Nielson and
Nielson based a solution on estimable second differences3 (a discrete version of the second derivative). When time is considered
continuous, the temporal terms are often modelled by approximate smooth functions. Carstensen defined a set of estimable
quantities, like Holford’s curvatures, to fit APC models.4 Smith and Wakefield offer a comprehensive review on APC models
for data aggregated in equal intervals.5

Less commonly, APC models are considered when data comes tabulated in unequal intervals. This contrasts the fact that
many providers of health and demographic data frequently release data tabulated in unequal intervals. For example, the UK’s
office of national statistics (ONS) releases all-cause mortality data in single-year age and period6 and, for a finer understanding
of seasonality, weekly periods, and five-year age groups.7 In addition, the Demographic and Health Surveys (DHS) release data
for monthly ages and yearly periods.8 APC models fit to unequal data are less common as the model fitting process induces more
identification issues (on top of the structural link) that are displayed by a cyclic pattern in the previously estimable functions.9

Figure 1 shows the cohort curvature estimates when a factor model is fit to simulated unequal data. Note the cyclic pattern, this
could be due to the underlying phenomena of interest being modelled. However, later in the paper it is shown the cyclic pattern
is more likely caused by the further identification problems present when modelling data aggregated into unequal data.

As Figure 1 alludes to, factor-based approaches based on estimable quantities that worked for data in equal intervals are no
longer appropriate when data comes in unequal intervals. A proposed method to model APC data in unequal intervals is to
model the temporal terms with approximate smooth functions such as smoothing splines.9,4 These may resolve the issue but
raise additional questions about how to specify the smooth functions and if they are sensitive to the choice of specification. The
use of a penalised spline has been recognised as potentially preferable solution to the cyclic pattern than just a smoothing spline
alone,10 but has not been fully explored until now. Another approach is to collapse unequal intervals into equal intervals but in
many cases, this causes a large amount of information lost which decreases the reliability of the results.

The purpose of this paper is to propose a method to modelling APC data that comes in unequal intervals. The method we
propose addresses all identification problems present for unequal data, maintains clarity on what is and is not estimable, has a
clear interpretation, and is robust to the choice of function used to approximate each temporal term. We propose approximating
each temporal term as a continuous function, reparameterise each into a linear and orthogonal curvature and when modelling the
curvatures, include a penalty on the second derivative (a measure of “wiggliness”) of the estimate. Using continuous functions
in a reparameterised APC model is not new. For example, Heuer performed a simulation study for APC models fit to data in
unequal intervals using continuous functions to model period and cohort curvature terms,11 and Carstensen promotes the use
of continuous functions in his reparameterisation.4 However, the novelty we are proposing relates to the use, specification, and
implementation of a penalty on estimable terms within a reparameterised APC model.

We show how to correctly construct a penalty that is only penalising the curvature terms after the reparameterisation and
explain how to implement it practically. Via simulation studies, we confirm the use of a penalty in a reparameterised APC model
is appropriate for fitting models to data both equally and unequally aggregated. A sensitivity analysis is used to demonstrate that
the inclusion of a penalty provides robustness to how the continuous functions are specified. The same robustness is not present
in the absence of a penalty in the sensitivity analysis highlighting the necessity of the penalty function when considering data
unequally aggregated in an APC model.

The remainder of the article is organised as follows. In Section 2, we review the identification problem for data aggregated
in equal intervals and introduce our new reparameterisation scheme. Section 3 is a comprehensive simulation study for the case
when data comes in equal intervals. Section 4, we review the curvature identification problem that arises from unequal intervals
and show through theoretical and simulation results how the proposed method relieves this added identification problem. Finally,
we conclude with an application to all-cause mortality data in the UK in Section 5 and a conclusion in Section 6.
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FIGURE 1 Cohort curvature estimate from fitting an APC model reparameterised into linear terms and their orthogonal curva-
tures to simulated unequal interval APC data.

2 METHOD

2.1 Identification Problems
We begin by discussing an APC model for data equally aggregated, referred to as ‘equal intervals’. There are two types of
identification problems in this model. The first is well-known and due to including an intercept along with more than one smooth
function (or factor) in a model. The second and more serious is due to the structural link. The structural link occurs since given
any two of age, period, or cohort, the third can always calculated. Commonly, birth cohort is found by taking the difference
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between year of event and age, 𝑐 = 𝑝−𝑀 ×𝑎 where 𝑀 is the ratio of age interval to period interval. For equal intervals 𝑀 = 1,
this simplifies to 𝑐 = 𝑝 − 𝑎.

Table 1 shows how cohort index varies when age and period are aggregated into equal intervals. With age increasing from
bottom to top and period left to right, a cohorts progression can be traced on the bottom left to top right diagonal. The earliest
cohort is top left (oldest age with the first year) and the most recent cohort is bottom right (youngest age with most recent year).

8 1 2 3 4 5 6 7 8
7 2 3 4 5 6 7 8 9
6 3 4 5 6 7 8 9 10
5 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 12
3 6 7 8 9 10 11 12 13
2 7 8 9 10 11 12 13 12
1 8 9 10 11 12 13 14 15

Age 1 2 3 4 5 6 7 8
Period

TABLE 1 Cohort indexing for age-period data table where age is grouped 𝑀 = 1 times larger than period. The cohort index is
defined using 𝑐 = 𝑀 × (𝐴 − 𝑎) + 𝑝 where 𝐴 = 8 to fix the first cohort to be 1.

Let 𝑦𝑎𝑝 be response from age group 𝑎 and period group 𝑝 where 𝑎 = 1, 2,… , 𝐴 and 𝑝 = 1, 2,… , 𝑃 . A cohort index is not
explicitly defined due to the structural link, but is calculated 𝑐 = 1, 2,… , 𝐶 = 𝑀 × (𝐴 − 𝑎) + 𝑝. A continuous APC model is

𝑔
(

𝜇𝑎𝑝
)

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝) + 𝑓𝐶 (𝑐) (1)

where 𝑔 (⋅) is the link function, 𝜇𝑎𝑝 ≡ 𝔼
[

𝑦𝑎𝑝
]

is equivalent to the expected value of the response and 𝑓𝐴, 𝑓𝑃 and 𝑓𝐶 are the
smooth functions of age 𝑎, period 𝑝 and cohort 𝑐. The APC identification problem means we can add a constant and linear trend
to each function without affecting the overall linear predictor. Consider the following functions4

𝑓𝐴 (𝑎) = 𝑓𝐴 (𝑎) − const1 + const3𝑀𝑎
𝑓𝑃 (𝑝) = 𝑓𝑃 (𝑝) + const1 + const2 − const3𝑝
𝑓𝐶 (𝑐) = 𝑓𝐶 (𝑐) − const2 + const3𝑐

where const1 and const2 are due to the identification for including more than one smooth function and const3 is due to the
structural link. The overall linear predictor is invariant to the inclusion of these constants since

𝑔
(

�̃�𝑎𝑝
)

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝) + 𝑓𝐶 (𝑐)
=
[

𝑓𝐴 (𝑎) − const1 + const3𝑀𝑎
]

+
[

𝑓𝑃 (𝑝) + const1 + const2 − const3𝑝
]

+
[

𝑓𝐶 (𝑐) − const2 + const3𝑐
]

=
[

𝑓𝐴 (𝑎) + const3𝑀𝑎
]

+
[

𝑓𝑃 (𝑝) − const3𝑝
]

+
[

𝑓𝐶 (𝑐) + const3𝑐
]

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝) + 𝑓𝐶 (𝑐) = 𝑔
(

𝜇𝑎𝑝
)

where 𝑐 = 𝑝 −𝑀 × 𝑎 is used in the fourth line.
Many reparameterisation schemes are based off of an identifiable set of quantities. The first derivatives are not identifiable12,13

but the second derivatives, or more generally curvatures, are identifiable. The age curvature is expressed
̃𝑓𝐴𝐶

(𝑎) ≡ 𝑓 ′′
𝐴 (𝑎) = 𝑓 ′′

𝐴 (𝑎) ≡ 𝑓𝐴𝐶
(𝑎)

where the subscript “𝐶” denotes the curvature. The terms for period and cohort curvature are analogous.
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2.2 Univariate temporal model
For the purpose of development, we shall first focus on a single temporal function for age. A univariate temporal model for age
can be expressed as

𝑔
(

𝜇𝑎
)

= 𝑓𝐴 (𝑎) (2)
for 𝑓𝐴, a smooth function of covariate 𝑎 for age.

A popular set of functions used to approximate the smooth functions are splines: sums of polynomial functions called basis
functions, which are based on a selection of points called knots. Within APC modelling, the Epi4 package in R14 fits several
splines bases to continuous functions of APC models without penalisation. Carstensen also incorporated his methods into a
package in Stata with extensions to include covariates.15

To approximate 𝑓𝐴 in Eq.(2), the user specifies basis functions, and the model fitting process produces estimates for the
weights of said basis functions. Given the basis 𝑏𝑖 (𝑎), the 𝑖th basis function, 𝑓𝐴 is approximated with a spline as follows

𝑓𝐴 (𝑎) =
𝐼
∑

𝑖=1
𝑏𝑖 (𝑎) 𝛽𝑖

where 𝐼 is the number of basis functions and 𝛽𝑖 is the estimate of the unknown weights.
Estimates of the true function can be found using a penalised iterative re-weighted least squares (PIRLS) algorithm to produce

𝛽𝑖.16 PIRLS is used to find an estimate �̂�𝐴 that minimises the objective function

𝐷
(

𝑓𝐴 (𝑎)
)

+ 𝜆𝐴 ∫ 𝑓 ′′
𝐴 (𝑎)2 𝑑𝑎

where 𝐷
(

𝑓𝐴 (𝑎)
)

is the deviance (square of the difference between the saturated log-likelihood and model log-likelihood) of
the model and 𝜆𝐴 ∫ 𝑓 ′′

𝐴 (𝑎)2 𝑑𝑎 is a penalty term on the second derivative “wiggliness” of 𝑓𝐴 with smoothing parameter 𝜆𝐴. For
more details, see Chapter 4 Wood (2017).16 By representing the smooth function via a spline basis, the smooth itself can be
written

𝑓𝐴 (𝑎) =
𝐼
∑

𝑖=1
𝑏𝑖 (𝑎) 𝛽𝑖 = 𝑿𝜷

for 𝑿 an 𝑛 × 𝐼 matrix and 𝜷 an 𝐼 × 1 vector of parameters. The penalty function can be expressed as

∫ 𝑓 ′′
𝐴 (𝑎)2 𝑑𝑎 = 𝜷𝑇

∫ 𝒃𝑇 (𝑎) 𝒃 (𝑎) 𝑑𝑎𝜷 = 𝜷𝑇𝑺𝐴𝜷

where 𝑺𝐴 = ∫ 𝒃𝑇 (𝑎) 𝒃 (𝑎) 𝑑𝑎 is the penalty matrix.
Penalising estimates of the smooth function reduces the effect of over fitting (e.g., from choosing too many bases to represent

the smooth function) as over-fit functions are often “wigglier” than those under-fit and hence penalised greater. The smoothing
parameter controls the trade-off between smoothness of the estimated smooth and closeness to the data. If 𝜆𝐴 = 0, there is no
cost for fitting complicated functions while 𝜆𝐴 → ∞ gives the maximum cost for fitting a complicated function, and 𝑓𝐴 is a
straight line.

2.3 Orthogonalization
Often an intercept is included alongside smoothers; this causes identifiability problems that can be resolved via reparameteri-
sation. A ‘sum-to-zero’ constraint orthogonalizes the smooth to an intercept term such that 𝟏𝑇𝑿𝜷 = 𝟎, avoiding any intercept
related identification problems. The constraint is applied by constructing an 𝐼×(𝐼 − 1) matrix 𝒁 through the QR-decomposition
of

(

𝟏𝑇𝑿
)𝑇 . The smooth is reparameterised by using 𝑿𝒁 and 𝒁𝑇𝑺𝒁 as its model and penalty matrices; for more details, see

Chapter 5 Wood (2017).16

The parameter space of 𝑓𝐴 can be split further into a linear slope and parameters corresponding to orthogonal curvatures.2 In
the following, orthogonality is defined with respect to the usual inner product ⟨𝑥|𝑦⟩ =

∑

𝑖 𝑥𝑖𝑦𝑖; see Carstensen for a discussion
on the choice of inner product used in the orthongonalization.4 In the same vein as the intercept reparameterisation, define a 2×𝐼
array consisting of a constant and vector of all ages for the intercept and linear terms, [𝟏 ∶ 𝒂]. Consequently, a (𝐼 − 1) × (𝐼 − 2)
matrix 𝒁 is calculated by the QR-decomposition of

(

[𝟏 ∶ 𝒂]𝑇 𝑿
)𝑇 , and the smooth 𝑓𝐴 is reparameterised using 𝑨𝐶 = 𝑿𝒁 and

𝑺𝐴𝐶
= 𝒁𝑇𝑺𝒁 as its model and penalty matrices.
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After the intercept and linear slope reparameterisation, the form of the age-model is

𝑔
(

𝜇𝑎
)

= 𝛽0 + 𝑎𝛽𝐴𝐿
+ 𝑓𝐴𝐶

(𝑎)

where 𝛽0 and 𝛽𝐴𝐿
are the parameters for the intercept and slope and 𝑓𝐴𝐶

is the smooth of covariate 𝑎 orthogonal to the intercept
and linear term. In matrix form,

𝑔 (𝝁) = 𝑿𝜷 =
[

𝟏 ∶ 𝒂 ∶ 𝑨𝐶
]

⎡

⎢

⎢

⎣

𝛽0
𝛽𝐴𝐿

𝜷𝑇
𝐴𝐶

⎤

⎥

⎥

⎦

where 𝛽0, 𝛽𝐴𝐿
and 𝜷𝐴𝐶

are the parameters for the intercept, slope and curvature terms defined by the partitions 𝟏, 𝒂 and 𝑨𝐶 of
the model matrix. The smooth function 𝑓𝐴𝐶

has the associated penalty 𝜆𝐴𝜷𝑇
𝐴𝐶
𝑺𝐴𝐶

𝜷𝐴𝐶
.

Figure 2 shows how a spline basis for 𝑎 = 1,… , 20 with 𝑖 = 1,… , 5 basis functions changes after each reparameterisation.
The first two rows, b0 and b1, show the basis functions that capture the constant and linear behaviour of the spline, respectfully,
and the remaining rows, b2, b3 and b4, capture the higher order behaviour of the spline. The first column are the bases before
any orthogonalization and the second and third columns show the bases after being orthogonalized to a constant and a constant
and a linear term, respectfully. More details on specification of the spline basis will follow at the end of this section. When
orthogonalizing the basis with respect to a constant and a linear trend, any part of the basis that captures these trends are removed.
This is shown in Figure 2 by b0 being removed after orthogonalization to an intercept and both b0 and b1 being removed after
orthogonalization to both an intercept and linear trend. The bases that capture the higher order behaviour are also altered (e.g.,
rotated) since they may capture some form of a constant and linear trend.

2.4 Age-period-cohort modelling
After reparameterising period and cohort in the same manner as age, an estimable APC model is written,

𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝑠1𝛽1 + 𝑠2𝛽2 + 𝑓𝐴𝐶
(𝑎) + 𝑓𝑃𝐶

(𝑝) + 𝑓𝐶𝐶
(𝑐) (3)

where 𝑠1 and 𝑠2 are two of the three temporal slopes with parameters 𝛽1 and 𝛽2, and 𝑓𝐴𝐶
(𝑎), 𝑓𝑃𝐶

(𝑝) and 𝑓𝐶𝐶
(𝑐) are the smooths

for the age, period, and cohort curvatures. If all three slopes are included in the above reparameterisation, the model is over-
parameterised. By dropping any one of the three slopes, the model is no longer over-parameterised, and the scheme is based off
the identifiable curvatures that are invariant to the choice of slope dropped.2 That is, dropping any of the age, period or cohort
slopes does not change the estimates of the curvatures.

To generalise what parameters are estimable, let 𝑠𝑎, 𝑠𝑝 and 𝑠𝑐 be the respective age, period, and cohort linear terms. Any linear
combination of 𝜅1𝑠𝑎 + 𝜅2𝑠𝑝 +

(

𝜅2 − 𝜅1
)

𝑠𝑐 is estimable for arbitrary 𝜅1 and 𝜅2.2 While individual slopes cannot be estimated,
the recommendation from Holford is to drop one slope as the effect of the dropped slope is included in the remaining two, which
is ad-hoc.

Reparameterisations using curvatures orthogonal to linear slopes,2 second differences3 (second differences are the discrete
way to define local curvature, like the continuous second derivatives) and period and cohort terms orthogonal to linear trends4

provide systematic solutions to the APC problem. In each scheme, an arbitrary choice is made: which linear slope to drop,2

which three baseline rates to choose3 and which term and reference term to use.4 Consequently, we refer to the aforementioned
schemes as ‘overall non-arbitrary’ - they are based on a set of identifiable quantities but require an arbitrary choice during the
reparameterisation process.

Depending on which of the two slopes are kept in, the interpretation of the model changes. Commonly the age slope is often
retained due to age’s importance in most health concerns. If the cohort slope is dropped, the APC model is “cross-sectional”, i.e.,

𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝑎𝛽1 + 𝑝𝛽2 + 𝑓𝐴𝐶
(𝑎) + 𝑓𝑃𝐶

(𝑝) + 𝑓𝐶𝐶
(𝑐)

and if the period slope is dropped, the APC model is “longitudinal”, i.e.,

𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝑎𝛽1 + 𝑐𝛽2 + 𝑓𝐴𝐶
(𝑎) + 𝑓𝑃𝐶

(𝑝) + 𝑓𝐶𝐶
(𝑐) .

In the remainder of the paper, we do not concern ourselves with the interpretation of the model based off of the slope dropped
and choose to drop the cohort slope in all subsequent models for consistency.
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FIGURE 2 Thin plate regression spline basis before any reparameterisation, after an intercept reparameterisation and after an
intercept and slope reparameterisation.

For models with multiple smooth functions, the penalty in the objective function is the addition of each individual smooths
penalty function. For APC models reparameterised as above, the penalty function is

𝜆𝑎 ∫
𝑎

𝑓 ′′
𝐴𝐶

(𝑎)2 𝑑𝑎 + 𝜆𝑝 ∫
𝑝

𝑓 ′′
𝑃𝐶

(𝑝)2 𝑑𝑝 + 𝜆𝑐 ∫
𝑐

𝑓 ′′
𝐶𝐶

(𝑐)2 𝑑𝑐,

or in matrix form,
𝜆𝑎𝜷𝐴𝐶

𝑺𝐴𝐶
𝜷𝐴𝐶

+ 𝜆𝑝𝜷𝐶𝐶
𝑺𝑃𝐶

𝜷𝑃𝐶
+ 𝜆𝑐𝜷𝑃𝐶

𝑺𝐶𝐶
𝜷𝐶𝐶

.
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2.5 Implementation
There are many types of spline basis functions one might use with common choices including thin plate regression splines and
cubic regression splines. Thin plate regression splines smooth with respect to any number of covariates and do not need the knots
to be specified a priori; however, thin plate regression splines are computationally costly and are not invariant to rescaling of
the covariate. Cubic regression splines are computationally cheap with directly interpretable parameters but can only model one
covariate at a time and require the knots to be predefined. For more details on these bases and examples of others, see Chapter 5
Wood (2017).16 In Figure 2, we use a thin plate regression spline as they clearly illustrate the bases that capture the constant and
linear behaviour of the spline. Going forward, we use a cubic regression spline basis for the implementation in the remainder of
the paper. We note that our proposed method is not basis specific and will work for other basis choices.

The APC model in Eq.(3) has a parametric component, the two included slopes, and a non-parametric component, the smooth
functions of curvatures. Therefore, it can fit into the wider framework of a generalised additive model (GAM).17 We implement
the GAMs in the mgcv package16 in R14 which offers a wide range of spline bases to represent smooth functions and their
penalties. An example formula for a GAM in mgcv with one parameteric component (x1) and two non-parameteric components
(x2 and x3) is y ∼ x1 + s(x2, bs=bs, k=x2k) + s(x3, bs=bs, k=x3k). Here s() is the call to a univariate
smooth, bs is the argument to specify the basis to use (e.g. “bs = �cr�” for a cubic regression spline) and k is the basis
dimensions (the knots in the case of a spline). To manually modify the model and penalty matrices, we utilise the fit = FALSE

argument in gam(). This argument returns the full model, including the model and penalty matrices, before the model fitting
process. We take model and penalty matrices returned here, modify them as required, and then perform the model fitting process.
Code to replicate the following simulation studies and application analysis can be found at https://github.com/connorgascoigne/
Unequal-Interval-APC-Models.

3 SIMULATION STUDY

We now present a simulation study to demonstrate that the proposed model provides a suitable solution to the APC identification
problem in the simplest, 𝑀 = 1, scenario.

3.1 Data
The simulation study is motivated by obesity rates and how they increase with age and in more recent years18,19,20 as well as
having an hereditary effect.21,22 Obesity data is a common application of APC models as a range of different responses can be
used. For example, a linear regression model can be used on weights.23 Alternatively, body mass index (BMI) has been modelled
via a linear regression model (using log-BMI) and a logistic regression model (indicator of a given BMI).24 In addition, a Poisson
model for counts of rare events can be used.

The shapes for the age, period and cohort effects are adopted from a simulation study for Gaussian data from Luo and
Hodges.23 We extend this study to include responses from binomial and Poisson paradigms. Specific choices for the simulation
set up and distribution parameters in the binomial and Poisson cases are motivated by the UKs yearly obesity survey from the
NHS.1 The survey is of approximately 8000 adults grouped from 16-24 up to 75+.

Data is simulated for individuals in single-year age-period format. We consider time to be continuous and use the yearly
midpoint when modelling. We define single-year ages between [0, 60] and single-year period between [0, 20] with a (relative to
the period) cohort calculated using 𝑐 = 𝑝−𝑎. For the normal and Binomial distributions, 𝑁𝑎𝑝 reflects the number of individuals
included in the survey which for each of the 60 ages is fixed to be 150. For the Poisson distribution,𝑁𝑎𝑝 is typically the population
at risk, but for consistency this will be kept at 150 as well.

The true functions of age, period, and cohort (identical to Luo and Hodges) to generate the Gaussian data are
ℎ𝐴 (𝑎) = 0.3𝑎 − 0.01𝑎2

ℎ𝑃 (𝑝) = −0.04𝑝 + 0.02𝑝2

ℎ𝐶 (𝑐) = 0.35𝑐 − 0.0015𝑐2.
In order to use the same set of functions (so the curve shapes are consistent across distributions), the simulations for the binomial
and Poisson case are altered via an offset and scaling factor

offset + scale ×
[

ℎ𝐴 (𝑎) + ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

https://github.com/connorgascoigne/Unequal-Interval-APC-Models
https://github.com/connorgascoigne/Unequal-Interval-APC-Models
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to match the obesity survey data. The expected responses for the binomial (overweight, BMI ≥ 25) and Poisson (obese, BMI ≥
30) data reflect an average of approximately 64% and 28% of the UKs adult population, respectively. Furthermore, both sets of
responses have approximately 20% difference between the age group with the smallest largest counts.

The data from each distribution is generated from

𝑦𝑘𝑛𝑎𝑝 ∼ Normal
(

𝜇𝑎𝑝, 1
)

𝑦𝑘𝑎𝑝 ∼ Binomial
(

𝑁𝑎𝑝, 𝜋𝑎𝑝
)

𝑦𝑘𝑎𝑝 ∼ Poisson
(

𝜆𝑎𝑝
)

where 𝜇𝑎𝑝 = 0 +
[

ℎ𝐴 (𝑎) + ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

∕1 for 𝑛 = {1,… , 𝑁𝑎𝑝 = 150} and 𝑘 = {1,… , 𝐾 = 100} for each
simulation. For the binomial and Poisson distributions, 𝜋𝑎𝑝 = expit

(

0.4 +
[

ℎ𝐴 (𝑎) + ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

∕50
)

and 𝜆𝑎𝑝 =
𝑁𝑎𝑝 exp

(

−1.5 +
[

ℎ𝐴 (𝑎) + ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

∕50
)

, respectively. The range of binomial and Poisson responses are approximately
45% to 81% and 9% to 51%, respectively, which match the target percentages with ±20%.

In this paper we will only report on the results for binomial generated data. The results for the other distributions are in the
Supplementary Material. Furthermore, the Supplementary Material contains an example of data generated without all three
temporal trends present (cohort is missing). This example highlights that the issues are due to the structural link within the data
rather than the re-parameterisation we propose.

3.2 Models
To each of the 𝑆 data sets, we fit the following models:

1. Factor (FA) Model: A factor version of an APC model is written 𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝛼𝑎 + 𝜏𝑝 + 𝛾𝑐 where 𝛽0 is the overall level,
𝛼𝑎, 𝜏𝑝 and 𝛾𝑐 are the 𝑎, 𝑝 and 𝑐 levels of the age, period, and cohort factors, respectively. The interpretation of these factors
if there was no structural link identification would be relative risks (for example, for age it is the difference between the
overall mean and the 𝑎th age group). Due to the structural link, the factors are unidentifiable and cannot be interpreted as
such; consequently, this model was originally reparameterised into a set of linear trends and their orthogonal curvatures.2

The factor version of the reparameterised APC model is,

𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝑠1𝛽1 + 𝑠2𝛽2 + 𝛼𝐶𝑎
+ 𝜏𝐶𝑝

+ 𝛾𝐶𝑝

where 𝑠1 and 𝑠2 are the two chosen linear trends with slopes 𝛽1 and 𝛽2 and 𝜶𝐶 , 𝝉𝐶 and 𝜸𝐶 are the factor curvature terms.
This original reparameterisation is used as a benchmark for comparison in the simulation study and is still widely used
with summaries available from a user-friendly web tool https://analysistools.cancer.gov/apc/ from the National Cancer
Institute.25

2. Smoothing spline models: Detailed in Section 2, a reparameterisation in the style of the FA model but on a continuous
version of the APC model using smoothing splines on the curvatures

𝑔
(

𝜇𝑎𝑝
)

= 𝛽0 + 𝑠1𝛽1 + 𝑠2𝛽2 + 𝑓𝐴𝐶
(𝑎) + 𝑓𝑃𝐶

(𝑝) + 𝑓𝐶𝐶
(𝑐)

where 𝑠1 and 𝑠2 are the two chosen linear trends with slopes 𝛽1 and 𝛽2, and 𝑓𝐴𝐶
(𝑎), 𝑓𝑃𝐶

(𝑝) and 𝑓𝐶𝐶
(𝑐) are the smooth

functions of curvature. The smooth functions are represented by cubic regression splines with the number of knots
approximately 25% of the number of unique data points for each temporal effect, spaced at even intervals.

(a) Regression Smoothing spline (RSS): This is the smoothing spline model fit without penalisation; it is common to
fit spline APC in this manner. In mgcv, smoothing penalties are applied by default but are removed using the option
fx=TRUE.

(b) Penalised smoothing spline (PSS): This is the smoothing spline model fit with penalisation. The importance of
penalisation will become clear in Section 4.

For all models, the ad-hoc choice of what linear slope to drop will be cohort (meaning the APC model is cross-sectional).
Therefore, the models will contain age and period slopes and curvatures for all three temporal effects.

https://analysistools.cancer.gov/apc/
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3.3 Results
Identification issues due to the structural link are resolved by the ad-hoc forcing of one of the slopes to be zero. Due to this,
comparisons between ℎ⋆ and ℎ̂⋆ are inappropriate as the true effects do not have a zero linear trend. To compare the two sets of
quantities, we construct identifiable functions of the true and estimated mean values.

Thus, we define modified true and estimated effects which take into consideration the intercept and structural link identifi-
ability. In practise, first define the linear predictor for all APC combinations (including ones not present due to the structural
link identification), then the adjusted true effects are calculated by subtracting the overall mean of the linear predictor from the
marginal temporal effect of the linear predictor. For example, the true adjusted age effect for all three distributions is calculated,

ℎ+
𝐴 (𝑎) =

⎧

⎪

⎨

⎪

⎩

1
𝑃𝐶

∑𝑃
𝑝=1

∑𝐶
𝑐=1 𝜇𝑎𝑝𝑐 −

1
𝐴𝑃𝐶

∑𝐴
𝑎=1

∑𝑃
𝑝=1

∑𝐶
𝑐=1 𝜇𝑎𝑝𝑐 Gaussian

1
𝑃𝐶

∑𝑃
𝑝=1

∑𝐶
𝑐=1 logit

(

𝜋𝑎𝑝𝑐
)

− 1
𝐴𝑃𝐶

∑𝐴
𝑎=1

∑𝑃
𝑝=1

∑𝐶
𝑐=1 logit

(

𝜋𝑎𝑝𝑐
)

Binomial
1
𝑃𝐶

∑𝑃
𝑝=1

∑𝐶
𝑐=1 log

(

𝜆𝑎𝑝𝑐
)

− 1
𝐴𝑃𝐶

∑𝐴
𝑎=1

∑𝑃
𝑝=1

∑𝐶
𝑐=1 log

(

𝜆𝑎𝑝𝑐
)

Poisson
.

The intercept identifiability is addressed in the true effects by subtracting the overall mean from the marginal of the linear
predictor. As the structural link identifiability cannot be removed as with the intercept identifiability, it is consolidated into an
‘average effect’ of the remaining two terms. To see this explicitly and without the loss of generality, consider the Gaussian case
where offset = 0 and scale = 1,

ℎ+
𝐴 (𝑎) = 1

𝑃𝐶

𝑃
∑

𝑝=1

𝐶
∑

𝑐=1
𝜇𝑎𝑝𝑐

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
marginal age effect

− 1
𝐴𝑃𝐶

𝐴
∑

𝑎=1

𝑃
∑

𝑝=1

𝐶
∑

𝑐=1
𝜇𝑎𝑝𝑐

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
overall mean

∝ 1
𝑃𝐶

𝑃
∑

𝑝=1

𝐶
∑

𝑐=1

[

ℎ𝐴 (𝑎) + ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

= ℎ𝐴 (𝑎) + 1
𝑃𝐶

𝑃
∑

𝑝=1

𝐶
∑

𝑐=1

[

ℎ𝑃 (𝑝) + ℎ𝐶 (𝑐)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average period/cohort effect

where the linear trends in period and cohort are consolidated into an average effect. For all distributions, the true age curvatures
are found by de-trending the true effects

ℎ+
𝐴𝐶

(𝒂) =
(

𝑰𝐴 −𝑯𝐴
)

ℎ+
𝐴 (𝒂)

where 𝑰𝐴 is an 𝐴 × 𝐴 identity matrix and 𝑯𝐴 = [𝟏 ∶ 𝒂]
(

[𝟏 ∶ 𝒂]𝑇 [𝟏 ∶ 𝒂]
)−1 [𝟏 ∶ 𝒂]𝑇 is the hat matrix for an ordinary least

squares fit of the age effect. To define the estimated effects, use the estimated linear predictor for all APC combinations instead
of the true linear predictor, �̂�𝑎𝑝𝑐 , logit

(

�̂�𝑎𝑝𝑐
)

and log
(

�̂�𝑎𝑝𝑐
)

for Gaussian, binomial, and Poisson, respectively, to define the
marginal age effect and overall mean. The estimated curvatures are found using the estimated effects in the same manner as the
true curvatures were. In all three distributions, the period and cohort effects and curvatures are analogous.

The results of the binomial simulation study are summarised in Figure 3. Each column refers to one of the temporal effects;
age, period, and cohort from left to right. The first two rows show the estimated effect and curvature for each of age, period
and cohort alongside their respective true effect and curvature. The latter two rows show the bias and mean square error
(MSE) of the identifiable curvature terms. The bias and MSE for the effect at age 𝑎 are 1

𝐾

[

∑𝐾
𝑘=1

(

ℎ̂+
𝐴𝑘

(𝑎) − ℎ+
𝐴 (𝑎)

)]

and
1
𝐾

[

∑𝐾
𝑘=1

(

ℎ̂+
𝐴𝑘

(𝑎) − ℎ+
𝐴 (𝑎)

)2
]

, respectively and is analogous for period and cohort and the curvatures. The 𝑥-axis is labelled
relative years since period is fixed to start at zero years and the cohort is relative to these.

The first row in Figure 3 shows the estimated and true full temporal effects. The shift and rotation in the estimates in compar-
ison to the truth is because of the lack of identifiability in the full effects due to the structural link. The estimated full effects will
change depending upon the arbitrary choices we make (such as how we define the orthogonal projection or the choice of linear
slope to drop), but unless we have additional information, these estimates will (most likely) be different to the truth. To show
how a more informed arbitrary choice of reparameterisation can give the impression of identifiability in the true effects, consider
Figure S2 in Supplementary Material. Figure S2 shows the results of an APC model being fit to data generated without a cohort
effect present. The additional information we have at our disposal (e.g., cohort is not present in the data generation) means we
can make a more informed arbitrary choice (e.g., drop the cohort slope). Due to this, the estimated full effects are the same as
the true effects. In reality, this external information would not have been available, and the true effects would not be identifiable.
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FIGURE 3 Simulation study results for equal interval, 𝑀 = 1, binomial data generated when all three temporal effects are
present. The FA, RSS and PSS models are the factor, regression smoothing spline and penalised smoothing spline models,
respectfully. The first and second row are of the temporal effect and curvature plots for all models alongside the true values. The
bottom two rows are the bias and MSE box plots for each model.

In contrast to the full effect, the temporal curvatures are identifiable, and this is shown in the second row of Figure 3 since
the curvature estimates match the true curvatures. The FA curvature estimates are not as smooth as those from the RSS and PSS
models. This is due to the fact the RSS and PSS models smooth between terms, with the PSS also penalising the “wiggliness” of
the estimated functions. In addition, the added variability seen in the oldest and youngest cohorts (as these are the observations
seen the least) is smoothed over in the RSS and PSS models and not in the FA model.
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The bias and MSE are only displayed for the estimated curvatures as these are the identifiable component. Each model pro-
duces a set of curvatures that accurately estimate the true curvatures. The age bias for the RSS model is slightly larger than
the other two but is still small (±0.05). The MSE further highlights the adequateness of each model. The behaviour of the PSS
model for data generated in equal intervals is consistent, if not outperforming, what is expected from the well-known and well
used FA and RSS models.

4 UNEQUALLY AGGREGATED INTERVALS FOR AGE, PERIOD AND COHORT

Temporal data aggregated into intervals that match (e.g., five-year age, five-year period) are referred to as in ‘equal intervals’.
If they do not match (e.g., five-year age, single-year period), the data is referred to as in ‘unequal intervals’. Providers of health
and demographic data frequently release data that has been aggregated over multiple years. Even if collected in single years, it
is common to be released aggregated over multiple years. This can be for several reasons, such as to preserve anonymity.

Unequally aggregated data can be considered in the simpler equal interval framework by collapsing over the lowest com-
mon multiple (LCM) of the intervals, LCM(age-years, period-years). Consider the following two cases LCM(2, 1) = 2 and
LCM(5, 3) = 15. In the former, period is collapsed over two-groups leading to some information loss but potentially removes
noise that obscures the true trend. In the latter, age is collapsed over three- and period over five-groups resulting in a larger
amount of information lost. The more groups collapsed over, the fewer observations there are, inducing greater uncertainty in
the parameter estimates.

4.1 Curvature identification problem
Previously we have focused on the case where age and period are in equal intervals, 𝑀 = 1. Table 2 shows how the cohort
index varies when age is aggregated into an interval five-times larger than period, 𝑀 = 5. Cohorts appear every fifth period,
highlighted in blue, unlike in the equal interval case, Table 1, where cohorts appear every period.

TABLE 2 Cohort indexing for age-period data table where age is grouped 𝑀 = 5 times larger than period. The cohort index is
defined using 𝑐 = 𝑀 × (𝐴 − 𝑎) + 𝑝 where 𝐴 = 8 to fix the first cohort to be 1.

8 1 2 3 4 5 6 7 8 9 10
7 6 7 8 9 10 11 12 13 14 15
6 11 12 13 14 15 16 17 18 19 20
5 16 17 18 19 20 21 22 23 24 25
4 21 22 23 24 25 26 27 28 29 30
3 26 27 28 29 30 31 32 33 34 35
2 31 32 33 34 35 36 37 38 39 40
1 36 37 38 39 40 41 42 43 44 45

Age 1 2 3 4 5 6 7 8 9 10
Period

When fitting APC models to data in unequal intervals, the identification problem caused by the cyclic pattern has previously
been represented in the transformed functions as an indicator function5 and as a modulo function.26 We use two 𝑀 periodic
functions 𝑣𝑀 (𝑝) and 𝑣𝑀 (𝑐) to represent a continuous time version of these. As 𝑣𝑀 is periodic, 𝑣𝑀 (𝑥 +𝑀) = 𝑣𝑀 (𝑥) and the
subscript is used to denote the periodicity. The transformed functions that include all the identification issues are

𝑓𝐴 (𝑎) = 𝑓𝐴 (𝑎) − const1 + const3𝑀𝑎,
𝑓𝑃 (𝑝) = 𝑓𝑃 (𝑝) + 𝑣𝑀 (𝑝) + const1 + const2 − const3𝑝,
𝑓𝐶 (𝑐) = 𝑓𝐶 (𝑐) − 𝑣𝑀 (𝑐) − const2 + const3𝑐.

(4)
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In the equal interval case, the periodic functions were not considered explicitly. This is because, when 𝑀 = 1 the periodic
functions is constant for each period and cohort (for example, 𝑣1 (𝑝) = 𝑣1 (𝑝 + 1) = 𝑣1 (𝑝 + 2) = … ), so are implicitly considered
in the const2 term.

As previously discussed, the overall linear predictor is invariant to the inclusion of a constant (intercept) and linear term
(structural link). Without loss of generality let const1 = const2 = const3 = 0, the linear predictor for the transformed functions is

𝑔
(

�̃�𝑎𝑝
)

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝) + 𝑓𝐶 (𝑐)
= 𝑓𝐴 (𝑎) +

[

𝑓𝑃 (𝑝) + 𝑣𝑀 (𝑝)
]

+
[

𝑓𝐶 (𝑐) − 𝑣𝑀 (𝑝 −𝑀𝑎)
]

= 𝑓𝐴 (𝑎) +
[

𝑓𝑃 (𝑝) + 𝑣𝑀 (𝑝)
]

+
[

𝑓𝐶 (𝑐) − 𝑣𝑀 (𝑝)
]

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝) + 𝑓𝐶 (𝑐) = 𝑔
(

𝜇𝑎𝑝
)

where 𝑐 = 𝑝 − 𝑀𝑎 and 𝑣 (𝑚 +𝑀) = 𝑣 (𝑚) are used in the second and third lines, respectively. Thus, the linear predictor is
invariant to the periodic function.

Now define the second derivatives of the two periodic functions as
𝑣′′𝑀 (𝑝) ≡ 𝑣𝑀𝐶

(𝑝)
𝑣′′𝑀 (𝑐) ≡ 𝑣𝑀𝐶

(𝑐) .

The previously identifiable second derivatives

𝑓𝐴
′′ (𝑎) ≡ ̃𝑓𝐴𝐶

(𝑎) = 𝑓𝐴𝐶
(𝑎)

̃𝑓𝑃𝐶
(𝑝) = 𝑓𝑃𝐶

(𝑝) + 𝑣𝑀𝐶
(𝑝)

̃𝑓𝐶𝐶
(𝑐) = 𝑓𝐶𝐶

(𝑐) − 𝑣𝑀𝐶
(𝑐)

(5)

are no longer identifiable for period cohort due to the presence of 𝑣𝑀𝐶
. The period and cohort curvature identifiability issues

mean these terms are no-longer estimable, as in the equal interval case; in the estimate, we cannot disentangle what is the “true”
curvature from the periodic function. We will call this the “curvature identifiability problem”.

4.2 Resolving the curvature identifiability problem
Holford first acknowledge the curvature identification problem, calling it the micro-trend identifiability problem, when fitting
factor models to APC data aggregated in unequal intervals. He described how the curvature identification problem produce an
𝑀-year cyclic pattern in the estimated temporal effects and proposed the use of smooth functions (smoothing splines) to model
them.9 This approach provides sufficient structure to smooth over the cyclic pattern caused by the curvature identification, but
it does not address the problem itself. Additionally, both Heuer11 and Carstensen4 use smoothing splines when fitting an APC
model to data aggregated in unequal intervals; however, both do not explore the curvature identifiability problem from the
unequal intervals and whether continuous functions alone resolve this. An important practical aspect to consider when using
splines is how to define the spline itself, i.e., what basis to use and how to define the knots for the basis. Because of this, each
author includes their own recommendations on best practises (which vary slightly from another), but none have included a
sensitivity analysis for these.

When fitting APC models to unequal data, the curvature identifiability problem means the period and cohort curvature func-
tions are no longer estimable Eq.(5). Because of this, an infinite number of period and cohort estimates can be used to produce
the same reparameterised linear predictor. Of those, if the function for period and cohort curvatures is approximating 𝑣𝑀 ≠ 0, the
period and cohort estimates will display the arbitrarily large, cyclic pattern over 𝑀-years as described by Holford.9 If 𝑣𝑀 ≠ 0 is
approximated, the cyclic pattern in the period and cohort estimates is “wigglier” than when 𝑣𝑀 = 0 is approximated. The PSS
method we proposed in Section 2 has a penalty on the integrated square of the second derivative (“wiggliness”) of the estimates.
Therefore, an estimate for a function approximating 𝑣𝑀 ≠ 0 will have a larger integrated square of the second derivative and
hence a larger penalty than one approximating 𝑣𝑀 = 0. Consequently, the PSS method we propose will actively penalise the
curvature identification issues; whereas, non-penalised methods will only smooth over them. A theoretical illustration of how
the penalty function is alleviating the curvature identification problem can be found in the Supplementary Material.
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4.3 Simulation study
We now demonstrate this result empirically by repeating the simulation study from Section 3 with data in unequal intervals. We
first generate the data in single-years and then aggregate, replicating the real-world practise of data being collected in single-year
age and period format with aggregation occurring before the data is released. As is common in many epidemiology settings, we
aggregate single-year age over five years (i.e., 𝑀 = 5).

The underlying single-year data are generated as described in Section 3. Once generated, the data is aggregated according to
𝒑 and 𝒂′, where 𝒂′ is the 𝑀-year age vector of length 𝐴′ = 𝐴∕𝑀 . After aggregation, 𝒑 and 𝒂′ are used to define 𝒄′, the cohort
vector of length 𝐶 ′ = 𝑀 ×

(

𝐴′ − 1
)

+𝑃 using 𝑐′ = 𝑝− 𝑎′. In this simulation, we have 𝐴′ such that it is an integer, i.e., each age
group is aggregated over the same number of ages. If this is not the case, and 𝐴′ is not an integer, the curvature identification
problem would still be present.9

To get a true age effect that is comparable to the estimated age effect, we average the effect over every 𝑀 distinct ages. Let
𝑎𝑖 and 𝑎′𝑖 be the 𝑖th value in the vectors 𝒂 and 𝒂′, the true value of the age effect that is comparable to the aggregated estimated
values is

ℎ+ (𝑎′𝑖
)

= 1
𝑀

0
∑

𝑚=−(𝑀−1)
ℎ+ (𝑎[(𝑖×𝑀)+𝑚]

)

for 𝑖 = {1,… , 𝐴′ = 𝐴
𝑀
}. For example, we average the true age effect evaluated at 0.5, 1.5, 2.5, 3.5 and 4.5 to be comparable to

the estimated effect at 𝑎′ = 2.5.
Similarly, for cohort, average over every 𝑀 cohorts (as age is aggregated in 𝑀 years) and move along in single-year steps (as

period is still single years). Therefore, let 𝑐𝑘 and 𝑐′𝑘 be the 𝑘th value in the vectors 𝒄 and 𝒄′. The true value of the cohort effect
that is comparable to the aggregated fitted values is

ℎ+ (𝑐′𝑘
)

= 1
𝑀

𝑀−1
∑

𝑚=0
ℎ+ (𝑐𝑘+𝑚

)

where 𝑘 = {1,… , 𝐶 ′ = 𝑀 ×
(

𝐴′ − 1
)

+ 𝑃 }. For example, average the cohort true effects at 𝑐 =-59, -58, -57, -56 and -55 to be
comparable to the estimated effect at 𝑐′ = −57.

Once the age and cohort true values are aggregated, the bias and MSE will reflect the variability observed in the 𝑀 = 1
simulations as well as the aggregation bias. As period is not changed, the expressions from Section 3 are used. The models fit are
the factor (FA), regression smoothing spline (RSS) and penalised smoothing spline (PSS) defined in Section 3. The estimated
effects ℎ̂+

⋆ and curvatures ℎ̂+
⋆𝐶

are calculated like Section 3 but with the vectors 𝑎′ and 𝑐′ for age and cohort; period is unchanged.
Figure 4 shows the results of the simulation study. Each column is one of the three temporal effects: the first two rows are the

function plots of the estimated full effects and curvatures alongside the true functions of both and the bottom two rows are the
bias and MSE for the curvatures.

The FA model displays the cyclic saw-tooth pattern which repeats every 𝑀-years (five-years) in both the full effects and cur-
vatures for period and cohort, not age. The cyclic pattern in the period and cohort curvatures is due to the curvature identification
problem. The period and cohort bias plots for FA model seem reasonable but this is due to the fact the cyclic pattern negating
the overall bias. More telling is the difference between the FA models period and cohort MSE box plots and those from the RSS
and PSS models; the FA box plot displays a general increase in the MSE values which themselves are more over-dispersed.

It is hard to differentiate between the results for the RSS and PSS models, with both seeming to provide adequate solutions
to resolving the curvature identification problem. From the theoretical results, period and cohort curvature functions are not
estimable, and the smoothest estimates come from a function that is approximating 𝑣𝑀 = 0. Therefore, if the function chosen
to approximate period and cohort is approximating 𝑣𝑀 = 0, the estimates are the smoothest and there is no additional penalty
being incurred from the added identification. In order to test this, we can perform a sensitivity analysis on the choice of function
used to approximate the true functions in the first place.

4.4 Sensitivity analysis
An important part of fitting APC models using splines is the basis and knot selection. Both Heuer11 and Holford9 use one type
of spline basis and give specific recommendations of knot specification, with Holford recommending knots placing the knots
every 𝑀 distinct points and Heuer recommending every five distinct points. Carstensen extends both by calling for less specific
placement of knots, instead recommending the knots scale with the number of distinct points.4 Since all three have different
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FIGURE 4 Simulation study results for unequal interval, 𝑀 = 5, binomial data generated when all three temporal effects
are present. The FA, RSS and PSS models are the factor, regression smoothing spline and penalised smoothing spline models,
respectfully. The first and second row are of the temporal effect and curvature plots for all models alongside the true values. The
bottom two rows are the bias and MSE box plots for each model.

recommendations of best practises when specifying the spline, we perform a sensitivity analysis to test the robustness of the RSS
and PSS models results against the spline specification. Furthermore, this will show if the apparent alleviation of the curvature
identification problem in both models is due to the methods working as intended or due to the choice in basis specification.

To test the robustness of the RSS and PSS model estimates to the spline specification, we perform a sensitivity analysis using
two additional bases. The first additional basis is defined by more knots. Previously the number of knots was roughly 25% of
distinct data points, and we increase this to be one less than the number of distinct data points. The second additional basis
includes extra columns for a periodic function for period and cohort constructed using a cyclic cubic regression spline basis16

alongside the normal cubic regression spline basis. The additional knots test the sensitivity to how the same basis is specified,
and the additional periodic columns test the sensitivity to a different basis.

For conciseness, only the period effect results are shown in Figure 5, where Figure 5a and Figure 5b are the additional knots
and additional periodic columns bases, respectively. Considering the curvature plots, both RSS estimates are different to one
another and display a cyclic pattern. The three different patterns in the RSS estimates across the simulation study and sensitivity
analysis show that the RSS results are sensitive to the basis specification. Furthermore, the inclusion of a cyclic pattern in each
of the sensitivity analysis results means that the RSS model is not actually alleviating the curvature identification problem. In
comparison, none of the estimates from the PSS model display the cyclic pattern; therefore, the PSS model is alleviating the
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curvature identification problem. For the PSS models additional periodic basis results, the penalisation does appear to over-
smooth the function, but this can be attributed to the non-periodic basis elements also having the larger penalty applied to
them.

(a) Additional knots. (b) Inclusion of a periodic basis.

FIGURE 5 Simulation study results for the additional bases for unequal interval, 𝑀 = 5, binomial data generated when all three
temporal effects are present. Panel (a) shows the basis where the number of knots is increased to be one less than the number of
distinct data points. Panel (b) shows the basis where there are additional periodic columns.

To summarise, the results from our simulation studies show the FA model is not suitable to model data unequally aggregated
in any capacity. Additionally, the sensitivity analysis shows that without a penalty, results obtained from smoothing splines
alone are not alleviating the curvature identification problem since the estimates are not robust to how the spline is specified. In
contrast, the lack of the cyclic pattern in the PSS model estimates show a penalty function is successfully alleviating the curvature
identification problem even when we specifically include cyclic elements in the basis. Therefore, we stress the importance and
recommend the use of a penalty term on the estimates of the temporal curvature functions to provide robustness and give the
user confidence that the curvature identification problem is addressed.

5 APPLICATION

We now consider an application of the PSS model on UK all-cause mortality data downloaded from the Human Mortality
Database (HMD).27 This application is used to show that both the PSS model is appropriate for use with real-world data and
to highlight how collapsing data that comes in unequal intervals into equal intervals can lead to incorrect, even contradictory,
analysis.

The HMD contains the raw population and (all-cause) deaths of 41 countries around the world attained from a variety of
national statistic offices. The data is not shareable but is free to download after registration. Data from the HMD was chosen as
it is downloadable in single-year age and period which gives the freedom to aggregate it as required. The UK all-cause mortality
data from the HMD comes in years 1922-2018 and age 0-110+. We take a subset of each and use years 1926-2015 and ages 0-
99 to ensure equal groups when aggregating later. The HMD often receives data which is either already aggregated or contains
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missing values. Due to this, they fill in the missing information (using a method outlined in their method protocol27) which
results in non-integer counts. For our models, we round the HMD values to the nearest integer.

Figure S9a in the Supplementary Material shows a heat map of the all-cause mortality in the UK for single-year age and
period. For a fixed year and in the absence of cohort effects, the apparent age effects are the changes in mortality along the 𝑦-
axis. For a fixed year and in the absence of cohort effects, the apparent age effects are the changes in mortality along the 𝑦-axis.
For a fixed age-group and in the absence of cohort effects, the period effects are the change in mortality along the 𝑥-axis. The
cohort effects reflect a combination of age and period effects and appear on the bottom left to top right diagonal. An example of
a notable change for each effect is: for age, the mortality changing from extremely high to low in the first five-years of life when
the year is fixed at 1926; for period, the drastic reduction in mortality for age groups 0-5 in more recent periods as oppose to
earlier periods; and finally, a cohort effect is the yellow to red frontier in the top right diagonally increasing due to these cohorts
having a better standard of living for the entirety of their life in comparison to cohorts before.

From the HMD data, three different data sets will be constructed: single-year age and period (1 × 1), five-year age and single-
year periods (5 × 1) and five-year age and period (5 × 5). The 1 × 1 data represents the most informative data set where no
aggregation occurs, and the 5×1 data reflects unequal interval data one might receive from a provider of health and demographic
data. To show why collapsing unequal intervals into equal intervals is not a suitable method, we include the 5 × 5 data. This
represents a case where one receives data in unequal form (i.e., in 5 × 1), but rather than address the curvature identification
problem, the period group is collapsed over five years thereby producing a dataset with equal intervals. The first and last three
rows of each data set can be seen in Table 3.

Aggregation Age-Group Year-Group Population Deaths

1 × 1

[0, 1) [1926, 1927) 791373 59661
[0, 1) [1927, 1928) 763981 56260
[0, 1) [1928, 1929) 744778 53281
⋯ ⋯ ⋯ ⋯

[98, 99] [2012, 2013) 20340 7751
[98, 99] [2013, 2014) 20664 7711
[98, 99] [2014, 2015] 40198 15209

5 × 1

[0, 5) [1926, 1927) 4026858 88081
[0, 5) [1927, 1928) 3888784 85596
[0, 5) [1928, 1929) 3773475 78393
⋯ ⋯ ⋯ ⋯

[95, 99] [2012, 2013) 90517 28900
[95, 99] [2013, 2014) 87777 27916
[95, 99] [2014, 2015] 187530 58471

5 × 5

[0, 5) [1926, 1931) 18960706 411563
[0, 5) [1931, 1936) 17291084 329432
[0, 5) [1936, 1941) 16790532 277819
⋯ ⋯ ⋯ ⋯

[95, 99] [2001, 2006) 346142 114044
[95, 99] [2006, 2011) 416010 131290
[95, 99] [2011, 2015] 457192 142900

TABLE 3 UK all-cause mortality data aggregated in single-year age and period, five-year age and single-year period an five-
year age and period.

To be consistent with the results displayed in the simulation study, we model the counts from a binomial distribution with a
logit link function and drop the cohort slope during the reparameterisation. The model equation is

logit
(

𝜋𝑎𝑝
)

= 𝛽0 + 𝑎𝛽𝐴𝐿
+ 𝑝𝛽𝑃𝐿

+ 𝑓𝐴𝐶
(𝑎) + 𝑓𝑃𝐶

(𝑝) + 𝑓𝐶𝐶
(𝑐) .
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The number of knots used for each temporal effect is 10, 10 and 20 for age, period, and cohort, respectively. These are kept
consistent across the models fit to all three data sets.

Figures S9b-S9d in the Supplementary Material show the predicted heat maps from each of the data sets. Since each of the
predicted heat maps are in-line with the true heat map, the PSS model is appropriate to use for real-world applications. The
difference in how the data is formatted can be seen by the pixel sizes in each of the figures and there are methods that can be
used to generate smoother predicted heat maps28. Since the heat map is a graphical illustration of the linear predictor, which is
invariant to the curvature identification problem, by considering them alone we are not able to tell if the curvature identification
problem is being alleviated. To see this, we need to consider the temporal function themselves.

Figure 6 shows the smooth function of the curvatures estimated from each of the data sets. These estimates are not the same
as the detrended temporal estimates ℎ̂⋆𝐶

from the simulation studies; they are the smooth functions of temporal curvatures
themselves, 𝑓⋆𝐶

. The lack of a cyclic pattern in the 5×1 results confirm the curvature identification problem has been addressed
by the penalisation.

The smooth functions of curvatures represent the rate of change in a given direction. For example, the steep positively increas-
ing half of the cohort curvature estimate reflects large improvements (large changes) in mortality in comparison to prior cohorts
rather than an increase in mortality. Furthermore, the steep negatively decreasing half does not reflect a reduction in mortality
rates but rather the improvements in mortality from cohort to cohort being smaller than before. In Figure S9a in the Supple-
mentary Material, these changes can be seen. The prominent diagonal frontier between the light blue and dark blue for ages
10-30 and years 1930-1960 is steeper than the frontier for 1960-present in the same age range. This means for the same ages,
the apparent cohort effect reducing mortality is less pronounced. This could be from advances in living standards slowing down
for the latter half of the 1900s onwards.

Given age is aggregated over five in the 5 × 1 and 5 × 5, the two sets of estimates of smooth functions are imperceptibly
different to one another, hence the appearance of only two curves in the age column of Figure 6. Both aggregated age estimates
follow roughly the same trend as the un-aggregated estimates. The effect of the aggregation is clear: the more drastic changes in
mortality are not captured in as much detail when aggregating. Given the slower rate of change in the cohort estimates, it is no
surprise the three sets of cohort estimates are extremely similar. Each of the three functions follow a similar path, reach similar
peaks, and have similar start and end points.

The difference between the 5 × 1 and 5 × 5 is apparent in the estimates for the period smooth functions. At times of large
change, the estimates from the 5 × 5 do not capture the full extent of change (e.g., the 1930s peak and 1950s trough) and have
conflicting estimates (fluctuations in the 2000s). In comparison, the 5 × 1 model, which does not rely on collapsing to resolve
added identification, follows the more informative 1 × 1 estimates extremely well.

Clearly, aggregating over groups loses information. The difference between the 1 × 1 and the other two estimates for age
smooth functions show this. To then collapse the aggregated data further, from 5 × 1 to 5 × 5, loses even more information and
reduces the explanatory power of the model. When data does not come in equal intervals, there is still substantial information
present to give detailed representation of how mortality changes over time. This application clearly demonstrates that further
collapsing to avoid complications negatively impacts the explanatory power of the model, which will impact the reason the
model is being fit in the first place (evaluating interventions, policy change, analysis, etc.).

Being able to capture the larger changes in mortality for a given effect is one of the most important aspects of mortality
modelling. Gaining insight into what causes these changes is helpful to understanding whether similar changes will happen again
and if so, will interventions help in any way. The APC penalised smoothing spline model on unequal data produces estimates
in-line with the richer data, highlighting the importance for a method that can handle data in any format.

6 CONCLUSION

In this paper, we conducted a simulation study and sensitivity analysis to investigate the use of penalised smoothing splines
(PSS) on the well-known curvature identification problem that arises when fitting APC models to data tabulated in unequal
intervals. The proposed method was compared to two different implementations of the same reparameterisation scheme, a factor
(FA) version2 and a regression smoothing spline (RSS) version of the model. The result of the simulation study and sensitivity
analysis for data in unequal intervals showed the PSS model is robust at alleviating the curvature identification problem unlike
the currently used FA and RSS methods. Further benefits of an APC model that can appropriately handle unequal data were
described during an application to UK all-cause mortality data from the HMD.
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FIGURE 6 UK all-cause mortality mortality fitted smooth curvatures for models fit to data aggregated in single-year age and
period, five-year age and single-year period and five-year age and period.

The simulation study for data aggregated in equal intervals demonstrates the PSS model resolves the usual APC structural
link identification problem. The unequal intervals simulation study compared the suitability of our model and those from the
literature at addressing the curvature identification problem. The cyclic pattern in the FA model estimates highlighted the issue
and showed this model is not appropriate in any capacity. The results from a sensitivity analysis show the RSS model does not
provide a robust solution to the problem; whereas, the PSS model does. Consequently, we strongly recommend the use of a
penalty to give robustness to, and confidence in, the results when fitting APC models to data that comes in unequal intervals.

We demonstrated with penalised smoothing splines it is essential to include a penalty when fitting APC models to data
that is aggregated in unequal intervals. An alternative method to including a penalty on the estimates is to use a smoothing
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prior in a Bayesian paradigm, such as a random walk prior26 or a Gaussian process prior.29 These methods have parallels
between our method due to the correspondence between penalised smoothing splines and stochastic processes30,31 and we believe
these provide suitable solutions. However, more work (which we have in progress) still needs to be done to fully explore the
appropriateness of smoothing priors within the context of the curvature identification problem for APC models.

We consider APC methods that only reparameterise into a curvature (or equivalent) component, but there are alternative
reparameterisations. For example, the curvature can be further split into an interpretable quadratic term, which gives additional
insight into how fast the temporal trends are changing, and higher-order terms.32 However, this is yet to be considered with
respect to data that comes in unequal intervals..

An extension of this framework is to include forecasts. Forecasting with an APC model in a health setting is useful when
updating policies and allocating resources. Consider the unidentifiable APC model where we are predicting ℎ periods into the
future

𝑔
(

𝜇𝑎,𝑝+ℎ
)

= 𝑓𝐴 (𝑎) + 𝑓𝑃 (𝑝 + ℎ) + 𝑓𝐶 (𝑐 + ℎ)
where 𝑐 = 𝑀 × (𝐴 − 𝑎) + 𝑝. Forecasts depend on estimates, from the data, of the period and cohort functions to be projected
ℎ steps ahead. When the individual temporal trends are not of interest, forecasts can be made from the above unidentifiable
model. However, forecasting is more likely to be used to answer questions such as response of a given age-group over the coming
years; this requires knowledge of the temporal trends. Therefore, the best practise is to perform forecasting based on invariant
forecasting functions,3 which in our proposal are the temporal curvatures.

In this paper, we consider all the temporal intervals in the unequal interval data to have a constant width, and do not consider
when the data comes in the format of non-constant unequal intervals. An example of non-constant unequal intervals is the weekly
period with five-year age groups from the ONS;7 the first age group is split into [0, 1) and [1, 4). An additional example comes
from the DHS,8 where when modelling under-five mortality, it is common to aggregate the monthly ages into [0, 1), [1, 12),
[12, 24), [24, 36), [36, 48) and [48, 60). Both the ONS and the DHS split age like this to better capture the changes in mortality
as the first year and month are extremely different to the rest. Other APC models have been extended to incorporate covariates
in space33,34 and such extensions of our work would be possible, too. The biggest challenge that will be encountered when
extending our proposed APC reparameterisation is keeping track of identifiable terms, especially when considering, for example,
within covariate temporal trends. Computational challenges can arise using splines to approximate functions for large datasets
(such as the DHS data) or for spatial extensions; therefore, a more efficient smooth approximation may need to be considered.
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Additional supporting information may be found online in the Supporting Information section at the end of this article. Fur-
thermore, code to replicate the simulation studies and application analysis can be found at https://github.com/connorgascoigne/
Unequal-Interval-APC-Models.
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